Triglycerides: Is it a Risk Factor or a Risk Marker for Atherosclerosis and Cardiovascular Disease ? The Impact of Genetic Mutations on (ANGPTL4) Gene, encoder of (angiopoietin-like 4) Protein, inhibitor of Lipoprotein Lipase
Reporters, Curators and Authors: Aviva Lev-Ari, PhD, RN and Larry H. Bernstein, MD, FCAP
Introduction
The role for triglycerides as a risk factor for cardiovascular disease is not new, going back to Donald Frederickson’s classification of hyperlipidemias, at least with respect to Type I and Type IIb. Whether there was a mechanism beyond the observations was yet an open question. The paper that follows addresses such a question.
Large Genetic Studies Support Role For Triglycerides In Cardiovascular Disease
SOURCE
http://cardiobrief.org/2016/03/03/large-genetic-studies-support-role-for-triglycerides-in-cardiovascular-disease/#comments
March 3, 2016 by
Larry Husten
Two papers published in the New England Journal of Medicine offer new genetic evidence to support the increasingly accepted though still controversial view that triglycerides play an important causal role in cardiovascular disease. If fully validated the new findings could lead to new drugs to prevent and treat cardiovascular disease, though others caution that there is still a long way to go before this could happen.
Both studies describe the impact of genetic mutations on a gene (ANGPTL4) which encodes for a protein (angiopoietin-like 4) that inhibits lipoprotein lipase, an enzyme that plays a key role in breaking down and removing triglycerides from the blood. The large studies found that people with mutations that inactivate ANGPTL4 have lower levels of triglycerides, higher levels of HDL cholesterol, and decreased risk for cardiovascular disease.
The findings, writes Sander Kersten (Wageningen University, the Netherlands) in an accompanying editorial, “suggest that lowering plasma triglyceride levels is a viable approach to reducing the risk of coronary artery disease.”
The Genetics of Dyslipidemia — When Less Is More
Sander Kersten, Ph.D. Mar 2, 2016; http://dx.doi.org:/10.1056/NEJMe1601117
Two groups of investigators now describe in the Journal important genetic evidence showing a causal role of plasma triglycerides in coronary heart disease. Stitziel and colleagues2 tested 54,003 coding-sequence variants covering 13,715 human genes in more than 72,000 patients with coronary artery disease and 120,000 controls. Dewey and colleagues3 sequenced the exons of the gene encoding angiopoietin-like 4 (ANGPTL4) in samples obtained from nearly 43,000 participants in the DiscovEHR human genetics study. The two groups found a significant association between an inactivating mutation (E40K) in ANGPTL4 and both low plasma triglyceride levels and high levels of HDL cholesterol. ANGPTL4 is an inhibitor of lipoprotein lipase, the enzyme that breaks down plasma triglycerides along the capillaries in heart, muscle, and fat.4 Extensive research has shown that ANGPTL4 orchestrates the processing of triglyceride-rich lipoproteins during physiologic conditions such as fasting, exercise, and cold exposure.4 The E40K mutation in ANGPTL4 was previously shown to nearly eliminate the ability of ANGPTL4 to inhibit lipoprotein lipase, a mechanism that may result in part from the destabilization of ANGPTL4.5
The key finding in each study was that carriers of the E40K mutation and other rare mutations in ANGPTL4 had a lower risk of coronary artery disease than did noncarriers, a result that is consistent with the lower triglyceride levels and higher HDL cholesterol levels among mutation carriers. These findings confirm previous data6 and provide convincing genetic evidence that an elevated plasma triglyceride level increases the risk of coronary heart disease. In combination with extensive recent data on other genetic variants that modulate plasma triglyceride levels, the studies suggest that lowering plasma triglyceride levels is a viable approach to reducing the risk of coronary artery disease.
However, as a cautionary note, Talmud and colleagues7 previously found that the presence of the E40K variant was associated with an increased risk of coronary heart disease after adjustment for the altered plasma lipids. Consistent with this hypothesis, the overexpression of Angptl4 in mice was found to protect against atherosclerosis independent of plasma lipids.8
The studies also “implicate targeted inactivation of ANGPTL4 as a potential weapon in the war on heart disease,” though he also points to a previous study that did not support this hypothesis. Sekar Kathiresan (Broad Institute), senior author of one of the NEJM studies, told me that the previous study was small and “basically got the result wrong. Between, the two papers in this NEJM issue, we are looking at 10X more data.”
Recent large genetic studies have resulted in an important change in the field. Many researchers now believe that HDL, which was once thought to play an important protective role in atherosclerosis, is only a marker of disease. In contrast, triglycerides are now thought by many to play an important functional role.
One of the NEJM papers showed that a human monoclonal antibody to ANGPTL4 lowered triglyceride levels in animals. The study was funded by Regeneron and was performed by researchers at Regeneron and Geisinger, as part of an ongoing collaboration using deidentified genetic data from Geisinger patients. In their NEJM paper the researchers reported inflammation and other side effects in the animals treated with the antibody, but they said that no such problem has been observed in humans who have mutations that have the same functional effect as the antibody.
Coding Variation in ANGPTL4, LPL, and SVEP1and the Risk of Coronary Disease Myocardial Infarction Genetics and CARDIoGRAM Exome Consortia Investigators
March 2, 2016 http://dx.doi.org:/10.1056/NEJMoa1507652
Although genomewide association studies have identified more than 56 loci associated with the risk of coronary artery disease,1-3 the disease-associated variants are typically common (minor-allele frequency >5%) and located in noncoding sequences; this has made it difficult to pinpoint causal genes and affected pathways. This lack of a causal mechanism has in part hindered the immediate translation of the findings of genomewide association studies into new therapeutic targets. However, the discovery of rare or low-frequency coding-sequence variants that affect the risk of coronary artery disease has facilitated advances in the prevention and treatment of disease. The most recent example of such advances is the development of a new class of therapeutic agents that is based on the discovery of the gene encoding proprotein convertase subtilisin/kexin type 9 (PCSK9) as a regulator of low-density lipoprotein (LDL) cholesterol4 and the discovery that low-frequency and loss-of-function variants in this gene protect against coronary artery disease.5,6
Recently, low-frequency coding variation across the genome was systematically tabulated with the use of next-generation exome and whole-genome sequencing data from more than 12,000 persons of various ancestries (including a major contribution from the National Heart, Lung, and Blood Institute Exome Sequencing Project). Protein-altering variants (i.e., nonsynonymous, splice-site, and nonsense single-nucleotide substitutions) that were observed at least twice among these 12,000 persons were included in a genotyping array (hereafter referred to as the exome array). In addition, the exome array contains previously described variants from genomewide association studies, a sparse genomewide grid of common markers, markers that are informative with regard to ancestry (i.e., African American, Native American, and European), and some additional content. Additional information on the design of the exome array is provided at http://genome.sph.umich.edu/wiki/Exome_Chip_Design. In this study, we focused on the 220,231 autosomal variants that were present on the array and were expected to alter protein sequence (i.e., missense, nonsense, splice-site, and frameshift variants) and used these to test the contribution of low-frequency coding variation to the risk of coronary artery disease.
Low-Frequency Coding Variants Associated with Coronary Artery Disease
The discovery cohort comprised 120,575 persons (42,335 patients and 78,240 controls) (Table S1 in the Supplementary Appendix). In the discovery cohort, we found significant associations between low-frequency coding variants in theLPA and PCSK9 genes and coronary artery disease (Table 1
TABLE 1
Low-Frequency Coding Variations Previously Associated with Coronary Artery Disease.). Both gene loci also harbor common noncoding variants associated with coronary artery disease that had previously been discovered through genomewide association studies. These variants were also present on the exome array and had significant associations with coronary artery disease in our study (Table 1). In a conditional analysis, the associations between coronary artery disease and the low-frequency coding variants in both LPA and PCSK9 were found to be independent of the associations between coronary artery disease and the more common variants (Table 1). ….
We found a significant association between SVEP1 p.D2702G and blood pressure (Table 3TABLE 3
Association between Low-Frequency Variants and Traditional Risk Factors., and Table S7 in the Supplementary Appendix). The allele associated with an increased risk of coronary artery disease was also associated with higher systolic blood pressure (0.94 mm Hg higher for each copy of the allele among allele carriers, P=3.0×10−7) and higher diastolic blood pressure (0.57 mm Hg higher for each copy of the allele among allele carriers, P=4.4×10−7). We did not find an association between SVEP1 p.D2702G and any plasma lipid trait. In contrast, ANGPTL4 p.E40K was not associated with blood pressure but instead was found to be associated with significantly lower levels of triglycerides (approximately 0.3 standard deviation units lower for each copy of the allele among allele carriers, P=1.6×10−13) (Table 3) and with higher levels of high-density lipoprotein (HDL) cholesterol (approximately 0.3 standard deviation units higher for each copy of the allele among allele carriers, P=8.2×10−11) (Table 3). In a conditional analysis, these effects appeared to be at least partially independent of each other (Table S8 in the Supplementary Appendix). We did not observe any significant association between ANGPTL4 p.E40K and LDL cholesterol level (Table 3). Both SVEP1 p.D2702G and ANGPTL4 p.E40K were nominally associated with type 2 diabetes in a direction concordant with the associated risk of coronary artery disease.
ANGPTL4 Loss-of-Function Mutations, Plasma Lipid Levels, and Coronary Artery Disease
The finding that a missense allele in ANGPTL4 reduced the risk of coronary artery disease, potentially by reducing triglyceride levels, raised the possibility that complete loss-of-function variants in ANGPTL4 may have an even more dramatic effect on triglyceride concentrations and the risk of coronary artery disease. We therefore examined sequence data for the seven protein-coding exons of ANGPTL4 in 6924 patients with early-onset myocardial infarction and 6834 controls free from coronary artery disease (details of the patients and controls are provided in Table S3 in the Supplementary Appendix). We discovered a total of 10 variants that were predicted to lead to loss of gene function (Figure 1A FIGURE 1
Loss-of-Function Alleles in ANGPTL4 and Plasma Lipid Levels., and Table S9 in the Supplementary Appendix), carried by 28 heterozygous persons; no homozygous or compound heterozygous persons were discovered. Carriers of loss-of-function alleles had significantly lower levels of triglycerides than did noncarriers (a mean of 35% lower among carriers, P=0.003) (Figure 1B, and Table S10 in the Supplementary Appendix), with no significant difference in LDL or HDL cholesterol levels. Moreover, we found a lower risk of coronary artery disease among carriers of loss-of-function alleles (9 carriers among 6924 patients vs. 19 carriers among 6834 controls; odds ratio for disease, 0.47; P=0.04) (Table S11 in the Supplementary Appendix). A similar investigation was performed for the 48 protein-coding exons of SVEP1; however, only 3 loss-of-function allele carriers were discovered (2 carriers among 6924 patients vs. 1 carrier among 6834 controls).
Coding Variation in LPL and the Risk of Coronary Artery Disease
On the basis of the fact that a loss of ANGPTL4 function was associated with reduced risk of coronary artery disease and that ANGPTL4 inhibits lipoprotein lipase (LPL), one would expect a gain of LPL function to also be associated with a lower risk of coronary artery disease, whereas a loss of LPL function would be expected to be associated with a higher risk. In observations consistent with these expectations, we found a low-frequency missense variant in LPL on the exome array that was associated with an increased risk of coronary artery disease (p.D36N; minor-allele frequency, 1.9%; odds ratio for disease, 1.13; P=2.0×10−4) (Table S12 in the Supplementary Appendix); previous studies have shown that this allele (also known as p.D9N) is associated with LPL activity that is 20% lower in allele carriers than in noncarriers.8 We also identified a nonsense mutation in LPL on the exome array that was significantly associated with a reduced risk of coronary artery disease (p.S447*; minor-allele frequency, 9.9%; odds ratio, 0.94; P=2.5×10−7) (Table S12 in the Supplementary Appendix). Contrary to most instances in which the premature introduction of a stop codon leads to loss of gene function, this nonsense mutation, which occurs in the penultimate codon of the gene, paradoxically induces a gain of LPL function.9 …..
Through large-scale exomewide screening, we identified a low-frequency coding variant in ANGPTL4 that was associated with protection against coronary artery disease and a low-frequency coding variant in SVEP1 that was associated with an increased risk of the disease. Moreover, our results highlight LPL as a significant contributor to the risk of coronary artery disease and support the hypothesis that a gain of LPL function or loss of ANGPTL4 inhibition protects against the disease.
ANGPTL4 has previously been found to be involved in cancer pathogenesis and wound healing.10 Previous functional studies also revealed that ANGPTL4 regulates plasma triglyceride concentration by inhibiting LPL.11 The minor allele at p.E40K has previously been associated with lower levels of triglycerides and higher levels of HDL cholesterol.12 We now provide independent confirmation of these lipid effects. In vitro and in vivo experimental evidence suggests that the lysine allele at p.E40K results in destabilization of ANGPTL4 after its secretion from the cell in which it was synthesized. It may be that the p.E40K variant leads to increases in the enzymatic activity of LPL because of this destabilization.13 Previous, smaller studies produced conflicting results regarding p.E40K and the risk of coronary artery disease14,15; we now provide robust support for an association between p.E40K and a reduced risk of coronary artery disease.
An important caveat to this research is that it is still very early. Most promising therapeutic targets do not work out. James Stein (University of Wisconsin) praised the papers but also offered a word of caution. “This is great science and important research that sheds light on the genetic regulation of TG-rich lipoproteins, serum TG levels, and CVD risk,” he said. “Since it is hard, if not impossible, to disconnect TG-rich lipoproteins from LDL, we should be humble in extrapolating these findings to clinical medicine in an era of low LDL due to statins and PCSK9 inhibitors. I hope this research identifies new targets for drug therapy and better understanding of CVD risk prediction– only time will tell.”
Previous studies with fibrates and other drugs have failed to convincingly show that lowering triglycerides is beneficial. Kathiresan said that what really seems to matter is “how you alter the plasma triglyceride-rich lipoproteins (TRLs).” Some genes that alter TRLs have other metabolic effects. As an example he cited a gene that lowers TRLs but increases the risk for type 2 diabetes. The NEJM papers, by observing the effect of specific mutations, therefore point the way to targets that may be clinically significant.
Conclusions: The work that has been presented puts a new light on the possible role of triglycerides in the development of congenitally predetermined cardiovascular disease. It does not necessarily establish a general link to mechanism of cardiovascular disease, but it opens up new pathways to our understanding.
SOURCE
http://cardiobrief.org/2016/03/03/large-genetic-studies-support-role-for-triglycerides-in-cardiovascular-disease/#comments
 |
|
John Contois commented on your update |
|
“Are triglycerides a CHD risk factor? The answer is still maybe. Triglyceride-rich lipoproteins are inextricably linked to LDL metabolism and LDL particle number (and apo B). Still these are important new data and targets for novel therapeutics.” |
|

Risk of Dis-lipids Syndrome in Modern Society
Aurelian Udristioiuᶪ, Manole Cojocaru²
¹Department of Biochemistry, Clinical Laboratory, Emergency County Hospital Targu Jiu & Titu Maiorescu University, Bucharest, Romania,
Department of Physiology, Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
Abstract
Aim of this work was to emphasis the preclinical evaluation of dis-lipids syndromes types at the patients which were presented to a routine control for checking health status, in the hospital ambulatory.
Material and Method:
Were analyzed 60 patients, registered in Clinical Laboratory, assessing by running on the Hitachi 912 Analyzer, the principal biochemical parameters of lipid metabolism: Cholesterol, Triglycerides and fractions of Cholesterol, HDL and LDL. From the total of 60 patients 35 were females and 25 males.
Results
The persons with an alarm signal of atherosclerotic process were in 28 % and persons with low HDL was in 17%. The cases with atherosclerotic index, report-LDL/HDL>3.5 for men and 2.5 for women were in 14 % , the cases with predictive value with coronary risk, report-CO/HDL>5 were presented in 5 % and the cases with dis-lipid syndrome type 2- 4, with high Cholesterol and Triglycerides, were presented in 30% percent.
Conclusions
Lipids controls, and its fractions, are necessary to be prevented atherosclerotic process in the incipient status of ill.
http://video.epccs.eu/video_1466.html
REFERENCES
http://www.nejm.org/doi/full/10.1056/NEJMe1601117
http://www.nejm.org/doi/full/10.1056/NEJMoa1507652
March 2, 2016 Regeneron Genetics Center Publication in New England Journal of Medicine Links ANGPTL4 Inhibition and Risk of Coronary Artery Disease Demonstrates power of large-scale Precision Medicine initiatives
http://files.shareholder.com/downloads/REGN/1634352863x0x879015/042D3D02-04CB-4DD1-89FE-53927F422025/REGN_News_2016_3_2_General_Releases.pdf
- Perspectives on Nitric Oxide in Disease Mechanisms, on Amazon since 6/2/12013
http://www.amazon.com/dp/B00DINFFYC
http://www.amazon.com/dp/B012BB0ZF0
- Genomics Orientations for Personalized Medicine, on Amazon since 11/23/2015
http://www.amazon.com/dp/B018DHBUO6
http://www.amazon.com/dp/B019VH97LU
- Cardiovascular, Volume Two: Cardiovascular Original Research: Cases in Methodology Design for Content Co-Curation, on Amazon since 11/30/2015
http://www.amazon.com/dp/B018Q5MCN8
- Cardiovascular Diseases, Volume Three: Etiologies of Cardiovascular Diseases: Epigenetics, Genetics and Genomics, on Amazon since 11/29/2015
http://www.amazon.com/dp/B018PNHJ84
- Cardiovascular Diseases, Volume Four: Regenerative and Translational Medicine: The Therapeutics Promise for Cardiovascular Diseases, on Amazon since 12/26/2015
http://www.amazon.com/dp/B019UM909A
Other related articles on this topic published in this Open Access Online Scientific Journal include the following:
Editorial & Publication of Articles in e-Books by Leaders in Pharmaceutical Business Intelligence: Contributions of Larry H Bernstein, MD, FCAP
http://pharmaceuticalintelligence.com/2014/10/16/editorial-publication-of-articles-in-e-books-by-leaders-in-pharmaceutical-business-intelligence-contributions-of-larry-h-bernstein-md-fcap/
Editorial & Publication of Articles in e-Books by Leaders in Pharmaceutical Business Intelligence: Contributions of Aviva Lev-Ari, PhD, RN
http://pharmaceuticalintelligence.com/2014/10/16/editorial-publication-of-articles-in-e-books-by-leaders-in-pharmaceutical-business-intelligence-contributions-of-aviva-lev-ari-phd-rn/
TRIGLYCERIDES
http://pharmaceuticalintelligence.com/?s=Triglycerides
HDL
http://pharmaceuticalintelligence.com/?s=HDL
PCSK9
http://pharmaceuticalintelligence.com/?s=PCSK9
STATINS
http://pharmaceuticalintelligence.com/?s=Statins
STATIN
http://pharmaceuticalintelligence.com/?s=STATIN
Like this:
Like Loading...
Read Full Post »