Feeds:
Posts
Comments

Archive for the ‘Tissue Engineering and Regenerative Medicine’ Category


Use of 3D Bioprinting for Development of Toxicity Prediction Models

Curator: Stephen J. Williams, PhD

SOT FDA Colloquium on 3D Bioprinted Tissue Models: Tuesday, April 9, 2019

The Society of Toxicology (SOT) and the U.S. Food and Drug Administration (FDA) will hold a workshop on “Alternative Methods for Predictive Safety Testing: 3D Bioprinted Tissue Models” on Tuesday, April 9, at the FDA Center for Food Safety and Applied Nutrition in College Park, Maryland. This workshop is the latest in the series, “SOT FDA Colloquia on Emerging Toxicological Science: Challenges in Food and Ingredient Safety.”

Human 3D bioprinted tissues represent a valuable in vitro approach for chemical, personal care product, cosmetic, and preclinical toxicity/safety testing. Bioprinting of skin, liver, and kidney is already appearing in toxicity testing applications for chemical exposures and disease modeling. The use of 3D bioprinted tissues and organs may provide future alternative approaches for testing that may more closely resemble and simulate intact human tissues to more accurately predict human responses to chemical and drug exposures.

A synopsis of the schedule and related works from the speakers is given below:

 

8:40 AM–9:20 AM Overview and Challenges of Bioprinting
Sharon Presnell, Amnion Foundation, Winston-Salem, NC
9:20 AM–10:00 AM Putting 3D Bioprinting to the Use of Tissue Model Fabrication
Y. Shrike Zhang, Brigham and Women’s Hospital, Harvard Medical School and Harvard-MIT Division of Health Sciences and Technology, Boston, MA
10:00 AM–10:20 AM Break
10:20 AM–11:00 AM Uses of Bioprinted Liver Tissue in Drug Development
Jean-Louis Klein, GlaxoSmithKline, Collegeville, PA
11:00 AM–11:40 AM Biofabrication of 3D Tissue Models for Disease Modeling and Chemical Screening
Marc Ferrer, National Center for Advancing Translational Sciences, NIH, Rockville, MD

Sharon Presnell, Ph.D. President, Amnion Foundation

Dr. Sharon Presnell was most recently the Chief Scientific Officer at Organovo, Inc., and the President of their wholly-owned subsidiary, Samsara Sciences. She received a Ph.D. in Cell & Molecular Pathology from the Medical College of Virginia and completed her undergraduate degree in biology at NC State. In addition to her most recent roles, Presnell has served as the director of cell biology R&D at Becton Dickinson’s corporate research center in RTP, and as the SVP of R&D at Tengion. Her roles have always involved the commercial and clinical translation of basic research and early development in the cell biology space. She serves on the board of the Coulter Foundation at the University of Virginia and is a member of the College of Life Sciences Foundation Board at NC State. In January 2019, Dr. Presnell will begin a new role as President of the Amnion Foundation, a non-profit organization in Winston-Salem.

A few of her relevant publications:

Bioprinted liver provides early insight into the role of Kupffer cells in TGF-β1 and methotrexate-induced fibrogenesis

Integrating Kupffer cells into a 3D bioprinted model of human liver recapitulates fibrotic responses of certain toxicants in a time and context dependent manner.  This work establishes that the presence of Kupffer cells or macrophages are important mediators in fibrotic responses to certain hepatotoxins and both should be incorporated into bioprinted human liver models for toxicology testing.

Bioprinted 3D Primary Liver Tissues Allow Assessment of Organ-Level Response to Clinical Drug Induced Toxicity In Vitro

Abstract: Modeling clinically relevant tissue responses using cell models poses a significant challenge for drug development, in particular for drug induced liver injury (DILI). This is mainly because existing liver models lack longevity and tissue-level complexity which limits their utility in predictive toxicology. In this study, we established and characterized novel bioprinted human liver tissue mimetics comprised of patient-derived hepatocytes and non-parenchymal cells in a defined architecture. Scaffold-free assembly of different cell types in an in vivo-relevant architecture allowed for histologic analysis that revealed distinct intercellular hepatocyte junctions, CD31+ endothelial networks, and desmin positive, smooth muscle actin negative quiescent stellates. Unlike what was seen in 2D hepatocyte cultures, the tissues maintained levels of ATP, Albumin as well as expression and drug-induced enzyme activity of Cytochrome P450s over 4 weeks in culture. To assess the ability of the 3D liver cultures to model tissue-level DILI, dose responses of Trovafloxacin, a drug whose hepatotoxic potential could not be assessed by standard pre-clinical models, were compared to the structurally related non-toxic drug Levofloxacin. Trovafloxacin induced significant, dose-dependent toxicity at clinically relevant doses (≤ 4uM). Interestingly, Trovafloxacin toxicity was observed without lipopolysaccharide stimulation and in the absence of resident macrophages in contrast to earlier reports. Together, these results demonstrate that 3D bioprinted liver tissues can both effectively model DILI and distinguish between highly related compounds with differential profile. Thus, the combination of patient-derived primary cells with bioprinting technology here for the first time demonstrates superior performance in terms of mimicking human drug response in a known target organ at the tissue level.

A great interview with Dr. Presnell and the 3D Models 2017 Symposium is located here:

Please click here for Web based and PDF version of interview

Some highlights of the interview include

  • Exciting advances in field showing we can model complex tissue-level disease-state phenotypes that develop in response to chronic long term injury or exposure
  • Sees the field developing a means to converge both the biology and physiology of tissues, namely modeling the connectivity between tissues such as fluid flow
  • Future work will need to be dedicated to develop comprehensive analytics for 3D tissue analysis. As she states “we are very conditioned to get information in a simple way from biochemical readouts in two dimension, monocellular systems”  however how we address the complexity of various cellular responses in a 3D multicellular environment will be pertinent.
  • Additional challenges include the scalability of such systems and making such system accessible in a larger way
  1. Shrike Zhang, Brigham and Women’s Hospital, Harvard Medical School and Harvard-MIT Division of Health Sciences and Technology

Dr. Zhang currently holds an Assistant Professor position at Harvard Medical School and is an Associate Bioengineer at Brigham and Women’s Hospital. His research interests include organ-on-a-chip, 3D bioprinting, biomaterials, regenerative engineering, biomedical imaging, biosensing, nanomedicine, and developmental biology. His scientific contributions have been recognized by >40 international, national, and regional awards. He has been invited to deliver >70 lectures worldwide, and has served as reviewer for >400 manuscripts for >30 journals. He is serving as Editor-in-Chief for Microphysiological Systems, and Associate Editor for Bio-Design and Manufacturing. He is also on Editorial Board of BioprintingHeliyonBMC Materials, and Essays in Biochemistry, and on Advisory Panel of Nanotechnology.

Some relevant references from Dr. Zhang

Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform.

Skardal A, Murphy SV, Devarasetty M, Mead I, Kang HW, Seol YJ, Shrike Zhang Y, Shin SR, Zhao L, Aleman J, Hall AR, Shupe TD, Kleensang A, Dokmeci MR, Jin Lee S, Jackson JD, Yoo JJ, Hartung T, Khademhosseini A, Soker S, Bishop CE, Atala A.

Sci Rep. 2017 Aug 18;7(1):8837. doi: 10.1038/s41598-017-08879-x.

 

Reconstruction of Large-scale Defects with a Novel Hybrid Scaffold Made from Poly(L-lactic acid)/Nanohydroxyapatite/Alendronate-loaded Chitosan Microsphere: in vitro and in vivo Studies.

Wu H, Lei P, Liu G, Shrike Zhang Y, Yang J, Zhang L, Xie J, Niu W, Liu H, Ruan J, Hu Y, Zhang C.

Sci Rep. 2017 Mar 23;7(1):359. doi: 10.1038/s41598-017-00506-z.

 

 

A liver-on-a-chip platform with bioprinted hepatic spheroids.

Bhise NS, Manoharan V, Massa S, Tamayol A, Ghaderi M, Miscuglio M, Lang Q, Shrike Zhang Y, Shin SR, Calzone G, Annabi N, Shupe TD, Bishop CE, Atala A, Dokmeci MR, Khademhosseini A.

Biofabrication. 2016 Jan 12;8(1):014101. doi: 10.1088/1758-5090/8/1/014101.

 

Marc Ferrer, National Center for Advancing Translational Sciences, NIH

Marc Ferrer is a team leader in the NCATS Chemical Genomics Center, which was part of the National Human Genome Research Institute when Ferrer began working there in 2010. He has extensive experience in drug discovery, both in the pharmaceutical industry and academic research. Before joining NIH, he was director of assay development and screening at Merck Research Laboratories. For 10 years at Merck, Ferrer led the development of assays for high-throughput screening of small molecules and small interfering RNA (siRNA) to support programs for lead and target identification across all disease areas.

At NCATS, Ferrer leads the implementation of probe development programs, discovery of drug combinations and development of innovative assay paradigms for more effective drug discovery. He advises collaborators on strategies for discovering small molecule therapeutics, including assays for screening and lead identification and optimization. Ferrer has experience implementing high-throughput screens for a broad range of disease areas with a wide array of assay technologies. He has led and managed highly productive teams by setting clear research strategies and goals and by establishing effective collaborations between scientists from diverse disciplines within industry, academia and technology providers.

Ferrer has a Ph.D. in biological chemistry from the University of Minnesota, Twin Cities, and completed postdoctoral training at Harvard University’s Department of Molecular and Cellular Biology. He received a B.Sc. degree in organic chemistry from the University of Barcelona in Spain.

 

Some relevant references for Dr. Ferrer

Fully 3D Bioprinted Skin Equivalent Constructs with Validated Morphology and Barrier Function.

Derr K, Zou J, Luo K, Song MJ, Sittampalam GS, Zhou C, Michael S, Ferrer M, Derr P.

Tissue Eng Part C Methods. 2019 Apr 22. doi: 10.1089/ten.TEC.2018.0318. [Epub ahead of print]

 

Determination of the Elasticity Modulus of 3D-Printed Octet-Truss Structures for Use in Porous Prosthesis Implants.

Bagheri A, Buj-Corral I, Ferrer M, Pastor MM, Roure F.

Materials (Basel). 2018 Nov 29;11(12). pii: E2420. doi: 10.3390/ma11122420.

 

Mutation Profiles in Glioblastoma 3D Oncospheres Modulate Drug Efficacy.

Wilson KM, Mathews-Griner LA, Williamson T, Guha R, Chen L, Shinn P, McKnight C, Michael S, Klumpp-Thomas C, Binder ZA, Ferrer M, Gallia GL, Thomas CJ, Riggins GJ.

SLAS Technol. 2019 Feb;24(1):28-40. doi: 10.1177/2472630318803749. Epub 2018 Oct 5.

 

A high-throughput imaging and nuclear segmentation analysis protocol for cleared 3D culture models.

Boutin ME, Voss TC, Titus SA, Cruz-Gutierrez K, Michael S, Ferrer M.

Sci Rep. 2018 Jul 24;8(1):11135. doi: 10.1038/s41598-018-29169-0.

A High-Throughput Screening Model of the Tumor Microenvironment for Ovarian Cancer Cell Growth.

Lal-Nag M, McGee L, Guha R, Lengyel E, Kenny HA, Ferrer M.

SLAS Discov. 2017 Jun;22(5):494-506. doi: 10.1177/2472555216687082. Epub 2017 Jan 31.

 

Exploring Drug Dosing Regimens In Vitro Using Real-Time 3D Spheroid Tumor Growth Assays.

Lal-Nag M, McGee L, Titus SA, Brimacombe K, Michael S, Sittampalam G, Ferrer M.

SLAS Discov. 2017 Jun;22(5):537-546. doi: 10.1177/2472555217698818. Epub 2017 Mar 15.

 

RNAi High-Throughput Screening of Single- and Multi-Cell-Type Tumor Spheroids: A Comprehensive Analysis in Two and Three Dimensions.

Fu J, Fernandez D, Ferrer M, Titus SA, Buehler E, Lal-Nag MA.

SLAS Discov. 2017 Jun;22(5):525-536. doi: 10.1177/2472555217696796. Epub 2017 Mar 9.

 

Other Articles on 3D Bioprinting on this Open Access Journal include:

Global Technology Conferences on 3D BioPrinting 2015 – 2016

3D Medical BioPrinting Technology Reporting by Irina Robu, PhD – a forthcoming Article in “Medical 3D BioPrinting – The Revolution in Medicine, Technologies for Patient-centered Medicine: From R&D in Biologics to New Medical Devices”

Bio-Inks and 3D BioPrinting

New Scaffold-Free 3D Bioprinting Method Available to Researchers

Gene Editing for Gene Therapies with 3D BioPrinting

 

Read Full Post »


Lesson 5 Cell Signaling And Motility: Cytoskeleton & Actin: Curations and Articles of reference as supplemental information: #TUBiol3373

Curator: Stephen J. Williams, Ph.D.

Cell motility or migration is an essential cellular process for a variety of biological events. In embryonic development, cells migrate to appropriate locations for the morphogenesis of tissues and organs. Cells need to migrate to heal the wound in repairing damaged tissue. Vascular endothelial cells (ECs) migrate to form new capillaries during angiogenesis. White blood cells migrate to the sites of inflammation to kill bacteria. Cancer cell metastasis involves their migration through the blood vessel wall to invade surrounding tissues.

Please Click on the Following Powerpoint Presentation for Lesson 4 on the Cytoskeleton, Actin, and Filaments

CLICK ON LINK BELOW

cell signaling 5 lesson

This post will be updated with further information when we get into Lesson 6 and complete our discussion on the Cytoskeleton

Please see the following articles on Actin and the Cytoskeleton in Cellular Signaling

Role of Calcium, the Actin Skeleton, and Lipid Structures in Signaling and Cell Motility

This article, constitutes a broad, but not complete review of the emerging discoveries of the critical role of calcium signaling on cell motility and, by extension, embryonic development, cancer metastasis, changes in vascular compliance at the junction between the endothelium and the underlying interstitial layer.  The effect of calcium signaling on the heart in arrhtmogenesis and heart failure will be a third in this series, while the binding of calcium to troponin C in the synchronous contraction of the myocardium had been discussed by Dr. Lev-Ari in Part I.

Universal MOTIFs essential to skeletal muscle, smooth muscle, cardiac syncytial muscle, endothelium, neovascularization, atherosclerosis and hypertension, cell division, embryogenesis, and cancer metastasis. The discussion will be presented in several parts:
1.  Biochemical and signaling cascades in cell motility
2.  Extracellular matrix and cell-ECM adhesions
3.  Actin dynamics in cell-cell adhesion
4.  Effect of intracellular Ca++ action on cell motility
5.  Regulation of the cytoskeleton
6.  Role of thymosin in actin-sequestration
7.  T-lymphocyte signaling and the actin cytoskeleton

 

Identification of Biomarkers that are Related to the Actin Cytoskeleton

In this article the Dr. Larry Bernstein covers two types of biomarker on the function of actin in cytoskeleton mobility in situ.

  • First, is an application in developing the actin or other component, for a biotarget and then, to be able to follow it as

(a) a biomarker either for diagnosis, or

(b) for the potential treatment prediction of disease free survival.

  • Second, is mostly in the context of MI, for which there is an abundance of work to reference, and a substantial body of knowledge about

(a) treatment and long term effects of diet, exercise, and

(b) underlying effects of therapeutic drugs.

Microtubule-Associated Protein Assembled on Polymerized Microtubules

(This article has a great 3D visualization of a microtuble structure as well as description of genetic diseases which result from mutations in tubulin and effects on intracellular trafficking of proteins.

A latticework of tiny tubes called microtubules gives your cells their shape and also acts like a railroad track that essential proteins travel on. But if there is a glitch in the connection between train and track, diseases can occur. In the November 24, 2015 issue of PNAS, Tatyana Polenova, Ph.D., Professor of Chemistry and Biochemistry, and her team at the University of Delaware (UD), together with John C. Williams, Ph.D., Associate Professor at the Beckman Research Institute of City of Hope in Duarte, California, reveal for the first time — atom by atom — the structure of a protein bound to a microtubule. The protein of focus, CAP-Gly, short for “cytoskeleton-associated protein-glycine-rich domains,” is a component of dynactin, which binds with the motor protein dynein to move cargoes of essential proteins along the microtubule tracks. Mutations in CAP-Gly have been linked to such neurological diseases and disorders as Perry syndrome and distal spinal bulbar muscular dystrophy.

 

Read Full Post »


3D Print Shape-Shifting Smart Gel

Reporter: Irina Robu, PhD

Hydrogel scaffolds that mimic the native extracellular matrix (ECM) environment play a crucial role in tissue engineering and they are ubiquitously in our lives, including in contact lenses, diapers and the human body.

Researchers at Rutgers have invented a printing method for a smart gel that can be used to create materials for transporting small molecules like drugs to human organs. The approach includes printing a 3D object with a hydrogel that changes shape over time when temperature changes. The potential of the smart hydrogels could be to create a new are of soft robotics and enable new applications in flexible sensors and actuators, biomedical devices and platforms or scaffolds for cells to grow.

Rutgers engineers operated with a hydrogel that has been in use for decades in devices that generate motion and biomedical applications such as scaffolds for cells to grow on. The engineers learned how to precisely control hydrogel growth and shrinkage. In temperatures below 32 degrees Celsius, the hydrogel absorbs more water and swells in size. When temperatures exceed 32 degrees Celsius, the hydrogel begins to expel water and shrinks, the study showed.

According to the Rutgers engineers, the objects they can produce with the hydrogel range from the width of a human hair to several millimeters long. The engineers also showed that they can grow one area of a 3D-printed object by changing temperatures.

Source

https://news.rutgers.edu/rutgers-engineers-3d-print-shape-shifting-smart-gel/20180131

Read Full Post »


New Liver Tissue Implants Showing Potential

Reporter: Irina Robu,PhD

To develop new tissues, researchers at the Medical Research Council Center for Regenerative Medicine at the University of Edinburgh have found that stem cells transformed into 3-D liver tissue can support liver function when implanted into the mice suffering with a liver disease.

The scientists stimulated human embryonic stem cells and induced pluripotent stem cells to mature pluripotent stem cells into liver cells, hepatocytes. Hepatocytes are the chief functional cells of the liver and perform an astonishing number of metabolic, endocrine and secretory functions. Hepatocytes are exceptionally active in synthesis of protein and lipids for export. The cells are grown in 3-D conditions as small spheres for over a year. However, keeping the stem cells as liver cells for a long time is very difficult, because the viability of hepatocytes decreases in-vitro conditions.

Succeeding the discovery, the team up with materials chemists and engineers to detect appropriate polymers that have already been approved for human use that can be developed into 3-D scaffolds. The best material to use a biodegradable polyester, called polycaprolactone (PCL).PCL is degraded by hydrolysis of its ester linkages in physiological conditions (such as in the human body) and it is especially interesting for the preparation of long term implantable devices, owing to its degradation which is even slower than that of polylactide. They spun the PCL into microscopic fibers that formed a scaffold one centimeter square and a few millimeters thick.

At the same time, hepatocytes derived from embryonic cells had been grown in culture for 20 days and were then loaded onto the scaffolds and implanted under the skin of mice.Blood vessels successfully grew on the scaffolds with the mice having human liver proteins in their blood, demonstrating that the tissue had successfully integrated with the circulatory system. The scaffolds were not rejected by the animals’ immune systems.

The scientists tested the liver tissue scaffolds in mice with tyrosinaemia,a potentially fatal genetic disorder where the enzymes in the liver that break down the amino acid tyrosine are defective, resulting in the accumulation of toxic metabolic products. The implanted liver tissue aided the mice with tyrosinaemia to break down tyrosine and the mice finally lost less weight, had less buildup of toxins in the blood and exhibited fewer signs of liver damage than the control group that received empty scaffolds.

According to Rob Buckle, PhD, Chief Science Officer at the MRC, “Showing that such stem cell-derived tissue is able to reproduce aspects of liver function in the lab also offers real potential to improve the testing of new drugs where more accurate models of human tissue are needed”. It is believed that the discovery could be the next step towards harnessing stem cell reprogramming technologies to provide renewable supplies of liver tissue products for transplantation.

SOURCE

https://www.rdmag.com/article/2018/08/new-liver-tissue-implants-showing-promise?et_cid=6438323

 

Read Full Post »


Skin Regeneration Therapy One of First Tissue Engineering Products Evaluated by FDA

Reporter: Irina Robu, PhD

Under the provisions of 21st Century Cures Act the U.S. Food and Drug Administration approved StrataGraft regenerative skin tissue as the first product designated as a Regenerative Medicine Advanced Therapy (RMAT) produced by Mallinckrodt Pharmaceuticals. StrataGraft is shaped using unmodified NIKS cells grown under standard operating procedures since the continuous NIKS skin cell line has been thoroughly characterized. StrataGraft products are virus-free, non-tumorigenic, and offer batch-to-batch genetic consistency.

Passed in 2016, the 21st Century act allows FDA to grant accelerated review approval to products which meet an RMAT designation. The RMAT designation includes debates of whether priority review and/or accelerated approval would be suitable based on intermediate endpoints that would be reasonably likely to predict long-term clinical benefit.

The designation includes products

  • defined as a cell therapy, therapeutic tissue engineering product, human cell and tissue product, or any combination product using such therapies or products;
  • intended to treat, modify, reverse, or cure a serious or life-threatening disease or condition; and
  • preliminary clinical evidence indicates the drug has the potential to address unmet medical needs for such disease or condition.

According to Steven Romano, M.D., Chief Scientific Officer and Executive Vice President, Mallinckrodt “We are very pleased the FDA has determined StrataGraft meets the criteria for RMAT designation, as this offers the possibility of priority review and/or accelerated approval. The company tissue-based therapy is under evaluation in a Phase 3 trial to assess its efficacy and safety in the advancement of autologous skin regeneration of complex skin defects due to thermal burns that contain intact dermal elements.

SOURCE

https://www.rdmag.com/news/2017/07/skin-regeneration-therapy-one-first-be-evaluated-fda

Read Full Post »


3-D Printed Ovaries Produce Healthy Offspring

Reporter: Irina Robu, PhD

 

Each year about 120,000 organs are transplanted from one human being to another and most of the time is a living volunteer. But lack of suitable donors, predominantly means the supply of such organs is inadequate. Countless people consequently die waiting for a transplant which has led researchers to study the question of how to build organs from scratch.

One promising approach is to print them, but “bioprinting” remains largely experimental. Nevertheless, bioprinted tissue is before now being sold for drug testing, and the first transplantable tissues are anticipated to be ready for use in a few years’ time. The first 3D printed organ includes bioprosthetic ovaries which are constructed of 3D printed scaffolds that have immature eggs and have been successful in boosting hormone production and restoring fertility was developed by Teresa K. Woodruff, a reproductive scientist and director of the Women’s Health Research Institute at Feinberg School of Medicine, at Northwestern University, in Illinois.

What sets apart these bioprosthetic ovaries is the architecture of the scaffold. The material is made of gelatin made from broken-down collagen that is safe to humans which is self-supporting and can lead to building multiple layers.

The 3-D printed “scaffold” or “skeleton” is implanted into a female and its pores can be used to optimize how follicles, or immature eggs, get wedged within the scaffold. The scaffold supports the survival of the mouse’s immature egg cells and the cells that produce hormones to boost production. The open construction permits room for the egg cells to mature and ovulate, blood vessels to form within the implant enabling the hormones to circulate and trigger lactation after giving birth. The purpose of this scaffold is to recapitulate how an ovary would function.
The scientists’ only objective for developing the bioprosthetic ovaries was to help reestablish fertility and hormone production in women who have suffered adult cancer treatments and now have bigger risks of infertility and hormone-based developmental issues.

 

SOURCES

Printed human body parts could soon be available for transplant
https://www.economist.com/news/science-and-technology/21715638-how-build-organs-scratch

 

3D printed ovaries produce healthy offspring giving hope to infertile women

http://www.telegraph.co.uk/science/2017/05/16/3d-printed-ovaries-produce-healthy-offspring-giving-hope-infertile/

 

Brave new world: 3D-printed ovaries produce healthy offspring

http://www.naturalnews.com/2017-05-27-brave-new-world-3-d-printed-ovaries-produce-healthy-offspring.html

 

3-D-printed scaffolds restore ovary function in infertile mice

http://www.medicalnewstoday.com/articles/317485.php

 

Our Grandkids May Be Born From 3D-Printed Ovaries

http://gizmodo.com/these-mice-gave-birth-using-3d-printed-ovaries-1795237820

 

Read Full Post »


Pharmacotyping Pancreatic Cancer Patients in the Future: Two Approaches – ORGANOIDS by David Tuveson and Hans Clevers and/or MICRODOSING Devices by Robert Langer

Curator: Aviva Lev-Ari, PhD, RN

 

UPDATED on 4/5/2018

Featured video: Magical Bob

A fascination with magic leads Institute Professor Robert Langer to solve world problems using the marvels of chemical engineering.Watch Video

MIT News Office
March 27, 2018

http://news.mit.edu/2018/featured-video-magical-bob-langer-0327

 

This curation provides the resources for edification on Pharmacotyping Pancreatic Cancer Patients in the Future

 

  • Professor Hans Clevers at Clevers Group, Hubrecht University

https://www.hubrecht.eu/onderzoekers/clevers-group/

  • Prof. Robert Langer, MIT

http://web.mit.edu/langerlab/langer.html

Langer’s articles on Drug Delivery

https://scholar.google.com/scholar?q=Langer+on+Drug+Delivery&hl=en&as_sdt=0&as_vis=1&oi=scholart&sa=X&ved=0ahUKEwixsd2w88TTAhVG4iYKHRaIAvEQgQMIJDAA

organoids, which I know you’re pretty involved in with Hans Clevers. What are your plans for organoids of pancreatic cancer?

Organoids are a really terrific model of a patient’s tumour that you generate from tissue that is either removed at the time of surgery or when they get a small needle biopsy. Culturing the tissue and observing an outgrowth of it is usually successful and when you have the cells, you can perform molecular diagnostics of any type. With a patient-derived organoid, you can sequence the exome and the RNA, and you can perform drug testing, which I call ‘pharmacotyping’, where you’re evaluating compounds that by themselves or in combination show potency against the cells. A major goal of our lab is to work towards being able to use organoids to choose therapies that will work for an individual patient – personalized medicine.

Organoids could be made moot by implantable microdevices for drug delivery into tumors, developed by Bob Langer. These devices are the size of a pencil lead and contain reservoirs that release microdoses of different drugs; the device can be injected into the tumor to deliver drugs, and can then be carefully dissected out and analyzed to gain insight into the sensitivity of cancer cells to different anticancer agents. Bob and I are kind of engaged in a friendly contest to see whether organoids or microdosing devices are going to come out on top. I suspect that both approaches will be important for pharmacotyping cancer patients in the future.

From the science side, we use organoids to discover things about pancreatic cancer. They’re great models, probably the best that I know of to rapidly discover new things about cancer because you can grow normal tissue as well as malignant tissue. So, from the same patient you can do a comparison easily to find out what’s different in the tumor. Organoids are crazy interesting, and when I see other people in the pancreatic cancer field I tell them, you should stop what you’re doing and work on these because it’s the faster way of studying this disease.

SOURCE

Other related articles on Pancreatic Cancer and Drug Delivery published in this Open Access Online Scientific Journal include the following:

 

Pancreatic Cancer: Articles of Note @PharmaceuticalIntelligence.com

Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/05/26/pancreatic-cancer-articles-of-note-pharmaceuticalintelligence-com/

Keyword Search: “Pancreatic Cancer” – 275 Article Titles

https://pharmaceuticalintelligence.wordpress.com/wp-admin/edit.php?s=Pancreatic+Cancer&post_status=all&post_type=post&action=-1&m=0&cat=0&paged=1&action2=-1

Keyword Search: Drug Delivery: 542 Articles Titles

https://pharmaceuticalintelligence.wordpress.com/wp-admin/edit.php?s=Drug+Delivery&post_status=all&post_type=post&action=-1&m=0&cat=0&paged=1&action2=-1

Keyword Search: Personalized Medicine: 597 Article Titles

https://pharmaceuticalintelligence.wordpress.com/wp-admin/edit.php?s=Personalized+Medicine&post_status=all&post_type=post&action=-1&m=0&cat=0&paged=1&action2=-1

  • Cancer Biology & Genomics for Disease Diagnosis, on Amazon since 8/11/2015

http://www.amazon.com/dp/B013RVYR2K

 

 

VOLUME TWO WILL BE AVAILABLE ON AMAZON.COM ON MAY 1, 2017

Read Full Post »


cvd-series-a-volume-iv-cover

Series A: e-Books on Cardiovascular Diseases

Series A Content Consultant: Justin D Pearlman, MD, PhD, FACC

VOLUME FOUR

Regenerative and Translational Medicine

The Therapeutic Promise for

Cardiovascular Diseases

  • on Amazon since 12/26/2015

http://www.amazon.com/dp/B019UM909A

 

by  

Larry H Bernstein, MD, FCAP, Senior Editor, Author and Curator

and

Aviva Lev-Ari, PhD, RN, Editor and Curator

 

Part One:

Cardiovascular Diseases,Translational Medicine (TM) and Post TM

Introduction to Part 1: Cardiovascular Diseases,Translational Medicine (TM) and Post TM

Chapter 1: Translational Medicine Concepts

1.0 Post-Translational Modification of Proteins

1.1 Identifying Translational Science within the Triangle of Biomedicine

1.2 State of Cardiology on Wall Stress, Ventricular Workload and Myocardial Contractile Reserve: Aspects of Translational Medicine (TM)

1.3 Risk of Bias in Translational Science

1.4 Biosimilars: Intellectual Property Creation and Protection by Pioneer and by Biosimilar Manufacturers

Chapter 2: Causes and the Etiology of Cardiovascular Diseases: Translational Approaches for Cardiothoracic Medicine

2.1 Genomics

2.1.1 Genomics-Based Classification

2.1.2  Targeting Untargetable Proto-Oncogenes

2.1.3  Searchable Genome for Drug Development

2.1.4 Zebrafish Study Tool

2.1.5  International Human Genome Sequencing Consortium (2004) Finishing the euchromatic sequence of the human genome.

2.2  Proteomics

2.2.1 The Role of Tight Junction Proteins in Water and Electrolyte Transport

2.2.2 Selective Ion Conduction

2.2.3 Translational Research on the Mechanism of Water and Electrolyte Movements into the Cell

2.2.4 Inhibition of the Cardiomyocyte-Specific Kinase TNNI3K ­ Oxidative Stress

2.2.5 Oxidized Calcium Calmodulin Kinase and Atrial Fibrillation

2.2.6 S-Nitrosylation in Cardiac Ischemia and Acute Coronary Syndrome

2.2.7 Acetylation and Deacetylation

2.2.8 Nitric Oxide Synthase Inhibitors (NOS-I) 

2.3 Cardiac and Vascular Signaling

2.3.1 The Centrality of Ca(2+) Signaling and Cytoskeleton Involving Calmodulin Kinases and Ryanodine Receptors in Cardiac Failure, Arterial Smooth Muscle, Post-ischemic Arrhythmia, Similarities and Differences, and Pharmaceutical Targets

2.3.2 Leptin Signaling in Mediating the Cardiac Hypertrophy associated with Obesity

2.3.3 Triggering of Plaque Disruption and Arterial Thrombosis

2.3.4 Sensors and Signaling in Oxidative Stress

2.3.5 Resistance to Receptor of Tyrosine Kinase

2.3.6  S-nitrosylation signaling in cell biology.

2.4  Platelet Endothelial Interaction

2.4.1 Platelets in Translational Research ­ 1

2.4.2 Platelets in Translational Research ­ 2: Discovery of Potential Anti-platelet Targets

2.4.3 The Final Considerations of the Role of Platelets and Platelet Endothelial Reactions in Atherosclerosis and Novel Treatments

2.4.4 Endothelial Function and Cardiovascular Disease
Larry H Bernstein, MD, FCAP

2.5 Post-translational modifications (PTMs)

2.5.1 Post-Translational Modifications

2.5.2.  Analysis of S-nitrosylated Proteins

2.5.3  Mechanisms of Disease: Signal Transduction: Akt Phosphorylates HK-II at Thr-473 and Increases Mitochondrial HK-II Association to Protect Cardiomyocytes

2.5.4  Acetylation and Deacetylation of non-Histone Proteins

2.5.5  Study Finds Low Methylation Regions Prone to Structural Mutation

2.6 Epigenetics and lncRNAs

2.6.1 The Magic of the Pandora’s Box : Epigenetics and Stemness with Long non-coding RNAs (lincRNA)

2.6.2 The SILENCE of the Lambs” Introducing The Power of Uncoded RNA

2.6.3 Long Noncoding RNA Network regulates PTEN Transcription

2.6.4 How mobile elements in “Junk” DNA promote cancer. Part 1: Transposon-mediated tumorigenesis.

2.6.5 Transposon-mediated Gene Therapy improves Pulmonary Hemodynamics and attenuates Right Ventricular Hypertrophy: eNOS gene therapy reduces Pulmonary vascular remodeling and Arterial wall hyperplasia

2.6.6 Junk DNA codes for valuable miRNAs: non-coding DNA controls Diabetes

2.6.7 Targeted Nucleases

2.6.8 Late Onset of Alzheimer’s Disease and One-carbon Metabolism
Dr. Sudipta Saha

2.6.9 Amyloidosis with Cardiomyopathy

2.6.10 Long non-coding RNAs: Molecular Regulators of Cell Fate

2.7 Metabolomics

2.7.1 Expanding the Genetic Alphabet and Linking the Genome to the Metabolome

2.7.2 How Methionine Imbalance with Sulfur-Insufficiency Leads to Hyperhomocysteinemia

2.7.3 A Second Look at the Transthyretin Nutrition Inflammatory Conundrum

2.7.4 Transthyretin and Lean Body Mass in Stable and Stressed State

2.7.5 Hyperhomocysteinemia interaction with Protein C and Increased Thrombotic Risk

2.7.6 Telling NO to Cardiac Risk

2.8 Mitochondria and Oxidative Stress

2.8.1 Reversal of Cardiac Mitochondrial Dysfunction

2.8.2 Calcium Signaling, Cardiac Mitochondria and Metabolic Syndrome

2.8.3. Mitochondrial Dysfunction and Cardiac Disorders

2.8.4 Mitochondrial Metabolism and Cardiac Function

2.8.5 Mitochondria and Cardiovascular Disease: A Tribute to Richard Bing

2.8.6 MIT Scientists on Proteomics: All the Proteins in the Mitochondrial Matrix Identified

2.8.7 Mitochondrial Dynamics and Cardiovascular Diseases

2.8.8 Mitochondrial Damage and Repair under Oxidative Stress

2.8.9 Nitric Oxide has a Ubiquitous Role in the Regulation of Glycolysis -with a Concomitant Influence on Mitochondrial Function

2.8.10 Mitochondrial Mechanisms of Disease in Diabetes Mellitus

2.8.11 Mitochondria Dysfunction and Cardiovascular Disease – Mitochondria: More than just the “Powerhouse of the Cell”

Chapter 3: Risks and Biomarkers for Diagnosis and Prognosis in Translational Cardiothoracic Medicine

3.1 Biomarkers. Diagnosis and Management: Biomarkers. Present and Future.

3.2 Landscape of Cardiac Biomarkers for Improved Clinical Utilization

3.3 Achieving Automation in Serology: A New Frontier in Best

3.4 Accurate Identification and Treatment of Emergent Cardiac Events

3.5 Prognostic Marker Importance of Troponin I in Acute Decompensated Heart Failure (ADHF)

3.6 High-Sensitivity Cardiac Troponin Assays Preparing the United States for High-Sensitivity Cardiac Troponin Assays

3.7 Voices from the Cleveland Clinic On Circulating apoA1: A Biomarker for a Proatherogenic Process in the Artery Wall

3.8 Triggering of Plaque Disruption and Arterial Thrombosis

3.9 Relationship between Adiposity and High Fructose Intake Revealed

3.10 The Cardio-Renal Syndrome (CRS) in Heart Failure (HF)

3.11 Aneuploidy and Carcinogenesis

3.12 “Sudden Cardiac Death,” SudD is in Ferrer inCode’s Suite of Cardiovascular Genetic Tests to be Commercialized in the US

Chapter 4: Therapeutic Aspects in Translational Cardiothoracic Medicine

4.1 Molecular and Cellular Cardiology

4.1.1 αllbβ3 Antagonists As An Example of Translational Medicine Therapeutics

4.1.2 Three-Dimensional Fibroblast Matrix Improves Left Ventricular Function post MI

4.1.3 Biomaterials Technology: Models of Tissue Engineering for Reperfusion and Implantable Devices for Revascularization

4.1.4 CELLWAVE Randomized Clinical Trial: Modest improvement in LVEF at 4 months ­ “Shock wave­facilitated intracoronary administration of BMCs” vs “Shock wave treatment alone”

4.1.5 Prostacyclin and Nitric Oxide: Adventures in vascular biology –  a tale of two mediators

4.1.6 Cardiac Contractility & Myocardium Performance: Ventricular Arrhythmiasand Non-ischemic Heart Failure – Therapeutic Implications for Cardiomyocyte Ryanopathy

4.1.7 Publications on Heart Failure by Prof. William Gregory Stevenson, M.D., BWH

4.2 Interventional Cardiology and Cardiac Surgery – Mechanical Circulatory Support and Vascular Repair

4.2.1 Mechanical Circulatory Support System, LVAD, RVAD, Biventricular as a Bridge to Heart Transplantation or as “Destination Therapy”: Options for Patients in Advanced Heart Failure

4.2.2 Heart Transplantation: NHLBI’s Ten Year Strategic Research Plan to Achieving Evidence-based Outcomes

4.2.3 Improved Results for Treatment of Persistent type 2 Endoleak after Endovascular Aneurysm Repair: Onyx Glue Embolization

4.2.4 Carotid Endarterectomy (CEA) vs. Carotid Artery Stenting (CAS): Comparison of CMMS high-risk criteria on the Outcomes after Surgery: Analysis of the Society for Vascular Surgery (SVS) Vascular Registry Data

4.2.5 Effect of Hospital Characteristics on Outcomes of Endovascular Repair of Descending Aortic Aneurysms in US Medicare Population

4.2.6 Hypertension and Vascular Compliance: 2013 Thought Frontier – An Arterial Elasticity Focus

4.2.7 Preventive Medicine Philosophy: Excercise vs. Drug, IF More of the First THEN Less of the Second

4.2.8 Cardio-oncology and Onco-Cardiology Programs: Treatments for Cancer Patients with a History of Cardiovascular Disease

Summary to Part One

 

Part Two:

Cardiovascular Diseases and Regenerative Medicine

Introduction to Part Two

Chapter 1: Stem Cells in Cardiovascular Diseases

1.1 Regeneration: Cardiac System (cardiomyogenesis) and Vasculature (angiogenesis)

1.2 Notable Contributions to Regenerative Cardiology by Richard T. Lee (Lee’s Lab, Part I)

1.3 Contributions to Cardiomyocyte Interactions and Signaling (Lee’s Lab, Part II)

1.4 Jmjd3 and Cardiovascular Differentiation of Embryonic Stem Cells

1.5 Stem Cell Therapy for Coronary Artery Disease (CAD)

1.6 Intracoronary Transplantation of Progenitor Cells after Acute MI

1.7 Progenitor Cell Transplant for MI and Cardiogenesis (Part 1)

1.8 Source of Stem Cells to Ameliorate Damage Myocardium (Part 2)

1.9 Neoangiogenic Effect of Grafting an Acellular 3-Dimensional Collagen Scaffold Onto Myocardium (Part 3)

1.10 Transplantation of Modified Human Adipose Derived Stromal Cells Expressing VEGF165

1.11 Three-Dimensional Fibroblast Matrix Improves Left Ventricular Function Post MI

Chapter 2: Regenerative Cell and Molecular Biology

2.1 Circulating Endothelial Progenitors Cells (cEPCs) as Biomarkers

2.2 Stem Cell Research — The Frontier at the Technion in Israel

2.3 Blood vessel-generating stem cells discovered

2.4 Heart Renewal by pre-existing Cardiomyocytes: Source of New Heart Cell Growth Discovered

2.5 The Heart: Vasculature Protection – A Concept-based Pharmacological Therapy including THYMOSIN

2.6 Innovations in Bio instrumentation for Measurement of Circulating Progenetor Endothelial Cells in Human Blood.

2.7 Endothelial Differentiation and Morphogenesis of Cardiac Precursor

Chapter 3: Therapeutics Levels In Molecular Cardiology

3.1 Secrets of Your Cells: Discovering Your Body’s Inner Intelligence (Sounds True, on sale May 1, 2013) by Sondra Barrett

3.2 Human Embryonic-Derived Cardiac Progenitor Cells for Myocardial Repair

3.3 Repair using iPPCs or Stem Cells

3.3.1 Reprogramming cell in Tissue Repair

3.3.2 Heart patients’ skin cells turned into healthy heart muscle cells

3.4 Arteriogenesis and Cardiac Repair: Two Biomaterials – Injectable Thymosin beta4 and Myocardial Matrix Hydrogel 

3.5 Cardiovascular Outcomes: Function of circulating Endothelial Progenitor Cells (cEPCs): Exploring Pharmaco-therapy targeted at Endogenous Augmentation of cEPCs

3.6 Calcium Cycling (ATPase Pump) in Cardiac Gene Therapy: Inhalable Gene Therapy for Pulmonary Arterial Hypertension and Percutaneous Intra-coronary Artery Infusion for Heart Failure: Contributions by Roger J. Hajjar, MD

Chapter 4: Research Proposals for Endogenous Augmentation of circulating Endothelial Progenitor Cells (cEPCs)

4.1 Peroxisome proliferator-activated receptor (PPAR-gamma) Receptors Activation: PPARγ transrepression for Angiogenesis in Cardiovascular Disease and PPARγ transactivation for Treatment of Diabetes

4.2 Clinical Trials Results for Endothelin System: Pathophysiological role in Chronic Heart Failure, Acute Coronary Syndromes and MI – Marker of Disease Severity or Genetic Determination?

4.3 Endothelin Receptors in Cardiovascular Diseases: The Role of eNOS Stimulation

4.4 Inhibition of ET-1, ETA and ETA-ETB, Induction of NO production, stimulation of eNOS and Treatment Regime with PPAR-gamma agonists (TZD): cEPCs Endogenous Augmentation for Cardiovascular Risk Reduction – A Bibliography

4.5 Positioning a Therapeutic Concept for Endogenous Augmentation of cEPCs — Therapeutic Indications for Macrovascular Disease: Coronary, Cerebrovascular and Peripheral

4.6 Endothelial Dysfunction, Diminished Availability of cEPCs, Increasing CVD Risk for Macrovascular Disease – Therapeutic Potential of cEPCs

4.7 Vascular Medicine and Biology: CLASSIFICATION OF FAST ACTING THERAPY FOR PATIENTS AT HIGH RISK FOR MACROVASCULAR EVENTS Macrovascular Disease – Therapeutic Potential of cEPCs

4.8 Cardiovascular Disease (CVD) and the Role of agent alternatives in endothelial Nitric Oxide Synthase (eNOS) Activation and Nitric Oxide Production

4.9 Resident-cell-based Therapy in Human Ischaemic Heart Disease: Evolution in the PROMISE of Thymosin beta4 for Cardiac Repair

4.10 Macrovascular Disease – Therapeutic Potential of cEPCs: Reduction Methods for CV Risk

4.11 Bystolic’s generic Nebivolol – positive effect on circulating Endothelial Proginetor Cells endogenous augmentation

4.12 Heart Vasculature – Regeneration and Protection of Coronary Artery Endothelium and Smooth Muscle: A Concept-based Pharmacological Therapy of a Combination Three Drug Regimen including THYMOSIN

Summary to Part Two

Epilogue to Volume Four

Read Full Post »


BioPrinting Basics

Curator: Larry H. Bernstein, MD, FCAP

 

 

The ABCs of 3D Bioprinting of Living Tissues, Organs   5/06/2016 

(Credit: Ozbolat Lab/Penn State University)
(Credit: Ozbolat Lab/Penn State University)

Although first originated in 2003, the world of bioprinting is still very new and ambiguous. Nevertheless, as the need for organ donation continues to increase worldwide, and organ and tissue shortages prevail, a handful of scientists have started utilizing this cutting-edge science and technology for various areas of regenerative medicine to possibly fill that organ-shortage void.

Among these scientists is Ibrahim Tarik Ozbolat, an associate professor of Engineering Science and Mechanics Department and the Huck Institutes of the Life Sciences at Penn State University, who’s been studying bioprinting and tissue engineering for years.

While Ozbolat is not the first to originate 3D bioprinting research, he’s the first one at Penn State University to spearhead the studies at Ozbolat Lab, Leading Bioprinting Research.

“Tissue engineering is a big need. Regenerative medicine, biofabrication of tissues and organs that can replace the damage or diseases is important,” Ozbolat told R&D Magazine after his seminar presentation at Interphex last week in New York City, titled 3D Bioprinting of Living Tissues & Organs.”

3D bioprinting is the process of creating cell patterns in a confined space using 3D-printing technologies, where cell function and viability are preserved within the printed construct.

Recent progress has allowed 3D printing of biocompatible materials, cells and supporting components into complex 3D functional living tissues. The technology is being applied to regenerative medicine to address the need for tissues and organs suitable for transplantation. Compared with non-biological printing, 3D bioprinting involves additional complexities, such as the choice of materials, cell types, growth and differentiation factors, and technical challenges related to the sensitivities of living cells and the construction of tissues. Addressing these complexities requires the integration of technologies from the fields of engineering, biomaterials science, cell biology, physics and medicine, according to nature.com.

“If we’re able to make organs on demand, that will be highly beneficial to society,” said Ozbolat. “We have the capability to pattern cells, locate them and then make the same thing that exists in the body.”

3D bioprinting of tissues and organs

Sean V Murphy & Anthony Atala
Nature Biotechnology 32,773–785(2014)       doi:10.1038/nbt.2958

 

Additive manufacturing, otherwise known as three-dimensional (3D) printing, is driving major innovations in many areas, such as engineering, manufacturing, art, education and medicine. Recent advances have enabled 3D printing of biocompatible materials, cells and supporting components into complex 3D functional living tissues. 3D bioprinting is being applied to regenerative medicine to address the need for tissues and organs suitable for transplantation. Compared with non-biological printing, 3D bioprinting involves additional complexities, such as the choice of materials, cell types, growth and differentiation factors, and technical challenges related to the sensitivities of living cells and the construction of tissues. Addressing these complexities requires the integration of technologies from the fields of engineering, biomaterials science, cell biology, physics and medicine. 3D bioprinting has already been used for the generation and transplantation of several tissues, including multilayered skin, bone, vascular grafts, tracheal splints, heart tissue and cartilaginous structures. Other applications include developing high-throughput 3D-bioprinted tissue models for research, drug discovery and toxicology.

 

Future Technologies : Bioprinting
Bioprinting

3D printing is increasingly permitting the direct digital manufacture (DDM) of a wide variety of plastic and metal items. While this in itself may trigger a manufacturing revolution, far more startling is the recent development of bioprinters. These artificially construct living tissue by outputting layer-upon-layer of living cells. Currently all bioprinters are experimental. However, in the future, bioprinters could revolutionize medical practice as yet another element of the New Industrial Convergence.

Bioprinters may be constructed in various configurations. However, all bioprinters output cells from a bioprint head that moves left and right, back and forth, and up and down, in order to place the cells exactly where required. Over a period of several hours, this permits an organic object to be built up in a great many very thin layers.

In addition to outputting cells, most bioprinters also output a dissolvable gel to support and protect cells during printing. A possible design for a future bioprinter appears below and in the sidebar, here shown in the final stages of printing out a replacement human heart. Note that you can access larger bioprinter images on the Future Visions page. You may also like to watch my bioprinting video.

bioprinter

 

Bioprinting Pioneers

Several experimental bioprinters have already been built. For example, in 2002 Professor Makoto Nakamura realized that the droplets of ink in a standard inkjet printer are about the same size as human cells. He therefore decided to adapt the technology, and by 2008 had created a working bioprinter that can print out biotubing similar to a blood vessel. In time, Professor Nakamura hopes to be able to print entire replacement human organs ready for transplant. You can learn more about this groundbreaking work here or read this message from Professor Nakamura. The movie below shows in real-time the biofabrication of a section of biotubing using his modified inkjet technology.

 

Another bioprinting pioneer is Organovo. This company was set up by a research group lead by Professor Gabor Forgacs from the University of Missouri, and in March 2008 managed to bioprint functional blood vessels and cardiac tissue using cells obtained from a chicken. Their work relied on a prototype bioprinter with three print heads. The first two of these output cardiac and endothelial cells, while the third dispensed a collagen scaffold — now termed ‘bio-paper’ — to support the cells during printing.

Since 2008, Organovo has worked with a company called Invetech to create a commercial bioprinter called the NovoGen MMX. This is loaded with bioink spheroids that each contain an aggregate of tens of thousands of cells. To create its output, the NovoGen first lays down a single layer of a water-based bio-paper made from collagen, gelatin or other hydrogels. Bioink spheroids are then injected into this water-based material. As illustrated below, more layers are subsequently added to build up the final object. Amazingly, Nature then takes over and the bioink spheroids slowly fuse together. As this occurs, the biopaper dissolves away or is otherwise removed, thereby leaving a final bioprinted body part or tissue.

 

bioprinting stages

As Organovo have demonstrated, using their bioink printing process it is not necessary to print all of the details of an organ with a bioprinter, as once the relevant cells are placed in roughly the right place Nature completes the job. This point is powerfully illustrated by the fact that the cells contained in a bioink spheroid are capable of rearranging themselves after printing. For example, experimental blood vessels have been bioprinted using bioink spheroids comprised of an aggregate mix of endothelial, smooth muscle and fibroblast cells. Once placed in position by the bioprint head, and with no technological intervention, the endothelial cells migrate to the inside of the bioprinted blood vessel, the smooth muscle cells move to the middle, and the fibroblasts migrate to the outside.

In more complex bioprinted materials, intricate capillaries and other internal structures also naturally form after printing has taken place. The process may sound almost magical. However, as Professor Forgacs explains, it is no different to the cells in an embryo knowing how to configure into complicated organs. Nature has been evolving this amazing capability for millions of years. Once in the right places, appropriate cell types somehow just know what to do.

In December 2010, Organovo create the first blood vessels to be bioprinted using cells cultured from a single person. The company has also successfully implanted bioprinted nerve grafts into rats, and anticipates human trials of bioprinted tissues by 2015. However, it also expects that the first commercial application of its bioprinters will be to produce simple human tissue structures for toxicology tests. These will enable medical researchers to test drugs on bioprinted models of the liver and other organs, thereby reducing the need for animal tests.

In time, and once human trials are complete, Organovo hopes that its bioprinters will be used to produce blood vessel grafts for use in heart bypass surgery. The intention is then to develop a wider range of tissue-on-demand and organs-on-demand technologies. To this end, researchers are now working on tiny mechanical devices that can artificially exercise and hence strengthen bioprinted muscle tissue before it is implanted into a patient.

Organovo anticipates that its first artificial human organ will be a kidney. This is because, in functional terms, kidneys are one of the more straight-forward parts of the body. The first bioprinted kidney may in fact not even need to look just like its natural counterpart or duplicate all of its features. Rather, it will simply have to be capable of cleaning waste products from the blood. You can read more about the work of Organovoand Professor Forgac’s in this article from Nature.

Regenerative Scaffolds and Bones

A further research team with the long-term goal of producing human organs-on-demand has created the Envisiontec Bioplotter. Like Organovo’s NovoGen MMX, this outputs bio-ink ’tissue spheroids’ and supportive scaffold materials including fibrin and collagen hydrogels. But in addition, the Envisontech can also print a wider range of biomaterials. These include biodegradable polymers and ceramics that may be used to support and help form artificial organs, and which may even be used as bioprinting substitutes for bone.

Talking of bone, a team lead by Jeremy Mao at the Tissue Engineering and Regenerative Medicine Lab at Columbia University is working on the application of bioprinting in dental and bone repairs. Already, a bioprinted, mesh-like 3D scaffold in the shape of an incisor has been implanted into the jaw bone of a rat. This featured tiny, interconnecting microchannels that contained ‘stem cell-recruiting substances’. In just nine weeks after implantation, these triggered the growth of fresh periodontal ligaments and newly formed alveolar bone. In time, this research may enable people to be fitted with living, bioprinted teeth, or else scaffolds that will cause the body to grow new teeth all by itself. You can read more about this development in this article from The Engineer.

In another experient, Mao’s team implanted bioprinted scaffolds in the place of the hip bones of several rabbits. Again these were infused with growth factors. As reported inThe Lancet, over a four month period the rabbits all grew new and fully-functional joints around the mesh. Some even began to walk and otherwise place weight on their new joints only a few weeks after surgery. Sometime next decade, human patients may therefore be fitted with bioprinted scaffolds that will trigger the grown of replacement hip and other bones. In a similar development, a team from Washington State University have also recently reported on four years of work using 3D printers to create a bone-like material that may in the future be used to repair injuries to human bones.

In Situ Bioprinting

The aforementioned research progress will in time permit organs to be bioprinted in a lab from a culture of a patient’s own cells. Such developments could therefore spark a medical revolution. Nevertheless, others are already trying to go further by developing techniques that will enable cells to be printed directly onto or into the human body in situ. Sometime next decade, doctors may therefore be able to scan wounds and spray on layers of cells to very rapidly heal them.

Already a team of bioprinting researchers lead by Anthony Alata at the Wake Forrest School of Medicine have developed a skin printer. In initial experiments they have taken 3D scans of test injuries inflicted on some mice and have used the data to control a bioprint head that has sprayed skin cells, a coagulant and collagen onto the wounds. The results are also very promising, with the wounds healing in just two or three weeks compared to about five or six weeks in a control group. Funding for the skin-printing project is coming in part from the US military who are keen to develop in situ bioprinting to help heal wounds on the battlefield. At present the work is still in a pre-clinical phase with Alata progressing his research usig pigs. However, trials of with human burn victims could be a little as five years away.

The potential to use bioprinters to repair our bodies in situ is pretty mind blowing. In perhaps no more than a few decades it may be possible for robotic surgical arms tipped with bioprint heads to enter the body, repair damage at the cellular level, and then also repair their point of entry on their way out. Patients would still need to rest and recuperate for a few days as bioprinted materials fully fused into mature living tissue. However, most patients could potentially recover from very major surgery in less than a week.

Cosmetic Applications …

Bioprinting Implications …

More information on bioprinting can be found in my books 3D Printing: Second Editionand The Next Big Thing. There is also a bioprinting section in my 3D Printing Directory. Oh, and there is also a great infographic about bioprinting here. Enjoy!

 

How to print out a blood vessel

New work moves closer to the age of organs on demand.

Blood vessels can now be ‘printed out’ by machine. Could bigger structures be in the future?SUSUMU NISHINAGA / SCIENCE PHOTO LIBRARY

Read Full Post »


The late Cambridge Mayor Alfred Vellucci welcomed Life Sciences Labs to Cambridge, MA – June 1976

Reporter: Aviva Lev-Ari, PhD, RN

How Cambridge became the Life Sciences Capital

Worth watching is the video below, which captures the initial Cambridge City Council hearing on recombinant DNA research from June 1976. The first speaker is the late Cambridge mayor Alfred Vellucci.

Vellucci hoped to pass a two-year moratorium on gene splicing in Cambridge. Instead, the council passed a three-month moratorium, and created a board of nine Cambridge citizens — including a nun and a nurse — to explore whether the work should be allowed, and if so, what safeguards would be necessary. A few days after the board was created, the pro and con tables showed up at the Kendall Square marketplace.

At the time, says Phillip Sharp, an MIT professor, Cambridge felt like a manufacturing town that had seen better days. He recalls being surrounded by candy, textile, and leather factories. Sharp hosted the citizens review committee at MIT, explaining what the research scientists there planned to do. “I think we built a relationship,” he says.

By early 1977, the citizens committee had proposed a framework to ensure that any DNA-related experiments were done under fairly stringent safety controls, and Cambridge became the first city in the world to regulate research using genetic material.

 

WATCH VIDEO

How Cambridge became the life sciences capital

Scott Kirsner can be reached at kirsner@pobox.com. Follow him on Twitter@ScottKirsner and on betaboston.com.

SOURCE

How Cambridge became the life sciences capital

http://www.betaboston.com/news/2016/03/17/how-cambridge-became-the-life-sciences-capital/

Read Full Post »

Older Posts »