Feeds:
Posts
Comments

Archive for the ‘Biochemical pathways’ Category

Eight Subcellular Pathologies driving Chronic Metabolic Diseases – Methods for Mapping Bioelectronic Adjustable Measurements as potential new Therapeutics: Impact on Pharmaceuticals in Use

Eight Subcellular Pathologies driving Chronic Metabolic Diseases – Methods for Mapping Bioelectronic Adjustable Measurements as potential new Therapeutics: Impact on Pharmaceuticals in Use

Curators:

 

THE VOICE of Aviva Lev-Ari, PhD, RN

In this curation we wish to present two breaking through goals:

Goal 1:

Exposition of a new direction of research leading to a more comprehensive understanding of Metabolic Dysfunctional Diseases that are implicated in effecting the emergence of the two leading causes of human mortality in the World in 2023: (a) Cardiovascular Diseases, and (b) Cancer

Goal 2:

Development of Methods for Mapping Bioelectronic Adjustable Measurements as potential new Therapeutics for these eight subcellular causes of chronic metabolic diseases. It is anticipated that it will have a potential impact on the future of Pharmaceuticals to be used, a change from the present time current treatment protocols for Metabolic Dysfunctional Diseases.

According to Dr. Robert Lustig, M.D, an American pediatric endocrinologist. He is Professor emeritus of Pediatrics in the Division of Endocrinology at the University of California, San Francisco, where he specialized in neuroendocrinology and childhood obesity, there are eight subcellular pathologies that drive chronic metabolic diseases.

These eight subcellular pathologies can’t be measured at present time.

In this curation we will attempt to explore methods of measurement for each of these eight pathologies by harnessing the promise of the emerging field known as Bioelectronics.

Unmeasurable eight subcellular pathologies that drive chronic metabolic diseases

  1. Glycation
  2. Oxidative Stress
  3. Mitochondrial dysfunction [beta-oxidation Ac CoA malonyl fatty acid]
  4. Insulin resistance/sensitive [more important than BMI], known as a driver to cancer development
  5. Membrane instability
  6. Inflammation in the gut [mucin layer and tight junctions]
  7. Epigenetics/Methylation
  8. Autophagy [AMPKbeta1 improvement in health span]

Diseases that are not Diseases: no drugs for them, only diet modification will help

Image source

Robert Lustig, M.D. on the Subcellular Processes That Belie Chronic Disease

https://www.youtube.com/watch?v=Ee_uoxuQo0I

 

Exercise will not undo Unhealthy Diet

Image source

Robert Lustig, M.D. on the Subcellular Processes That Belie Chronic Disease

https://www.youtube.com/watch?v=Ee_uoxuQo0I

 

These eight Subcellular Pathologies driving Chronic Metabolic Diseases are becoming our focus for exploration of the promise of Bioelectronics for two pursuits:

  1. Will Bioelectronics be deemed helpful in measurement of each of the eight pathological processes that underlie and that drive the chronic metabolic syndrome(s) and disease(s)?
  2. IF we will be able to suggest new measurements to currently unmeasurable health harming processes THEN we will attempt to conceptualize new therapeutic targets and new modalities for therapeutics delivery – WE ARE HOPEFUL

In the Bioelecronics domain we are inspired by the work of the following three research sources:

  1. Biological and Biomedical Electrical Engineering (B2E2) at Cornell University, School of Engineering https://www.engineering.cornell.edu/bio-electrical-engineering-0
  2. Bioelectronics Group at MIT https://bioelectronics.mit.edu/
  3. The work of Michael Levin @Tufts, The Levin Lab
Michael Levin is an American developmental and synthetic biologist at Tufts University, where he is the Vannevar Bush Distinguished Professor. Levin is a director of the Allen Discovery Center at Tufts University and Tufts Center for Regenerative and Developmental Biology. Wikipedia
Born: 1969 (age 54 years), Moscow, Russia
Education: Harvard University (1992–1996), Tufts University (1988–1992)
Affiliation: University of Cape Town
Research interests: Allergy, Immunology, Cross Cultural Communication
Awards: Cozzarelli prize (2020)
Doctoral advisor: Clifford Tabin
Most recent 20 Publications by Michael Levin, PhD
SOURCE
SCHOLARLY ARTICLE
The nonlinearity of regulation in biological networks
1 Dec 2023npj Systems Biology and Applications9(1)
Co-authorsManicka S, Johnson K, Levin M
SCHOLARLY ARTICLE
Toward an ethics of autopoietic technology: Stress, care, and intelligence
1 Sep 2023BioSystems231
Co-authorsWitkowski O, Doctor T, Solomonova E
SCHOLARLY ARTICLE
Closing the Loop on Morphogenesis: A Mathematical Model of Morphogenesis by Closed-Loop Reaction-Diffusion
14 Aug 2023Frontiers in Cell and Developmental Biology11:1087650
Co-authorsGrodstein J, McMillen P, Levin M
SCHOLARLY ARTICLE
30 Jul 2023Biochim Biophys Acta Gen Subj1867(10):130440
Co-authorsCervera J, Levin M, Mafe S
SCHOLARLY ARTICLE
Regulative development as a model for origin of life and artificial life studies
1 Jul 2023BioSystems229
Co-authorsFields C, Levin M
SCHOLARLY ARTICLE
The Yin and Yang of Breast Cancer: Ion Channels as Determinants of Left–Right Functional Differences
1 Jul 2023International Journal of Molecular Sciences24(13)
Co-authorsMasuelli S, Real S, McMillen P
SCHOLARLY ARTICLE
Bioelectricidad en agregados multicelulares de células no excitables- modelos biofísicos
Jun 2023Revista Española de Física32(2)
Co-authorsCervera J, Levin M, Mafé S
SCHOLARLY ARTICLE
Bioelectricity: A Multifaceted Discipline, and a Multifaceted Issue!
1 Jun 2023Bioelectricity5(2):75
Co-authorsDjamgoz MBA, Levin M
SCHOLARLY ARTICLE
Control Flow in Active Inference Systems – Part I: Classical and Quantum Formulations of Active Inference
1 Jun 2023IEEE Transactions on Molecular, Biological, and Multi-Scale Communications9(2):235-245
Co-authorsFields C, Fabrocini F, Friston K
SCHOLARLY ARTICLE
Control Flow in Active Inference Systems – Part II: Tensor Networks as General Models of Control Flow
1 Jun 2023IEEE Transactions on Molecular, Biological, and Multi-Scale Communications9(2):246-256
Co-authorsFields C, Fabrocini F, Friston K
SCHOLARLY ARTICLE
Darwin’s agential materials: evolutionary implications of multiscale competency in developmental biology
1 Jun 2023Cellular and Molecular Life Sciences80(6)
Co-authorsLevin M
SCHOLARLY ARTICLE
Morphoceuticals: Perspectives for discovery of drugs targeting anatomical control mechanisms in regenerative medicine, cancer and aging
1 Jun 2023Drug Discovery Today28(6)
Co-authorsPio-Lopez L, Levin M
SCHOLARLY ARTICLE
Cellular signaling pathways as plastic, proto-cognitive systems: Implications for biomedicine
12 May 2023Patterns4(5)
Co-authorsMathews J, Chang A, Devlin L
SCHOLARLY ARTICLE
Making and breaking symmetries in mind and life
14 Apr 2023Interface Focus13(3)
Co-authorsSafron A, Sakthivadivel DAR, Sheikhbahaee Z
SCHOLARLY ARTICLE
The scaling of goals from cellular to anatomical homeostasis: an evolutionary simulation, experiment and analysis
14 Apr 2023Interface Focus13(3)
Co-authorsPio-Lopez L, Bischof J, LaPalme JV
SCHOLARLY ARTICLE
The collective intelligence of evolution and development
Apr 2023Collective Intelligence2(2):263391372311683SAGE Publications
Co-authorsWatson R, Levin M
SCHOLARLY ARTICLE
Bioelectricity of non-excitable cells and multicellular pattern memories: Biophysical modeling
13 Mar 2023Physics Reports1004:1-31
Co-authorsCervera J, Levin M, Mafe S
SCHOLARLY ARTICLE
There’s Plenty of Room Right Here: Biological Systems as Evolved, Overloaded, Multi-Scale Machines
1 Mar 2023Biomimetics8(1)
Co-authorsBongard J, Levin M
SCHOLARLY ARTICLE
Transplantation of fragments from different planaria: A bioelectrical model for head regeneration
7 Feb 2023Journal of Theoretical Biology558
Co-authorsCervera J, Manzanares JA, Levin M
SCHOLARLY ARTICLE
Bioelectric networks: the cognitive glue enabling evolutionary scaling from physiology to mind
1 Jan 2023Animal Cognition
Co-authorsLevin M
SCHOLARLY ARTICLE
Biological Robots: Perspectives on an Emerging Interdisciplinary Field
1 Jan 2023Soft Robotics
Co-authorsBlackiston D, Kriegman S, Bongard J
SCHOLARLY ARTICLE
Cellular Competency during Development Alters Evolutionary Dynamics in an Artificial Embryogeny Model
1 Jan 2023Entropy25(1)
Co-authorsShreesha L, Levin M
5

5 total citations on Dimensions.

Article has an altmetric score of 16
SCHOLARLY ARTICLE
1 Jan 2023BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY138(1):141
Co-authorsClawson WP, Levin M
SCHOLARLY ARTICLE
Future medicine: from molecular pathways to the collective intelligence of the body
1 Jan 2023Trends in Molecular Medicine
Co-authorsLagasse E, Levin M

THE VOICE of Dr. Justin D. Pearlman, MD, PhD, FACC

PENDING

THE VOICE of  Stephen J. Williams, PhD

Ten TakeAway Points of Dr. Lustig’s talk on role of diet on the incidence of Type II Diabetes

 

  1. 25% of US children have fatty liver
  2. Type II diabetes can be manifested from fatty live with 151 million  people worldwide affected moving up to 568 million in 7 years
  3. A common myth is diabetes due to overweight condition driving the metabolic disease
  4. There is a trend of ‘lean’ diabetes or diabetes in lean people, therefore body mass index not a reliable biomarker for risk for diabetes
  5. Thirty percent of ‘obese’ people just have high subcutaneous fat.  the visceral fat is more problematic
  6. there are people who are ‘fat’ but insulin sensitive while have growth hormone receptor defects.  Points to other issues related to metabolic state other than insulin and potentially the insulin like growth factors
  7. At any BMI some patients are insulin sensitive while some resistant
  8. Visceral fat accumulation may be more due to chronic stress condition
  9. Fructose can decrease liver mitochondrial function
  10. A methionine and choline deficient diet can lead to rapid NASH development

 

Read Full Post »

Bacterial multidrug resistance problem solved by a broad-spectrum synthetic antibiotic

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

There is an increasing demand for new antibiotics that effectively treat patients with refractory bacteremia, do not evoke bacterial resistance, and can be readily modified to address current and anticipated patient needs. Recently scientists described a promising compound of COE (conjugated oligo electrolytes) family, COE2-2hexyl, that exhibited broad-spectrum antibacterial activity. COE2-2hexyl effectively-treated mice infected with bacteria derived from sepsis patients with refractory bacteremia, including a CRE K. pneumoniae strain resistant to nearly all clinical antibiotics tested. Notably, this lead compound did not evoke drug resistance in several pathogens tested. COE2-2hexyl has specific effects on multiple membrane-associated functions (e.g., septation, motility, ATP synthesis, respiration, membrane permeability to small molecules) that may act together to abrogate bacterial cell viability and the evolution of drug-resistance. Impeding these bacterial properties may occur through alteration of vital protein–protein or protein-lipid membrane interfaces – a mechanism of action distinct from many membrane disrupting antimicrobials or detergents that destabilize membranes to induce bacterial cell lysis. The diversity and ease of COE design and chemical synthesis have the potential to establish a new standard for drug design and personalized antibiotic treatment.

Recent studies have shown that small molecules can preferentially target bacterial membranes due to significant differences in lipid composition, presence of a cell wall, and the absence of cholesterol. The inner membranes of Gram-negative bacteria are generally more negatively charged at their surface because they contain more anionic lipids such as cardiolipin and phosphatidylglycerol within their outer leaflet compared to mammalian membranes. In contrast, membranes of mammalian cells are largely composed of more-neutral phospholipids, sphingomyelins, as well as cholesterol, which affords membrane rigidity and ability to withstand mechanical stresses; and may stabilize the membrane against structural damage to membrane-disrupting agents such as COEs. Consistent with these studies, COE2-2hexyl was well tolerated in mice, suggesting that COEs are not intrinsically toxic in vivo, which is often a primary concern with membrane-targeting antibiotics. The COE refinement workflow potentially accelerates lead compound optimization by more rapid screening of novel compounds for the iterative directed-design process. It also reduces the time and cost of subsequent biophysical characterization, medicinal chemistry and bioassays, ultimately facilitating the discovery of novel compounds with improved pharmacological properties.

Additionally, COEs provide an approach to gain new insights into microbial physiology, including membrane structure/function and mechanism of drug action/resistance, while also generating a suite of tools that enable the modulation of bacterial and mammalian membranes for scientific or manufacturing uses. Notably, further COE safety and efficacy studies are required to be conducted on a larger scale to ensure adequate understanding of the clinical benefits and risks to assure clinical efficacy and toxicity before COEs can be added to the therapeutic armamentarium. Despite these limitations, the ease of molecular design, synthesis and modular nature of COEs offer many advantages over conventional antimicrobials, making synthesis simple, scalable and affordable. It enables the construction of a spectrum of compounds with the potential for development as a new versatile therapy for the emergence and rapid global spread of pathogens that are resistant to all, or nearly all, existing antimicrobial medicines.

References:

https://www.thelancet.com/journals/ebiom/article/PIIS2352-3964(23)00026-9/fulltext#%20

https://pubmed.ncbi.nlm.nih.gov/36801104/

https://www.sciencedaily.com/releases/2023/02/230216161214.htm

https://www.nature.com/articles/s41586-021-04045-6

https://www.nature.com/articles/d43747-020-00804-y

Read Full Post »

Endoglin Protein Interactome Profiling Identifies TRIM21 and Galectin-3 as New Binding Partners

Curator: Stephen J. Williams, Ph.D.

First please see the summary of LPBI efforts into development of inhibitors of Galectin-3 for cancer therapeutics

Mission 4: Use of Systems Biology for Design of inhibitor of Galectins as Cancer Therapeutic – Strategy and Software

The following paper in Cells describes the discovery of protein interactors of endoglin, which is recruited to membranes at the TGF-β receptor complex upon TGF-β signaling. Interesting a carbohydrate binding protein, galectin-3, and an E3-ligase, TRIM21, were found to be unique interactors within this complex.

Gallardo-Vara E, Ruiz-Llorente L, Casado-Vela J, Ruiz-Rodríguez MJ, López-Andrés N, Pattnaik AK, Quintanilla M, Bernabeu C. Endoglin Protein Interactome Profiling Identifies TRIM21 and Galectin-3 as New Binding Partners. Cells. 2019 Sep 13;8(9):1082. doi: 10.3390/cells8091082. PMID: 31540324; PMCID: PMC6769930.

Abstract

Endoglin is a 180-kDa glycoprotein receptor primarily expressed by the vascular endothelium and involved in cardiovascular disease and cancer. Heterozygous mutations in the endoglin gene (ENG) cause hereditary hemorrhagic telangiectasia type 1, a vascular disease that presents with nasal and gastrointestinal bleeding, skin and mucosa telangiectases, and arteriovenous malformations in internal organs. A circulating form of endoglin (alias soluble endoglin, sEng), proteolytically released from the membrane-bound protein, has been observed in several inflammation-related pathological conditions and appears to contribute to endothelial dysfunction and cancer development through unknown mechanisms. Membrane-bound endoglin is an auxiliary component of the TGF-β receptor complex and the extracellular region of endoglin has been shown to interact with types I and II TGF-β receptors, as well as with BMP9 and BMP10 ligands, both members of the TGF-β family. To search for novel protein interactors, we screened a microarray containing over 9000 unique human proteins using recombinant sEng as bait. We find that sEng binds with high affinity, at least, to 22 new proteins. Among these, we validated the interaction of endoglin with galectin-3, a secreted member of the lectin family with capacity to bind membrane glycoproteins, and with tripartite motif-containing protein 21 (TRIM21), an E3 ubiquitin-protein ligase. Using human endothelial cells and Chinese hamster ovary cells, we showed that endoglin co-immunoprecipitates and co-localizes with galectin-3 or TRIM21. These results open new research avenues on endoglin function and regulation.

Source: https://www.mdpi.com/2073-4409/8/9/1082/htm

Endoglin is an auxiliary TGF-β co-receptor predominantly expressed in endothelial cells, which is involved in vascular development, repair, homeostasis, and disease [1,2,3,4]. Heterozygous mutations in the human ENDOGLIN gene (ENG) cause hereditary hemorrhagic telangiectasia (HHT) type 1, a vascular disease associated with nasal and gastrointestinal bleeds, telangiectases on skin and mucosa and arteriovenous malformations in the lung, liver, and brain [4,5,6]. The key role of endoglin in the vasculature is also illustrated by the fact that endoglin-KO mice die in utero due to defects in the vascular system [7]. Endoglin expression is markedly upregulated in proliferating endothelial cells involved in active angiogenesis, including the solid tumor neovasculature [8,9]. For this reason, endoglin has become a promising target for the antiangiogenic treatment of cancer [10,11,12]. Endoglin is also expressed in cancer cells where it can behave as both a tumor suppressor in prostate, breast, esophageal, and skin carcinomas [13,14,15,16] and a promoter of malignancy in melanoma and Ewing’s sarcoma [17]. Ectodomain shedding of membrane-bound endoglin may lead to a circulating form of the protein, also known as soluble endoglin (sEng) [18,19,20]. Increased levels of sEng have been found in several vascular-related pathologies, including preeclampsia, a disease of high prevalence in pregnant women which, if left untreated, can lead to serious and even fatal complications for both mother and baby [2,18,19,21]. Interestingly, several lines of evidence support a pathogenic role of sEng in the vascular system, including endothelial dysfunction, antiangiogenic activity, increased vascular permeability, inflammation-associated leukocyte adhesion and transmigration, and hypertension [18,22,23,24,25,26,27]. Because of its key role in vascular pathology, a large number of studies have addressed the structure and function of endoglin at the molecular level, in order to better understand its mechanism of action.

 Galectin-3 Interacts with Endoglin in Cells

Galectin-3 is a secreted member of the lectin family with the capacity to bind membrane glycoproteins like endoglin and is involved in the pathogenesis of many human diseases [52]. We confirmed the protein screen data for galectin-3, as evidenced by two-way co-immunoprecipitation of endoglin and galectin-3 upon co-transfection in CHO-K1 cells. As shown in Figure 1A, galectin-3 and endoglin were efficiently transfected, as demonstrated by Western blot analysis in total cell extracts. No background levels of endoglin were observed in control cells transfected with the empty vector (Ø). By contrast, galectin-3 could be detected in all samples but, as expected, showed an increased signal in cells transfected with the galectin-3 expression vector. Co-immunoprecipitation studies of these cell lysates showed that galectin-3 was present in endoglin immunoprecipitates (Figure 1B). Conversely, endoglin was also detected in galectin-3 immunoprecipitates (Figure 1C).

Cells 08 01082 g001 550

Figure 1. Protein–protein association between galectin-3 and endoglin. (AC). Co-immunoprecipitation of galectin-3 and endoglin. CHO-K1 cells were transiently transfected with pcEXV-Ø (Ø), pcEXV–HA–EngFL (Eng) and pcDNA3.1–Gal-3 (Gal3) expression vectors. (A) Total cell lysates (TCL) were analyzed by SDS-PAGE under reducing conditions, followed by Western blot (WB) analysis using specific antibodies to endoglin, galectin-3 and β-actin (loading control). Cell lysates were subjected to immunoprecipitation (IP) with anti-endoglin (B) or anti-galectin-3 (C) antibodies, followed by SDS-PAGE under reducing conditions and WB analysis with anti-endoglin or anti-galectin-3 antibodies, as indicated. Negative controls with an IgG2b (B) and IgG1 (C) were included. (D) Protein-protein interactions between galectin-3 and endoglin using Bio-layer interferometry (BLItz). The Ni–NTA biosensors tips were loaded with 7.3 µM recombinant human galectin-3/6xHis at the C-terminus (LGALS3), and protein binding was measured against 0.1% BSA in PBS (negative control) or 4.1 µM soluble endoglin (sEng). Kinetic sensorgrams were obtained using a single channel ForteBioBLItzTM instrument.

Cells 08 01082 g002 550

Figure 2.Galectin-3 and endoglin co-localize in human endothelial cells. Human umbilical vein-derived endothelial cell (HUVEC) monolayers were fixed with paraformaldehyde, permeabilized with Triton X-100, incubated with the mouse mAb P4A4 anti-endoglin, washed, and incubated with a rabbit polyclonal anti-galectin-3 antibody (PA5-34819). Galectin-3 and endoglin were detected by immunofluorescence upon incubation with Alexa 647 goat anti-rabbit IgG (red staining) and Alexa 488 goat anti-mouse IgG (green staining) secondary antibodies, respectively. (A) Single staining of galectin-3 (red) and endoglin (green) at the indicated magnifications. (B) Merge images plus DAPI (nuclear staining in blue) show co-localization of galectin-3 and endoglin (yellow color). Representative images of five different experiments are shown.

Endoglin associates with the cullin-type E3 ligase TRIM21
Cells 08 01082 g003 550

Figure 3.Protein–protein association between TRIM21 and endoglin. (AE) Co-immunoprecipitation of TRIM21 and endoglin. A,B. HUVEC monolayers were lysed and total cell lysates (TCL) were subjected to SDS-PAGE under reducing (for TRIM21 detection) or nonreducing (for endoglin detection) conditions, followed by Western blot (WB) analysis using antibodies to endoglin, TRIM21 or β-actin (A). HUVECs lysates were subjected to immunoprecipitation (IP) with anti-TRIM21 or negative control antibodies, followed by WB analysis with anti-endoglin (B). C,D. CHO-K1 cells were transiently transfected with pDisplay–HA–Mock (Ø), pDisplay–HA–EngFL (E) or pcDNA3.1–HA–hTRIM21 (T) expression vectors, as indicated. Total cell lysates (TCL) were subjected to SDS-PAGE under nonreducing conditions and WB analysis using specific antibodies to endoglin, TRIM21, and β-actin (C). Cell lysates were subjected to immunoprecipitation (IP) with anti-TRIM21 or anti-endoglin antibodies, followed by SDS-PAGE under reducing (upper panel) or nonreducing (lower panel) conditions and WB analysis with anti-TRIM21 or anti-endoglin antibodies. Negative controls of appropriate IgG were included (D). E. CHO-K1 cells were transiently transfected with pcDNA3.1–HA–hTRIM21 and pDisplay–HA–Mock (Ø), pDisplay–HA–EngFL (FL; full-length), pDisplay–HA–EngEC (EC; cytoplasmic-less) or pDisplay–HA–EngTMEC (TMEC; cytoplasmic-less) expression vectors, as indicated. Cell lysates were subjected to immunoprecipitation with anti-TRIM21, followed by SDS-PAGE under reducing conditions and WB analysis with anti-endoglin antibodies, as indicated. The asterisk indicates the presence of a nonspecific band. Mr, molecular reference; Eng, endoglin; TRIM, TRIM21. (F) Protein–protein interactions between TRIM21 and endoglin using Bio-layer interferometry (BLItz). The Ni–NTA biosensors tips were loaded with 5.4 µM recombinant human TRIM21/6xHis at the N-terminus (R052), and protein binding was measured against 0.1% BSA in PBS (negative control) or 4.1 µM soluble endoglin (sEng). Kinetic sensorgrams were obtained using a single channel ForteBioBLItzTM instrument.

Table 1. Human protein-array analysis of endoglin interactors1.

Accession #Protein NameCellular Compartment
NM_172160.1Potassium voltage-gated channel, shaker-related subfamily, beta member 1 (KCNAB1), transcript variant 1Plasma membrane
Q14722
NM_138565.1Cortactin (CTTN), transcript variant 2Plasma membrane
Q14247
BC036123.1Stromal membrane-associated protein 1 (SMAP1)Plasma membrane
Q8IYB5
NM_173822.1Family with sequence similarity 126, member B (FAM126B)Plasma membrane, cytosol
Q8IXS8
BC047536.1Sciellin (SCEL)Plasma membrane, extracellular or secreted
O95171
BC068068.1Galectin-3Plasma membrane, mitochondrion, nucleus, extracellular or secreted
P17931
BC001247.1Actin-binding LIM protein 1 (ABLIM1)Cytoskeleton
O14639
NM_198943.1Family with sequence similarity 39, member B (FAM39B)Endosome, cytoskeleton
Q6VEQ5
NM_005898.4Cell cycle associated protein 1 (CAPRIN1), transcript variant 1Cytosol
Q14444
BC002559.1YTH domain family, member 2 (YTHDF2)Nucleus, cytosol
Q9Y5A9
NM_003141.2Tripartite motif-containing 21 (TRIM21)Nucleus, cytosol
P19474
BC025279.1Scaffold attachment factor B2 (SAFB2)Nucleus
Q14151
BC031650.1Putative E3 ubiquitin-protein ligase SH3RF2Nucleus
Q8TEC5
BC034488.2ATP-binding cassette, sub-family F (GCN20), member 1 (ABCF1)Nucleus
Q8NE71
BC040946.1Spliceosome-associated protein CWC15 homolog (HSPC148)Nucleus
Q9P013
NM_003609.2HIRA interacting protein 3 (HIRIP3)Nucleus
Q9BW71
NM_005572.1Lamin A/C (LMNA), transcript variant 2Nucleus
P02545
NM_006479.2RAD51 associated protein 1 (RAD51AP1)Nucleus
Q96B01
NM_014321.2Origin recognition complex, subunit 6 like (yeast) (ORC6L)Nucleus
Q9Y5N6
NM_015138.2RNA polymerase-associated protein RTF1 homolog (RTF1)Nucleus
Q92541
NM_032141.1Coiled-coil domain containing 55 (CCDC55), transcript variant 1Nucleus
Q9H0G5
BC012289.1Protein PRRC2B, KIAA0515Data not available
Q5JSZ5

1 Microarrays containing over 9000 unique human proteins were screened using recombinant sEng as a probe. Protein interactors showing the highest scores (Z-score ≥2.0) are listed. GeneBank (https://www.ncbi.nlm.nih.gov/genbank/) and UniProtKB (https://www.uniprot.org/help/uniprotkb) accession numbers are indicated with a yellow or green background, respectively. The cellular compartment of each protein was obtained from the UniProtKB webpage. Proteins selected for further studies (TRIM21 and galectin-3) are indicated in bold type with blue background.

Note: the following are from NCBI Genbank and Genecards on TRIM21

 From Genbank: https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=DetailsSearch&Term=6737

TRIM21 tripartite motif containing 21 [ Homo sapiens (human) ]

Gene ID: 6737, updated on 6-Sep-2022

Summary

Official Symbol TRIM21provided by HGNC Official Full Name tripartite motif containing 21provided by HGNC Primary source HGNC:HGNC:11312 See related Ensembl:ENSG00000132109MIM:109092;AllianceGenome:HGNC:11312 Gene type protein coding RefSeq status REVIEWED Organism Homo sapiens Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae; Homo Also known as SSA; RO52; SSA1; RNF81; Ro/SSA Summary This gene encodes a member of the tripartite motif (TRIM) family. The TRIM motif includes three zinc-binding domains, a RING, a B-box type 1 and a B-box type 2, and a coiled-coil region. The encoded protein is part of the RoSSA ribonucleoprotein, which includes a single polypeptide and one of four small RNA molecules. The RoSSA particle localizes to both the cytoplasm and the nucleus. RoSSA interacts with autoantigens in patients with Sjogren syndrome and systemic lupus erythematosus. Alternatively spliced transcript variants for this gene have been described but the full-length nature of only one has been determined. [provided by RefSeq, Jul 2008] Expression Ubiquitous expression in spleen (RPKM 15.5), appendix (RPKM 13.2) and 24 other tissues See more Orthologs mouseall NEW Try the new Gene table
Try the new Transcript table

Genomic context

See TRIM21 in Genome Data Viewer Location:   11p15.4 Exon count:   7

Annotation releaseStatusAssemblyChrLocation
110currentGRCh38.p14 (GCF_000001405.40)11NC_000011.10 (4384897..4393702, complement)
110currentT2T-CHM13v2.0 (GCF_009914755.1)11NC_060935.1 (4449988..4458819, complement)
105.20220307previous assemblyGRCh37.p13 (GCF_000001405.25)11NC_000011.9 (4406127..4414932, complement)

Chromosome 11 – NC_000011.10Genomic Context describing neighboring genes

Bibliography

Related articles in PubMed

  1. TRIM21 inhibits the osteogenic differentiation of mesenchymal stem cells by facilitating K48 ubiquitination-mediated degradation of Akt.Xian J, et al. Exp Cell Res, 2022 Mar 15. PMID 35051432
  2. A Promising Intracellular Protein-Degradation Strategy: TRIMbody-Away Technique Based on Nanobody Fragment.Chen G, et al. Biomolecules, 2021 Oct 14. PMID 34680146, Free PMC Article
  3. Induced TRIM21 ISGylation by IFN-β enhances p62 ubiquitination to prevent its autophagosome targeting.Jin J, et al. Cell Death Dis, 2021 Jul 13. PMID 34257278, Free PMC Article
  4. TRIM21 Polymorphisms are associated with Susceptibility and Clinical Status of Oral Squamous Cell Carcinoma patients.Chuang CY, et al. Int J Med Sci, 2021. PMID 34220328, Free PMC Article
  5. TRIM21 inhibits porcine epidemic diarrhea virus proliferation by proteasomal degradation of the nucleocapsid protein.Wang H, et al. Arch Virol, 2021 Jul. PMID 33900472, Free PMC Article

From GeneCard:https://www.genecards.org/cgi-bin/carddisp.pl?gene=TRIM21

Entrez Gene Summary for TRIM21 Gene

  • This gene encodes a member of the tripartite motif (TRIM) family. The TRIM motif includes three zinc-binding domains, a RING, a B-box type 1 and a B-box type 2, and a coiled-coil region. The encoded protein is part of the RoSSA ribonucleoprotein, which includes a single polypeptide and one of four small RNA molecules. The RoSSA particle localizes to both the cytoplasm and the nucleus. RoSSA interacts with autoantigens in patients with Sjogren syndrome and systemic lupus erythematosus. Alternatively spliced transcript variants for this gene have been described but the full-length nature of only one has been determined. [provided by RefSeq, Jul 2008]

GeneCards Summary for TRIM21 Gene

TRIM21 (Tripartite Motif Containing 21) is a Protein Coding gene. Diseases associated with TRIM21 include Heart Block, Congenital and Sjogren Syndrome. Among its related pathways are Cytosolic sensors of pathogen-associated DNA and KEAP1-NFE2L2 pathway. Gene Ontology (GO) annotations related to this gene include identical protein binding and ligase activity. An important paralog of this gene is TRIM6.

UniProtKB/Swiss-Prot Summary for TRIM21 Gene

E3 ubiquitin-protein ligase whose activity is dependent on E2 enzymes, UBE2D1, UBE2D2, UBE2E1 and UBE2E2. Forms a ubiquitin ligase complex in cooperation with the E2 UBE2D2 that is used not only for the ubiquitination of USP4 and IKBKB but also for its self-ubiquitination. Component of cullin-RING-based SCF (SKP1-CUL1-F-box protein) E3 ubiquitin-protein ligase complexes such as SCF(SKP2)-like complexes. A TRIM21-containing SCF(SKP2)-like complex is shown to mediate ubiquitination of CDKN1B (‘Thr-187’ phosphorylated-form), thereby promoting its degradation by the proteasome. Monoubiquitinates IKBKB that will negatively regulates Tax-induced NF-kappa-B signaling. Negatively regulates IFN-beta production post-pathogen recognition by polyubiquitin-mediated degradation of IRF3. Mediates the ubiquitin-mediated proteasomal degradation of IgG1 heavy chain, which is linked to the VCP-mediated ER-associated degradation (ERAD) pathway. Promotes IRF8 ubiquitination, which enhanced the ability of IRF8 to stimulate cytokine genes transcription in macrophages. Plays a role in the regulation of the cell cycle progression. Enhances the decapping activity of DCP2. Exists as a ribonucleoprotein particle present in all mammalian cells studied and composed of a single polypeptide and one of four small RNA molecules. At least two isoforms are present in nucleated and red blood cells, and tissue specific differences in RO/SSA proteins have been identified. The common feature of these proteins is their ability to bind HY RNAs.2. Involved in the regulation of innate immunity and the inflammatory response in response to IFNG/IFN-gamma. Organizes autophagic machinery by serving as a platform for the assembly of ULK1, Beclin 1/BECN1 and ATG8 family members and recognizes specific autophagy targets, thus coordinating target recognition with assembly of the autophagic apparatus and initiation of autophagy. Acts as an autophagy receptor for the degradation of IRF3, hence attenuating type I interferon (IFN)-dependent immune responses (PubMed:26347139162978621631662716472766168805111802269418361920186413151884514219675099). Represses the innate antiviral response by facilitating the formation of the NMI-IFI35 complex through ‘Lys-63’-linked ubiquitination of NMI (PubMed:26342464). ( RO52_HUMAN,P19474 )

Molecular function for TRIM21 Gene according to UniProtKB/Swiss-Prot

Function:

  • E3 ubiquitin-protein ligase whose activity is dependent on E2 enzymes, UBE2D1, UBE2D2, UBE2E1 and UBE2E2.
    Forms a ubiquitin ligase complex in cooperation with the E2 UBE2D2 that is used not only for the ubiquitination of USP4 and IKBKB but also for its self-ubiquitination.
    Component of cullin-RING-based SCF (SKP1-CUL1-F-box protein) E3 ubiquitin-protein ligase complexes such as SCF(SKP2)-like complexes.
    A TRIM21-containing SCF(SKP2)-like complex is shown to mediate ubiquitination of CDKN1B (‘Thr-187’ phosphorylated-form), thereby promoting its degradation by the proteasome.
    Monoubiquitinates IKBKB that will negatively regulates Tax-induced NF-kappa-B signaling.
    Negatively regulates IFN-beta production post-pathogen recognition by polyubiquitin-mediated degradation of IRF3.
    Mediates the ubiquitin-mediated proteasomal degradation of IgG1 heavy chain, which is linked to the VCP-mediated ER-associated degradation (ERAD) pathway.
    Promotes IRF8 ubiquitination, which enhanced the ability of IRF8 to stimulate cytokine genes transcription in macrophages.
    Plays a role in the regulation of the cell cycle progression.

Endoglin Protein Interactome Profiling Identifies TRIM21 and Galectin-3 as New Binding Partners

Gallardo-Vara E, Ruiz-Llorente L, Casado-Vela J, Ruiz-Rodríguez MJ, López-Andrés N, Pattnaik AK, Quintanilla M, Bernabeu C. Endoglin Protein Interactome Profiling Identifies TRIM21 and Galectin-3 as New Binding Partners. Cells. 2019 Sep 13;8(9):1082. doi: 10.3390/cells8091082. PMID: 31540324; PMCID: PMC6769930.

Abstract

Endoglin is a 180-kDa glycoprotein receptor primarily expressed by the vascular endothelium and involved in cardiovascular disease and cancer. Heterozygous mutations in the endoglin gene (ENG) cause hereditary hemorrhagic telangiectasia type 1, a vascular disease that presents with nasal and gastrointestinal bleeding, skin and mucosa telangiectases, and arteriovenous malformations in internal organs. A circulating form of endoglin (alias soluble endoglin, sEng), proteolytically released from the membrane-bound protein, has been observed in several inflammation-related pathological conditions and appears to contribute to endothelial dysfunction and cancer development through unknown mechanisms. Membrane-bound endoglin is an auxiliary component of the TGF-β receptor complex and the extracellular region of endoglin has been shown to interact with types I and II TGF-β receptors, as well as with BMP9 and BMP10 ligands, both members of the TGF-β family. To search for novel protein interactors, we screened a microarray containing over 9000 unique human proteins using recombinant sEng as bait. We find that sEng binds with high affinity, at least, to 22 new proteins. Among these, we validated the interaction of endoglin with galectin-3, a secreted member of the lectin family with capacity to bind membrane glycoproteins, and with tripartite motif-containing protein 21 (TRIM21), an E3 ubiquitin-protein ligase. Using human endothelial cells and Chinese hamster ovary cells, we showed that endoglin co-immunoprecipitates and co-localizes with galectin-3 or TRIM21. These results open new research avenues on endoglin function and regulation.
 
 
Endoglin is an auxiliary TGF-β co-receptor predominantly expressed in endothelial cells, which is involved in vascular development, repair, homeostasis, and disease [1,2,3,4]. Heterozygous mutations in the human ENDOGLIN gene (ENG) cause hereditary hemorrhagic telangiectasia (HHT) type 1, a vascular disease associated with nasal and gastrointestinal bleeds, telangiectases on skin and mucosa and arteriovenous malformations in the lung, liver, and brain [4,5,6]. The key role of endoglin in the vasculature is also illustrated by the fact that endoglin-KO mice die in utero due to defects in the vascular system [7]. Endoglin expression is markedly upregulated in proliferating endothelial cells involved in active angiogenesis, including the solid tumor neovasculature [8,9]. For this reason, endoglin has become a promising target for the antiangiogenic treatment of cancer [10,11,12]. Endoglin is also expressed in cancer cells where it can behave as both a tumor suppressor in prostate, breast, esophageal, and skin carcinomas [13,14,15,16] and a promoter of malignancy in melanoma and Ewing’s sarcoma [17]. Ectodomain shedding of membrane-bound endoglin may lead to a circulating form of the protein, also known as soluble endoglin (sEng) [18,19,20]. Increased levels of sEng have been found in several vascular-related pathologies, including preeclampsia, a disease of high prevalence in pregnant women which, if left untreated, can lead to serious and even fatal complications for both mother and baby [2,18,19,21]. Interestingly, several lines of evidence support a pathogenic role of sEng in the vascular system, including endothelial dysfunction, antiangiogenic activity, increased vascular permeability, inflammation-associated leukocyte adhesion and transmigration, and hypertension [18,22,23,24,25,26,27]. Because of its key role in vascular pathology, a large number of studies have addressed the structure and function of endoglin at the molecular level, in order to better understand its mechanism of action.
 

 Galectin-3 Interacts with Endoglin in Cells

Galectin-3 is a secreted member of the lectin family with the capacity to bind membrane glycoproteins like endoglin and is involved in the pathogenesis of many human diseases [52]. We confirmed the protein screen data for galectin-3, as evidenced by two-way co-immunoprecipitation of endoglin and galectin-3 upon co-transfection in CHO-K1 cells. As shown in Figure 1A, galectin-3 and endoglin were efficiently transfected, as demonstrated by Western blot analysis in total cell extracts. No background levels of endoglin were observed in control cells transfected with the empty vector (Ø). By contrast, galectin-3 could be detected in all samples but, as expected, showed an increased signal in cells transfected with the galectin-3 expression vector. Co-immunoprecipitation studies of these cell lysates showed that galectin-3 was present in endoglin immunoprecipitates (Figure 1B). Conversely, endoglin was also detected in galectin-3 immunoprecipitates (Figure 1C).
Figure 1. Protein–protein association between galectin-3 and endoglin. (AC). Co-immunoprecipitation of galectin-3 and endoglin. CHO-K1 cells were transiently transfected with pcEXV-Ø (Ø), pcEXV–HA–EngFL (Eng) and pcDNA3.1–Gal-3 (Gal3) expression vectors. (A) Total cell lysates (TCL) were analyzed by SDS-PAGE under reducing conditions, followed by Western blot (WB) analysis using specific antibodies to endoglin, galectin-3 and β-actin (loading control). Cell lysates were subjected to immunoprecipitation (IP) with anti-endoglin (B) or anti-galectin-3 (C) antibodies, followed by SDS-PAGE under reducing conditions and WB analysis with anti-endoglin or anti-galectin-3 antibodies, as indicated. Negative controls with an IgG2b (B) and IgG1 (C) were included. (D) Protein-protein interactions between galectin-3 and endoglin using Bio-layer interferometry (BLItz). The Ni–NTA biosensors tips were loaded with 7.3 µM recombinant human galectin-3/6xHis at the C-terminus (LGALS3), and protein binding was measured against 0.1% BSA in PBS (negative control) or 4.1 µM soluble endoglin (sEng). Kinetic sensorgrams were obtained using a single channel ForteBioBLItzTM instrument.
Figure 2. Galectin-3 and endoglin co-localize in human endothelial cells. Human umbilical vein-derived endothelial cell (HUVEC) monolayers were fixed with paraformaldehyde, permeabilized with Triton X-100, incubated with the mouse mAb P4A4 anti-endoglin, washed, and incubated with a rabbit polyclonal anti-galectin-3 antibody (PA5-34819). Galectin-3 and endoglin were detected by immunofluorescence upon incubation with Alexa 647 goat anti-rabbit IgG (red staining) and Alexa 488 goat anti-mouse IgG (green staining) secondary antibodies, respectively. (A) Single staining of galectin-3 (red) and endoglin (green) at the indicated magnifications. (B) Merge images plus DAPI (nuclear staining in blue) show co-localization of galectin-3 and endoglin (yellow color). Representative images of five different experiments are shown.
  
Endoglin associates with the cullin-type E3 ligase TRIM21
 
Figure 3. Protein–protein association between TRIM21 and endoglin. (AE) Co-immunoprecipitation of TRIM21 and endoglin. A,B. HUVEC monolayers were lysed and total cell lysates (TCL) were subjected to SDS-PAGE under reducing (for TRIM21 detection) or nonreducing (for endoglin detection) conditions, followed by Western blot (WB) analysis using antibodies to endoglin, TRIM21 or β-actin (A). HUVECs lysates were subjected to immunoprecipitation (IP) with anti-TRIM21 or negative control antibodies, followed by WB analysis with anti-endoglin (B). C,D. CHO-K1 cells were transiently transfected with pDisplay–HA–Mock (Ø), pDisplay–HA–EngFL (E) or pcDNA3.1–HA–hTRIM21 (T) expression vectors, as indicated. Total cell lysates (TCL) were subjected to SDS-PAGE under nonreducing conditions and WB analysis using specific antibodies to endoglin, TRIM21, and β-actin (C). Cell lysates were subjected to immunoprecipitation (IP) with anti-TRIM21 or anti-endoglin antibodies, followed by SDS-PAGE under reducing (upper panel) or nonreducing (lower panel) conditions and WB analysis with anti-TRIM21 or anti-endoglin antibodies. Negative controls of appropriate IgG were included (D). E. CHO-K1 cells were transiently transfected with pcDNA3.1–HA–hTRIM21 and pDisplay–HA–Mock (Ø), pDisplay–HA–EngFL (FL; full-length), pDisplay–HA–EngEC (EC; cytoplasmic-less) or pDisplay–HA–EngTMEC (TMEC; cytoplasmic-less) expression vectors, as indicated. Cell lysates were subjected to immunoprecipitation with anti-TRIM21, followed by SDS-PAGE under reducing conditions and WB analysis with anti-endoglin antibodies, as indicated. The asterisk indicates the presence of a nonspecific band. Mr, molecular reference; Eng, endoglin; TRIM, TRIM21. (F) Protein–protein interactions between TRIM21 and endoglin using Bio-layer interferometry (BLItz). The Ni–NTA biosensors tips were loaded with 5.4 µM recombinant human TRIM21/6xHis at the N-terminus (R052), and protein binding was measured against 0.1% BSA in PBS (negative control) or 4.1 µM soluble endoglin (sEng). Kinetic sensorgrams were obtained using a single channel ForteBioBLItzTM instrument.
 
Table 1. Human protein-array analysis of endoglin interactors1.
Accession # Protein Name Cellular Compartment
NM_172160.1 Potassium voltage-gated channel, shaker-related subfamily, beta member 1 (KCNAB1), transcript variant 1 Plasma membrane
Q14722
NM_138565.1 Cortactin (CTTN), transcript variant 2 Plasma membrane
Q14247
BC036123.1 Stromal membrane-associated protein 1 (SMAP1) Plasma membrane
Q8IYB5
NM_173822.1 Family with sequence similarity 126, member B (FAM126B) Plasma membrane, cytosol
Q8IXS8
BC047536.1 Sciellin (SCEL) Plasma membrane, extracellular or secreted
O95171
BC068068.1 Galectin-3 Plasma membrane, mitochondrion, nucleus, extracellular or secreted
P17931
BC001247.1 Actin-binding LIM protein 1 (ABLIM1) Cytoskeleton
O14639
NM_198943.1 Family with sequence similarity 39, member B (FAM39B) Endosome, cytoskeleton
Q6VEQ5
NM_005898.4 Cell cycle associated protein 1 (CAPRIN1), transcript variant 1 Cytosol
Q14444
BC002559.1 YTH domain family, member 2 (YTHDF2) Nucleus, cytosol
Q9Y5A9
NM_003141.2 Tripartite motif-containing 21 (TRIM21) Nucleus, cytosol
P19474
BC025279.1 Scaffold attachment factor B2 (SAFB2) Nucleus
Q14151
BC031650.1 Putative E3 ubiquitin-protein ligase SH3RF2 Nucleus
Q8TEC5
BC034488.2 ATP-binding cassette, sub-family F (GCN20), member 1 (ABCF1) Nucleus
Q8NE71
BC040946.1 Spliceosome-associated protein CWC15 homolog (HSPC148) Nucleus
Q9P013
NM_003609.2 HIRA interacting protein 3 (HIRIP3) Nucleus
Q9BW71
NM_005572.1 Lamin A/C (LMNA), transcript variant 2 Nucleus
P02545
NM_006479.2 RAD51 associated protein 1 (RAD51AP1) Nucleus
Q96B01
NM_014321.2 Origin recognition complex, subunit 6 like (yeast) (ORC6L) Nucleus
Q9Y5N6
NM_015138.2 RNA polymerase-associated protein RTF1 homolog (RTF1) Nucleus
Q92541
NM_032141.1 Coiled-coil domain containing 55 (CCDC55), transcript variant 1 Nucleus
Q9H0G5
BC012289.1 Protein PRRC2B, KIAA0515 Data not available
Q5JSZ5
1 Microarrays containing over 9000 unique human proteins were screened using recombinant sEng as a probe. Protein interactors showing the highest scores (Z-score ≥2.0) are listed. GeneBank (https://www.ncbi.nlm.nih.gov/genbank/) and UniProtKB (https://www.uniprot.org/help/uniprotkb) accession numbers are indicated with a yellow or green background, respectively. The cellular compartment of each protein was obtained from the UniProtKB webpage. Proteins selected for further studies (TRIM21 and galectin-3) are indicated in bold type with blue background.
  

Note: the following are from NCBI Genbank and Genecards on TRIM21

TRIM21 tripartite motif containing 21 [ Homo sapiens (human) ]

Gene ID: 6737, updated on 6-Sep-2022

Summary
Official Symbol
TRIM21provided by HGNC
Official Full Name
tripartite motif containing 21provided by HGNC
Primary source
HGNC:HGNC:11312
See related
Ensembl:ENSG00000132109 MIM:109092; AllianceGenome:HGNC:11312
Gene type
protein coding
RefSeq status
REVIEWED
Organism
Homo sapiens
Lineage
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae; Homo
Also known as
SSA; RO52; SSA1; RNF81; Ro/SSA
Summary
This gene encodes a member of the tripartite motif (TRIM) family. The TRIM motif includes three zinc-binding domains, a RING, a B-box type 1 and a B-box type 2, and a coiled-coil region. The encoded protein is part of the RoSSA ribonucleoprotein, which includes a single polypeptide and one of four small RNA molecules. The RoSSA particle localizes to both the cytoplasm and the nucleus. RoSSA interacts with autoantigens in patients with Sjogren syndrome and systemic lupus erythematosus. Alternatively spliced transcript variants for this gene have been described but the full-length nature of only one has been determined. [provided by RefSeq, Jul 2008]
Expression
Ubiquitous expression in spleen (RPKM 15.5), appendix (RPKM 13.2) and 24 other tissues See more
Orthologs
NEW
Try the new Gene table
Try the new Transcript table
Genomic context
 
See TRIM21 in Genome Data Viewer
Location:
11p15.4
Exon count:
7
Annotation release Status Assembly Chr Location
110 current GRCh38.p14 (GCF_000001405.40) 11 NC_000011.10 (4384897..4393702, complement)
110 current T2T-CHM13v2.0 (GCF_009914755.1) 11 NC_060935.1 (4449988..4458819, complement)
105.20220307 previous assembly GRCh37.p13 (GCF_000001405.25) 11 NC_000011.9 (4406127..4414932, complement)

Chromosome 11 – NC_000011.10Genomic Context describing neighboring genes

Neighboring gene olfactory receptor family 52 subfamily B member 4 Neighboring gene olfactory receptor family 52 subfamily B member 3 pseudogene Neighboring gene olfactory receptor family 51 subfamily R member 1 pseudogene Neighboring gene olfactory receptor family 52 subfamily P member 2 pseudogene

 

Entrez Gene Summary for TRIM21 Gene

  • This gene encodes a member of the tripartite motif (TRIM) family. The TRIM motif includes three zinc-binding domains, a RING, a B-box type 1 and a B-box type 2, and a coiled-coil region. The encoded protein is part of the RoSSA ribonucleoprotein, which includes a single polypeptide and one of four small RNA molecules. The RoSSA particle localizes to both the cytoplasm and the nucleus. RoSSA interacts with autoantigens in patients with Sjogren syndrome and systemic lupus erythematosus. Alternatively spliced transcript variants for this gene have been described but the full-length nature of only one has been determined. [provided by RefSeq, Jul 2008]

GeneCards Summary for TRIM21 Gene

TRIM21 (Tripartite Motif Containing 21) is a Protein Coding gene. Diseases associated with TRIM21 include Heart Block, Congenital and Sjogren Syndrome. Among its related pathways are Cytosolic sensors of pathogen-associated DNA and KEAP1-NFE2L2 pathway. Gene Ontology (GO) annotations related to this gene include identical protein binding and ligase activity. An important paralog of this gene is TRIM6.

UniProtKB/Swiss-Prot Summary for TRIM21 Gene

E3 ubiquitin-protein ligase whose activity is dependent on E2 enzymes, UBE2D1, UBE2D2, UBE2E1 and UBE2E2. Forms a ubiquitin ligase complex in cooperation with the E2 UBE2D2 that is used not only for the ubiquitination of USP4 and IKBKB but also for its self-ubiquitination. Component of cullin-RING-based SCF (SKP1-CUL1-F-box protein) E3 ubiquitin-protein ligase complexes such as SCF(SKP2)-like complexes. A TRIM21-containing SCF(SKP2)-like complex is shown to mediate ubiquitination of CDKN1B (‘Thr-187’ phosphorylated-form), thereby promoting its degradation by the proteasome. Monoubiquitinates IKBKB that will negatively regulates Tax-induced NF-kappa-B signaling. Negatively regulates IFN-beta production post-pathogen recognition by polyubiquitin-mediated degradation of IRF3. Mediates the ubiquitin-mediated proteasomal degradation of IgG1 heavy chain, which is linked to the VCP-mediated ER-associated degradation (ERAD) pathway. Promotes IRF8 ubiquitination, which enhanced the ability of IRF8 to stimulate cytokine genes transcription in macrophages. Plays a role in the regulation of the cell cycle progression. Enhances the decapping activity of DCP2. Exists as a ribonucleoprotein particle present in all mammalian cells studied and composed of a single polypeptide and one of four small RNA molecules. At least two isoforms are present in nucleated and red blood cells, and tissue specific differences in RO/SSA proteins have been identified. The common feature of these proteins is their ability to bind HY RNAs.2. Involved in the regulation of innate immunity and the inflammatory response in response to IFNG/IFN-gamma. Organizes autophagic machinery by serving as a platform for the assembly of ULK1, Beclin 1/BECN1 and ATG8 family members and recognizes specific autophagy targets, thus coordinating target recognition with assembly of the autophagic apparatus and initiation of autophagy. Acts as an autophagy receptor for the degradation of IRF3, hence attenuating type I interferon (IFN)-dependent immune responses (PubMed:26347139162978621631662716472766168805111802269418361920186413151884514219675099). Represses the innate antiviral response by facilitating the formation of the NMI-IFI35 complex through ‘Lys-63’-linked ubiquitination of NMI (PubMed:26342464). ( RO52_HUMAN,P19474 )

Molecular function for TRIM21 Gene according to UniProtKB/Swiss-Prot

Function:
  • E3 ubiquitin-protein ligase whose activity is dependent on E2 enzymes, UBE2D1, UBE2D2, UBE2E1 and UBE2E2.
    Forms a ubiquitin ligase complex in cooperation with the E2 UBE2D2 that is used not only for the ubiquitination of USP4 and IKBKB but also for its self-ubiquitination.
    Component of cullin-RING-based SCF (SKP1-CUL1-F-box protein) E3 ubiquitin-protein ligase complexes such as SCF(SKP2)-like complexes.
    A TRIM21-containing SCF(SKP2)-like complex is shown to mediate ubiquitination of CDKN1B (‘Thr-187’ phosphorylated-form), thereby promoting its degradation by the proteasome.
    Monoubiquitinates IKBKB that will negatively regulates Tax-induced NF-kappa-B signaling.
    Negatively regulates IFN-beta production post-pathogen recognition by polyubiquitin-mediated degradation of IRF3.
    Mediates the ubiquitin-mediated proteasomal degradation of IgG1 heavy chain, which is linked to the VCP-mediated ER-associated degradation (ERAD) pathway.
    Promotes IRF8 ubiquitination, which enhanced the ability of IRF8 to stimulate cytokine genes transcription in macrophages.
    Plays a role in the regulation of the cell cycle progression.

Other Articles in this Open Access Scientific Journal on Galectins and Proteosome Include

Synthetic Biology Software for Drug Design in Glycobiology Internship

AI enabled Drug Discovery and Development: The Challenges and the Promise

Cell Death Pathway Insights

Ubiquitin researchers win Nobel

Read Full Post »

Embryogenesis in Mechanical Womb

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

A highly effective platforms for the ex utero culture of post-implantation mouse embryos have been developed in the present study by scientists of the Weizmann Institute of Science in Israel. The study was published in the journal Nature. They have grown more than 1,000 embryos in this way. This study enables the appropriate development of embryos from before gastrulation (embryonic day (E) 5.5) until the hindlimb formation stage (E11). Late gastrulating embryos (E7.5) are grown in three-dimensional rotating bottles, whereas extended culture from pre-gastrulation stages (E5.5 or E6.5) requires a combination of static and rotating bottle culture platforms.

At Day 11 of development more than halfway through a mouse pregnancy the researchers compared them to those developing in the uteruses of living mice and were found to be identical. Histological, molecular and single-cell RNA sequencing analyses confirm that the ex utero cultured embryos recapitulate in utero development precisely. The mouse embryos looked perfectly normal. All their organs developed as expected, along with their limbs and circulatory and nervous systems. Their tiny hearts were beating at a normal 170 beats per minute. But, the lab-grown embryos becomes too large to survive without a blood supply. They had a placenta and a yolk sack, but the nutrient solution that fed them through diffusion was no longer sufficient. So, a suitable mechanism for blood supply is required to be developed.

Till date the only way to study the development of tissues and organs is to turn to species like worms, frogs and flies that do not need a uterus, or to remove embryos from the uteruses of experimental animals at varying times, providing glimpses of development more like in snapshots than in live videos. This research will help scientists understand how mammals develop and how gene mutations, nutrients and environmental conditions may affect the fetus. This will allow researchers to mechanistically interrogate post-implantation morphogenesis and artificial embryogenesis in mammals. In the future it may be possible to develop a human embryo from fertilization to birth entirely outside the uterus. But the work may one day raise profound questions about whether other animals, even humans, should or could be cultured outside a living womb.

References:

https://www.nature.com/articles/s41586-021-03416-3

https://www.sciencedirect.com/science/article/pii/S0092867414000750?via%3Dihub

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-185X.1978.tb00993.x

https://www.nature.com/articles/199297a0

https://rep.bioscientifica.com/view/journals/rep/35/1/jrf_35_1_018.xml

Read Full Post »

Inhibitory CD161 receptor recognized as a potential immunotherapy target in glioma-infiltrating T cells by single-cell analysis

Reporter: Dr. Premalata Pati, Ph.D., Postdoc

 

Brain tumors, especially the diffused Gliomas are of the most devastating forms of cancer and have so-far been resistant to immunotherapy. It is comprehended that T cells can penetrate the glioma cells, but it still remains unknown why infiltrating cells miscarry to mount a resistant reaction or stop the tumor development.

Gliomas are brain tumors that begin from neuroglial begetter cells. The conventional therapeutic methods including, surgery, chemotherapy, and radiotherapy, have accomplished restricted changes inside glioma patients. Immunotherapy, a compliance in cancer treatment, has introduced a promising strategy with the capacity to penetrate the blood-brain barrier. This has been recognized since the spearheading revelation of lymphatics within the central nervous system. Glioma is not generally carcinogenic. As observed in a number of cases, the tumor cells viably reproduce and assault the adjoining tissues, by and large, gliomas are malignant in nature and tend to metastasize. There are four grades in glioma, and each grade has distinctive cell features and different treatment strategies. Glioblastoma is a grade IV glioma, which is the crucial aggravated form. This infers that all glioblastomas are gliomas, however, not all gliomas are glioblastomas.

Decades of investigations on infiltrating gliomas still take off vital questions with respect to the etiology, cellular lineage, and function of various cell types inside glial malignancies. In spite of the available treatment options such as surgical resection, radiotherapy, and chemotherapy, the average survival rate for high-grade glioma patients remains 1–3 years (1).

A recent in vitro study performed by the researchers of Dana-Farber Cancer Institute, Massachusetts General Hospital, and the Broad Institute of MIT and Harvard, USA, has recognized that CD161 is identified as a potential new target for immunotherapy of malignant brain tumors. The scientific team depicted their work in the Cell Journal, in a paper entitled, “Inhibitory CD161 receptor recognized in glioma-infiltrating T cells by single-cell analysis.” on 15th February 2021.

To further expand their research and findings, Dr. Kai Wucherpfennig, MD, PhD, Chief of the Center for Cancer Immunotherapy, at Dana-Farber stated that their research is additionally important in a number of other major human cancer types such as 

  • melanoma,
  • lung,
  • colon, and
  • liver cancer.

Dr. Wucherpfennig has praised the other authors of the report Mario Suva, MD, PhD, of Massachusetts Common Clinic; Aviv Regev, PhD, of the Klarman Cell Observatory at Broad Institute of MIT and Harvard, and David Reardon, MD, clinical executive of the Center for Neuro-Oncology at Dana-Farber.

Hence, this new study elaborates the effectiveness of the potential effectors of anti-tumor immunity in subsets of T cells that co-express cytotoxic programs and several natural killer (NK) cell genes.

The Study-

IMAGE SOURCE: Experimental Strategy (Mathewson et al., 2021)

 

The group utilized single-cell RNA sequencing (RNA-seq) to mull over gene expression and the clonal picture of tumor-infiltrating T cells. It involved the participation of 31 patients suffering from diffused gliomas and glioblastoma. Their work illustrated that the ligand molecule CLEC2D activates CD161, which is an immune cell surface receptor that restrains the development of cancer combating activity of immune T cells and tumor cells in the brain. The study reveals that the activation of CD161 weakens the T cell response against tumor cells.

Based on the study, the facts suggest that the analysis of clonally expanded tumor-infiltrating T cells further identifies the NK gene KLRB1 that codes for CD161 as a candidate inhibitory receptor. This was followed by the use of 

  • CRISPR/Cas9 gene-editing technology to inactivate the KLRB1 gene in T cells and showed that CD161 inhibits the tumor cell-killing function of T cells. Accordingly,
  • genetic inactivation of KLRB1 or
  • antibody-mediated CD161 blockade

enhances T cell-mediated killing of glioma cells in vitro and their anti-tumor function in vivo. KLRB1 and its associated transcriptional program are also expressed by substantial T cell populations in other forms of human cancers. The work provides an atlas of T cells in gliomas and highlights CD161 and other NK cell receptors as immune checkpoint targets.

Further, it has been identified that many cancer patients are being treated with immunotherapy drugs that disable their “immune checkpoints” and their molecular brakes are exploited by the cancer cells to suppress the body’s defensive response induced by T cells against tumors. Disabling these checkpoints lead the immune system to attack the cancer cells. One of the most frequently targeted checkpoints is PD-1. However, recent trials of drugs that target PD-1 in glioblastomas have failed to benefit the patients.

In the current study, the researchers found that fewer T cells from gliomas contained PD-1 than CD161. As a result, they said, “CD161 may represent an attractive target, as it is a cell surface molecule expressed by both CD8 and CD4 T cell subsets [the two types of T cells engaged in response against tumor cells] and a larger fraction of T cells express CD161 than the PD-1 protein.”

However, potential side effects of antibody-mediated blockade of the CLEC2D-CD161 pathway remain unknown and will need to be examined in a non-human primate model. The group hopes to use this finding in their future work by

utilizing their outline by expression of KLRB1 gene in tumor-infiltrating T cells in diffuse gliomas to make a remarkable contribution in therapeutics related to immunosuppression in brain tumors along with four other common human cancers ( Viz. melanoma, non-small cell lung cancer (NSCLC), hepatocellular carcinoma, and colorectal cancer) and how this may be manipulated for prevalent survival of the patients.

References

(1) Anders I. Persson, QiWen Fan, Joanna J. Phillips, William A. Weiss, 39 – Glioma, Editor(s): Sid Gilman, Neurobiology of Disease, Academic Press, 2007, Pages 433-444, ISBN 9780120885923, https://doi.org/10.1016/B978-012088592-3/50041-4.

Main Source

Mathewson ND, Ashenberg O, Tirosh I, Gritsch S, Perez EM, Marx S, et al. 2021. Inhibitory CD161 receptor identified in glioma-infiltrating T cells by single-cell analysis. Cell.https://www.cell.com/cell/fulltext/S0092-8674(21)00065-9?elqTrackId=c3dd8ff1d51f4aea87edd0153b4f2dc7

Related Articles

VIDEOS on Cancer Biology, Cancer Genetics, Cancer Immunotherapy

19th Annual Koch Institute Summer Symposium on Cancer Immunotherapy, June 12, 2020 at MIT’s Kresge Auditorium

 

Other related articles published in this Open Access Online Scientific Journal include the following:

 

Single Cell Sequencing:

Part 4.1 in Genomics Volume 2

Latest in Genomics Methodologies for Therapeutics: Gene Editing, NGS & BioInformatics, Simulations and the Genome Ontology 

On Amazon.com since 12/28/2019

https://www.amazon.com/dp/B08385KF87

 

4.1.3   Single-cell Genomics: Directions in Computational and Systems Biology – Contributions of Prof. Aviv Regev @Broad Institute of MIT and Harvard, Cochair, the Human Cell Atlas Organizing Committee with Sarah Teichmann of the Wellcome Trust Sanger Institute

Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2018/09/03/single-cell-genomics-directions-in-computational-and-systems-biology-contributions-of-ms-aviv-regev-phd-broad-institute-of-mit-and-harvard-cochair-the-human-cell-atlas-organizing-committee-wit/

 

4.1.4   Cellular Genetics

https://www.sanger.ac.uk/science/programmes/cellular-genetics

 

4.1.5   Cellular Genomics

https://www.garvan.org.au/research/cellular-genomics

 

4.1.6   SINGLE CELL GENOMICS 2019 – sometimes the sum of the parts is greater than the whole, September 24-26, 2019, Djurönäset, Stockholm, Sweden http://www.weizmann.ac.il/conferences/SCG2019/single-cell-genomics-2019

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2019/05/29/single-cell-genomics-2019-september-24-26-2019-djuronaset-stockholm-sweden/

 

4.1.7   Norwich Single-Cell Symposium 2019, Earlham Institute, single-cell genomics technologies and their application in microbial, plant, animal and human health and disease, October 16-17, 2019, 10AM-5PM

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2019/06/04/norwich-single-cell-symposium-2019-earlham-institute-single-cell-genomics-technologies-and-their-application-in-microbial-plant-animal-and-human-health-and-disease-october-16-17-2019-10am-5pm/

 

4.1.8   Newly Found Functions of B Cell

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

https://pharmaceuticalintelligence.com/2019/05/23/newly-found-functions-of-b-cell/

 

4.1.9 RESEARCH HIGHLIGHTS: HUMAN CELL ATLAS

https://www.broadinstitute.org/research-highlights-human-cell-atlas

 

CRISPR – 200 articles in the Journal

 

Chapter 21 in Genomics Volume 1

Genomics Orientations for Personalized Medicine. On Amazon.com since 11/23/2015

http://www.amazon.com/dp/B018DHBUO6

 

Glioblastoma – 150 articles in the Journal

Most recent

 

Immunotherapy may help in glioblastoma survival

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

https://pharmaceuticalintelligence.com/2019/03/16/immunotherapy-may-help-in-glioblastoma-survival/

 

New Treatment in Development for Glioblastoma: Hopes for Sen. John McCain

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2017/07/25/new-treatment-in-development-for-glioblastoma-hopes-for-sen-john-mccain/

 

Funding Oncorus’s Immunotherapy Platform: Next-generation Oncolytic Herpes Simplex Virus (oHSV) for Brain Cancer, Glioblastoma Multiforme (GBM)

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/12/28/funding-oncoruss-immunotherapy-platform-next-generation-oncolytic-herpes-simplex-virus-ohsv-for-brain-cancer-glioblastoma-multiforme-gbm/

 

Glioma, Glioblastoma and Neurooncology

Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2015/10/19/glioma-glioblastoma-and-neurooncology/

 

Positron Emission Tomography (PET) and Near-Infrared Fluorescence Imaging:  Noninvasive Imaging of Cancer Stem Cells (CSCs)  monitoring of AC133+ glioblastoma in subcutaneous and intracerebral xenograft tumors

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2014/01/29/positron-emission-tomography-pet-and-near-infrared-fluorescence-imaging-noninvasive-imaging-of-cancer-stem-cells-cscs-monitoring-of-ac133-glioblastoma-in-subcutaneous-and-intracerebral-xenogra/

 

Gamma Linolenic Acid (GLA) as a Therapeutic tool in the Management of Glioblastoma

Eric Fine* (1), Mike Briggs* (1,2), Raphael Nir# (1,2,3)

https://pharmaceuticalintelligence.com/2013/07/15/gamma-linolenic-acid-gla-as-a-therapeutic-tool-in-the-management-of-glioblastoma/

 

 

Read Full Post »

Placenta lacks molecules required for COVID-19 infection

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

The pandemic of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected more than 10 million people, including pregnant women. To date, no consistent evidence for the vertical transmission of SARS-CoV-2 has been found. The placenta serves as the lungs, gut, kidneys, and liver of the fetus. This fetal organ also has major endocrine actions that modulate maternal physiology and, importantly, together with the extraplacental chorioamniotic membranes shield the fetus against microbes from hematogenous dissemination and from invading the amniotic cavity.

 

Most pathogens that cause hematogenous infections in the mother are not able to reach the fetus, which is largely due to the potent protective mechanisms provided by placental cells (i.e. trophoblast cells: syncytiotrophoblasts and cytotrophoblasts). Yet, some of these pathogens such as Toxoplasma gondii, Rubella virus, herpesvirus (HSV), cytomegalovirus (CMV), and Zika virus (ZIKV), among others, are capable of crossing the placenta and infecting the fetus, causing congenital disease.

 

The placental membranes that contain the fetus and amniotic fluid lack the messenger RNA (mRNA) molecule required to manufacture the ACE2 receptor, the main cell surface receptor used by the SARS-CoV-2 virus to cause infection. These placental tissues also lack mRNA needed to make an enzyme, called TMPRSS2, that SARS-CoV-2 uses to enter a cell. Both the receptor and enzyme are present in only miniscule amounts in the placenta, suggesting a possible explanation for why SARS-CoV-2 has only rarely been found in fetuses or newborns of women infected with the virus, according to the study authors.

 

The single-cell transcriptomic analysis presented by the researchers provides evidence that SARS-CoV-2 is unlikely to infect the placenta and fetus since its canonical receptor and protease, ACE2 and TRMPSS2, are only minimally expressed by the human placenta throughout pregnancy. In addition, it was shown that the SARS-CoV-2 receptors are not expressed by the chorioamniotic membranes in the third trimester. However, viral receptors utilized by CMV, ZIKV, and others are highly expressed by the human placental tissues.

 

Transcript levels do not always correlate with protein expression, but the data of the present study indicates a low likelihood of placental infection and vertical transmission of SARS-CoV-2. However, it is still possible that the expression of these proteins is much higher in individuals with pregnancy complications related with the renin-angiotensin-aldosterone system, which can alter the expression of ACE2. The cellular receptors and mechanisms that could be exploited by SARS-CoV-2 are still under investigation.

 

References:

 

https://www.nih.gov/news-events/news-releases/placenta-lacks-major-molecules-used-sars-cov-2-virus-cause-infection

 

https://pubmed.ncbi.nlm.nih.gov/32662421/

 

https://pubmed.ncbi.nlm.nih.gov/32217113/

 

https://pubmed.ncbi.nlm.nih.gov/32161408/

 

https://pubmed.ncbi.nlm.nih.gov/32335053/

 

https://pubmed.ncbi.nlm.nih.gov/32298273/

 

Read Full Post »

Live Notes, Real Time Conference Coverage AACR 2020 #AACR20: Tuesday June 23, 2020 Noon-2:45 Educational Sessions

Live Notes, Real Time Conference Coverage AACR 2020: Tuesday June 23, 2020 Noon-2:45 Educational Sessions

Reporter: Stephen J. Williams, PhD

Follow Live in Real Time using

#AACR20

@pharma_BI

@AACR

Register for FREE at https://www.aacr.org/

 

Presidential Address

Elaine R Mardis, William N Hait

DETAILS

Welcome and introduction

William N Hait

 

Improving diagnostic yield in pediatric cancer precision medicine

Elaine R Mardis
  • Advent of genomics have revolutionized how we diagnose and treat lung cancer
  • We are currently needing to understand the driver mutations and variants where we can personalize therapy
  • PD-L1 and other checkpoint therapy have not really been used in pediatric cancers even though CAR-T have been successful
  • The incidence rates and mortality rates of pediatric cancers are rising
  • Large scale study of over 700 pediatric cancers show cancers driven by epigenetic drivers or fusion proteins. Need for transcriptomics.  Also study demonstrated that we have underestimated germ line mutations and hereditary factors.
  • They put together a database to nominate patients on their IGM Cancer protocol. Involves genetic counseling and obtaining germ line samples to determine hereditary factors.  RNA and protein are evaluated as well as exome sequencing. RNASeq and Archer Dx test to identify driver fusions
  • PECAN curated database from St. Jude used to determine driver mutations. They use multiple databases and overlap within these databases and knowledge base to determine or weed out false positives
  • They have used these studies to understand the immune infiltrate into recurrent cancers (CytoCure)
  • They found 40 germline cancer predisposition genes, 47 driver somatic fusion proteins, 81 potential actionable targets, 106 CNV, 196 meaningful somatic driver mutations

 

 

Tuesday, June 23

12:00 PM – 12:30 PM EDT

Awards and Lectures

NCI Director’s Address

Norman E Sharpless, Elaine R Mardis

DETAILS

Introduction: Elaine Mardis

 

NCI Director Address: Norman E Sharpless
  • They are functioning well at NCI with respect to grant reviews, research, and general functions in spite of the COVID pandemic and the massive demonstrations on also focusing on the disparities which occur in cancer research field and cancer care
  • There are ongoing efforts at NCI to make a positive difference in racial injustice, diversity in the cancer workforce, and for patients as well
  • Need a diverse workforce across the cancer research and care spectrum
  • Data show that areas where the clinicians are successful in putting African Americans on clinical trials are areas (geographic and site specific) where health disparities are narrowing
  • Grants through NCI new SeroNet for COVID-19 serologic testing funded by two RFAs through NIAD (RFA-CA-30-038 and RFA-CA-20-039) and will close on July 22, 2020

 

Tuesday, June 23

12:45 PM – 1:46 PM EDT

Virtual Educational Session

Immunology, Tumor Biology, Experimental and Molecular Therapeutics, Molecular and Cellular Biology/Genetics

Tumor Immunology and Immunotherapy for Nonimmunologists: Innovation and Discovery in Immune-Oncology

This educational session will update cancer researchers and clinicians about the latest developments in the detailed understanding of the types and roles of immune cells in tumors. It will summarize current knowledge about the types of T cells, natural killer cells, B cells, and myeloid cells in tumors and discuss current knowledge about the roles these cells play in the antitumor immune response. The session will feature some of the most promising up-and-coming cancer immunologists who will inform about their latest strategies to harness the immune system to promote more effective therapies.

Judith A Varner, Yuliya Pylayeva-Gupta

 

Introduction

Judith A Varner
New techniques reveal critical roles of myeloid cells in tumor development and progression
  • Different type of cells are becoming targets for immune checkpoint like myeloid cells
  • In T cell excluded or desert tumors T cells are held at periphery so myeloid cells can infiltrate though so macrophages might be effective in these immune t cell naïve tumors, macrophages are most abundant types of immune cells in tumors
  • CXCLs are potential targets
  • PI3K delta inhibitors,
  • Reduce the infiltrate of myeloid tumor suppressor cells like macrophages
  • When should we give myeloid or T cell therapy is the issue
Judith A Varner
Novel strategies to harness T-cell biology for cancer therapy
Positive and negative roles of B cells in cancer
Yuliya Pylayeva-Gupta
New approaches in cancer immunotherapy: Programming bacteria to induce systemic antitumor immunity

 

 

Tuesday, June 23

12:45 PM – 1:46 PM EDT

Virtual Educational Session

Cancer Chemistry

Chemistry to the Clinic: Part 2: Irreversible Inhibitors as Potential Anticancer Agents

There are numerous examples of highly successful covalent drugs such as aspirin and penicillin that have been in use for a long period of time. Despite historical success, there was a period of reluctance among many to purse covalent drugs based on concerns about toxicity. With advances in understanding features of a well-designed covalent drug, new techniques to discover and characterize covalent inhibitors, and clinical success of new covalent cancer drugs in recent years, there is renewed interest in covalent compounds. This session will provide a broad look at covalent probe compounds and drug development, including a historical perspective, examination of warheads and electrophilic amino acids, the role of chemoproteomics, and case studies.

Benjamin F Cravatt, Richard A. Ward, Sara J Buhrlage

 

Discovering and optimizing covalent small-molecule ligands by chemical proteomics

Benjamin F Cravatt
  • Multiple approaches are being investigated to find new covalent inhibitors such as: 1) cysteine reactivity mapping, 2) mapping cysteine ligandability, 3) and functional screening in phenotypic assays for electrophilic compounds
  • Using fluorescent activity probes in proteomic screens; have broad useability in the proteome but can be specific
  • They screened quiescent versus stimulated T cells to determine reactive cysteines in a phenotypic screen and analyzed by MS proteomics (cysteine reactivity profiling); can quantitate 15000 to 20,000 reactive cysteines
  • Isocitrate dehydrogenase 1 and adapter protein LCP-1 are two examples of changes in reactive cysteines they have seen using this method
  • They use scout molecules to target ligands or proteins with reactive cysteines
  • For phenotypic screens they first use a cytotoxic assay to screen out toxic compounds which just kill cells without causing T cell activation (like IL10 secretion)
  • INTERESTINGLY coupling these MS reactive cysteine screens with phenotypic screens you can find NONCANONICAL mechanisms of many of these target proteins (many of the compounds found targets which were not predicted or known)

Electrophilic warheads and nucleophilic amino acids: A chemical and computational perspective on covalent modifier

The covalent targeting of cysteine residues in drug discovery and its application to the discovery of Osimertinib

Richard A. Ward
  • Cysteine activation: thiolate form of cysteine is a strong nucleophile
  • Thiolate form preferred in polar environment
  • Activation can be assisted by neighboring residues; pKA will have an effect on deprotonation
  • pKas of cysteine vary in EGFR
  • cysteine that are too reactive give toxicity while not reactive enough are ineffective

 

Accelerating drug discovery with lysine-targeted covalent probes

 

Tuesday, June 23

12:45 PM – 2:15 PM EDT

Virtual Educational Session

Molecular and Cellular Biology/Genetics

Virtual Educational Session

Tumor Biology, Immunology

Metabolism and Tumor Microenvironment

This Educational Session aims to guide discussion on the heterogeneous cells and metabolism in the tumor microenvironment. It is now clear that the diversity of cells in tumors each require distinct metabolic programs to survive and proliferate. Tumors, however, are genetically programmed for high rates of metabolism and can present a metabolically hostile environment in which nutrient competition and hypoxia can limit antitumor immunity.

Jeffrey C Rathmell, Lydia Lynch, Mara H Sherman, Greg M Delgoffe

 

T-cell metabolism and metabolic reprogramming antitumor immunity

Jeffrey C Rathmell

Introduction

Jeffrey C Rathmell

Metabolic functions of cancer-associated fibroblasts

Mara H Sherman

Tumor microenvironment metabolism and its effects on antitumor immunity and immunotherapeutic response

Greg M Delgoffe
  • Multiple metabolites, reactive oxygen species within the tumor microenvironment; is there heterogeneity within the TME metabolome which can predict their ability to be immunosensitive
  • Took melanoma cells and looked at metabolism using Seahorse (glycolysis): and there was vast heterogeneity in melanoma tumor cells; some just do oxphos and no glycolytic metabolism (inverse Warburg)
  • As they profiled whole tumors they could separate out the metabolism of each cell type within the tumor and could look at T cells versus stromal CAFs or tumor cells and characterized cells as indolent or metabolic
  • T cells from hyerglycolytic tumors were fine but from high glycolysis the T cells were more indolent
  • When knock down glucose transporter the cells become more glycolytic
  • If patient had high oxidative metabolism had low PDL1 sensitivity
  • Showed this result in head and neck cancer as well
  • Metformin a complex 1 inhibitor which is not as toxic as most mito oxphos inhibitors the T cells have less hypoxia and can remodel the TME and stimulate the immune response
  • Metformin now in clinical trials
  • T cells though seem metabolically restricted; T cells that infiltrate tumors are low mitochondrial phosph cells
  • T cells from tumors have defective mitochondria or little respiratory capacity
  • They have some preliminary findings that metabolic inhibitors may help with CAR-T therapy

Obesity, lipids and suppression of anti-tumor immunity

Lydia Lynch
  • Hypothesis: obesity causes issues with anti tumor immunity
  • Less NK cells in obese people; also produce less IFN gamma
  • RNASeq on NOD mice; granzymes and perforins at top of list of obese downregulated
  • Upregulated genes that were upregulated involved in lipid metabolism
  • All were PPAR target genes
  • NK cells from obese patients takes up palmitate and this reduces their glycolysis but OXPHOS also reduced; they think increased FFA basically overloads mitochondria
  • PPAR alpha gamma activation mimics obesity

 

 

Tuesday, June 23

12:45 PM – 2:45 PM EDT

Virtual Educational Session

Clinical Research Excluding Trials

The Evolving Role of the Pathologist in Cancer Research

Long recognized for their role in cancer diagnosis and prognostication, pathologists are beginning to leverage a variety of digital imaging technologies and computational tools to improve both clinical practice and cancer research. Remarkably, the emergence of artificial intelligence (AI) and machine learning algorithms for analyzing pathology specimens is poised to not only augment the resolution and accuracy of clinical diagnosis, but also fundamentally transform the role of the pathologist in cancer science and precision oncology. This session will discuss what pathologists are currently able to achieve with these new technologies, present their challenges and barriers, and overview their future possibilities in cancer diagnosis and research. The session will also include discussions of what is practical and doable in the clinic for diagnostic and clinical oncology in comparison to technologies and approaches primarily utilized to accelerate cancer research.

 

Jorge S Reis-Filho, Thomas J Fuchs, David L Rimm, Jayanta Debnath

DETAILS

Tuesday, June 23

12:45 PM – 2:45 PM EDT

 

High-dimensional imaging technologies in cancer research

David L Rimm

  • Using old methods and new methods; so cell counting you use to find the cells then phenotype; with quantification like with Aqua use densitometry of positive signal to determine a threshold to determine presence of a cell for counting
  • Hiplex versus multiplex imaging where you have ten channels to measure by cycling of flour on antibody (can get up to 20plex)
  • Hiplex can be coupled with Mass spectrometry (Imaging Mass spectrometry, based on heavy metal tags on mAbs)
  • However it will still take a trained pathologist to define regions of interest or field of desired view

 

Introduction

Jayanta Debnath

Challenges and barriers of implementing AI tools for cancer diagnostics

Jorge S Reis-Filho

Implementing robust digital pathology workflows into clinical practice and cancer research

Jayanta Debnath

Invited Speaker

Thomas J Fuchs
  • Founder of spinout of Memorial Sloan Kettering
  • Separates AI from computational algothimic
  • Dealing with not just machines but integrating human intelligence
  • Making decision for the patients must involve human decision making as well
  • How do we get experts to do these decisions faster
  • AI in pathology: what is difficult? =è sandbox scenarios where machines are great,; curated datasets; human decision support systems or maps; or try to predict nature
  • 1) learn rules made by humans; human to human scenario 2)constrained nature 3)unconstrained nature like images and or behavior 4) predict nature response to nature response to itself
  • In sandbox scenario the rules are set in stone and machines are great like chess playing
  • In second scenario can train computer to predict what a human would predict
  • So third scenario is like driving cars
  • System on constrained nature or constrained dataset will take a long time for commuter to get to decision
  • Fourth category is long term data collection project
  • He is finding it is still finding it is still is difficult to predict nature so going from clinical finding to prognosis still does not have good predictability with AI alone; need for human involvement
  • End to end partnering (EPL) is a new way where humans can get more involved with the algorithm and assist with the problem of constrained data
  • An example of a workflow for pathology would be as follows from Campanella et al 2019 Nature Medicine: obtain digital images (they digitized a million slides), train a massive data set with highthroughput computing (needed a lot of time and big software developing effort), and then train it using input be the best expert pathologists (nature to human and unconstrained because no data curation done)
  • Led to first clinically grade machine learning system (Camelyon16 was the challenge for detecting metastatic cells in lymph tissue; tested on 12,000 patients from 45 countries)
  • The first big hurdle was moving from manually annotated slides (which was a big bottleneck) to automatically extracted data from path reports).
  • Now problem is in prediction: How can we bridge the gap from predicting humans to predicting nature?
  • With an AI system pathologist drastically improved the ability to detect very small lesions

 

Virtual Educational Session

Epidemiology

Cancer Increases in Younger Populations: Where Are They Coming from?

Incidence rates of several cancers (e.g., colorectal, pancreatic, and breast cancers) are rising in younger populations, which contrasts with either declining or more slowly rising incidence in older populations. Early-onset cancers are also more aggressive and have different tumor characteristics than those in older populations. Evidence on risk factors and contributors to early-onset cancers is emerging. In this Educational Session, the trends and burden, potential causes, risk factors, and tumor characteristics of early-onset cancers will be covered. Presenters will focus on colorectal and breast cancer, which are among the most common causes of cancer deaths in younger people. Potential mechanisms of early-onset cancers and racial/ethnic differences will also be discussed.

Stacey A. Fedewa, Xavier Llor, Pepper Jo Schedin, Yin Cao

Cancers that are and are not increasing in younger populations

Stacey A. Fedewa

 

  • Early onset cancers, pediatric cancers and colon cancers are increasing in younger adults
  • Younger people are more likely to be uninsured and these are there most productive years so it is a horrible life event for a young adult to be diagnosed with cancer. They will have more financial hardship and most (70%) of the young adults with cancer have had financial difficulties.  It is very hard for women as they are on their childbearing years so additional stress
  • Types of early onset cancer varies by age as well as geographic locations. For example in 20s thyroid cancer is more common but in 30s it is breast cancer.  Colorectal and testicular most common in US.
  • SCC is decreasing by adenocarcinoma of the cervix is increasing in women’s 40s, potentially due to changing sexual behaviors
  • Breast cancer is increasing in younger women: maybe etiologic distinct like triple negative and larger racial disparities in younger African American women
  • Increased obesity among younger people is becoming a factor in this increasing incidence of early onset cancers

 

 

Other Articles on this Open Access  Online Journal on Cancer Conferences and Conference Coverage in Real Time Include

Press Coverage

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Symposium: New Drugs on the Horizon Part 3 12:30-1:25 PM

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on NCI Activities: COVID-19 and Cancer Research 5:20 PM

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on Evaluating Cancer Genomics from Normal Tissues Through Metastatic Disease 3:50 PM

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on Novel Targets and Therapies 2:35 PM

 

Read Full Post »

Nano-guided cell networks as conveyors of molecular communication

Nature Communications
6,
Article number:
8500
doi:10.1038/ncomms9500
Received
07 March 2015
Accepted
28 August 2015
Published
12 October 2015

Abstract

Advances in nanotechnology have provided unprecedented physical means to sample molecular space. Living cells provide additional capability in that they identify molecules within complex environments and actuate function. We have merged cells with nanotechnology for an integrated molecular processing network. Here we show that an engineered cell consortium autonomously generates feedback to chemical cues. Moreover, abiotic components are readily assembled onto cells, enabling amplified and ‘binned’ responses. Specifically, engineered cell populations are triggered by a quorum sensing (QS) signal molecule, autoinducer-2, to express surface-displayed fusions consisting of a fluorescent marker and an affinity peptide. The latter provides means for attaching magnetic nanoparticles to fluorescently activated subpopulations for coalescence into colour-indexed output. The resultant nano-guided cell network assesses QS activity and conveys molecular information as a ‘bio-litmus’ in a manner read by simple optical means.

At a glance

Figures

View all figures

left

  1. Nano-guided cell networks for processing molecular information.
    Figure 1
  2. Cells express functional, interchangeable protein components indicating both fluorescence and ability for streptavidin-linked surface coupling.
    Figure 2
  3. Cells equipped with magnetic nanoparticles (mNPs) via streptavidin-mediated interaction with surface-expressed proteins.
    Figure 3
  4. Affinity-based probing for functional analysis of AI-2-induced protein expression.
    Figure 4
  5. Single and multi-population cell responses to autoinducer-2.
    Figure 5
  6. Binning molecular information through cell-based parallel processing and magnetically focusing fluorescence into collective consensus output.
    Figure 6
  7. Extension of nano-guided cell networks for hypothetical regulatory structures.
    Figure 7

right

Introduction

It has become increasingly apparent that a wealth of molecular information exists, which, when appropriately accessed, can provide feedback on biological systems, their componentry and their function. Thus, there is a developing niche that transcends length scales to concurrently recognize molecular detail and at the same time provide understanding of the overall system1, 2. An emerging scheme is to develop nano- to micro-scaled tools that intimately engage with biological systems through monitoring and interacting at the molecular level, with synthetic biology being one such tool3, 4, 5, 6, 7.

While synthetic biology is often viewed as an innovative means for ‘green’ product synthesis through the genetic rearrangement of cells, their biosynthetic capabilities and their regulatory networks can instead be tuned for executive function8, 9, 10. That is, cells can be rewired to survey molecular space3, 11, 12 as they have sophisticated capabilities to recognize, amplify and transduce chemical information13. Further, they provide a means to connect biological systems with traditional microelectronic devices and in doing so present a potential interface between chemically based biomolecular processing and conventional vectors of information flow, such as electrons and photons14, 15, 16. Specifically, through engineered design, cell-based molecular processing can be further coupled to enable external abiotic responses. Cells, then, represent a versatile means for mediating the molecular ‘signatures’ common in complex environments, or in other words, they are conveyors of molecular communication17, 18, 19.

Further, beyond clonal cell-based sensors, there is an emerging concept of population engineering to establish microorganisms in deliberate networks that enable enriched system identification through a combination of distinctive yet coexistent behaviours, including, perhaps, competitive or cooperative features8, 20, 21, 22, 23, 24, 25. We posit the use of cell populations assembled in parallel¸ where multiple microbes with distinct molecular recognition capabilities work congruently. An advantage is that populations, as opposed to few cells, can facilitate thorough sampling since the presence of many cells increases their spatial breadth and per-cell data contributions (Fig. 1a). Each cellular unit undergoes independent decision-making and contributes a datum to its entire constituency. The prevalence of data provided within the population, then, substantiates a collective output by the system based on the molecular landscape. As follows in a multi-population system, molecular input thus influences the outcomes of each population, and elicits plural responses when the molecular input ranges overlap the ranges of the sensing populations21, which can define classification boundaries (Fig. 1a). Cell-mediated classification was posited in silico by Didovyk et al.21, where reporter libraries with randomized sensitivities to a molecular cue elicit concentration-dependent fluorescent patterns and these are elucidated by population screening . In the present construct, multiple populations enable multiplexed analysis, resulting, here, in a response gradation that is designed to index the molecular input ‘signature’. Consequently, the fed-back information becomes transfigured beyond a dose-dependent cell-by-cell analysis. That is, the output is predicated by the comparison between the populations rather than accumulation of response within a total population.

Figure 1: Nano-guided cell networks for processing molecular information.

Nano-guided cell networks for processing molecular information.

(a) Biotic (multicellular) processing is facilitated by cell recognition, signal transduction and genetic response. The genetically encoded response reflects the identity and prevalence of the target molecule(s). Biotic processing includes both increased cell number of responders and their genetically tuned response patterns. (b) Abiotic processing, used in conjunction with biotic processing, adds dimensionality to cell-based output by modifying through a physical stimulus (in our example, magnetic focusing). (c) Schematic of a cell population and nanomaterial-based network comprising both biotic (green/red axis) and abiotic (black axis) processing mechanisms. This conceptual system interprets molecular information by intercepting diverse molecular inputs, processes them autonomously through independent cell units within the system and refines output to include positive responders that are viewed via orthogonal means (visual classification). The system’s hierarchical structure allows molecular information to be refined into categorized collective outputs.

With population engineering as a premise for enriched molecular information processing, we engineered cell species, each to achieve an appropriate output through genetic means. There is conceptual basis for incorporation into networks, such as through mobile surveillance and position-based information relay26, 27. Hence, it is conceivable that, in addition to autonomous molecular recognition and processing afforded by synthetic biology, the use of physical stimuli to enable cell response could confer similar networking properties28, 29. For example, the complete information-processing ‘repertoire’ can be expanded beyond specific cell responses by the integration of external stimuli that serve to collate cell populations30. Specifically, we envision integration of nanomaterials that enable co-responses to molecular inputs, such that cell populations employ traditional reporting functions, that is, fluorescence marker expression, as well as responses that enable additional processing via the integration of stimuli-responsive abiotic materials (Fig. 1b).

In our example, cells are engineered to respond by permitting the attachment of magnetic nanoparticles (mNPs), such that each fluorescent cell becomes receptive to a magnetic field. Thus, the combination of cell-nanoparticle structures provides further dimensionality for the conveyance of molecular information (via magnetic stimulation). That is, without magnetic collation the fully distributed system would harbour diffuse responses; a magnetically stimulated system results in acute output due to a filtering and focusing effect (Fig. 1b)31, 32, allowing binned information to be readily, and fluorescently, conveyed.

The detection and interpretation of signalling molecules in our example is based on a microbial communication process known as quorum sensing (QS). The molecules, autoinducers (AIs), are secreted and perceived within a microbial community; once accumulated, the AI level indicates that the population size has reached a ‘quorum’33, 34. By surpassing a threshold concentration, the AI signalling coordinates population-wide phenotypic changes35. We have designed a QS information processor that utilizes two cell populations to independently interrogate natural microbial communities and generate information about QS activity by accessing AI-2 (ref. 36). Each cell population becomes ‘activated’ in response to a characteristic AI-2 level by expressing a fluorescent marker and a streptavidin-binding peptide (SBP) on the outer membrane38. SBP provides a means for collating data by binding mNPs that are introduced into the community. Using a post-processing magnetic sweep, the system as a whole interprets a molecular landscape and refines output into colour-categorized, or ‘binned,’ states (no fluorescence, red, or red and green) through (1) parallel population processing and (2) acute focusing (Fig. 1c).

The use of engineered cells as data-acquiring units and selectively equipping each with functional nanomaterials to form a redistributable processing system merges two paradigms: decentralized, active probing at a molecular scale and self-organization of units through structured dependencies on stimuli42. The population-based system overall contributes categorized feedback about a biological environment.

Results

Surface expression of SBP and fluorescent protein fusions

First, we established expression of a fusion protein consisting of a fluorescent marker (enhanced green fluorescent protein (eGFP) and variants) and SBP. Importantly, for SBP to function as a coupling agent between cells and mNPs, we used AIDAc (kindly shared by J. Larssen)40 to export the chimeric protein to Escherichia coli’s outer surface. Translocation to a cell’s surface utilizes a signal peptide (for inner membrane translocation) and AIDAc as an outer membrane autotransporter pore38, 39, 40, 41, with the passenger protein linked to each. In Fig. 2a, we depict expression of three different constructs using Venus, eGFP and mCherry for optical transmission, and the AIDAc translocator domain for surface localization. These constructs are mapped inSupplementary Fig. 1. After induction with isopropyl B-D-1-thiogalactopyranoside (IPTG), cultures were probed for surface expression of the SBP portion of the tagged fluorescent protein. Cells were incubated with fluorescently labelled streptavidin; the fluorophore of the streptavidin probe was orthogonal to the expressed fluorescent protein. The multiple fluorescence emissions were analysed by confocal microscopy without spectral overlap. The fraction of cells (fc) that exhibit colocalized fluorescent protein and the fluorescently-labeled streptavidin is reported in Fig. 2b, showing that SBP–Venus cells bound streptavidin at a slightly lower frequency than SBP–mCherry and SBP–eGFP, which exhibited statistically similar fractions (fc=0.7).

Figure 2: Cells express functional, interchangeable protein components indicating both fluorescence and ability for streptavidin-linked surface coupling.

Cells express functional, interchangeable protein components indicating both fluorescence and ability for streptavidin-linked surface coupling.

(a) A T7 cassette was used to express chimeric proteins consisting of a membrane autotransporter domain (AIDAc), one of several fluorescent proteins and a streptavidin-binding peptide (SBP). Fluorophore-tagged streptavidin (SA) was used to bind SBP. (b) Of cells expressing fluorescent proteins (FP), those also marked by SBP coupling are represented as a ‘colocalized fraction (fc),’ plotted with image analysis-based s.d. of at least five replicates. The asterisk ‘*’ denotes fc that +SBP–eGFP and+SBP–mCherry are statistically equivalent (fc~0.7) by t-test and greater than +SBP–Venus cells. (c) Composite images show cell fluorescence (Column I) from the fluorescent protein (FP); labelled streptavidin using orthogonal filter sets (Column II); and an overlay of both (Column III). Arrows indicate representative cells with strong colocalization. Plotted in Column IV are the fluorescence mean grey values (y-axis) from a representative horizontal slice of the composite image (x-axis). Vertical bars displayed between Columns III and IV identify the position of each analysed slice. Arrows indicate peaks that match the highlighted cells in Column III. fc values are noted. Fluorophores with non-overlapping spectra were paired. Row 1, Venus expression (yellow-green) was paired with Dylight405-labelled SA (blue). Row 2, eGFP expression (green) was paired with Alexafluor594-labeled SA (red). Row 3, mCherry expression (red) was paired with Alexafluor488-labeled SA (green). Scale bar in lower left, 50μm.

That is, microscopy results related to the colocalization analysis are depicted for pairings of Venus and blue-streptavidin (SA), eGFP and red-SA, and mCherry and green-SA (Fig. 2c). Strong signals were observed in both filter sets (the fluorescent protein (Column I) and the labelled streptavidin (Column II)). Overlaying each image reveals colocalization, as indicated in Column III, where arrows point to examples of strong colocalization. In addition, Column IV plots fluorescence intensities across horizontal sections of the images, where cells that exhibit colocalized fluorescence are indicated by superimposed peaks. For +pSBP–Venus cells, those with both a blue and yellow signal are observed as pale blue–violet in the overlaid image. Cells with +pSBP–eGFP and +pSBP–mCherry and labelled streptavidin emit both green and red signals; their colocalization appears yellow. Controls shown in Supplementary Fig. 2, verify that fluorescent streptavidin (all colours) has specificity for only SBP-expressing cells over negative controls. Colocalization indicates that not only are both components of the fusion, SBP and the fluorescent protein, expressed, but that SBP is accessible to bind streptavidin on the cell’s surface. This is the first use of AIDAc for cell surface anchoring of fluorescent proteins, each having been functionalized with an affinity peptide.

Cell hybridization via mNPs

Given that expression of a fluorescent protein tagged with SBP enabled external binding of streptavidin, we employed this interaction for fastening streptavidin-functionalized materials directly to the cell surface. We chose streptavidin-conjugated mNPs, 100nm in diameter (an order of magnitude smaller than a cell), for binding to a cell surface (Fig. 3a) to impart the abiotic magnetic properties. Scanning electron microscopy (SEM) was used to observe surface interaction between cell surface-expressing SBP and streptavidin-functionalized mNPs. Supplementary Fig. 3a,bshows electron micrographs of E. coli cells (dimensions 1.5–2μm in length) and the mNPs (~100nm in diameter). The SEM image in Fig. 3b, shows a magnetically isolated SBP-expressing cell with streptavidin-mNPs. The sample was prepared by mixing SBP-expressing cells with streptavidin-mNPs, then collecting or ‘focusing’ into a magnetized pellet via magnetic field, then separating from unbound cells in the supernatant. The cells were then washed and resuspended. In Fig. 3b, clusters of surface-bound mNPs are observed. In addition, the elemental composition was analysed with energy-dispersive X-ray spectroscopy, shown in Fig. 3c by an element map superimposed with carbon (red) and iron (green). While the cell appears to be of a uniform carbon composition, the particles localized at the cell surface (highlighted with arrows) were found having a strong iron composition; thus, elemental analysis confirmed particle identity as iron oxide mNPs. Additional characterization of magnetic functionality, including detailed SEM and fluorescent microscopic analysis prior to and after application of magnetic fields, is described in theSupplementary Information (Supplementary Fig. 3).

Figure 3: Cells equipped with magnetic nanoparticles (mNPs) via streptavidin-mediated interaction with surface-expressed proteins.

Cells equipped with magnetic nanoparticles (mNPs) via streptavidin-mediated interaction with surface-expressed proteins.

(a) Cell surface binding of streptavidin-conjugated magnetic nanoparticles occurs via surface-anchored streptavidin-binding peptide (SBP). The fusion of T7-expressed SBP-fluorescent protein (FP)-AIDAc enables the cell surface accessibility. (b) Scanning electron micrograph of an E. coli cell with surface-bound particles. (c) Element map of carbon (red) and iron (green) through energy-dispersive spectroscopy.

In sum, the well-known affinity interaction between streptavidin and the peptide SBP is harnessed to endow cells with non-natural abiotic properties. Here coupling a functionalized nanomaterial to the surface-displayed peptide physically extends the fusion protein and also adds physical (magnetic) functionality to the cell.

Linking expression to AI-2 recognition

The expression system for pSBP–Venus was then put under AI-2 control so that the protein is expressed in the presence of AI-2 instead of IPTG. That is, we coupled the native QS signal transduction circuitry to the reporter cassette. To ensure ample expression (as the native operon is fairly weak), we placed expression of T7 RNA polymerase under control of the natural QS circuitry43. Phosphorylated AI-2 activates the system through derepression of the regulator LsrR, naturally upregulating AI-2 import and phosphorylation44, and, by design, the T7 RNA polymerase on a sensor plasmid43. When sbp–Venus is included downstream of a T7 promoter region on a second plasmid, expression is then triggered by AI-2 uptake (Supplementary Fig. 4a). Then, we used two host sensor strains engineered to provide varied AI-2 sensitivity (denoted responders ‘A’ and ‘B’). In ‘A’, lsrFG, genes required for internally phosphorylated AI-2 degradation45, 46 are deleted. Also, both strains lack the terminal AI-2 synthase, luxS, so they cannot produce AI-2 and, instead, must ‘receive’ AI-2 from an external source (Supplementary Fig. 4a). The phenotypic difference between A and B is the threshold level of AI-2 that activates the genetic response47, 48. Fully constructed, these cells are designed to take up and process AI-2 to generate fluorescence output (that co-functions with streptavidin binding).

We next evaluated the kinetics of surface-fusion protein expression and effects on cell growth. The AI-2-induced expression for AIDAc-linked and SBP-tagged fluorescent proteins did not alter growth kinetics for either cell type (Supplementary Fig. 4b,c). Expression efficacy was also evaluated via immunoassay of the outer membrane, probing for AI-2-induced surface display. After induction with 20μM AI-2, extracts from cell types A and B were size-separated and blotted using alkaline phosphatase-conjugated streptavidin to probe for the SBP-tagged protein fusion (Supplementary Fig. 5). The 88kDa AIDAc–Venus–SBP protein was only found in the membrane-containing pellet fraction (Fig. 4a). Analogously, protein orientation was assessed by immunolabeling the fluorescent protein. Cell type B transformed with pSBP–eGFP was induced with 20μM AI-2 overnight; cell surfaces were then probed for eGFP using a mouse anti-GFP primary antibody and red-labelled secondary anti-mouse IgG. Simultaneously, cells were observed using phase contrast and fluorescence confocal microscopy. We noted a punctate pattern for eGFP, which was in one-to-one correspondence with red immunostaining of the surface-expressed protein. The positive staining of eGFP-expressing cells for red fluorescence, contrasted by the absence of negative control immunostaining indicated surface exposure of the fusion (Supplementary Fig. 6). Confocal microscopy confirmed precise colocalization of the eGFP and red-labelled antibodies within the confines of individual cells (Fig. 4b). Therefore, efficient transport of this functionality to the membrane under AI-2 induction was demonstrated in each host.

Figure 4: Affinity-based probing for functional analysis of AI-2-induced protein expression.

Affinity-based probing for functional analysis of AI-2-induced protein expression.

(a) 64–82kDa region of western blot for pelleted (P) and supernatant (S) protein fractions isolated from Type A and B cells. Alkaline phosphatase-conjugated streptavidin was used to target AIDAc–Venus–SBP at expression timepoints. Arrows indicate the expected position of the full fusion protein. (b) Immunostaining for assessment of the fluorescent protein surface accessibility. The external surfaces of cells expressing AIDAc–eGFP–SBP were probed with an anti–eGFP and Alexafluor594-labelled antibody pair. A representative overlaid fluorescence and phase contrast image is shown along with fluorescence images of the green (G) and red (R) filters for the boxed-in region. Scale bar, 2μM.

Establishing molecular ranges for cell interrogation

Importantly, the engineered cells each provide a characteristic response to the level of AI-2. Recently, we showed that AI-2 level influences the quorum size of responding engineered populations but does not alter the expression level within each quorum47. Here we evaluated our engineered AI-2 responders, again for quorum size (or in other words, percentage of AI-2-responsive cells in the population), this time varying the compositions of molecular input and the configuration of responders (Fig. 5a). First, we added AI-2, synthesized in vitro, to each of the two responder populations (Fig. 5b). We also added conditioned medium (CM), the spent medium from an AI-2 producer culture containing metabolic byproducts, as well as AI-2 (refs 36, 49; Fig. 5c). We also mixed the responder populations and added AI-2 to gauge responses in complex cultures (Fig. 5d).

Figure 5: Single and multi-population cell responses to autoinducer-2.

Single and multi-population cell responses to autoinducer-2.

(a) Fluorescence output is linked to small molecule input, derived from purified or crude sources. Fluorescence from Responders A and B was analysed after exposure to autoinducer-2 (AI-2) in mono and mixed culture environments. (b) Venus expression from in vitro-synthesized AI-2 added to monocultures of A and B. (c) Venus expression from conditioned media (CM) added to monocultures of A and B. CM was isolated from WT W3110 E. coli cultures sampled at indicated OD. Data are averages from triplicate cultures with s.d. indicated. (d) Red and green fluorescence responses to AI-2 during co-incubation of Responders A (pSBP–mCherry+, red) and B (pSBP–eGFP+, green). Representative fluorescence images show colocalization of red and green cells. Scale bar, 10μm. The average cell count per responder cell is plotted against AI-2 concentration, as determined by image analysis in quadruplicate. All data are plotted as averages of at least triplicate samples with s.d.

Specifically, in Fig. 5b, A and B populations were incubated at mid-exponential phase with in vitro-synthesized AI-2 (refs 50, 51) at concentrations: 0, 2, 10, 28 and 75μM. After 12h, samples were observed for fluorescence by confocal microscopy and then quantified by fluorescence-activated cell sorting (FACS; Supplementary Fig. 4c). We found that SBP–Venus expression for responder A cells occurred at the lowest tested level (2μM AI-2), where 56% of the population expressed SBP–Venus and this fraction increased with AI-2 reaching a maximum of 90% at 28μM. For type B, a more gradual trend was found; only ~1% was fluorescent from 0-2μM, and this increased from 9 to 46% as AI-2 was increased to 28μM. Finally, the highest fraction of fluorescing cells was found at the highest concentration tested, 75μM.

We next isolated CM, which contains a dynamic composition of unfiltered metabolites and media components, from W3110 E. coli cultures at intervals during their exponential growth, throughout which AI-2 accumulates (AI-2 levels for the samples are indicated in Supplementary Fig. 7). CM aliquots were mixed with either A or B cells and cultured in triplicate for 12h. Through FACS analysis it was found, again, that a larger subpopulation of A expressed Venus compared with population B at any concentration (Fig. 5c). Statistically relevant expression from B was not apparent until incubated with CM from cultures at an optical density (OD) of 0.23. In all cases, population A recognized AI-2 presence, including from media isolated at a W3110 OD of 0.05, the minimum cell density tested in this study.

The sensitivities of both strains to AI-2-mediated induction corroborate previous literature10, 47. These trends demonstrate that strains engineered for altered sensitivity to molecular cues provide discrimination of concentration level. That is, the identical plasmid expression system was transformed into different hosts, providing robust and distinct levels of expression.

Having developed cell types A and B with differential ability to detect AI-2, we next altered the reporters so that each cell type expressed a unique SBP-fluorescence fusion for colour-coded designation. Cell type A was engineered with pSBP–mCherry and type B with pSBP–eGFP, resulting in red and green fluorescence, respectively. These populations were mixed together in equal proportion at mid-exponential phase, introduced to a range of AI-2 concentrations, and incubated overnight. Populations A and B exhibited equal growth rates when cultured alone and together (Supplementary Fig. 8c); it followed that the cocultures should comprise a 1:1 ratio of each constituent. Fluorescence output is shown by representative images in Fig. 5d. Also in Fig. 5d, the green and red cell count is plotted from a quadruplicate analysis for each input concentration.

Coculturing enables parallel processing as the molecule-rich environment is perceived by each cell, and is processed uniquely per cell type. Yet, since each sensing mechanism is a living and proliferating population, we tested whether the potentially altered dynamics of coculturing would permit the same sensitivities as isolated culturing. We evaluated the Monod-type saturation constant for each population independently and in cocultures. We found, in Fig. 5d, the general trends in response to an increasing AI-2 level were as predicted by modelled response curves (Supplementary Table 4), which were also well-correlated to Fig. 5b data (Supplementary Fig. 8a,b). That is, the saturation constants that describe dependence on AI-2 were unchanged when measured in cocultures. Phenomenologically, as expected, an initial accumulation of red type A responders was found. Then, at higher AI-2 levels, we found an emergence of a green subpopulation (type B). Above 28μM, there was no longer an apparent differential response that would otherwise enable discrimination of AI-2 concentration; based on the consistency with modelled behaviour, coculturing contributed to dampen the response as the maximum percentage of responding cells in cocultures is 50% instead of 100%. However, the overall fluorescence output is enriched by the combination of multiple populations since the ranges of sensitivity overlap and effectively expand that of the master population (Supplementary Fig. 8d). Specifically, because the fluorescence of B is described by a larger saturation constant, its fluorescence continually increases at higher AI-2 concentrations, while the fluorescence of A remains unchanged. Thus, coculturing between A and B enables resolvable output that is lower than the detection limit of B (due to A) yet surpasses the upper limit at which A saturates by the inclusion of B. The choice to fluorescently differentiate A and B was important because the output would otherwise be biased by extracellular components including the existence of non-sensing cells. Due to colour designation of A and B, a colour ‘pattern’ emerges as a feature of the parallel response, which we recognize is independent of the absolute fluorescence of the population.

Consensus feedback through multidimensional processing

We hypothesized that the value of cell-based sensing would be enhanced if the cell output could be collated in an unbiased manner that in turn were easily ‘read’ using optical means. We engaged magnetic processing, which represents an abiotic processing step that enhances the signal by focusing the collective response. Hence, cells were equipped with streptavidin-conjugated mNPs (Fig. 3). The ability of a magnetic field to refine fluorescence output through filtering and focusing is described in the Supplementary Information (Supplementary Fig. 11). Thus, in our combinatorial approach, fluorescence feedback about molecular information within a microbial community entails biotic processing through constituencies of two independent cell types in conjunction with magnetic post-processing that is enabled by guidance at the nanoscale (Fig. 6c). Moreover, since the fluorescence feedback data is provided through two constituencies, consensus from each independently provides an aggregate output; in our example, the output becomes relayed as a distinctive ‘binned’ category due to finite colour-combinations generated from constituencies A and B (Fig. 6c).

Figure 6: Binning molecular information through cell-based parallel processing and magnetically focusing fluorescence into collective consensus output.

Binning molecular information through cell-based parallel processing and magnetically focusing fluorescence into collective consensus output.

(a) A and B cell types were co-incubated with AI-2 levels ranging from 0 to 55μM AI-2 (left axis), then imaged after magnetic nanoparticle coupling and magnetic collation. Fluorescence results (centred directly over the magnet) are shown from high to low input (top left to bottom right). (b) Quantification of red and green fluorescence cell densities per AI-2 level. (c) The process of accessing molecular information begins by distributing Responders A and B within the environment of an AI-2 producer, P. A and B independently express fluorophore fusions and are linked with magnetic nanoparticles on processing autoinducer-2. Magnetic focusing translocates fluorescing responders. Image analysis of the magnetically collated cell aggregate reveals classified fluorescence output, representing the AI-2 composition of the interrogated environment. (d) Bright field (left) and fluorescence (right, red and green filters) images positioned over the edge of a magnet, as indicated by the inset. The sample in the bottom image pair was isolated from an environment of low AI-2 accumulation. The sample in the top image pair was isolated from a high AI-2 environment. (e) Quantification of visual space occupied by collated cells (eGFP and mCherry expressers) while distributed (- magnet) and magnetically focused (+). Scale bars, 50μm.

Again, type A transmits red output (SBP–mCherry+) and type B transmits green (SBP–eGFP+). These were first co-incubated with titred concentrations of AI-2, to obtain results similar to those ofFig. 5d. By coupling mNPs to the responsive parallel populations, we tested for aggregate two-colour output to provide informative feedback within a set of outcomes ranging from no colour, red-only to red+green. After overnight co-incubation and a magnetic sweep with streptavidin-mNPs, fluorescence results are shown in Fig. 6a, where the recovered cells are displayed above a magnet’s center in order from highest to lowest AI-2 level (top left to bottom right). The processing output generated by the range of conditions was quantitatively assessed for contributions from A and B responders. The spatial density of each fluorophore, or the area occupied by fluorescent responders as a percentage of total visible area, was quantified and plotted in Fig. 6b. Here the trend of increasing fluorescence with AI-2 is followed by both A and B cell types; however, red A cells accumulate at a higher rate than green B cells. This relationship between A and B processing is not only consistent with their previous characterizations (Fig. 5) but indicates that the aggregate output is unbiased regardless of assembly with mNPs and magnetic-stimulated redistribution (Supplementary Information, Supplementary Fig. 14a).

Next, A and B cells were added together to probe the QS environment of Listeria innocua, an AI-2-producing cell type that is genetically and ecologically similar to the pathogenic strain L. monocytogenes52. The environment was biased towards low and high cell density conditions by altering nutrient levels to develop contrasting scenarios of AI-2 level. Preliminary characterization in the Supplementary Information indicated that L. innocua proliferation is unperturbed by the presence of E. coli responders (Supplementary Fig. 12) and that type A cells detect AI-2 at lowListeria densities limited by sparse nutrients; then with rich nutrient availability, cell proliferation permits a higher AI-2 level that can be detected by type B (Supplementary Fig. 13). Replicating these conditions, we expected red fluorescence to be observed at low culture density and for green fluorescence to be reported when high (Fig. 6c). Two conditions were tested: L. innocua was proportioned to responder cells at 20:1 in dilute media to establish a low culture density condition or, alternatively, a ratio of 200:1 in rich media for a high culture density condition. After overnight co-incubation and a magnetic sweep (applied directly to the triple strain cultures) with streptavidin-mNPs, the recovered cells are displayed above a magnet’s edge (shown in Fig. 6d). Acute focusing of the fluorescence signals, contributed by each subset population of the processor (A and B), is visually apparent. The magnetic field had a physical effect of repositioning the ‘on’ subsets to be tightly confined within the magnetic field.

The processing output generated by the contrasting culture conditions was again assessed for the respective contributions of A and B, and for changes in spatial signal density due to the magnetic sweep (Fig. 6e). The analysis was based on images provided in Supplementary Fig. 14b. Data inFig. 6e indicate that red type A cells are prevalent regardless of culture condition (except negative controls). However, compared with the low AI-2 condition, the abundance of green cells is 100-fold higher in the high AI-2 condition. In addition, the ratio of green to red was consistent prior to and after magnetic concentration, substantiating observations in the distributed system. Further, data show that magnetic refining increased per-area fluorescence 100-fold or 10-fold in low and high cell culture studies, respectively.

Based on the thresholds established for responder populations A and B, we found colour-coded binning corresponded to AI-2 level, where ‘red-only’ represented less AI-2 than ‘red+green’ (Fig. 5d). Thus, we found a binned output was established via this multidimensional molecular information-processing system and that this matched the expectations. Red feedback (from responder A) indicated dilute AI-2 accumulation occurred in the low density culture. In the dense cultures, high AI-2 accumulation turned on both A and B for combined red and green feedback.

System response patterns defined by parallel populations

Our example demonstrates the concept of an amorphous processing system that utilizes several biotic and abiotic components for multidimensional information processing. Interestingly, a binning effect was enabled: our system yields an index of colour-categorized feedback that characterizes the sampled environment. In Fig. 7, we present a means to extend our approach to multidimensional systems, those with more than one molecule-of-interest and at different concentrations. That is, by appropriate design of the cell responders, we can further enrich the methodology, its depth and breadth of applicability. We depict 10 hypothetical pairs of responses (with defining equations located in Supplementary Table 5)—those that can be driven by appropriately engineering cells to portend altered genetic responses. For example, rows 1 and 3 provide genetic outcomes as a function of analyte (AI-2) concentration. The hypothetical depictions are feasible as ‘designer’ signal transduction and marker expression processes enabled by synthetic biology21, 53, 54. Rows 2 and 4 demonstrate the corresponding visual planes, where red cell numbers (x-axis) are plotted against green (y-axis), illustrated by the first example. If one divides the two-dimensional space into quadrants (no colour, majority red, majority green, and equivalent ratios of red and green), it becomes apparent that the relationship between cell types influences the ‘visual’ or optical output. Thus, the 10 arbitrary response sets yield a variety of pairings that can provide unique visual patterns for categorizing molecular information. We have simplified the analysis by placing dot marker symbols at the various coincident datapoints, revealing visual patterns. In this way, the ability to incorporate unique responses to a multitude of molecular cues, all within a single pair of cells, or through further multiplexing with additional cell populations becomes apparent.

Figure 7: Extension of nano-guided cell networks for hypothetical regulatory structures.

Extension of nano-guided cell networks for hypothetical regulatory structures.

(a) Rows 1 and 3 depict 10 hypothetical genetic responses to molecular inputs for pairs of fluorescence-reporting cell populations (red, R and green, G). Rows 2 and 4 depict genetic responses as phase-plane plots yielding distinct patterns. This establishes a visual field, showing the extent of any population–population bias (illustrated in example case 1). (b) Left panel: a two-population pairing (shown in case 10) defines visual output that inherently bins into three quadrants: Q1, negligible colour; Q2, red bias due to majority red cell output; and Q4, combined red and green output. Right panel: data from Figs 5d and 6bare plotted analogously, where each data point represents an autoinducer-2 input (labelled, μM). As expected, red and green outputs were binned into Q1, Q2 and Q4 as indicated by coloured outlines.

Our AI-2-conveying cell network is similar to example 7 in Fig. 7a and the AI-2 response curves inFig. 5 (characterized by Supplementary Table 4 equations). Example 7 establishes output into three basic quadrants, including Q1 (negligible colour), Q2 (majority red) and Q4 (roughly equal red and green) (Fig. 7b). We recast the data from Figs 5d and 6b as a phase-plane portrait in Fig. 7c. This reveals the mechanisms by which the output is binned and how the originating cell response curves lead to this pattern, which in turn, was unchanged due to magnetic refinement. InSupplementary Fig. 15, we demonstrate a parameterization of the red and green response curves that suggest the methodology is robust, that when cells are appropriately engineered one could ‘tune’ system characteristics to enhance or diminish a binning effect. We suggest that the utility of subcellular genetic tuning extends well beyond per-cell performance. Rather, we suggest such a strategy may be used to guide the dynamics of population architecture for actuation of by-design response patterns at a systems level.

Discussion

While cell-based sensors work well in well-defined assay conditions, extension to complex environments remains a challenge. They grow, they move, they perturb their environs, they report in a time and concentration-dependent manner, small numbers of sensor cells may require signal amplification and so on. Also, increasingly, bacterial cells are engineered for user specified ‘executive’ functions in complex environments55, 56, 57. Their performance depends on their ability to filter out extraneous noise while surveying the molecular landscape, and providing informed actuation.

Our system interrogates the molecular space by focusing on bacterial QS and a widely distributed signal molecule, AI-2. In addition to genetic attributes of the AI-2-responding sensor cells, AI-2 is a chemoattractant for E. coli, and hence E. coli engineered to sense and respond to AI-2 will naturally move towards its sources, enabling full sampling of the prevailing state10, 37. Each strain evaluates AI-2 with a distinct sensitivity. When ‘activated’ in response to a characteristic level, the cells simultaneously expressed a fluorescent marker and a SBP on the outer membrane via AIDAc translocation. SBP provides a means for cell hybridization through its strong affinity to streptavidin, and here, aids in binding mNPs. This enables the non-genetically coded property of cell translocation within a magnetic field through physically stimulated focusing and binning.

By making use of a diversity of biotic and abiotic features, our multidimensional system of ‘responder’ populations exemplifies several key metrics that promote executive performance in such environments: active molecule capture, post-capture refining of the detection output and finally the utilization of multiple feedback thresholds58, 59, 60. Here cells facilitate AI-2 recognition autonomously and actively because, as a distributed network they reside planktonically, chemotaxing to and continually processing signals over time. When AI-2 is detected, a processor cell’s cognate machinery responds by upregulation of the native QS operon, leading to rapid signal uptake and thereby creating an active-capture signal-processing mechanism. To maximize information acquisition and account for a potentially heterogeneous molecular landscape, cells serve as molecular sampling units among a distributed population, which leads to data fed back as a consensus of fluorescent ‘datapoints’. Then, distributed data collection can be selectively reversed via the incorporated abiotic feature: mNPs, fastened externally on the cell through affinity-guided self-assembly. As such, responding cells obtained this extendable feature, thereby becomes sensitized to repositioning within a magnetic field.

The layered nature of the processor here, from the subcellular to multicellular scale, permits a series of selective steps: it commences with the AI-2-triggered expression cascade which releases a tight repressor, surface localization of both the fluorescent protein and SBP tag, and finally nanoparticle binding for recovery. In addition, multiple layers of amplification result in orthogonal fluorescence feedback. The AI-2 detection event leads to whole-cell fluorescence through expression of many protein copies47. Then their physical collection further amplifies the signal, yielding a macroscopic composite of many individual cell units. When utilized as a network of multiple constituencies, responder cell types A and B contribute individual recognition results (off, red or green) to a single consensus output. Finally, due to their overlapping thresholds for recognition of the same molecule, in this case, AI-2, parallel processing by A and B responders can contribute to visual interpretation of information about the molecule. Outcomes are classified into a finite number of states: here output to no fluorescence, red, or red and green, with each addition of colour as a metric of a higher interval of AI-2. In many respects, the elucidation of layered information networks as demonstrated here is analogous to computer information processing via information theory61, 62, 63.

Here, however, interrogation of biological systems requires a reliable means for accessing molecular information—that which is communicated between biological species and that which can be relayed to the end user. The responder cells need not be present in high concentration, nor must they all be collected in the present format. We suggest that engineered biological mechanisms are well-poised to serve at this critical interface between information acquisition and user interaction. Thus, the functional design of components for autonomous self-assembly, decision-making and networking is requisite in the field of micro- and nano-scaled machines. Our combinatorial approach allows for cells to independently assess, yet collectively report, on molecular information. Its processing is enabled through appropriate integration of synthetic biology and nanomaterials design. We suggest this approach provides a rich opportunity to direct many formats of multi-population response through genetic tuning and systems-level engineering. Further development of cellular networks and incorporation of alternate abiotic attributes can expand the depth and breadth of molecular communication for user specified actuation.

Read Full Post »

Celiac Disease Breakthrough: (1) 472 genes regulated differently in organoids reflecting celiac disease than in non-celiac control organoids (2) bio-products derived from gut microorganisms can be employed to modify the epithelial response to gluten, a finding that could lead to future treatment strategies.

 

Reporter: Aviva Lev-Ari, PhD, RN

“These results confirm our hypothesis that genes and exposure to gluten are necessary but not sufficient, since changes in both the composition and function of the gut microbiome are also needed to switch from genetic predisposition to clinical outcome, as shown by our data,” said Alessio Fasano, HMS professor of pediatrics at Mass General, director of MIBRC and co-senior author of the paper.

https://hms.harvard.edu/news/major-shift?utm_source=Silverpop&utm_medium=email&utm_term=field_news_item_3&utm_content=HMNews05132019

 

 

Image Source: iStock/wildpixel

Article OPEN Published: 

Human gut derived-organoids provide model to study gluten response and effects of microbiota-derived molecules in celiac disease

Scientific Reports volume 9, Article number: 7029 (2019Download Citation

Abstract

Celiac disease (CD) is an immune-mediated disorder triggered by gluten exposure. The contribution of the adaptive immune response to CD pathogenesis has been extensively studied, but the absence of valid experimental models has hampered our understanding of the early steps leading to loss of gluten tolerance. Using intestinal organoids developed from duodenal biopsies from both non-celiac (NC) and celiac (CD) patients, we explored the contribution of gut epithelium to CD pathogenesis and the role of microbiota-derived molecules in modulating the epithelium’s response to gluten. When compared to NC, RNA sequencing of CD organoids revealed significantly altered expression of genes associated with gut barrier, innate immune response, and stem cell functions. Monolayers derived from CD organoids exposed to gliadin showed increased intestinal permeability and enhanced secretion of pro-inflammatory cytokines compared to NC controls. Microbiota-derived bioproducts butyrate, lactate, and polysaccharide A improved barrier function and reduced gliadin-induced cytokine secretion. We concluded that: (1) patient-derived organoids faithfully express established and newly identified molecular signatures characteristic of CD. (2) microbiota-derived bioproducts can be used to modulate the epithelial response to gluten. Finally, we validated the use of patient-derived organoids monolayers as a novel tool for the study of CD.

Mass. General researchers develop 3D “mini-gut” model to study autoimmune response to gluten in celiac and non-celiac patient tissue

Gene expression of intestinal organoids reflects functional differences found in celiac disease

In pursuit of a novel tool for the research and treatment of celiac disease, scientists at the Mucosal Immunology and Biology Research Center (MIBRC) at Massachusetts General Hospital (MGH) have validated the use of intestinal organoids. These three-dimensional tissue cultures are miniature, simplified versions of the intestine produced in vitro. Taking tissue from duodenal biopsies of celiac and non-celiac patients, researchers created the “mini-guts” to explore how the gut epithelium and microbiota-derived molecules respond to gluten, a complex class of proteins found in wheat and other grains.

“We currently have no animal model that can recapitulate the response to gluten that we see in humans,” says Stefania Senger, PhD, co-senior author of the study published in Scientific Reports this week. “Using this human tissue model, we observed that intestinal organoids express the same molecular markers as actual epithelium in the celiac tissue, and the signature gene expression reflects the functional differences that occur when epithelia of celiac disease patients are exposed to gliadin.” Gliadin and glutenin proteins are main components of gluten.

Celiac disease is triggered when genetically predisposed individuals consume gluten. The condition affects approximately 1 percent of the U.S. population. Based on current data, the onset of celiac disease is thought to be preceded by the release of the protein zonulin, which is triggered by the activation of undigested gliadin to induce an autoimmune response. This leads to increased intestinal permeability and a disrupted barrier function. Novel evidence suggests that the microorganisms in the gastrointestinal tract may play a role in the onset of celiac disease.

Earlier studies from the MIBRC group and others have shown that human organoids “retain a gene expression that recapitulates the expression of the tissue of origin, including a diseased state,” the authors write. Through RNA sequencing, the new findings validate the organoid model as a “faithful in vitro model for celiac disease,” Senger says.
Using whole-transcriptome analysis, the researchers identified 472 genes regulated differently in organoids reflecting celiac disease than in non-celiac control organoids. These included novel genes associated with epithelial functions related to the pathogenesis of celiac disease – including gut barrier maintenance, stem cell regeneration and innate immune response. A second finding of the study shows that bioproducts derived from gut microorganisms can be employed to modify the epithelial response to gluten, a finding that could lead to future treatment strategies.

“These results confirm our hypothesis that genes and exposure to gluten are necessary but not sufficient, since changes in both the composition and function of the gut microbiome are also needed to switch from genetic predisposition to clinical outcome, as shown by our data,” says Alessio Fasano, MD, director of the Mucosal Immunology and Biology Research Center and co-senior author.

Senger adds, “We believe our observations represent a major shift in the study of celiac disease. We are confident that with adequate funding we could achieve major goals that include the development and implementation of high-throughput drug screenings to quickly identify new treatments for patients and expand the organoid repository to develop more complex models and pursue personalized treatment.”
Additional co-authors of the paper are first author Rachel Freire, PhD, along with Laura Ingano and Gloria Serena, PhD, of the MGH MIBRC; Murat Cetinbas, PhD, and Ruslan Sadreyev, PhD, MGH Department of Molecular Biology; Anthony Anselmo, PhD, formerly of MGH Molecular Biology and now with PatientsLikeMe, Cambridge, Mass.; and Anna Sapone, MD, PhD, Takeda Pharmaceuticals International. Support for the study includes National Institutes of Health grants RO1 DK104344-01A1 and 1U19 AI082655-02 and the Egan Family Foundation.

SOURCE

https://www.massgeneral.org/about/pressrelease.aspx?id=2403

 

Other related articles and e-Books by LPBI Group’s Authors published on this Open Access Online Scientific Journal include the following:

 

Series D: e-Books on BioMedicine – Metabolomics, Immunology, Infectious Diseases

  • Metabolomics 

VOLUME 1: Metabolic Genomics and Pharmaceutics. On Amazon.com since 7/21/2015

http://www.amazon.com/dp/B012BB0ZF0

Gluten-free Diets

Writer and Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2015/03/01/gluten-free-diets/

 

Breakthrough Digestive Disorders Research: Conditions affecting the Gastrointestinal Tract.

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2012/12/12/breakthrough-digestive-disorders-research-conditions-affecting-the-gastrointestinal-tract/

 

Collagen-binding Molecular Chaperone HSP47: Role in Intestinal Fibrosis – colonic epithelial cells and subepithelial myofibroblasts

Curators: Larry H Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/01/25/collagen-binding-molecular-chaperone-hsp47-role-in-intestinal-fibrosis-colonic-epithelial-cells-and-subepithelial-myofibroblasts/

Expanding area of Tolerance-inducing Autoimmune Disease Therapeutics: Key Players

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2017/01/17/expanding-area-of-tolerance-inducing-autoimmune-disease-therapeutics-key-players/

 

What is the key method to harness Inflammation to close the doors for many complex diseases?

Author and Curator: Larry H Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2014/03/21/what-is-the-key-method-to-harness-inflammation-to-close-the-doors-for-many-complex-diseases/

Read Full Post »

Pancreatic cancer survival is determined by ratio of two enzymes, Volume 2 (Volume Two: Latest in Genomics Methodologies for Therapeutics: Gene Editing, NGS and BioInformatics, Simulations and the Genome Ontology), Part 1: Next Generation Sequencing (NGS)

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Protein kinase C (PKC) isozymes function as tumor suppressors in increasing contexts. These enzymes are crucial for a number of cellular activities, including cell survival, proliferation and migration — functions that must be carefully controlled if cells get out of control and form a tumor. In contrast to oncogenic kinases, whose function is acutely regulated by transient phosphorylation, PKC is constitutively phosphorylated following biosynthesis to yield a stable, autoinhibited enzyme that is reversibly activated by second messengers. Researchers at University of California San Diego School of Medicine found that another enzyme, called PHLPP1, acts as a “proofreader” to keep careful tabs on PKC.

 

The researchers discovered that in pancreatic cancer high PHLPP1 levels lead to low PKC levels, which is associated with poor patient survival. They reported that the phosphatase PHLPP1 opposes PKC phosphorylation during maturation, leading to the degradation of aberrantly active species that do not become autoinhibited. They discovered that any time an over-active PKC is inadvertently produced, the PHLPP1 “proofreader” tags it for destruction. That means the amount of PHLPP1 in patient’s cells determines his amount of PKC and it turns out those enzyme levels are especially important in pancreatic cancer.

 

This team of researchers reversed a 30-year paradigm when they reported evidence that PKC actually suppresses, rather than promotes, tumors. For decades before this revelation, many researchers had attempted to develop drugs that inhibit PKC as a means to treat cancer. Their study implied that anti-cancer drugs would actually need to do the opposite — boost PKC activity. This study sets the stage for clinicians to one day use a pancreatic cancer patient’s PHLPP1/PKC levels as a predictor for prognosis, and for researchers to develop new therapeutic drugs that inhibit PHLPP1 and boost PKC as a means to treat the disease.

 

The ratio — high PHLPP1/low PKC — correlated with poor prognoses: no pancreatic patient with low PKC in the database survived longer than five-and-a-half years. On the flip side, 50 percent of the patients with low PHLPP1/high PKC survived longer than that. While still in the earliest stages, the researchers hope that this information might one day aid pancreatic diagnostics and treatment. The researchers are next planning to screen chemical compounds to find those that inhibit PHLPP1 and restore PKC levels in low-PKC-pancreatic cancer cells in the lab. These might form the basis of a new therapeutic drug for pancreatic cancer.

 

References:

 

https://health.ucsd.edu/news/releases/Pages/2019-03-20-two-enzymes-linked-to-pancreatic-cancer-survival.aspx?elqTrackId=b6864b278958402787f61dd7b7624666

 

https://www.ncbi.nlm.nih.gov/pubmed/30904392

 

https://www.ncbi.nlm.nih.gov/pubmed/29513138

 

https://www.ncbi.nlm.nih.gov/pubmed/18511290

 

https://www.ncbi.nlm.nih.gov/pubmed/28476658

 

https://www.ncbi.nlm.nih.gov/pubmed/28283201

 

https://www.ncbi.nlm.nih.gov/pubmed/24231509

 

https://www.ncbi.nlm.nih.gov/pubmed/28112438

 

Read Full Post »

Older Posts »

%d bloggers like this: