Advertisements
Feeds:
Posts
Comments

Archive for the ‘Biochemical pathways’ Category


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Scientists at the Stanford University School of Medicine have completed the first-ever characterization of the meticulously timed immune system changes in women that occur during pregnancy. The findings were published in Science Immunology revealed that there is an immune clock of pregnancy and suggest it may help doctors predict preterm birth.

 

The timing of immune system changes follows a precise and predictable pattern in normal pregnancy. Although physicians have long known that the expectant mother’s immune system adjusts to prevent her body from rejecting the fetus, no one had investigated the full scope of these changes, nor asked if their timing was tightly controlled.

 

Nearly 10 percent of U.S. infants are born prematurely, arriving three or more weeks early, but physicians lack a reliable way to predict premature deliveries. Previous research at Stanford and other places suggested that inflammatory immune responses may help in triggering early labor. It suggested that if scientists identify an immune signature of impending preterm birth, they should be able to design a blood test to detect it.

 

The researchers used mass cytometry, a technique developed at Stanford, to simultaneously measure up to 50 properties of each immune cell in the blood samples. They counted the types of immune cells, assessed what signaling pathways were most active in each cell, and determined how the cells reacted to being stimulated with compounds that mimic infection with viruses and bacteria.

 

The researchers developed an algorithm that captures the immunological timeline during pregnancy that both validates previous findings and sheds new light on immune cell interaction during gestation. By defining this immunological chronology during normal term pregnancy, they can now begin to determine which alterations associate with pregnancy-related pathologies.

 

With an advanced statistical modeling technique, introduced for the first time in this study, the scientists then described in detail how the immune system changes throughout pregnancy. Instead of grouping the women’s blood samples by trimester for analysis, the model treated gestational age as a continuous variable, allowing the researchers to account for the exact time during pregnancy at which each sample was taken. The mathematical model also incorporated knowledge from the existing scientific literature of how immune cells behave in nonpregnant individuals to help determine which findings were most likely to be important.

 

The study confirmed immune features of pregnancy that were already known. Such as the scientists saw that natural killer cells and neutrophils have enhanced action during pregnancy. The researchers also uncovered several previously unappreciated features of how the immune system changes, such as the finding that activity of the STAT5 signaling pathway in CD4+T cells progressively increases throughout pregnancy on a precise schedule, ultimately reaching levels much higher than in nonpregnant individuals. The STAT5 pathway is involved in helping another group of immune cells, regulatory T cells, to differentiate. Interestingly, prior research in animals has indicated that regulatory T cells are important for maintaining pregnancy.

 

The next step will be to conduct similar research using blood samples from women who deliver their babies prematurely to see where their trajectories of immune function differ from normal.

 

This study revealed a precisely timed chronology of immune adaptations in peripheral blood over the course of a term pregnancy. This finding was enabled by high-content, single-cell mass cytometry coupled with a csEN algorithm accounting for the modular structure of the immune system and previous knowledge. The study provided the conceptual backbone and the analytical framework to examine whether disruption of this chronology is a diagnostically useful characteristic of preterm birth and other pregnancy-related pathologies.

 

References:

 

http://immunology.sciencemag.org/content/2/15/eaan2946.full

 

http://med.stanford.edu/news/all-news/2017/09/immune-system-changes-during-pregnancy-are-precisely-timed.html

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3078586/

 

http://www.nature.com/nm/journal/v19/n5/full/nm.3160.html?foxtrotcallback=true

 

https://www.ncbi.nlm.nih.gov/pubmed/14758358

Advertisements

Read Full Post »


Ultra-Pure Melatonin Product Helps Maintain Sleep for Up to 7 Hours

Curator: Gail S. Thornton, M.A.

Co-Editor: The VOICES of Patients, Hospital CEOs, HealthCare Providers, Caregivers and Families: Personal Experience with Critical Care and Invasive Medical Procedures

 

The role of melatonin is important in regulating natural sleep and wake cycles. Typically, melatonin levels decline with age, significantly decreasing after age 40. An estimated 50 to 70 million Americans are affected by sleep difficulties – a process regulated by melatonin — and long-term sleep deprivation has been associated with negative health consequences, including an increased risk of diabetes, hypertension, heart attack, stroke, obesity, and depression.

Clinical data from a new pharmacokinetic study suggests that REMfresh®, the first and only continuous release and absorption melatonin (CRA-melatonin), helps maintain sleep for up to 7 hours. REMfresh® contains 99 percent ultra-pure melatonin and is sourced in Western Europe, a factor that is significant and important to many sleep specialists.

Three research abstracts on the REMfresh® data were published in an online supplement in the journal, Sleep, and were presented recently at the 31st Annual Meeting of the Associated Professional Sleep Societies LLC (APSS).

REMfresh Photo

Image SOURCE: Photograph courtesy of Physician’s Seal®

How REMfresh® Works

REMfresh® (CRA-melatonin) mimics the body’s own 7-hour Mesa Wave™, a natural pattern of melatonin blood levels during a normal night’s sleep cycle.

The study demonstrated the continuous release and absorption of 99 percent ultra-pure melatonin in REMfresh® (CRA-melatonin) was designed to induce sleep onset and provide continuous, lasting restorative sleep over 7 hours.

The scientifically advanced, patented formulation, called Ion Powered Pump (IPP™) technology, replicates the way in which the body naturally releases and absorbs melatonin, unlike conventional melatonin sleep products.

Since REMfresh® (CRA-melatonin) is not a drug, there is no drug hangover.

REMfresh MesaCurveNew-1

Image SOURCE: Diagram courtesy of Physician’s Seal®

 

Data Based on Scientifically Advanced Delivery Technology

According to the primary study author, David C. Brodner, M.D., “These study results represent an unparalleled breakthrough in drug-free, sleep maintenance that physicians and patients have been waiting for in a sleep product.” Dr. Brodner is a sleep specialist who is double board-certified in Otolaryngology – Head and Neck Surgery and Sleep Medicine and is the founder and principle physician at the Center for Sinus, Allergy, and Sleep Wellness in Palm Beach County, Florida.

Dr. Brodner said, “Melatonin products have been used primarily as a chronobiotic to address sleep disorders, such as jet lag and shift work. The patented delivery system in REMfresh mimics the body’s own natural sleep pattern, so individuals may experience consistent, restorative sleep and have an improved quality of life with this drug-free product.”

Study Findings With REMAKT

The study findings are based on REMAKT™ (REM Absorption Kinetics Trial), a U.S.-based randomized, crossover pharmacokinetic (PK) evaluation study in healthy, non-smoking adults that compared REMfresh® (CRA-melatonin) with a market-leading, immediate-release melatonin (IR-melatonin).

The study found that melatonin levels with REMfresh® exceeded the targeted sleep maintenance threshold for a median of 6.7 hours, compared with 3.7 hours with the leading IR-melatonin. Conversely, the levels of the market-leading IR-melatonin formulation dramatically increased 23 times greater than the targeted levels of exogenous melatonin for sleep maintenance and had a rapid decline in serum levels that did not allow melatonin levels to be maintained beyond 4 hours.

Additional analysis presented showed that REMfresh® (CRA-melatonin) builds upon the body of evidence from prolonged-release melatonin (PR-M), which demonstrated in well-conducted, placebo-controlled studies, statistically significant improvement in sleep quality, morning alertness, sleep latency and quality of life in patients aged 55 years and older compared with placebo.

REMfresh® (CRA-melatonin) was designed to overcome the challenges of absorption in the intestines, thereby extending the continual and gradual release pattern of melatonin through the night (known as the Mesa Wave™, a flat-topped hill with steep sides). There was a faster time to Cmax, which is anticipated to result in improved sleep onset, while the extended median plateau time to 6.7 hours and rapid fall-off in plasma levels at the end of the Mesa Wave™ may help to improve sleep maintenance and morning alertness.

REFERENCE/SOURCE

Physician’s Seal® and REMfresh® (www.remfresh.com)

REMfresh® press release, June 5, 2017 (http://www.prnewswire.com/news-releases/scientifically-advanced-delivery-technology-in-sleep-management-debuts-at-sleep-2017-with-clinical-data-showing-remfresh-the-first-and-only-continuous-release-and-absorption-melatonin-helps-maintain-sleep-for-up-to-7-hours-300468218.html)

Dr. David C. Brodner, Center for Sinus, Allergy, and Sleep Wellness  (http://www.brodnermd.com/sleep-hygiene.html)

Other related articles published in this Open Access Online Scientific Journal include the following:

2017

Sleep Research Society announces 2017 award recipients including Thomas S. Kilduff, PhD, Director, Center for Neuroscience at SRI International in Menlo Park, California

https://pharmaceuticalintelligence.com/2017/04/28/sleep-research-society-announces-2017-award-recipients-including-thomas-s-kilduff-phd-director-center-for-neuroscience-at-sri-international-in-menlo-park-california/

2016

Sleep Science

Genetic link to sleep and mood disorders

https://pharmaceuticalintelligence.com/2016/02/27/genetic-link-to-sleep-and-mood-disorders/

2015

Sleep quality, amyloid and cognitive decline

https://pharmaceuticalintelligence.com/2015/10/31/sleep-quality-amyloid-and-cognitive-decline/

2013

Day and Night Variation in Melatonin Level affects Plasma Membrane Redox System in Red Blood Cells

https://pharmaceuticalintelligence.com/2013/02/23/httpwww-ncbi-nlm-nih-govpubmed22561555/

Read Full Post »


Results of New Clinical Data Presented at Digestive Week (DDW), Symptom Reduction and Rapid Pain Relief of Functional Dyspepsia with FDgard®

Reporter: Gail S. Thornton, MA

 

RESULTS OF NEW CLINICAL DATA PRESENTED AT DIGESTIVE DISEASE WEEK (DDW), A PREMIER GASTROENTEROLOGY MEETING, SHOW UNPRECEDENTED SYMPTOM REDUCTION AND RAPID RELIEF OF FUNCTIONAL DYSPEPSIA (FD – PERSISTENT OR RECURRING INDIGESTION) WITH FDgard®, A NEW PRODUCT FOR THIS CONDITION

 First-ever clinical study highlights an advance in the management of Functional Dyspepsia (FD) with FDgard®, a new, non-prescription medical food specially formulated for the dietary management of FD

  • In FD patients, FDgard® significantly reduced symptoms of FD in as early as 24 hours
  • Data showed FDgard®, as an add-on product, improved FD symptoms in patients already using commonly used, off-label medications prescribed for FD
  • Functional Dyspepsia, known for its symptoms of persistent or recurring indigestion, impacts an estimated 1 in 6 adults in the U.S.
  • This medical advance is important because there are no approved products for FD

 CHICAGO – (May 8, 2017) – Landmark clinical data highlight an advance in the management of Functional Dyspepsia (FD) with FDgard®, the only product available for the dietary management of FD. FDgard® demonstrated unprecedented symptom reduction and rapid relief of FD symptoms in patients in only 24 hours. This data was presented during Digestive Disease Week (DDW), a premier gastroenterology meeting.

FDgard® showed effective symptom reduction and rapid relief of FD symptoms in a sub-group of FD patients with Epigastric Pain Syndrome (EPS, which is epigastric pain or burning) and Postprandial Distress Syndrome (PDS, which is early fullness, pressure and heaviness). Additionally, the study findings showed that FDgard® as an add-on product improved FD symptoms in patients already using commonly used, off-label medications prescribed for FD, such as proton pump inhibitors (PPIs) and histamine receptor 2 antagonists (H2RAs), anticonvulsants, antibiotics, antihistamines, antidepressants, and antacids as rescue medications (permitted no more than three doses per week).

FD is often characterized as persistent or recurring indigestion with no known organic cause and is an area of high unmet medical need. Currently, off-label medications are used to treat FD as there is no U.S. Food and Drug Administration (FDA)-approved pharmaceutical product for the condition.

Data from the landmark, multi-centered, post-marketing, parallel group, U.S-based study, entitled FDREST™ (Functional Dyspepsia Reduction and Evaluation Safety Trial), showed that patients with FD who received FDgard® versus a control arm of placebo plus commonly used, off-label FD medications experienced a statistically significant reduction in Postprandial Distress Syndrome (PDS) symptoms and near statistical significance in Epigastric Pain Syndrome (EPS) symptoms at 24 hours. In spite of the polypharmacy and use of rescue medications after 48 hours of first dose, FDgard® helped further improve symptoms at 4 weeks.

Specifically, the FDREST™ study showed that at 24 hours, FDgard® improved FD symptoms in patients and provided rapid and significant reduction in EPS and PDS symptoms in the PDS sub-group as well as a statistically significant reduction in EPS and PDS symptoms in the EPS sub-group. At 4 weeks, approximately 75 percent of the EPS and PDS patients in the FDgard® arm reported substantial symptom improvement vs. approximately half in the control arm.

An estimated 62 percent of FD patients suffer from EPS, while an estimated 73 percent of FD patients suffer from PDS. The overlap of EPS and PDS, which are those FD patients who suffer from both syndromes, is estimated to be 35 percent.[1]

FDgard® is specially formulated for the dietary management of FD, which is persistent or recurring indigestion. It is the first product using a patented, breakthrough technology called Site Specific Targeting (SST®) to deliver individually triple-coated, solid-state microspheres of caraway oil and l-Menthol, the primary component in peppermint oil, quickly and reliably where they are needed most in FD — the upper belly.

The three posters with data from the FDREST™ study were selected for presentation at DDW on Saturday, May 6, 2017.

“These study results are uniquely important and represent an advance in the management of Functional Dyspepsia,” said Michael S. Epstein, M.D., F.A.C.G., A.G.A.F., a leading gastroenterologist and Chief Medical Advisor for IM HealthScience®. “We believe that FDgard® possesses anti-inflammatory, analgesic, and gastro-protective properties, which likely are responsible for the rapid relief and steady improvement of FD symptoms in patients even when used as an add-on therapy to commonly used, off-label medications to treat FD, as demonstrated in the FDREST™ study. In particular, many FD symptoms flare within 2 hours after a meal, so the fast action seen in this FDgard® study is an important advance.”

 

FDREST Results

“Functional dyspepsia can have a significant impact on a patient’s quality of life,” said

William D. Chey, M.D., F.A.C.G., the lead study author and Director in the Division of Gastroenterology, Michigan Medicine Gastroenterology Clinic, Ann Arbor, Michigan. “These study results suggest that FDgard® can provide rapid relief to a subset of patients with functional dyspepsia – a condition for which there are few effective treatments.”

Analysis of FDREST™ data showed that treatment with FDgard® resulted in:

Change in Epigastric Pain Syndrome (EPS) and Postprandial Distress Syndrome (PDS) Symptoms In Overall Participants at 24 hours:

  • 14% improvement of EPS symptoms from baseline at 24 hours. Close to statistical significance compared to the control group (P=0.0737).
  • 9.9% reduction of PDS symptoms from baseline at 24 hours. Statistically significant compared to the control group (P=0.0393).

 

Change in Epigastric Pain Syndrome (EPS) and Postprandial Distress Syndrome (PDS) Symptoms In PDS Group at 24 hours:

  • 19.5% reduction of EPS symptoms from baseline at 24 hours. Statistically significant compared to the control group (P=0.0121).
  • 15.8% reduction of PDS symptoms from baseline at 24 hours. Statistically significant compared to the control group (P=0.0225).

 

Change in Epigastric Pain Syndrome (EPS) and Postprandial Distress Syndrome (PDS) Symptoms In EPS Group at 24 hours:

  • 20.7% reduction of EPS symptoms from baseline at 24 hours. Statistically significant compared to the control group (P=0.0028).
  • 13.2% reduction of PDS symptoms from baseline at 24 hours. Statistically significant compared to the control (P=0.0186).

 

Change in the Clinical Global Impressions Scale (CGI, a measure of symptom severity, treatment response and treatment efficacy):

  • At the end of treatment, 77.7% of PDS patients and 72.2% of EPS patients reported either a “much” or “very much” improved assessment of the Clinical Global Impressions (CGI) scale, compared to 50% (P=0.09) and 40% (P=0.046) in the control groups, respectively.
  • EPS patients had a statistically significant reduction in epigastric pain or discomfort symptoms at 24 hours and were objectively better, although measures did not reach statistical significance, compared to the control group, in all measures at 2-14 days and 15-28 days.
  • PDS patients had a statistically significant reduction in sensations of pressure, heaviness, or fullness compared with the control group at 24 hours and were objectively better, although measures did not reach statistical significance, compared to the control group, in all measures at 2-14 days and 15-28 days.

 

Study Design

FDREST™ (Functional Dyspepsia Reduction and Evaluation Safety Trial) was a multi-centered, post-marketing, parallel group, U.S-based study conducted at eight university-based or gastroenterology research-based centers in the U.S. (study period July 1, 2015, to September 14, 2016). The study was designed to compare the efficacy and safety of FDgard®, plus commonly used FD medications vs a control group of placebo plus commonly used, off-label medications prescribed for FD.

  • There were 100 study participants (76% female; 24% male), aged 18-60 (mean age 43.4 years), with symptoms of FD, all of whom met Rome III criteria for FD.
  • They were selected if they met one or both of the following criteria, based on symptoms:
    • Postprandial Distress Syndrome (PDS, early fullness, pressure and heaviness) – Bothersome postprandial fullness or early satiation at least 3 days per week
    • Epigastric Distress Syndrome (EPS, epigastric pain or burning) – Bothersome epigastric pain or burning at least 1 day per week.
  • They had to have at least moderate symptoms (≥4 points on either question of the 7-point Global Overall Symptoms (GOS) scale on at least 4 days during a 14-day screening period. The GOS scale is a self-reported 7-point scale, adapted from a previously validated 5-point scale. With this scale, patients are asked to grade the overall severity of their dyspepsia symptoms, as defined as upper abdominal symptoms over a certain period of time.
  • The study also showed an improvement at 4 weeks in the Clinical Global Impressions (CGI) Scale, a physician-administered measure of symptom severity, treatment response and treatment efficacy.
  • In the trial, study participants took two capsules of FDgard® or matching placebo in the morning and at dinner time 30 to 60 minutes before a meal. FDgard® or placebo was added to each patients existing FD medication regimen, which included proton pump inhibitors (PPIs), histamine receptor 2 antagonists (H2RAs), anticonvulsants, beta blockers, antihistamines, antidepressants/tricyclic antidepressants (TCAs), pain modulators, antacids, and/or antibiotics. In addition, rescue medications (including prokinetics, antiemetics, anticholinergics, laxatives, antidiarrheals, misoprostol, oral antibiotics, probiotics, calcium channel antagonists, NSAIDs, aspirin (>81 mg per day), antispasmodics, narcotic analgesics, sedative hypnotic agents and other medications that may affect the study) were allowed 48 hours after the first dose, if approved by the medical monitor.
  • Over the course of the study, no serious treatment-emergent adverse events were reported.

 

About Functional Dyspepsia (FD)

Approximately 30 percent of adults suffer from dyspepsia, and about half are estimated to have FD, or non-ulcer dyspepsia.[2] This condition can have a negative effect on workplace attendance and productivity, with associated costs estimated in excess of $18 billion annually.[3]

In FD, which is persistent or recurring indigestion, the normal digestive processes are disrupted along with the digestion and absorption of food nutrients. FD is accompanied by symptoms, such as epigastric pain or discomfort, epigastric burning, postprandial fullness, early satiation, bloating in the upper abdomen, nausea and belching. When doctors diagnose FD, they often identify patients as follows: patients should have these symptoms for at least three months with symptom onset six months previously.

 About FDgard® 

FDgard® is medical food designed to address an unmet medical need for products to help in managing FD, which is persistent or recurring indigestion and its accompanying symptoms.  FDgard® capsules contain caraway oil and l-Menthol, the primary component in peppermint oil, for the dietary management of Functional Dyspepsia (FD). With its patented Site Specific Targeting (SST®) technology, pioneered by IM HealthScience®, FDgard® capsules release individually triple-coated, solid-state microspheres of caraway oil and l-Menthol quickly and reliably where they are needed most in FD — the upper belly. The l-Menthol helps with smooth muscle relaxation and caraway oil helps mitigate the effect of gastric acid on the stomach wall and also helps to normalize gallbladder function as well as deliver promotility and analgesic action in the small intestine (the duodenum) and the stomach.[4] [5] [6] In addition to caraway oil and l-Menthol, FDgard® also provides fiber and amino acids (from gelatin protein). These ingredients have additional positive effects on the gut wall and, thus, help toward normalizing digestion and absorption.

Caraway oil and peppermint oil have a history of working in FD. In multiple clinical studies, the combination of caraway oil and peppermint oil has been shown to manage FD and its accompanying symptoms, such as reducing the intensity of epigastric pain, pain frequency, dyspeptic discomfort and reducing the intensity of sensations of pressure, abdominal heaviness and fullness…significantly better than placebo. A randomized, placebo-controlled multicenter study in Europe[7], previously conducted with the same endpoints and measurements as used in FDREST™, had shown the effectiveness of caraway oil and peppermint oil (l-Menthol) in managing FD symptoms. This study was rated as the highest-quality study on the Jadad scale with a rating of 5, which independently assesses the methodological quality of a clinical trial, and is the most widely used assessment in the world.  The study had used the older single-unit, oil-filled capsule technology, which has challenges in rapid and targeted delivery. Targeted delivery to the upper belly is desirable as recent studies have identified this as the area of disturbance in FD. With SST®, it has now become possible to deliver the combination of caraway oil and peppermint oil (l-Menthol) to this site.

The usual adult dose of FDgard® is 2 capsules, as needed, up to two times a day, not to exceed six capsules per day. While FDgard® does not require a prescription, it must be used under medical supervision, since it is a medical food. FDgard® is available to patients in the digestive aisle at most Rite Aid, CVS/pharmacy and Walgreens stores nationwide.

 

About IM HealthScience®

IM HealthScience® (IMH) is the innovator of IBgard® and FDgard® for the dietary management of Irritable Bowel Syndrome (IBS) and Functional Dyspepsia (FD), respectively. It is a privately held company based in Boca Raton, Florida. It was founded in 2010 by a team of highly experienced pharmaceutical research and development and management executives. The company is dedicated to developing products to address gastrointestinal issues where there is a high unmet need. The IM HealthScience® advantage comes from developing products based on its patented, targeted-delivery technologies called Site Specific Targeting (SST®). For more information, visit www.imhealthscience.com to learn about the company, or www.IBgard.com or www.FDgard.com.

 

Data Presented at DDW Poster Session on Functional Dyspepsia, Nausea and Vomiting

Saturday, May 6, 2017

  • (Poster Session #Sa1618) Randomized Controlled Trial to Assess the Efficacy & Safety of Caraway Oil/L-Menthol plus Usual Care Polypharmacy vs. Placebo plus Usual Care Polypharmacy for Functional Dyspepsia 
    • Dr. William Chey, Dr. Brian Lacy, Dr. Brooks Cash, Dr. Michael Epstein and Dr. Syed Shah
  •  (Poster Session #Sa1620) A caraway oil/menthol combination improves functional dyspepsia (FD) symptoms within the first 24 hours: Results of a randomized controlled trial, which allowed usual FD treatments
    • Dr. Brian Lacy, Dr. William Chey, Dr. Brooks Cash, Dr. Michael Epstein and Dr. Syed Shah
  •  (Poster Session #Sa1619) Efficacy of caraway oil/L-menthol plus usual care vs placebo plus usual care, in functional dyspepsia patients with post-prandial distress (PDS) or epigastric pain (EPS) syndromes: Results from a US RCT
    • Dr. William Chey, Dr. Brian Lacy, Dr. Brooks Cash, Dr. Michael Epstein and Dr. Syed Shah

For more information about featured studies, as well as a schedule of availability for featured researchers, please visit www.ddw.org/press.

About Digestive Disease Week® (DDW)

Digestive Disease Week® (DDW) is the largest international gathering of physicians, researchers and academics in the fields of gastroenterology, hepatology, endoscopy and gastrointestinal surgery. Jointly sponsored by the American Association for the Study of Liver Diseases (AASLD), the American Gastroenterological Association (AGA) Institute, the American Society for Gastrointestinal Endoscopy (ASGE) and the Society for Surgery of the Alimentary Tract (SSAT), DDW takes place May 6-9, 2017, at McCormick Place, Chicago, IL. The meeting showcases more than 5,000 abstracts and hundreds of lectures on the latest advances in GI research, medicine and technology. More information can be found at www.ddw.org.

Regulation of Medical Foods

FDgard® is a medical food product and not a drug or dietary supplement.  A medical food is defined by section 5(b)(3) of the Orphan Drug Act (21 U.S.C, 360ee (b)(3) as a “food which is formulated to be consumed or administered internally under the supervision of a physician and which is intended for the specific dietary management of a disease or condition for which distinct nutritional requirements, based on scientific principles, are established by medical evaluation.” Medical foods do not require prior approval by the FDA and are in a unique category separate from drugs or dietary supplements. Medical foods must contain ingredients that are “Generally Recognized As Safe” (GRAS), or are approved food additives, as defined under sections 201(s) and 409 of the Federal Food, Drug and Cosmetic Act.

###

REFERENCE/SOURCE

[1] Talley, N.J. & Ford, A.C. (2015). Functional Dyspepsia. The New England Journal of Medicine, 373, 1853-63. doi: 10.1056/NEJMra1501505.

[2] Copyright © 1997 International Foundation for Functional Gastrointestinal Disorders (IFFGD). All rights reserved. Functional Dyspepsia and IBS: Incidence and Characteristics.

[3] Lacy, B.E., Weiser, K.T., Kennedy, A.T., Crowell, M.D., & Talley, N.J. (2013). Functional dyspepsia: the economic impact to patients. Alimentary Pharmacology & Therapeutics, 38:170-177. doi: 10.111/apt.12355.

[4] Shams, R., Oldfield, E.C., Copare, J., & Johnson, D.A. (2015). Peppermint Oil: Clinical Uses in the Treatment of Gastrointestinal Diseases. JSM Gastroenterology and Hepatology, 3 (1): 1035-1046.

[5] Sun, J. (2007). D-Limonene: Safety & Clinical Applications. Alternative Medicine Review, 12 (3): 259-264.

[6] Goncalves, J.C.R., Alves, A. de Miranda H., de Araujo, A.E.V., Cruz, J.S., & Araujo, D.A.M. (2010). Distinct effects of carvone analogues on the isolated nerve of rats. European Journal of Pharmacology, 645:108-112. doi: 10.1016/j.ejphar.2010.07.027.

[7] May, B., Köhler, S., & Schneider, B. (2000). Efficacy and tolerability of a fixed combination of peppermint oil and caraway oil in patients suffering from functional dyspepsia. Alimentary Pharmacology and Therapeutics, 14 (12), 1671–1677. doi: 10.1046/j.1365-2036.2000.00873.x.

SOURCE

http://www.prnewswire.com/news-releases/results-of-new-clinical-data-presented-at-digestive-disease-week-ddw-a-premier-gastroenterology-meeting-show-unprecedented-symptom-reduction-and-rapid-relief-of-functional-dyspepsia-fd—persistent-or-recurring-indigestion-w-300452368.html

Read Full Post »


New Studies toward Understanding Alzheimer Disease

Curators: Larry H. Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

 

There is no unifying concept of Alzheimer Disease beyond the Tau and beta amyloid roles.  Recently, Ingenbleek and Bernstein (journal AD) made the connection between the age related decline of liver synthesis of plasma transthyretin and the more dramatic decline of transthyretin at the blood brain barrier, and the relationship to inability to transfer vitamin A via retinol binding protein to the brain.  Related metabolic events are reported by several groups.

 

What else is New?

 

Amyloid-β peptide protects against microbial infection in mouse and worm models of Alzheimer’s disease.

Kumar DK, Choi SH, Washicosky KJ, Eimer WA, Tucker S, Ghofrani J, Lefkowitz A, McColl G, Goldstein LE, Tanzi RE, Moir RD.

Sci Transl Med. 2016 May 25;8(340):340ra72.  http://dx.doi.org:/10.1126/scitranslmed.aaf1059

They show that Aβ oligomerization, a behavior traditionally viewed as intrinsically pathological, may be necessary for the antimicrobial activities of the peptide. Collectively, our data are consistent with a model in which soluble Aβ oligomers first bind to microbial cell wall carbohydrates via a heparin-binding domain. Developing protofibrils inhibited pathogen adhesion to host cells. Propagating β-amyloid fibrils mediate agglutination and eventual entrapment of unatttached microbes….Salmonella Typhimurium bacterial infection of the brains of transgenic 5XFAD mice resulted in rapid seeding and accelerated β-amyloid deposition, which closely colocalized with the invading bacteria.

This is quite interesting in that infection drives the production of acute phase reactants resulting in decreased production of transthyretin.  Whether this also has ties to chronic disease in the elderly and risk of AD is not known.

Gain-of-function mutations in protein kinase Cα (PKCα) may promote synaptic defects in Alzheimer’s disease.

Alfonso SI, Callender JA, Hooli B, Antal CE, Mullin K, Sherman MA, Lesné SE, Leitges M, Newton AC, Tanzi RE, Malinow R.

Sci Signal. 2016 May 10;9(427):ra47.  http://dx.doi.org:/10.1126/scisignal.aaf6209.

Through whole-genome sequencing of 1345 individuals from 410 families with late-onset AD (LOAD), they identified three highly penetrant variants in PRKCA, the gene that encodes protein kinase Cα (PKCα), in five of the families. All three variants linked with LOAD displayed increased catalytic activity relative to wild-type PKCα as assessed in live-cell imaging experiments using a genetically encoded PKC activity reporter. Deleting PRKCA in mice or adding PKC antagonists to mouse hippocampal slices infected with a virus expressing the Aβ precursor CT100 revealed that PKCα was required for the reduced synaptic activity caused by Aβ. In PRKCA(-/-) neurons expressing CT100, introduction of PKCα, but not PKCα lacking a PDZ interaction moiety, rescued synaptic depression, suggesting that a scaffolding interaction bringing PKCα to the synapse is required for its mediation of the effects of Aβ. Thus, enhanced PKCα activity may contribute to AD, possibly by mediating the actions of Aβ on synapses.

 

Science Signaling Podcast for 10 May 2016: PKCα in Alzheimer’s disease.

Newton AC, Tanzi RE, VanHook AM.

Sci Signal. 2016 May 10;9(427):pc11. doi: 10.1126/scisignal.aaf9436.

Relevance of the COPI complex for Alzheimer’s disease progression in vivo.

Bettayeb K, Hooli BV, Parrado AR, Randolph L, Varotsis D, Aryal S, Gresack J,Tanzi RE, Greengard P, Flajolet M.

Proc Natl Acad Sci U S A. 2016 May 10;113(19):5418-23. http://dx.doi.org:/10.1073/pnas.1604176113

Inhibition of death-associated protein kinase 1 attenuates the phosphorylation and amyloidogenic processing of amyloid precursor protein.

Kim BM, You MH, Chen CH, Suh J, Tanzi RE, Ho Lee T.

Hum Mol Genet. 2016 Apr 19. pii: ddw114.

Extracellular deposition of amyloid-beta (Aβ) peptide, a metabolite of sequential cleavage of amyloid precursor protein (APP), is a critical step in the pathogenesis of Alzheimer’s disease (AD). While death-associated protein kinase 1 (DAPK1) is highly expressed in AD brains and its genetic variants are linked to AD risk, little is known about the impact of DAPK1 on APP metabolism and Aβ generation. This study demonstrated a novel effect of DAPK1 in the regulation of APP processing using cell culture and mouse models. DAPK1, but not its kinase deficient mutant (K42A), significantly increased human Aβ secretion in neuronal cell culture models. Moreover, knockdown of DAPK1 expression or inhibition of DAPK1 catalytic activity significantly decreased Aβ secretion. Furthermore, DAPK1, but not K42A, triggered Thr668 phosphorylation of APP, which may initiate and facilitate amyloidogenic APP processing leading to the generation of Aβ. In Tg2576 APPswe-overexpressing mice, knockout of DAPK1 shifted APP processing toward non-amyloidogenic pathway and decreased Aβ generation. Finally, in AD brains, elevated DAPK1 levels showed co-relation with the increase of APP phosphorylation. Combined together, these results suggest that DAPK1 promotes the phosphorylation and amyloidogenic processing of APP, and that may serve a potential therapeutic target for AD.

Recapitulating amyloid β and tau pathology in human neural cell culture models: clinical implications.

Choi SH, Kim YH, D’Avanzo C, Aronson J, Tanzi RE, Kim DY.

US Neurol. 2015 Fall;11(2):102-105.    Free PMC Article

The “amyloid β hypothesis” of Alzheimer’s disease (AD) has been the reigning hypothesis explaining pathogenic mechanisms of AD over the last two decades. However, this hypothesis has not been fully validated in animal models, and several major unresolved issues remain. Our 3D human neural cell culture model system provides a premise for a new generation of cellular AD models that can serve as a novel platform for studying pathogenic mechanisms and for high-throughput drug screening in a human brain-like environment.

The two key pathological hallmarks of AD are senile plaques (amyloid plaques) and neurofibrillary tangles (NFTs), which develop in brain regions responsible for memory and cognitive functions (i.e. cerebral cortex and limbic system) 3. Senile plaques are extracellular deposits of amyloid-β (Aβ) peptides, while NFTs are intracellular, filamentous aggregates of hyperphosphorylated tau protein 4.

The identification of Aβ as the main component of senile plaques by Drs. Glenner and Wong in 1984 5 resulted in the original formation of the “amyloid hypothesis.” According to this hypothesis, which was later renamed the “amyloid-β cascade hypothesis” by Drs. Hardy and Higgins 6, the accumulation of Aβ is the initial pathological trigger in the disease, subsequently leading to hyperphosphorylation of tau, causing NFTs, and ultimately, neuronal death and dementia 4,710. Although the details have been modified to reflect new findings, the core elements of this hypothesis remain unchanged: excess accumulation of the pathogenic forms of Aβ, by altered Aβ production and/or clearance, triggers the vicious pathogenic cascades that eventually lead to NFTs and neuronal death.

Over the last two decades, the Aβ hypothesis of AD has reigned, providing the foundation for numerous basic studies and clinical trials 4,7,10,11. According to this hypothesis, the accumulation of Aβ, either by altered Aβ production and/or clearance, is the initial pathological trigger in the disease. The excess accumulation of Aβ then elicits a pathogenic cascade including synaptic deficits, altered neuronal activity, inflammation, oxidative stress, neuronal injury, hyperphosphorylation of tau causing NFTs and ultimately, neuronal death and dementia 4,710.

One of the major unresolved issues of the Aβ hypothesis is to show a direct causal link between Aβ and NFTs 1214. Studies have demonstrated that treatments with various forms of soluble Aβ oligomers induced synaptic deficits and neuronal injury, as well as hyperphosphorylation of tau proteins, in mouse and rat neurons, which could lead to NFTs and neurodegeneration in vivo 1821. However, transgenic AD mouse models carrying single or multiple human familial AD (FAD) mutations in amyloid precursor protein (APP) and/or presenilin 1 (PS1) do not develop NFTs or robust neurodegeneration as observed in human patients, despite robust Aβ deposition 13,22,23. Double and triple transgenic mouse models, harboring both FAD and tau mutations linked with frontotemporal dementia (FTD), are the only rodent models to date displaying both amyloid plaques and NFTs. However, the NFT pathology in these models stems mainly from the overexpression of human tau as a result of the FTD, rather than the FAD mutations24,25.

Human neurons carrying FAD mutations are an optimal model to test whether elevated levels of pathogenic Aβ trigger pathogenic cascades including NFTs, since those cells truly share the same genetic background that induces FAD in humans. Indeed, Israel et al., observed elevated tau phosphorylation in neurons with an APP duplication FAD mutation 33. Blocking Aβ generation by β-secretase inhibitors significantly decreased tau phosphorylation in the same model, but γ-secretase inhibitor, another Aβ blocker, did not affect tau phosphorylation 33. Neurons with the APP V717I FAD mutation also showed an increase in levels of phospho tau and total tau levels 28. More importantly, Muratore and colleagues showed that treatments with Aβ-neutralizing antibodies in those cells significantly reduced the elevated total and phospho tau levels at the early stages of differentiation, suggesting that blocking pathogenic Aβ can reverse the abnormal tau accumulation in APP V717I neurons 28.

Recently, Moore et al. also reported that neurons harboring the APP V717I or the APP duplication FAD mutation showed increases in both total and phospho tau levels 27. Interestingly, altered tau levels were not detected in human neurons carrying PS1 FAD mutations, which significantly increased pathogenic Aβ42 species in the same cells 27. These data suggest that elevated tau levels in these models were not due to extracellular Aβ accumulation but may possibly represent a very early stage of tauopathy. It may also be due to developmental alterations induced by the APP FAD mutations.

As summarized, most human FAD neurons showed significant increases in pathogenic Aβ species, while only APP FAD neurons showed altered tau metabolism that may represent very early stages of tauopathy. However, all of these human FAD neurons failed to recapitulate robust extracellular amyloid plaques, NFTs, or any signs of neuronal death, as predicted in the amyloid hypothesis.

In our recent study, we moved one step closer to proving the amyloid hypothesis. By generating human neural stem cell lines carrying multiple mutations in APP together with PS1, we achieved high levels of pathogenic Aβ42 comparable to those in brains of AD patients 4446.

An external file that holds a picture, illustration, etc. Object name is nihms740236f1.jpg

 

Platform for AD drug screening in human neural progenitor cells with FAD mutations in a 3D culture system, which successfully reproduce human AD pathogenesis (amyloid plaques-driven tauopathy).

In addition to the impact on toxic Aβ species, our 3D culture model can test if these antibodies can block tau pathologies in 3D human neural cell culture systems 4446. Human cellular AD models can also be used to determine optimal doses of candidate AD drugs to block Aβ and/or tau pathology without affecting neuronal survival (Fig. 1).

While much progress has been made, many challenges still lie on the path to creating human neural cell culture models that comprehensively recapitulate pathogenic cascades of AD. A major difficulty lies in reconstituting the brain regions most affected in AD: the hippocampus and specific cortical layers. Recent progress in 3D culture technology, such as “cerebral organoids,” may also be helpful in rebuilding the brain structures that are affected by AD in a dish 52,53. These “cerebral organoids” were able to model various discrete brain regions including human cortical areas 52, which enabled them to reproduce microcephaly, a brain developmental disorder. Similarly, pathogenic cascades of AD may be recapitulated in cortex-like structures using this model. Adding neuroinflammatory components, such as microglial cells, which are critical in AD pathogenesis, will illuminate the validity of the amyloid β hypothesis. Reconstitution of robust neuronal death stemming from Aβ and tau pathologies will be the next major step in comprehensively recapitulating AD in a cellular model.

 

Family-based association analyses of imputed genotypes reveal genome-wide significant association of Alzheimer’s disease with OSBPL6, PTPRG, and PDCL3.

Herold C, Hooli BV, Mullin K, Liu T, Roehr JT, Mattheisen M, Parrado AR, Bertram L, Lange C, Tanzi RE.

Mol Psychiatry. 2016 Feb 2. http://dx.doi.org:/10.1038/mp.2015.218.

Relationship between ubiquilin-1 and BACE1 in human Alzheimer’s disease and APdE9 transgenic mouse brain and cell-based models.

Natunen T, Takalo M, Kemppainen S, Leskelä S, Marttinen M, Kurkinen KM, Pursiheimo JP, Sarajärvi T, Viswanathan J, Gabbouj S, Solje E, Tahvanainen E, Pirttimäki T, Kurki M, Paananen J, Rauramaa T, Miettinen P, Mäkinen P, Leinonen V, Soininen H, Airenne K, Tanzi RE, Tanila H, Haapasalo A, Hiltunen M.

Neurobiol Dis. 2016 Jan;85:187-205. http://dx.doi.org:/10.1016/j.nbd.2015.11.005.

Accumulation of β-amyloid (Aβ) and phosphorylated tau in the brain are central events underlying Alzheimer’s disease (AD) pathogenesis. Aβ is generated from amyloid precursor protein (APP) by β-site APP-cleaving enzyme 1 (BACE1) and γ-secretase-mediated cleavages. Ubiquilin-1, a ubiquitin-like protein, genetically associates with AD and affects APP trafficking, processing and degradation. Here, we have investigated ubiquilin-1 expression in human brain in relation to AD-related neurofibrillary pathology and the effects of ubiquilin-1 overexpression on BACE1, tau, neuroinflammation, and neuronal viability in vitro in co-cultures of mouse embryonic primary cortical neurons and microglial cells under acute neuroinflammation as well as neuronal cell lines, and in vivo in the brain of APdE9 transgenic mice at the early phase of the development of Aβ pathology. Ubiquilin-1 expression was decreased in human temporal cortex in relation to the early stages of AD-related neurofibrillary pathology (Braak stages 0-II vs. III-IV). There was a trend towards a positive correlation between ubiquilin-1 and BACE1 protein levels. Consistent with this, ubiquilin-1 overexpression in the neuron-microglia co-cultures with or without the induction of neuroinflammation resulted in a significant increase in endogenously expressed BACE1 levels. Sustained ubiquilin-1 overexpression in the brain of APdE9 mice resulted in a moderate, but insignificant increase in endogenous BACE1 levels and activity, coinciding with increased levels of soluble Aβ40 and Aβ42. BACE1 levels were also significantly increased in neuronal cells co-overexpressing ubiquilin-1 and BACE1. Ubiquilin-1 overexpression led to the stabilization of BACE1 protein levels, potentially through a mechanism involving decreased degradation in the lysosomal compartment. Ubiquilin-1 overexpression did not significantly affect the neuroinflammation response, but decreased neuronal viability in the neuron-microglia co-cultures under neuroinflammation. Taken together, these results suggest that ubiquilin-1 may mechanistically participate in AD molecular pathogenesis by affecting BACE1 and thereby APP processing and Aβ accumulation.

Correction to Cathepsin L Mediates the Degradation of Novel APP C-Terminal Fragments.

Wang H, Sang N, Zhang C, Raghupathi R, Tanzi RE, Saunders A.

Biochemistry. 2015 Sep 22;54(37):5781.  http://dx.doi.org:/10.1021/acs.biochem.5b00968. Epub 2015 Sep 8. No abstract available.

Massachusetts Alzheimer’s Disease Research Center: progress and challenges.

Hyman BT, Growdon JH, Albers MW, Buckner RL, Chhatwal J, Gomez-Isla MT, Haass C, Hudry E, Jack CR Jr, Johnson KA, Khachaturian ZS, Kim DY, Martin JB, Nitsch RM, Rosen BR, Selkoe DJ, Sperling RA, St George-Hyslop P, Tanzi RE, Yap L, Young AB, Phelps CH, McCaffrey PG.

Alzheimers Dement. 2015 Oct;11(10):1241-5. http://dx.doi.org:/10.1016/j.jalz.2015.06.1887. Epub 2015 Aug 19. No abstract available.

Alzheimer’s in 3D culture: challenges and perspectives.

D’Avanzo C, Aronson J, Kim YH, Choi SH, Tanzi RE, Kim DY.

Bioessays. 2015 Oct;37(10):1139-48. doi: 10.1002/bies.201500063. Epub 2015 Aug 7. Review.

Synaptotagmins interact with APP and promote Aβ generation.

Gautam V, D’Avanzo C, Berezovska O, Tanzi RE, Kovacs DM.

Mol Neurodegener. 2015 Jul 23;10:31. doi: 10.1186/s13024-015-0028-5.

Near-infrared fluorescence molecular imaging of amyloid beta species and monitoring therapy in animal models of Alzheimer’s disease.

Zhang X, Tian Y, Zhang C, Tian X, Ross AW, Moir RD, Sun H, Tanzi RE, Moore A, Ran C.

Proc Natl Acad Sci U S A. 2015 Aug 4;112(31):9734-9. doi: 10.1073/pnas.1505420112. Epub 2015 Jul 21.

A 3D human neural cell culture system for modeling Alzheimer’s disease.

Kim YH, Choi SH, D’Avanzo C, Hebisch M, Sliwinski C, Bylykbashi E, Washicosky KJ, Klee JB, Brüstle O, Tanzi RE, Kim DY.

Nat Protoc. 2015 Jul;10(7):985-1006. doi: 10.1038/nprot.2015.065. Epub 2015 Jun 11.

Cathepsin L Mediates the Degradation of Novel APP C-Terminal Fragments.

Wang H, Sang N, Zhang C, Raghupathi R, Tanzi RE, Saunders A.

Biochemistry. 2015 May 12;54(18):2806-16. doi: 10.1021/acs.biochem.5b00329. Epub 2015 Apr 28. Erratum in: Biochemistry. 2015 Sep 22;54(37):5781.

γ-Secretase modulators reduce endogenous amyloid β42 levels in human neural progenitor cells without altering neuronal differentiation.

D’Avanzo C, Sliwinski C, Wagner SL, Tanzi RE, Kim DY, Kovacs DM.

FASEB J. 2015 Aug;29(8):3335-41. doi: 10.1096/fj.15-271015. Epub 2015 Apr 22.

PLD3 gene variants and Alzheimer’s disease.

Hooli BV, Lill CM, Mullin K, Qiao D, Lange C, Bertram L, Tanzi RE.

Nature. 2015 Apr 2;520(7545):E7-8. doi: 10.1038/nature14040. No abstract available.

Read Full Post »


Targeted Therapy for Triple Negative Breast Cancer

Curator: Larry H. Bernstein, MD, FCAP

LPBI

 

Triple-Negative Breast Cancer Target Is Found

May 17, 2016   Researchers at UC Berkeley discover a target that drives cancer metabolism in triple-negative breast cancer.
http://www.technologynetworks.com/Genotyping/news.aspx?ID=191502

UC Berkeley researchers have found a long-elusive Achilles’ heel within “triple-negative” breast tumors, a common type of breast cancer that is difficult to treat. The scientists then used a drug-like molecule to successfully target this vulnerability, killing cancer cells in the lab and shrinking tumors in mice.

“We were looking for targets that drive cancer metabolism in triple-negative breast cancer, and we found one that was very specific to this type of cancer,” said Daniel K. Nomura, an associate professor of chemistry and of nutritional sciences and toxicology at UC Berkeley and senior author for the study, which is published online ahead of print in Cell Chemical Biology.

Triple-negative breast cancers account for about one in five breast cancers, and they are deadlier than other forms of breast cancer, in part because no drugs have been developed to specifically target these tumors.

Triple-negative breast cancers do not rely on the hormones estrogen and progesterone for growth, nor on human epidermal growth factor receptor 2 (HER2). Because they do not depend on these three targets, they are not vulnerable to modern hormonal therapies or to the HER2-targeted drug Herceptin (trastuzumab).

Instead, oncologists treat triple-negative breast cancer with older chemotherapies that target all dividing cells. If triple-negative breast cancer spreads beyond the breast to distant sites within the body, an event called metastasis, there are few treatment options.

Tumor cells develop abnormal metabolism, which they rely on to get the energy boost they need to fuel their rapid growth. In their new study, the research team used an innovative approach to search for active enzymes that triple-negative breast cancers use differently for metabolism in comparison to other cells and even other tumors.

Inhibiting cancer metabolism

They discovered that cells from triple-negative breast cancer cells rely on vigorous activity by an enzyme called glutathione-S-transferase Pi1 (GSTP1). They showed that in cancer cells, GSTP1 regulates a type of metabolism called glycolysis, and that inhibition of GSTP1 impairs glycolytic metabolism in triple-negative cancer cells, starving them of energy, nutrients and signaling capability. Normal cells do not rely as much on this particular metabolic pathway to obtain usable chemical energy, but cells within many tumors heavily favor glycolysis.

Co-author Eranthie Weerapana, an associate professor of chemistry at Boston College, developed a molecule named LAS17 that tightly and irreversibly attaches to the target site on the GSTP1 molecule. By binding tightly to GSTP1, LAS17 inhibits activity of the enzyme. The researchers found that LAS17 was highly specific for GSTP1, and did not attach to other proteins in cells.

According to Nomura, LAS17 did not appear to have toxic side effects in mice, where it shrank tumors grown to an invasive stage from surgically transplanted, human, triple-negative breast cancer cells that had long been maintained in lab cultures.

The research team intends to continue studying LAS17, Nomura said, with the next step being to study tumor tissue resected from human triple-negative breast cancers and transplanted directly into mice.

“Inhibiting GSTP1 impairs glycolytic metabolism,” Nomura said. “More broadly, this inhibition starves triple-negative breast cancer cells, preventing them from making the macromolecules they need, including the lipids they need to make membranes and the nucleic acids they need to make DNA. It also prevents these cells from making enough ATP, the molecule that is the basic energy fuel for cells.”

Beyond the metabolic role they first sought to track down, GSTP1 also appears to aid signaling within triple-negative breast cancer cells, helping to spur tumor growth, the researchers found.

Technique identifies Achilles’ heels

Nomura said it was surprising that a single, unique target emerged from the research team’s search.

The method used by the researchers, called “reactivity-based chemoproteomics,” can quickly lead to specific targetable sites — the Achilles’ heels — on proteins of interest, and eventually to drug development strategies, Nomura said.

The approach is to search for protein targets that are actively functioning within cells, instead of first using the well-trod path of surveying all genes to identify the specific genes that have taken the first step toward protein production. With that more conventional strategy, the switching on, or “expression,” of genes is evidenced by the easily quantified molecule called messenger RNA, made by the cell from a gene’s DNA template.

Nomura’s team instead first used chemical probes that can react with certain configurations of two of the amino acid building blocks of protein — cysteine and lysine — known to be involved in several kinds of important structural and functional transitions that active proteins can undergo.

“A lot can happen after the first step in protein production, and we believe our method for identifying fully formed, active proteins is more useful for tracking down relevant differences in cellular physiology,” Nomura said.

The researchers analyzed and compared cells from five distinct triple-negative breast cancers that had been grown in cell cultures for generations, along with cells from four distinct breast cancers that were not triple negative.

The scientists used a chemical identification technique known as mass spectrometry to narrow down the set of proteins that had active lysines and cysteines to just those that were metabolic enzymes. Only then did they use the more conventional approach of measuring gene expression in the different cancer cell types.

GSTP1 was the only metabolically active enzyme that was specifically expressed only in triple-negative breast cancer cells compared to other breast cancer cell types, the researchers found. Separate analysis of databases of human breast cancer by UC San Francisco co-authors confirmed that GSTP1 is overexpressed in patients with triple-negative breast cancers in comparison to patients with other breast cancers.

In addition to Nomura and Weerapana, study authors included Sharon Louie, Elizabeth Grossman, Lucky Ding, Tucker Huffman and David Miyamoto, from UC Berkeley; Roman Camarda and Andrei Goga, from UC San Francisco, and Lisa Crawford, from Boston College. Study funders included the National Institutes of Health, the American Cancer Society, the U.S. Department of Defense, and the Searle Scholar Foundation.

 

Triple-negative breast cancer target is found

UC Berkeley researchers have found a long-elusive Achilles’ heel within “triple-negative” breast tumors, a common type of breast cancer that is difficult to treat. The scientists then used a drug-like molecule to successfully target this vulnerability, killing cancer cells in the lab and shrinking tumors in mice.

“We were looking for targets that drive cancer metabolism in triple-negative breast cancer, and we found one that was very specific to this type of cancer,” said Daniel K. Nomura, an associate professor of chemistry and of nutritional sciences and toxicology at UC Berkeley and senior author for the study, which is published online ahead of print on May 12 in Cell Chemical Biology.

Triple-negative breast cancers account for about one in five breast cancers, and they are deadlier than other forms of breast cancer, in part because no drugs have been developed to specifically target these tumors.

Triple-negative breast cancers do not rely on the hormones estrogen and progesterone for growth, nor on human epidermal growth factor receptor 2 (HER2). Because they do not depend on these three targets, they are not vulnerable to modern hormonal therapies or to the HER2-targeted drug Herceptin (trastuzumab).

Instead, oncologists treat triple-negative breast cancer with older chemotherapies that target all dividing cells. If triple-negative breast cancer spreads beyond the breast to distant sites within the body, an event called metastasis, there are few treatment options.

Tumor cells develop abnormal metabolism, which they rely on to get the energy boost they need to fuel their rapid growth. In their new study, the research team used an innovative approach to search for active enzymes that triple-negative breast cancers use differently for metabolism in comparison to other cells and even other tumors.

Inhibiting cancer metabolism

They discovered that cells from triple-negative breast cancer cells rely on vigorous activity by an enzyme called glutathione-S-transferase Pi1 (GSTP1). They showed that in cancer cells, GSTP1 regulates a type of metabolism called glycolysis, and that inhibition of GSTP1 impairs glycolytic metabolism in triple-negative cancer cells, starving them of energy, nutrients and signaling capability. Normal cells do not rely as much on this particular metabolic pathway to obtain usable chemical energy, but cells within many tumors heavily favor glycolysis.

for mor see.. http://news.berkeley.edu/2016/05/12/triple-negative-breast-cancer-target-is-found/

 

GSTP1 Is a Driver of Triple-Negative Breast Cancer Cell Metabolism and Pathogenicity

Sharon M. Louie, Elizabeth A. Grossman, Lisa A. Crawford….., Eranthie Weerapana, Daniel K. Nomura
Figure thumbnail fx1
  • We used chemoproteomics to profile metabolic drivers of breast cancer
  • GSTP1 is a novel triple-negative breast cancer-specific target
  • GSTP1 inhibition impairs triple-negative breast cancer pathogenicity
  • GSTP1 inhibition impairs GAPDH activity to affect metabolism and signaling

Breast cancers possess fundamentally altered metabolism that fuels their pathogenicity. While many metabolic drivers of breast cancers have been identified, the metabolic pathways that mediate breast cancer malignancy and poor prognosis are less well understood. Here, we used a reactivity-based chemoproteomic platform to profile metabolic enzymes that are enriched in breast cancer cell types linked to poor prognosis, including triple-negative breast cancer (TNBC) cells and breast cancer cells that have undergone an epithelial-mesenchymal transition-like state of heightened malignancy. We identified glutathione S-transferase Pi 1 (GSTP1) as a novel TNBC target that controls cancer pathogenicity by regulating glycolytic and lipid metabolism, energetics, and oncogenic signaling pathways through a protein interaction that activates glyceraldehyde-3-phosphate dehydrogenase activity. We show that genetic or pharmacological inactivation of GSTP1 impairs cell survival and tumorigenesis in TNBC cells. We put forth GSTP1 inhibitors as a novel therapeutic strategy for combatting TNBCs through impairing key cancer metabolism and signaling pathways.

Read Full Post »


Effect of mitochondrial stress on epigenetic modifiers

Larry H. Bernstein, MD, FCAP, Curator

LPBI

 

Early Mitochondrial Stress Alters Epigenetics, Secures Lifelong Health Benefits

GEN 5/3/2016  http://www.genengnews.com/gen-news-highlights/early-mitochondrial-stress-alters-epigenetics-secures-lifelong-health-benefits/81252685/

A little adversity builds character, or so the saying goes. True or not, the saying does seem an apt description of a developmental phenomenon that shapes gene expression. While it knows nothing of character, the gene expression apparatus appears to respond well to short-term mitochondrial stress that occurs early in development. In fact, transient stress seems to result in lasting benefits. These benefits, which include improved metabolic function and increased longevity, have been observed in both worms and mice, and may even occur—or be made to occur—in humans.

Gene expression is known to be subject to reprogramming by epigenetic modifiers, but such modifiers generally affect metabolism or lifespan, not both. A new set of epigenetic modifiers, however, has been found to trigger changes that do just that—both improve metabolism and extend lifespan.

Scientists based at the University of California, Berkeley, and the École Polytechnique Fédérale de Lausanne (EPFL) have discovered enzymes that are ramped up after mild stress during early development and continue to affect the expression of genes throughout the animal’s life. When the scientists looked at strains of inbred mice that have radically different lifespans, those with the longest lifespans had significantly higher expression of these enzymes than did the short-lived mice.

“Two of the enzymes we discovered are highly, highly correlated with lifespan; it is the biggest genetic correlation that has ever been found for lifespan in mice, and they’re both naturally occurring variants,” said Andrew Dillin, a UC Berkeley professor of molecular and cell biology. “Based on what we see in worms, boosting these enzymes could reprogram your metabolism to create better health, with a possible side effect of altering lifespan.”

Details of the work, which appeared online April 29 in the journal Cell, are presented in a pair of papers. One paper (“Two Conserved Histone Demethylases Regulate Mitochondrial Stress-Induced Longevity”) resulted from an effort led by Dillin and the EPFL’s Johan Auwerx. The other paper (“Mitochondrial Stress Induces Chromatin Reorganization to Promote Longevity and UPRmt”) resulted from an effort led by Dillin and his UC Berkeley colleague Barbara Meyer.

According to these papers, mitochondrial stress activates enzymes in the brain that affect DNA folding, exposing a segment of DNA that contains the 1500 genes involved in the work of the mitochondria. A second set of enzymes then tags these genes, affecting their activation for much or all of the lifetime of the animal and causing permanent changes in how the mitochondria generates energy.

The first set of enzymes—methylases, in particular LIN-65—add methyl groups to the DNA, which can silence promoters and thus suppress gene expression. By also opening up the mitochondrial genes, these methylases set the stage for the second set of enzymes—demethylases, in this case jmjd-1.2 and jmjd-3.1—to ramp up transcription of the mitochondrial genes. When the researchers artificially increased production of the demethylases in worms, all the worms lived longer, a result identical to what is observed after mitochondrial stress.

“By changing the epigenetic state, these enzymes are able to switch genes on and off,” Dillin noted. This happens only in the brain of the worm, however, in areas that sense hunger or satiety. “These genes are expressed in neurons that are sensing the nutritional status of the animal, and these signals emanate out to the periphery to change peripheral metabolism,” he continued.

When the scientists profiled enzymes in short- and long-lived mice, they found upregulation of these genes in the brains of long-lived mice, but not in other tissues or in the brains of short-lived mice. “These genes are expressed in the hypothalamus, exactly where, when you eat, the signals are generated that tell you that you are full. And when you are hungry, signals in that region tell you to go and eat,” Dillin explained said. “These genes are all involved in peripheral feedback.”

Among the mitochondrial genes activated by these enzymes are those involved in the body’s response to proteins that unfold, which is a sign of stress. Increased activity of the proteins that refold other proteins is another hallmark of longer life.

These observations suggest that the reversal of aging by epigenetic enzymes could also take place in humans.

“It seems that, while extreme metabolic stress can lead to problems later in life, mild stress early in development says to the body, ‘Whoa, things are a little bit off-kilter here, let’s try to repair this and make it better.’ These epigenetic switches keep this up for the rest of the animal’s life,” Dillin stated.

 

Two Conserved Histone Demethylases Regulate Mitochondrial Stress-Induced Longevity

Carsten Merkwirth6, Virginija Jovaisaite6, Jenni Durieux,…., Reuben J. Shaw, Johan Auwerx, Andrew Dillin

Highlights
  • H3K27 demethylases jmjd-1.2 and jmjd-3.1 are required for ETC-mediated longevity
  • jmjd-1.2 and jmjd-3.1 extend lifespan and are sufficient for UPRmt activation
  • UPRmt is required for increased lifespan due to jmjd-1.2 or jmjd-3.1 overexpression
  • JMJD expression is correlated with UPRmt and murine lifespan in inbred BXD lines

Across eukaryotic species, mild mitochondrial stress can have beneficial effects on the lifespan of organisms. Mitochondrial dysfunction activates an unfolded protein response (UPRmt), a stress signaling mechanism designed to ensure mitochondrial homeostasis. Perturbation of mitochondria during larval development in C. elegans not only delays aging but also maintains UPRmt signaling, suggesting an epigenetic mechanism that modulates both longevity and mitochondrial proteostasis throughout life. We identify the conserved histone lysine demethylases jmjd-1.2/PHF8 and jmjd-3.1/JMJD3 as positive regulators of lifespan in response to mitochondrial dysfunction across species. Reduction of function of the demethylases potently suppresses longevity and UPRmt induction, while gain of function is sufficient to extend lifespan in a UPRmt-dependent manner. A systems genetics approach in the BXD mouse reference population further indicates conserved roles of the mammalian orthologs in longevity and UPRmt signaling. These findings illustrate an evolutionary conserved epigenetic mechanism that determines the rate of aging downstream of mitochondrial perturbations.

Figure thumbnail fx1

 

Mitochondrial Stress Induces Chromatin Reorganization to Promote Longevity and UPRmt
Ye Tian, Gilberto Garcia, Qian Bian, Kristan K. Steffen, Larry Joe, Suzanne Wolff, Barbara J. Meyer, Andrew Dillincorrespondence
http://dx.doi.org/10.1016/j.cell.2016.04.011             Publication stage: In Press Corrected Proof
Highlights
  • LIN-65 accumulates in the nucleus in response to mitochondrial stress
  • Mitochondrial stress-induced chromatin changes depend on MET-2 and LIN-65
  • LIN-65 and DVE-1 exhibit interdependence in nuclear accumulation
  • met-2 and atfs-1 act in parallel to affect mitochondrial stress-induced longevity

Organisms respond to mitochondrial stress through the upregulation of an array of protective genes, often perpetuating an early response to metabolic dysfunction across a lifetime. We find that mitochondrial stress causes widespread changes in chromatin structure through histone H3K9 di-methylation marks traditionally associated with gene silencing. Mitochondrial stress response activation requires the di-methylation of histone H3K9 through the activity of the histone methyltransferase met-2 and the nuclear co-factor lin-65. While globally the chromatin becomes silenced by these marks, remaining portions of the chromatin open up, at which point the binding of canonical stress responsive factors such as DVE-1 occurs. Thus, a metabolic stress response is established and propagated into adulthood of animals through specific epigenetic modifications that allow for selective gene expression and lifespan extension

 Siddharta Mukherjee’s Writing Career Just Got Dealt a Sucker Punch
Author: Theral Timpson

Siddharha Mukherjee won the 2011 Pulitzer Prize in non-fiction for his book, The Emperor of All Maladies.  The book has received widespread acclaim among lay audience, physicians, and scientists alike.  Last year the book was turned into a special PBS series.  But, according to a slew of scientists, we should all be skeptical of his next book scheduled to hit book shelves this month, The Gene, An Intimate History.

Publishing an article on epigenetics in the New Yorker this week–perhaps a selection from his new book–Mukherjee has waltzed into one of the most active scientific debates in all of biology: that of gene regulation, or epigenetics.

Jerry Coyne, the evolutionary biologist known for keeping journalists honest, has published a two part critique of Mukherjee’s New Yorker piece.  The first part–wildly tweeted yesterday–is a list of quotes from Coyne’s colleagues and those who have written in to the New Yorker, including two Nobel prize winners, Wally Gilbert and Sidney Altman, offering some very unfriendly sentences.

Wally Gilbert: “The New Yorker article is so wildly wrong that it defies rational analysis.”

Sidney Altman:  “I am not aware that there is such a thing as an epigenetic code.  It is unfortunate to inflict this article, without proper scientific review, on the audience of the New Yorker.”

The second part is a thorough scientific rebuttal of the Mukherjee piece.  It all serves as a great drama about one of the most contested ideas in biology and also as a cautionary tale to journalists, even experienced writers such as Mukherjee, about the dangers of wading into scientific arguments.  Readers may remember that a few years ago, science writer, David Dobbs, similarly skated into the same topic with his piece, Die, Selfish Gene, Die, and which raised a similar shitstorm, much of it from Coyne.

Mukherjee’s mistake is in giving credence to only one side of a very fierce debate–that the environment causes changes in the genome which can be passed on; another kind of evolution–as though it were settled science.   Either Mukherjee, a physicisan coming off from a successful book and PBS miniseries on cancer, is setting himself up as a scientist, or he has been a truly naive science reporter.   If he got this chapter so wrong, what does it mean about an entire book on the gene?

Coyne quotes one of his colleagues who raised some questions about the New Yorker’s science reporting, one particular question we’ve been asking here at Mendelspod.  How do we know what we know?  Does science now have an edge on any other discipline for being able to create knowledge?

Coyne’s colleague is troubled by science coverage in the New Yorker, and goes so far as to write that the New Yorker has been waging a “war on behalf of cultural critics and literary intellectuals against scientists and technologists.”

From my experience, it’s not quite that tidy.  First of all, the New Yorker is the best writing I read each week.  Period.  Second, I haven’t found their science writing to have the slant claimed in the quote above.  For example, most other mainstream outlets–including the New York Times with the Amy Harmon pieces–have given the anti-GMO crowd an equal say in the mistaken search for a “balance” on whether GMOs are harmful.  (Remember John Stewart’s criticism of Fox News?  That they give a false equivalent between two sides even when there is no equivalent on the other side?)

But the New Yorker has not fallen into this trap on GMOs and most of their pieces on the topic–mainly by Michael Specter–have been decidedly pro science and therefore decided pro GMO.

So what led Mukherjee to play scientist as well as journalist?  There’s no question about whether I enjoy his prose.  His writing beautifully whisks me away so that I don’t feel that I’m really working to understand.  There is a poetic complexity that constantly brings different threads effortlessly together, weaving them into the same light.  At one point he uses the metaphor of a web for the genome, with the epigenome being the stuff that sticks to the web.  He borrows the metaphor from the Hindu notion of “being”, or jaal.

“Genes form the threads of the web; the detritus that adheres to it transforms every web into a singular being.”

There have been a few writers on Twitter defending Mukherjee’s piece.  Tech Review’s Antonio Regalado called Coyne and his colleagues “tedious literalists” who have an “issue with epigenetic poetry.”

At his best, Mukherjee can take us down the sweet alleys of his metaphors and family stories with a new curiosity for the scientific truth.  He can hold a mirror up to scientists, or put the spotlight on their work.   At their worst, Coyne and his scientific colleagues can reek of a fear of language and therefore metaphor.  The always outspoken scientist and author, Richard Dawkins, who made his name by personifying the gene, was quick to personify epigentics in a tweet:   “It’s high time the 15 minutes of underserved fame for “epigenetics” came to an overdue end.”  Dawkins is that rare scientist who has consistently been as comfortable with rhetoric and language as he is with data.

Hats off to Coyne who reminds us that a metaphor–however lovely–does not some science make. If Mukherjee wants to play scientist, let him create and gather data. If it’s the role of science journalist he wants, let him collect all the science he can before he begins to pour it into his poetry.

 

Same but Different  

How epigenetics can blur the line between nature and nurture.

Annals of Science MAY 2, 2016 ISSUE     BY

The author’s mother (right) and her twin are a study in difference and identity. CREDIT: PHOTOGRAPH BY DAYANITA SINGH FOR THE NEW YORKER

October 6, 1942, my mother was born twice in Delhi. Bulu, her identical twin, came first, placid and beautiful. My mother, Tulu, emerged several minutes later, squirming and squalling. The midwife must have known enough about infants to recognize that the beautiful are often the damned: the quiet twin, on the edge of listlessness, was severely undernourished and had to be swaddled in blankets and revived.

The first few days of my aunt’s life were the most tenuous. She could not suckle at the breast, the story runs, and there were no infant bottles to be found in Delhi in the forties, so she was fed through a cotton wick dipped in milk, and then from a cowrie shell shaped like a spoon. When the breast milk began to run dry, at seven months, my mother was quickly weaned so that her sister could have the last remnants.
Tulu and Bulu grew up looking strikingly similar: they had the same freckled skin, almond-shaped face, and high cheekbones, unusual among Bengalis, and a slight downward tilt of the outer edge of the eye, something that Italian painters used to make Madonnas exude a mysterious empathy. They shared an inner language, as so often happens with twins; they had jokes that only the other twin understood. They even smelled the same: when I was four or five and Bulu came to visit us, my mother, in a bait-and-switch trick that amused her endlessly, would send her sister to put me to bed; eventually, searching in the half-light for identity and difference—for the precise map of freckles on her face—I would realize that I had been fooled.

But the differences were striking, too. My mother was boisterous. She had a mercurial temper that rose fast and died suddenly, like a gust of wind in a tunnel. Bulu was physically timid yet intellectually more adventurous. Her mind was more agile, her tongue sharper, her wit more lancing. Tulu was gregarious. She made friends easily. She was impervious to insults. Bulu was reserved, quieter, and more brittle. Tulu liked theatre and dancing. Bulu was a poet, a writer, a dreamer.

….. more

Why are identical twins alike? In the late nineteen-seventies, a team of scientists in Minnesota set out to determine how much these similarities arose from genes, rather than environments—from “nature,” rather than “nurture.” Scouring thousands of adoption records and news clips, the researchers gleaned a rare cohort of fifty-six identical twins who had been separated at birth. Reared in different families and different cities, often in vastly dissimilar circumstances, these twins shared only their genomes. Yet on tests designed to measure personality, attitudes, temperaments, and anxieties, they converged astonishingly. Social and political attitudes were powerfully correlated: liberals clustered with liberals, and orthodoxy was twinned with orthodoxy. The same went for religiosity (or its absence), even for the ability to be transported by an aesthetic experience. Two brothers, separated by geographic and economic continents, might be brought to tears by the same Chopin nocturne, as if responding to some subtle, common chord struck by their genomes.

One pair of twins both suffered crippling migraines, owned dogs that they had named Toy, married women named Linda, and had sons named James Allan (although one spelled the middle name with a single “l”). Another pair—one brought up Jewish, in Trinidad, and the other Catholic, in Nazi Germany, where he joined the Hitler Youth—wore blue shirts with epaulets and four pockets, and shared peculiar obsessive behaviors, such as flushing the toilet before using it. Both had invented fake sneezes to diffuse tense moments. Two sisters—separated long before the development of language—had invented the same word to describe the way they scrunched up their noses: “squidging.” Another pair confessed that they had been haunted by nightmares of being suffocated by various metallic objects—doorknobs, fishhooks, and the like.

The Minnesota twin study raised questions about the depth and pervasiveness of qualities specified by genes: Where in the genome, exactly, might one find the locus of recurrent nightmares or of fake sneezes? Yet it provoked an equally puzzling converse question: Why are identical twins different? Because, you might answer, fate impinges differently on their bodies. One twin falls down the crumbling stairs of her Calcutta house and breaks her ankle; the other scalds her thigh on a tipped cup of coffee in a European station. Each acquires the wounds, calluses, and memories of chance and fate. But how are these changes recorded, so that they persist over the years? We know that the genome can manufacture identity; the trickier question is how it gives rise to difference.

….. more

But what turns those genes on and off, and keeps them turned on or off? Why doesn’t a liver cell wake up one morning and find itself transformed into a neuron? Allis unpacked the problem further: suppose he could find an organism with two distinct sets of genes—an active set and an inactive set—between which it regularly toggled. If he could identify the molecular switches that maintain one state, or toggle between the two states, he might be able to identify the mechanism responsible for cellular memory. “What I really needed, then, was a cell with these properties,” he recalled when we spoke at his office a few weeks ago. “Two sets of genes, turned ‘on’ or ‘off’ by some signal.”

more…

“Histones had been known as part of the inner scaffold for DNA for decades,” Allis went on. “But most biologists thought of these proteins merely as packaging, or stuffing, for genes.” When Allis gave scientific seminars in the early nineties, he recalled, skeptics asked him why he was so obsessed with the packing material, the stuff in between the DNA.  …. A skein of silk tangled into a ball has very different properties from that same skein extended; might the coiling or uncoiling of DNA change the activity of genes?

In 1996, Allis and his research group deepened this theory with a seminal discovery. “We became interested in the process of histone modification,” he said. “What is the signal that changes the structure of the histone so that DNA can be packed into such radically different states? We finally found a protein that makes a specific chemical change in the histone, possibly forcing the DNA coil to open. And when we studied the properties of this protein it became quite clear that it was also changing the activity of genes.” The coils of DNA seemed to open and close in response to histone modifications—inhaling, exhaling, inhaling, like life.

Allis walked me to his lab, a fluorescent-lit space overlooking the East River, divided by wide, polished-stone benches. A mechanical stirrer, whirring in a corner, clinked on the edge of a glass beaker. “Two features of histone modifications are notable,” Allis said. “First, changing histones can change the activity of a gene without affecting the sequence of the DNA.” It is, in short, formally epi-genetic, just as Waddington had imagined. “And, second, the histone modifications are passed from a parent cell to its daughter cells when cells divide. A cell can thus record ‘memory,’ and not just for itself but for all its daughter cells.”

…..

 

 

The New Yorker screws up big time with science: researchers criticize the Mukherjee piece on epigenetics

Jerry Coyne
https://whyevolutionistrue.wordpress.com/2016/05/05/the-new-yorker-screws-up-big-time-with-science-researchers-criticize-the-mukherjee-piece-on-epigenetics/

Abstract: This is a two part-post about a science piece on gene regulation that just appeared in the New Yorker. Today I give quotes from scientists criticizing that piece; tomorrow I’ll present a semi-formal critique of the piece by two experts in the field.

esterday I gave readers an assignment: read the new New Yorkerpiece by Siddhartha Mukherjee about epigenetics. The piece, called “Same but different” (subtitle: “How epigenetics can blur the line between nature and nurture”) was brought to my attention by two readers, both of whom praised it.  Mukherjee, a physician, is well known for writing the Pulitzer-Prize-winning book (2011) The Emperor of All Maladies: A Biography of Cancer. (I haven’t read it yet, but it’s on my list.)  Mukherjee has a new book that will be published in May: The Gene: An Intimate History. As I haven’t seen it, the New Yorker piece may be an excerpt from this book.

Everyone I know who has read The Emperor of All Maladies gives it high praise. I wish I could say the same for Mukherjee’s New Yorker piece. When I read it at the behest of the two readers, I found his analysis of gene regulation incomplete and superficial. Although I’m not an expert in that area, I knew that there was a lot of evidence that regulatory proteins called “transcription factors”, and not “epigenetic markers” (see discussion of this term tomorrow) or modified histones—the factors emphasized by Mukherjee—played hugely important roles in gene regulation. The speculations at the end of the piece about “Lamarckian evolution” via environmentally induced epigenetic changes in the genome were also unfounded, for we have no evidence for that kind of adaptive evolution. Mukherjee does, however, mention that lack of evidence, though I wish he’d done so more strongly given that environmental modification of DNA bases is constantly touted as an important and neglected factor in evolution.

Unbeknownst to me, there was a bit of a kerfuffle going on in the community of scientists who study gene regulation, with many of them finding serious mistakes and omissions in Mukherjee’s piece.  There appears to have been some back-and-forth emailing among them, and several wrote letters to the New Yorker, urging them to correct the misconceptions, omissions, and scientific errors in “Same but different.” As I understand it, both Mukherjee and the New Yorker simply batted these criticisms away, and, as far as I know, will not publish any corrections.  So today and tomorrow I’ll present the criticisms here, just so they’ll be on the record.

Because Mukherjee writes very well, and because even educated laypeople won’t know the story of gene regulation revealed over the last few decades,  they may not see the big lacunae in his piece. It is, then,  important to set matters straight, for at least we should know what science has told us about how genes are turned on and off. The criticism of Mukherjee’s piece, coming from scientists who really are experts in gene regulation, shows a lack of care on the part of Mukherjee and theNew Yorker: both a superficial and misleading treatment of the state of the science, and a failure of the magazine to properly vet this piece (I have no idea whether they had it “refereed” not just by editors but by scientists not mentioned in the piece).

Let me add one thing about science and the New Yorker. I believe I’ve said this before, but the way the New Yorker treats science is symptomatic of the “two cultures” problem. This is summarized in an email sent me a while back by a colleague, which I quote with permission:

The New Yorker is fine with science that either serves a literary purpose (doctors’ portraits of interesting patients) or a political purpose (environmental writing with its implicit critique of modern technology and capitalism). But the subtext of most of its coverage (there are exceptions) is that scientists are just a self-interested tribe with their own narrative and no claim to finding the truth, and that science must concede the supremacy of literary culture when it comes to anything human, and never try to submit human affairs to quantification or consilience with biology. Because the magazine is undoubtedly sophisticated in its writing and editing they don’t flaunt their postmodernism or their literary-intellectual proprietariness, but once you notice it you can make sense of a lot of their material.

. . . Obviously there are exceptions – Atul Gawande is consistently superb – but as soon as you notice it, their guild war on behalf of cultural critics and literary intellectuals against scientists, technologists, and analytic scholars becomes apparent.

…. more

Researchers criticize the Mukherjee piece on epigenetics: Part 2

Trigger warning: Long science post!

Yesterday I provided a bunch of scientists’ reactions—and these were big names in the field of gene regulation—to Siddhartha Mukherjee’s ill-informed piece in The New Yorker, “Same but different” (subtitle: “How epigenetics can blur the line between nature and nurture”). Today, in part 2, I provide a sentence-by-sentence analysis and reaction by two renowned researchers in that area. We’ll start with a set of definitions (provided by the authors) that we need to understand the debate, and then proceed to the critique.

Let me add one thing to avoid confusion: everything below the line, including the definition (except for my one comment at the end) was written by Ptashne and Greally.

by Mark Ptashne and John Greally

Introduction

Ptashne is The Ludwig Professor of Molecular Biology at the Memorial Sloan Kettering Cancer Center in New York. He wrote A Genetic Switch, now in its third edition, which describes the principles of gene regulation and the workings of a ‘switch’; and, with Alex Gann, Genes and Signals, which extends these principles and ideas to higher organisms and to other cellular processes as well.  John Greally is the Director of the Center for Epigenomics at the Albert Einstein College of Medicine in New York.

 

The New Yorker  (May 2, 2016) published an article entitled “Same But Different” written by Siddhartha Mukherjee.  As readers will have gathered from the letters posted yesterday, there is a concern that the article is misleading, especially for a non-scientific audience. The issue concerns our current understanding of “gene regulation” and how that understanding has been arrived at.

First some definitions/concepts:

Gene regulation refers to the “turning on and off of genes”.  The primary event in turning a gene “on” is to transcribe (copy) it into messenger RNA (mRNA). That mRNA is then decoded, usually, into a specific protein.  Genes are transcribed by the enzyme called RNA polymerase.

Development:  the process in which a fertilized egg (e.g., a human egg) divides many times and eventually forms an organism.  During this process, many of the roughly 23,000 genes of a human are turned “on” or “off” in different combinations, at different times and places in the developing organism. The process produces many different cell types in different organs (e.g. liver and brain), but all retain the original set of genes.

Transcription factors: proteins that bind to specific DNA sequences near specific genes and turn transcription of those genes on and off. A transcriptional ‘activator’, for example, bears two surfaces: one binds a specific sequence in DNA, and the other binds to, and thereby recruits to the gene, protein complexes that include RNA polymerase. It is widely acknowledged that the identity of a cell in the body depends on the array of transcription factors present in the cell, and the cell’s history.  RNA molecules can also recognize specific genomic sequences, and they too sometimes work as regulators.  Neither transcription factors nor these kinds of RNA molecules – the fundamental regulators of gene expression and development – are mentioned in the New Yorker article.

Signals:  these come in many forms (small molecules like estrogen, larger molecules (often proteins such as cytokines) that determine the ability of transcription factors to work.  For example, estrogen binds directly to a transcription factor (the estrogen receptor) and, by changing its shape, permits it to bind DNA and activate transcription.

Memory”:  a dividing cell can (often does) produce daughters that are identical, and that express identical genes as does the mother cell.  This occurs because the transcription factors present in the mother cell are passively transmitted to the daughters as the cell divides, and they go to work in their new contexts as before.  To make two different daughters, the cell must distribute its transcription factors asymmetrically.

Positive Feedback: An activator can maintain its own expression by  positive feedback.  This requires, simply, that a copy of the DNA sequence to which the activator binds is  present  near its own gene. Expression of the activator  then becomes self-perpetuating.  The activator (of which there now are many copies in the cell) activates  other target genes as it maintains its own expression. This kind of ‘memory circuit’, first described  in  bacteria, is found in higher organisms as well.  Positive feedback can explain how a fully differentiated cell (that is, a cell that has reached its developmental endpoint) maintains its identity.

Nucleosomes:  DNA in higher organisms (eukaryotes) is wrapped, like beads on a string, around certain proteins (called histones), to form nucleosomes.  The histones are subject to enzymatic modifications: e.g., acetyl, methyl, phosphate, etc. groups can be added to these structures. In bacteria there are no nucleosomes, and the DNA is more or less ‘naked’.

“Epigenetic modifications: please don’t worry about the word ”epigenetic”; it is misused in any case. What Mukherjee refers to by this term are the histone modifications mentioned above, and a modification to DNA itself: the addition of methyl groups. Keep in mind that the organisms that have taught us the most about development – flies (Drosophila) and worms (C. elegans)—do not have the enzymes required for DNA methylation. That does not mean that DNA methylation cannot do interesting things in humans, for example, but it is obviously not at the heart of gene regulation.

Specificity Development requires the highly specific sequential turning on and off of sets of genes.  Transcription factors and RNA supply this specificity, but   enzymes that impart modifications to histones  cannot: every nucleosome (and hence every gene) appears the same to the enzyme.  Thus such enzymes cannot pick out particular nucleosomes associated with particular genes to modify.  Histone modifications might be imagined to convey ‘memory’ as cells divide – but there are no convincing indications that this happens, nor are there molecular models that might explain why they would have the imputed effects.

Analysis and critique of Mukherjee’s article

The picture we have just sketched has taken the combined efforts of many scientists over 50 years to develop.  So what, then, is the problem with the New Yorker article?

There are two: first, the picture we have just sketched, emphasizing the primary role of transcription factors and RNA, is absent.  Second, that picture is replaced by highly dubious speculations, some of which don’t make sense, and none of which has been shown to work as imagined in the article.

(Quotes from the Mukherjee article are indented and in plain text; they are followed by comments, flush left and in bold, by Ptashne and Greally.)

In 1978, having obtained a Ph.D. in biology at Indiana University, Allis began to tackle a problem that had long troubled geneticists and cell biologists: if all the cells in the body have the same genome, how does one become a nerve cell, say, and another a blood cell, which looks and functions very differently?

The problems referred to were recognized long before 1978.  In fact, these were exactly the problems that the great French scientists François Jacob and Jacques Monod took on in the 1950s-60s.  In a series of brilliant experiments, Jacob and Monod showed that in bacteria, certain genes encode products that regulate (turn on and off) specific other genes.  Those regulatory molecules turned out to be proteins, some of which respond to signals from the environment.  Much of the story of modern biology has been figuring out how these proteins – in bacteria and in higher organisms  – bind to and regulate specific genes.  Of note is that in higher organisms, the regulatory proteins look and act like those in bacteria, despite the fact that eukaryotic DNA is wrapped in nucleosomes  whereas bacterial DNA is not.   We have also learned that certain RNA molecules can play a regulatory role, a phenomenon made possible by the fact that RNA molecules, like regulatory proteins, can recognize specific genomic sequences.

In the nineteen-forties, Conrad Waddington, an English embryologist, had proposed an ingenious answer: cells acquired their identities just as humans do—by letting nurture (environmental signals) modify nature (genes). For that to happen, Waddington concluded, an additional layer of information must exist within a cell—a layer that hovered, ghostlike, above the genome. This layer would carry the “memory” of the cell, recording its past and establishing its future, marking its identity and its destiny but permitting that identity to be changed, if needed. He termed the phenomenon “epigenetics”—“above genetics.”

This description greatly misrepresents the original concept.  Waddington argued that development proceeds not by the loss (or gain) of genes, which would be a “genetic” process, but rather that some genes would be selectively expressed in specific and complex cellular patterns as development proceeds.  He referred to this intersection of embryology (then called “epigenesis”) and genetics as “epigenetic”.We now understand that regulatory proteins work in combinations to turn on and off genes, including their own genes, and that sometimes the regulatory proteins respond to signals sent by other cells.  It should be emphasized that Waddington never proposed any “ghost-like” layer of additional information hovering above the gene.  This is a later misinterpretation of a literal translation of the term epigenetics, with “epi-“ meaning “above/upon” the genetic information encoded in DNA sequence.  Unfortunately, this new and pervasive definition encompasses all of transcriptional regulation and is of no practical value.

…..more

By 2000, Allis and his colleagues around the world had identified a gamut of proteins that could modify histones, and so modulate the activity of genes. Other systems, too, that could scratch different kinds of code on the genome were identified (some of these discoveries predating the identification of histone modifications). One involved the addition of a chemical side chain, called a methyl group, to DNA. The methyl groups hang off the DNA string like Christmas ornaments, and specific proteins add and remove the ornaments, in effect “decorating” the genome. The most heavily methylated parts of the genome tend to be dampened in their activity.

It is true that enzymes that modify histones have been found—lots of them.  A striking problem is that, after all this time, it is not at all clear what the vast majority of these modifications do.  When these enzymatic activities are eliminated by mutation of their active sites (a task substantially easier to accomplish in yeast than in higher organisms) they mostly have little or no effect on transcription.  It is not even clear that histones are the biologically relevant substrates of most of these enzymes.  

 In the ensuing decade, Allis wrote enormous, magisterial papers in which a rich cast of histone-modifying proteins appear and reappear through various roles, mapping out a hatchwork of complexity. . . These protein systems, overlaying information on the genome, interacted with one another, reinforcing or attenuating their signals. Together, they generated the bewildering intricacy necessary for a cell to build a constellation of other cells out of the same genes, and for the cells to add “memories” to their genomes and transmit these memories to their progeny. “There’s an epigenetic code, just like there’s a genetic code,” Allis said. “There are codes to make parts of the genome more active, and codes to make them inactive.”

By ‘epigenetic code’ the author seems to mean specific arrays of nucleosome modifications, imparted over time and cell divisions, marking genes for expression.  This idea has been tested in many experiments and has been found not to hold.

….. and more

 

Larry H. Bernstein, MD, FCAP

I hope that this piece brings greater clarity to the discussion.  I have heard the use of the term “epigenetics” for over a decade.  The term was never so clear.  I think that the New Yorker article was a reasonable article for the intended audience.  It was not intended to clarify debates about a mechanism for epigenetic based changes in evolutionary science.  I think it actually punctures the “classic model” of the cell depending only on double stranded DNA and transcription, which deflates our concept of the living cell.  The concept of epigenetics was never really formulated as far as I have seen, and I have done serious work in enzymology and proteins at a time that we did not have the technology that exists today.  I have considered with the critics that protein folding, protein misfolding, protein interactions with proximity of polar and nonpolar groups, and the regulatory role of microRNAs that are not involved in translation, and the evolving concept of what is “dark (noncoding) DNA” lend credence to the complexity of this discussion.  Even more interesting is the fact that enzymes (and isoforms of enzymes) have a huge role in cellular metabolic differences and in the function of metabolic pathways.  What is less understood is the extremely fast reactions involved in these cellular reactions.  These reactions are in my view critical drivers.  This is brought out by Erwin Schroedinger in the book What is Life? which infers that there can be no mathematical expression of life processes.

 

 

 

Read Full Post »


Bacterial synthetic factories

Larry H. Bernstein, MD, FCAP, Curator

LPBI

 

Bacteria seeded with synthetic pathways

http://www.rsc.org/chemistryworld/2016/04/bacteria-living-chemical-synthesis

 

Chinese scientists have taken a biosynthetic pathway from plants and introduced it into bacteria to create potentially health-boosting chemicals. Their route provides an alternative to complicated chemical syntheses or farming hectares of crops.

Shared photosynthetic components between plant chloroplasts and cyanobacteria make these microbes ideal hosts for expressing foreign plant enzymes. Ping Xu and colleagues at the Shanghai Jiao Tong University have genetically engineered the cyanobacterium Synechococcus elongatusPC7942 with plant-derived enzymes. In total, the team created 18 bacterial strains expressing different combinations of enzymes. The different strains generate a variety of compounds with a six-carbon, phenyl group and three-carbon propene tail, called phenylpropanoids.

Phenylpropanoids perform diverse functions in plants, ranging from ultraviolet light protection to pathogen defence. One such compound, resveratrol, is made when the bacteria express the plant enzyme stilbene synthase downstream of enzymes tyrosine ammonia lyase and 4-coumarate:coenzyme A-ligase. Found in the skin of grapes and other berries, resveratrol reduces the risk of heart disease and is a valuable pharmaceutical commodity. Different versions of the engineered bacteria can also churn out the phenylpropanoid antioxidants caffeic acid, naringenin and coumaric acid.

The Shanghai Jia Tong University team genetically engineered cyanobacteria to produce compounds like flavonoids, stilbenes and curcuminoids usually only found in plants

http://www.rsc.org/chemistryworld/sites/default/files/upload/Photoautotrophic-platform_c6gc00317f-f1_630m.jpg

What’s more, the team added feedback-inhibition resistant enzymes to the bacteria so that the chemical yields would surpass physiological levels. Photosynthesis within the cyanobacteria generates the chemicals from just water, carbon dioxide and a few mineral nutrients.

The bacterial growth medium houses the products, but isolating them at an industrially relevant yield is currently the biggest challenge. However, by not needing to harvest crops, generating the compounds from bacteria is potentially more sustainable. Xu stresses the potential of this point: ‘For the production of 1 tonne of natural resveratrol, our method may save about 485 hectare of farmland at its current production level.’

‘The approach deftly sidesteps major economic challenges by targeting chemicals with high intrinsic value,’ comments Paul Fowler, executive director of the Wisconsin Institute for Sustainable Technology in the US.  A world-scale production plant under these circumstances is not a pre-requisite for commercialising this research.’

 REFERENCES

This article is free until 06 June 2016

J Ni et al, Green Chem., 2016, DOI: 10.1039/c6gc00317f

A photoautotrophic platform for the sustainable production of valuable plant natural products from CO2

Jun Ni,ab   Fei Tao,ab   Yu Wang,ab   Feng Yaoab and   Ping Xu
Many plant natural products have remarkable pharmacological activities. They are mainly produced directly by extraction from higher plants, which can hardly keep up with the surging global demand. Furthermore, the over-felling of many medicinal plants has undesirable effects on the ecological balance. In this study, we constructed a photoautotrophic platform with the unicellular cyanobacterium Synechococcus elongatus PCC7942 to directly convert the greenhouse gas CO2 into an array of valuable healthcare products, including resveratrol, naringenin, bisdemethoxycurcumin, p-coumaric acid, caffeic acid, and ferulic acid. These six compounds can be further branched to many other precious and useful natural products. Various strategies including introducing a feedback-inhibition-resistant enzyme, creating functional fusion proteins, and increasing malonyl-CoA supply have been systematically investigated to increase the production. The highest titers of these natural products reached 4.1–128.2 mg L−1 from the photoautotrophic system, which are highly comparable with those obtained by many other heterotrophic microorganisms using carbohydrates. Several advantages such as independence from carbohydrate feedstocks, functionally assembling P450s, and availability of plentiful NADPH and ATP support that this photosynthetic platform is uniquely suited for producing plant natural products. This platform also provides a green route for direct conversion of CO2 to many aromatic building blocks, a promising alternative to petrochemical-based production of bulk aromatic compounds.
Graphical abstract: A photoautotrophic platform for the sustainable production of valuable plant natural products from CO2

Read Full Post »

Older Posts »