Advertisements
Feeds:
Posts
Comments

Archive for the ‘Tissue Engineering and Regenerative Medicine’ Category


Lesson 5 Cell Signaling And Motility: Cytoskeleton & Actin: Curations and Articles of reference as supplemental information: #TUBiol3373

Curator: Stephen J. Williams, Ph.D.

Cell motility or migration is an essential cellular process for a variety of biological events. In embryonic development, cells migrate to appropriate locations for the morphogenesis of tissues and organs. Cells need to migrate to heal the wound in repairing damaged tissue. Vascular endothelial cells (ECs) migrate to form new capillaries during angiogenesis. White blood cells migrate to the sites of inflammation to kill bacteria. Cancer cell metastasis involves their migration through the blood vessel wall to invade surrounding tissues.

Please Click on the Following Powerpoint Presentation for Lesson 4 on the Cytoskeleton, Actin, and Filaments

CLICK ON LINK BELOW

cell signaling 5 lesson

This post will be updated with further information when we get into Lesson 6 and complete our discussion on the Cytoskeleton

Please see the following articles on Actin and the Cytoskeleton in Cellular Signaling

Role of Calcium, the Actin Skeleton, and Lipid Structures in Signaling and Cell Motility

This article, constitutes a broad, but not complete review of the emerging discoveries of the critical role of calcium signaling on cell motility and, by extension, embryonic development, cancer metastasis, changes in vascular compliance at the junction between the endothelium and the underlying interstitial layer.  The effect of calcium signaling on the heart in arrhtmogenesis and heart failure will be a third in this series, while the binding of calcium to troponin C in the synchronous contraction of the myocardium had been discussed by Dr. Lev-Ari in Part I.

Universal MOTIFs essential to skeletal muscle, smooth muscle, cardiac syncytial muscle, endothelium, neovascularization, atherosclerosis and hypertension, cell division, embryogenesis, and cancer metastasis. The discussion will be presented in several parts:
1.  Biochemical and signaling cascades in cell motility
2.  Extracellular matrix and cell-ECM adhesions
3.  Actin dynamics in cell-cell adhesion
4.  Effect of intracellular Ca++ action on cell motility
5.  Regulation of the cytoskeleton
6.  Role of thymosin in actin-sequestration
7.  T-lymphocyte signaling and the actin cytoskeleton

 

Identification of Biomarkers that are Related to the Actin Cytoskeleton

In this article the Dr. Larry Bernstein covers two types of biomarker on the function of actin in cytoskeleton mobility in situ.

  • First, is an application in developing the actin or other component, for a biotarget and then, to be able to follow it as

(a) a biomarker either for diagnosis, or

(b) for the potential treatment prediction of disease free survival.

  • Second, is mostly in the context of MI, for which there is an abundance of work to reference, and a substantial body of knowledge about

(a) treatment and long term effects of diet, exercise, and

(b) underlying effects of therapeutic drugs.

Microtubule-Associated Protein Assembled on Polymerized Microtubules

(This article has a great 3D visualization of a microtuble structure as well as description of genetic diseases which result from mutations in tubulin and effects on intracellular trafficking of proteins.

A latticework of tiny tubes called microtubules gives your cells their shape and also acts like a railroad track that essential proteins travel on. But if there is a glitch in the connection between train and track, diseases can occur. In the November 24, 2015 issue of PNAS, Tatyana Polenova, Ph.D., Professor of Chemistry and Biochemistry, and her team at the University of Delaware (UD), together with John C. Williams, Ph.D., Associate Professor at the Beckman Research Institute of City of Hope in Duarte, California, reveal for the first time — atom by atom — the structure of a protein bound to a microtubule. The protein of focus, CAP-Gly, short for “cytoskeleton-associated protein-glycine-rich domains,” is a component of dynactin, which binds with the motor protein dynein to move cargoes of essential proteins along the microtubule tracks. Mutations in CAP-Gly have been linked to such neurological diseases and disorders as Perry syndrome and distal spinal bulbar muscular dystrophy.

 

Advertisements

Read Full Post »


3D Print Shape-Shifting Smart Gel

Reporter: Irina Robu, PhD

Hydrogel scaffolds that mimic the native extracellular matrix (ECM) environment play a crucial role in tissue engineering and they are ubiquitously in our lives, including in contact lenses, diapers and the human body.

Researchers at Rutgers have invented a printing method for a smart gel that can be used to create materials for transporting small molecules like drugs to human organs. The approach includes printing a 3D object with a hydrogel that changes shape over time when temperature changes. The potential of the smart hydrogels could be to create a new are of soft robotics and enable new applications in flexible sensors and actuators, biomedical devices and platforms or scaffolds for cells to grow.

Rutgers engineers operated with a hydrogel that has been in use for decades in devices that generate motion and biomedical applications such as scaffolds for cells to grow on. The engineers learned how to precisely control hydrogel growth and shrinkage. In temperatures below 32 degrees Celsius, the hydrogel absorbs more water and swells in size. When temperatures exceed 32 degrees Celsius, the hydrogel begins to expel water and shrinks, the study showed.

According to the Rutgers engineers, the objects they can produce with the hydrogel range from the width of a human hair to several millimeters long. The engineers also showed that they can grow one area of a 3D-printed object by changing temperatures.

Source

https://news.rutgers.edu/rutgers-engineers-3d-print-shape-shifting-smart-gel/20180131

Read Full Post »


New Liver Tissue Implants Showing Potential

Reporter: Irina Robu,PhD

To develop new tissues, researchers at the Medical Research Council Center for Regenerative Medicine at the University of Edinburgh have found that stem cells transformed into 3-D liver tissue can support liver function when implanted into the mice suffering with a liver disease.

The scientists stimulated human embryonic stem cells and induced pluripotent stem cells to mature pluripotent stem cells into liver cells, hepatocytes. Hepatocytes are the chief functional cells of the liver and perform an astonishing number of metabolic, endocrine and secretory functions. Hepatocytes are exceptionally active in synthesis of protein and lipids for export. The cells are grown in 3-D conditions as small spheres for over a year. However, keeping the stem cells as liver cells for a long time is very difficult, because the viability of hepatocytes decreases in-vitro conditions.

Succeeding the discovery, the team up with materials chemists and engineers to detect appropriate polymers that have already been approved for human use that can be developed into 3-D scaffolds. The best material to use a biodegradable polyester, called polycaprolactone (PCL).PCL is degraded by hydrolysis of its ester linkages in physiological conditions (such as in the human body) and it is especially interesting for the preparation of long term implantable devices, owing to its degradation which is even slower than that of polylactide. They spun the PCL into microscopic fibers that formed a scaffold one centimeter square and a few millimeters thick.

At the same time, hepatocytes derived from embryonic cells had been grown in culture for 20 days and were then loaded onto the scaffolds and implanted under the skin of mice.Blood vessels successfully grew on the scaffolds with the mice having human liver proteins in their blood, demonstrating that the tissue had successfully integrated with the circulatory system. The scaffolds were not rejected by the animals’ immune systems.

The scientists tested the liver tissue scaffolds in mice with tyrosinaemia,a potentially fatal genetic disorder where the enzymes in the liver that break down the amino acid tyrosine are defective, resulting in the accumulation of toxic metabolic products. The implanted liver tissue aided the mice with tyrosinaemia to break down tyrosine and the mice finally lost less weight, had less buildup of toxins in the blood and exhibited fewer signs of liver damage than the control group that received empty scaffolds.

According to Rob Buckle, PhD, Chief Science Officer at the MRC, “Showing that such stem cell-derived tissue is able to reproduce aspects of liver function in the lab also offers real potential to improve the testing of new drugs where more accurate models of human tissue are needed”. It is believed that the discovery could be the next step towards harnessing stem cell reprogramming technologies to provide renewable supplies of liver tissue products for transplantation.

SOURCE

https://www.rdmag.com/article/2018/08/new-liver-tissue-implants-showing-promise?et_cid=6438323

 

Read Full Post »


Skin Regeneration Therapy One of First Tissue Engineering Products Evaluated by FDA

Reporter: Irina Robu, PhD

Under the provisions of 21st Century Cures Act the U.S. Food and Drug Administration approved StrataGraft regenerative skin tissue as the first product designated as a Regenerative Medicine Advanced Therapy (RMAT) produced by Mallinckrodt Pharmaceuticals. StrataGraft is shaped using unmodified NIKS cells grown under standard operating procedures since the continuous NIKS skin cell line has been thoroughly characterized. StrataGraft products are virus-free, non-tumorigenic, and offer batch-to-batch genetic consistency.

Passed in 2016, the 21st Century act allows FDA to grant accelerated review approval to products which meet an RMAT designation. The RMAT designation includes debates of whether priority review and/or accelerated approval would be suitable based on intermediate endpoints that would be reasonably likely to predict long-term clinical benefit.

The designation includes products

  • defined as a cell therapy, therapeutic tissue engineering product, human cell and tissue product, or any combination product using such therapies or products;
  • intended to treat, modify, reverse, or cure a serious or life-threatening disease or condition; and
  • preliminary clinical evidence indicates the drug has the potential to address unmet medical needs for such disease or condition.

According to Steven Romano, M.D., Chief Scientific Officer and Executive Vice President, Mallinckrodt “We are very pleased the FDA has determined StrataGraft meets the criteria for RMAT designation, as this offers the possibility of priority review and/or accelerated approval. The company tissue-based therapy is under evaluation in a Phase 3 trial to assess its efficacy and safety in the advancement of autologous skin regeneration of complex skin defects due to thermal burns that contain intact dermal elements.

SOURCE

https://www.rdmag.com/news/2017/07/skin-regeneration-therapy-one-first-be-evaluated-fda

Read Full Post »


3-D Printed Ovaries Produce Healthy Offspring

Reporter: Irina Robu, PhD

 

Each year about 120,000 organs are transplanted from one human being to another and most of the time is a living volunteer. But lack of suitable donors, predominantly means the supply of such organs is inadequate. Countless people consequently die waiting for a transplant which has led researchers to study the question of how to build organs from scratch.

One promising approach is to print them, but “bioprinting” remains largely experimental. Nevertheless, bioprinted tissue is before now being sold for drug testing, and the first transplantable tissues are anticipated to be ready for use in a few years’ time. The first 3D printed organ includes bioprosthetic ovaries which are constructed of 3D printed scaffolds that have immature eggs and have been successful in boosting hormone production and restoring fertility was developed by Teresa K. Woodruff, a reproductive scientist and director of the Women’s Health Research Institute at Feinberg School of Medicine, at Northwestern University, in Illinois.

What sets apart these bioprosthetic ovaries is the architecture of the scaffold. The material is made of gelatin made from broken-down collagen that is safe to humans which is self-supporting and can lead to building multiple layers.

The 3-D printed “scaffold” or “skeleton” is implanted into a female and its pores can be used to optimize how follicles, or immature eggs, get wedged within the scaffold. The scaffold supports the survival of the mouse’s immature egg cells and the cells that produce hormones to boost production. The open construction permits room for the egg cells to mature and ovulate, blood vessels to form within the implant enabling the hormones to circulate and trigger lactation after giving birth. The purpose of this scaffold is to recapitulate how an ovary would function.
The scientists’ only objective for developing the bioprosthetic ovaries was to help reestablish fertility and hormone production in women who have suffered adult cancer treatments and now have bigger risks of infertility and hormone-based developmental issues.

 

SOURCES

Printed human body parts could soon be available for transplant
https://www.economist.com/news/science-and-technology/21715638-how-build-organs-scratch

 

3D printed ovaries produce healthy offspring giving hope to infertile women

http://www.telegraph.co.uk/science/2017/05/16/3d-printed-ovaries-produce-healthy-offspring-giving-hope-infertile/

 

Brave new world: 3D-printed ovaries produce healthy offspring

http://www.naturalnews.com/2017-05-27-brave-new-world-3-d-printed-ovaries-produce-healthy-offspring.html

 

3-D-printed scaffolds restore ovary function in infertile mice

http://www.medicalnewstoday.com/articles/317485.php

 

Our Grandkids May Be Born From 3D-Printed Ovaries

http://gizmodo.com/these-mice-gave-birth-using-3d-printed-ovaries-1795237820

 

Read Full Post »


Pharmacotyping Pancreatic Cancer Patients in the Future: Two Approaches – ORGANOIDS by David Tuveson and Hans Clevers and/or MICRODOSING Devices by Robert Langer

Curator: Aviva Lev-Ari, PhD, RN

 

UPDATED on 4/5/2018

Featured video: Magical Bob

A fascination with magic leads Institute Professor Robert Langer to solve world problems using the marvels of chemical engineering.Watch Video

MIT News Office
March 27, 2018

http://news.mit.edu/2018/featured-video-magical-bob-langer-0327

 

This curation provides the resources for edification on Pharmacotyping Pancreatic Cancer Patients in the Future

 

  • Professor Hans Clevers at Clevers Group, Hubrecht University

https://www.hubrecht.eu/onderzoekers/clevers-group/

  • Prof. Robert Langer, MIT

http://web.mit.edu/langerlab/langer.html

Langer’s articles on Drug Delivery

https://scholar.google.com/scholar?q=Langer+on+Drug+Delivery&hl=en&as_sdt=0&as_vis=1&oi=scholart&sa=X&ved=0ahUKEwixsd2w88TTAhVG4iYKHRaIAvEQgQMIJDAA

organoids, which I know you’re pretty involved in with Hans Clevers. What are your plans for organoids of pancreatic cancer?

Organoids are a really terrific model of a patient’s tumour that you generate from tissue that is either removed at the time of surgery or when they get a small needle biopsy. Culturing the tissue and observing an outgrowth of it is usually successful and when you have the cells, you can perform molecular diagnostics of any type. With a patient-derived organoid, you can sequence the exome and the RNA, and you can perform drug testing, which I call ‘pharmacotyping’, where you’re evaluating compounds that by themselves or in combination show potency against the cells. A major goal of our lab is to work towards being able to use organoids to choose therapies that will work for an individual patient – personalized medicine.

Organoids could be made moot by implantable microdevices for drug delivery into tumors, developed by Bob Langer. These devices are the size of a pencil lead and contain reservoirs that release microdoses of different drugs; the device can be injected into the tumor to deliver drugs, and can then be carefully dissected out and analyzed to gain insight into the sensitivity of cancer cells to different anticancer agents. Bob and I are kind of engaged in a friendly contest to see whether organoids or microdosing devices are going to come out on top. I suspect that both approaches will be important for pharmacotyping cancer patients in the future.

From the science side, we use organoids to discover things about pancreatic cancer. They’re great models, probably the best that I know of to rapidly discover new things about cancer because you can grow normal tissue as well as malignant tissue. So, from the same patient you can do a comparison easily to find out what’s different in the tumor. Organoids are crazy interesting, and when I see other people in the pancreatic cancer field I tell them, you should stop what you’re doing and work on these because it’s the faster way of studying this disease.

SOURCE

Other related articles on Pancreatic Cancer and Drug Delivery published in this Open Access Online Scientific Journal include the following:

 

Pancreatic Cancer: Articles of Note @PharmaceuticalIntelligence.com

Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/05/26/pancreatic-cancer-articles-of-note-pharmaceuticalintelligence-com/

Keyword Search: “Pancreatic Cancer” – 275 Article Titles

https://pharmaceuticalintelligence.wordpress.com/wp-admin/edit.php?s=Pancreatic+Cancer&post_status=all&post_type=post&action=-1&m=0&cat=0&paged=1&action2=-1

Keyword Search: Drug Delivery: 542 Articles Titles

https://pharmaceuticalintelligence.wordpress.com/wp-admin/edit.php?s=Drug+Delivery&post_status=all&post_type=post&action=-1&m=0&cat=0&paged=1&action2=-1

Keyword Search: Personalized Medicine: 597 Article Titles

https://pharmaceuticalintelligence.wordpress.com/wp-admin/edit.php?s=Personalized+Medicine&post_status=all&post_type=post&action=-1&m=0&cat=0&paged=1&action2=-1

  • Cancer Biology & Genomics for Disease Diagnosis, on Amazon since 8/11/2015

http://www.amazon.com/dp/B013RVYR2K

 

 

VOLUME TWO WILL BE AVAILABLE ON AMAZON.COM ON MAY 1, 2017

Read Full Post »


cvd-series-a-volume-iv-cover

Series A: e-Books on Cardiovascular Diseases

Series A Content Consultant: Justin D Pearlman, MD, PhD, FACC

VOLUME FOUR

Regenerative and Translational Medicine

The Therapeutic Promise for

Cardiovascular Diseases

  • on Amazon since 12/26/2015

http://www.amazon.com/dp/B019UM909A

 

by  

Larry H Bernstein, MD, FCAP, Senior Editor, Author and Curator

and

Aviva Lev-Ari, PhD, RN, Editor and Curator

 

Part One:

Cardiovascular Diseases,Translational Medicine (TM) and Post TM

Introduction to Part 1: Cardiovascular Diseases,Translational Medicine (TM) and Post TM

Chapter 1: Translational Medicine Concepts

1.0 Post-Translational Modification of Proteins

1.1 Identifying Translational Science within the Triangle of Biomedicine

1.2 State of Cardiology on Wall Stress, Ventricular Workload and Myocardial Contractile Reserve: Aspects of Translational Medicine (TM)

1.3 Risk of Bias in Translational Science

1.4 Biosimilars: Intellectual Property Creation and Protection by Pioneer and by Biosimilar Manufacturers

Chapter 2: Causes and the Etiology of Cardiovascular Diseases: Translational Approaches for Cardiothoracic Medicine

2.1 Genomics

2.1.1 Genomics-Based Classification

2.1.2  Targeting Untargetable Proto-Oncogenes

2.1.3  Searchable Genome for Drug Development

2.1.4 Zebrafish Study Tool

2.1.5  International Human Genome Sequencing Consortium (2004) Finishing the euchromatic sequence of the human genome.

2.2  Proteomics

2.2.1 The Role of Tight Junction Proteins in Water and Electrolyte Transport

2.2.2 Selective Ion Conduction

2.2.3 Translational Research on the Mechanism of Water and Electrolyte Movements into the Cell

2.2.4 Inhibition of the Cardiomyocyte-Specific Kinase TNNI3K ­ Oxidative Stress

2.2.5 Oxidized Calcium Calmodulin Kinase and Atrial Fibrillation

2.2.6 S-Nitrosylation in Cardiac Ischemia and Acute Coronary Syndrome

2.2.7 Acetylation and Deacetylation

2.2.8 Nitric Oxide Synthase Inhibitors (NOS-I) 

2.3 Cardiac and Vascular Signaling

2.3.1 The Centrality of Ca(2+) Signaling and Cytoskeleton Involving Calmodulin Kinases and Ryanodine Receptors in Cardiac Failure, Arterial Smooth Muscle, Post-ischemic Arrhythmia, Similarities and Differences, and Pharmaceutical Targets

2.3.2 Leptin Signaling in Mediating the Cardiac Hypertrophy associated with Obesity

2.3.3 Triggering of Plaque Disruption and Arterial Thrombosis

2.3.4 Sensors and Signaling in Oxidative Stress

2.3.5 Resistance to Receptor of Tyrosine Kinase

2.3.6  S-nitrosylation signaling in cell biology.

2.4  Platelet Endothelial Interaction

2.4.1 Platelets in Translational Research ­ 1

2.4.2 Platelets in Translational Research ­ 2: Discovery of Potential Anti-platelet Targets

2.4.3 The Final Considerations of the Role of Platelets and Platelet Endothelial Reactions in Atherosclerosis and Novel Treatments

2.4.4 Endothelial Function and Cardiovascular Disease
Larry H Bernstein, MD, FCAP

2.5 Post-translational modifications (PTMs)

2.5.1 Post-Translational Modifications

2.5.2.  Analysis of S-nitrosylated Proteins

2.5.3  Mechanisms of Disease: Signal Transduction: Akt Phosphorylates HK-II at Thr-473 and Increases Mitochondrial HK-II Association to Protect Cardiomyocytes

2.5.4  Acetylation and Deacetylation of non-Histone Proteins

2.5.5  Study Finds Low Methylation Regions Prone to Structural Mutation

2.6 Epigenetics and lncRNAs

2.6.1 The Magic of the Pandora’s Box : Epigenetics and Stemness with Long non-coding RNAs (lincRNA)

2.6.2 The SILENCE of the Lambs” Introducing The Power of Uncoded RNA

2.6.3 Long Noncoding RNA Network regulates PTEN Transcription

2.6.4 How mobile elements in “Junk” DNA promote cancer. Part 1: Transposon-mediated tumorigenesis.

2.6.5 Transposon-mediated Gene Therapy improves Pulmonary Hemodynamics and attenuates Right Ventricular Hypertrophy: eNOS gene therapy reduces Pulmonary vascular remodeling and Arterial wall hyperplasia

2.6.6 Junk DNA codes for valuable miRNAs: non-coding DNA controls Diabetes

2.6.7 Targeted Nucleases

2.6.8 Late Onset of Alzheimer’s Disease and One-carbon Metabolism
Dr. Sudipta Saha

2.6.9 Amyloidosis with Cardiomyopathy

2.6.10 Long non-coding RNAs: Molecular Regulators of Cell Fate

2.7 Metabolomics

2.7.1 Expanding the Genetic Alphabet and Linking the Genome to the Metabolome

2.7.2 How Methionine Imbalance with Sulfur-Insufficiency Leads to Hyperhomocysteinemia

2.7.3 A Second Look at the Transthyretin Nutrition Inflammatory Conundrum

2.7.4 Transthyretin and Lean Body Mass in Stable and Stressed State

2.7.5 Hyperhomocysteinemia interaction with Protein C and Increased Thrombotic Risk

2.7.6 Telling NO to Cardiac Risk

2.8 Mitochondria and Oxidative Stress

2.8.1 Reversal of Cardiac Mitochondrial Dysfunction

2.8.2 Calcium Signaling, Cardiac Mitochondria and Metabolic Syndrome

2.8.3. Mitochondrial Dysfunction and Cardiac Disorders

2.8.4 Mitochondrial Metabolism and Cardiac Function

2.8.5 Mitochondria and Cardiovascular Disease: A Tribute to Richard Bing

2.8.6 MIT Scientists on Proteomics: All the Proteins in the Mitochondrial Matrix Identified

2.8.7 Mitochondrial Dynamics and Cardiovascular Diseases

2.8.8 Mitochondrial Damage and Repair under Oxidative Stress

2.8.9 Nitric Oxide has a Ubiquitous Role in the Regulation of Glycolysis -with a Concomitant Influence on Mitochondrial Function

2.8.10 Mitochondrial Mechanisms of Disease in Diabetes Mellitus

2.8.11 Mitochondria Dysfunction and Cardiovascular Disease – Mitochondria: More than just the “Powerhouse of the Cell”

Chapter 3: Risks and Biomarkers for Diagnosis and Prognosis in Translational Cardiothoracic Medicine

3.1 Biomarkers. Diagnosis and Management: Biomarkers. Present and Future.

3.2 Landscape of Cardiac Biomarkers for Improved Clinical Utilization

3.3 Achieving Automation in Serology: A New Frontier in Best

3.4 Accurate Identification and Treatment of Emergent Cardiac Events

3.5 Prognostic Marker Importance of Troponin I in Acute Decompensated Heart Failure (ADHF)

3.6 High-Sensitivity Cardiac Troponin Assays Preparing the United States for High-Sensitivity Cardiac Troponin Assays

3.7 Voices from the Cleveland Clinic On Circulating apoA1: A Biomarker for a Proatherogenic Process in the Artery Wall

3.8 Triggering of Plaque Disruption and Arterial Thrombosis

3.9 Relationship between Adiposity and High Fructose Intake Revealed

3.10 The Cardio-Renal Syndrome (CRS) in Heart Failure (HF)

3.11 Aneuploidy and Carcinogenesis

3.12 “Sudden Cardiac Death,” SudD is in Ferrer inCode’s Suite of Cardiovascular Genetic Tests to be Commercialized in the US

Chapter 4: Therapeutic Aspects in Translational Cardiothoracic Medicine

4.1 Molecular and Cellular Cardiology

4.1.1 αllbβ3 Antagonists As An Example of Translational Medicine Therapeutics

4.1.2 Three-Dimensional Fibroblast Matrix Improves Left Ventricular Function post MI

4.1.3 Biomaterials Technology: Models of Tissue Engineering for Reperfusion and Implantable Devices for Revascularization

4.1.4 CELLWAVE Randomized Clinical Trial: Modest improvement in LVEF at 4 months ­ “Shock wave­facilitated intracoronary administration of BMCs” vs “Shock wave treatment alone”

4.1.5 Prostacyclin and Nitric Oxide: Adventures in vascular biology –  a tale of two mediators

4.1.6 Cardiac Contractility & Myocardium Performance: Ventricular Arrhythmiasand Non-ischemic Heart Failure – Therapeutic Implications for Cardiomyocyte Ryanopathy

4.1.7 Publications on Heart Failure by Prof. William Gregory Stevenson, M.D., BWH

4.2 Interventional Cardiology and Cardiac Surgery – Mechanical Circulatory Support and Vascular Repair

4.2.1 Mechanical Circulatory Support System, LVAD, RVAD, Biventricular as a Bridge to Heart Transplantation or as “Destination Therapy”: Options for Patients in Advanced Heart Failure

4.2.2 Heart Transplantation: NHLBI’s Ten Year Strategic Research Plan to Achieving Evidence-based Outcomes

4.2.3 Improved Results for Treatment of Persistent type 2 Endoleak after Endovascular Aneurysm Repair: Onyx Glue Embolization

4.2.4 Carotid Endarterectomy (CEA) vs. Carotid Artery Stenting (CAS): Comparison of CMMS high-risk criteria on the Outcomes after Surgery: Analysis of the Society for Vascular Surgery (SVS) Vascular Registry Data

4.2.5 Effect of Hospital Characteristics on Outcomes of Endovascular Repair of Descending Aortic Aneurysms in US Medicare Population

4.2.6 Hypertension and Vascular Compliance: 2013 Thought Frontier – An Arterial Elasticity Focus

4.2.7 Preventive Medicine Philosophy: Excercise vs. Drug, IF More of the First THEN Less of the Second

4.2.8 Cardio-oncology and Onco-Cardiology Programs: Treatments for Cancer Patients with a History of Cardiovascular Disease

Summary to Part One

 

Part Two:

Cardiovascular Diseases and Regenerative Medicine

Introduction to Part Two

Chapter 1: Stem Cells in Cardiovascular Diseases

1.1 Regeneration: Cardiac System (cardiomyogenesis) and Vasculature (angiogenesis)

1.2 Notable Contributions to Regenerative Cardiology by Richard T. Lee (Lee’s Lab, Part I)

1.3 Contributions to Cardiomyocyte Interactions and Signaling (Lee’s Lab, Part II)

1.4 Jmjd3 and Cardiovascular Differentiation of Embryonic Stem Cells

1.5 Stem Cell Therapy for Coronary Artery Disease (CAD)

1.6 Intracoronary Transplantation of Progenitor Cells after Acute MI

1.7 Progenitor Cell Transplant for MI and Cardiogenesis (Part 1)

1.8 Source of Stem Cells to Ameliorate Damage Myocardium (Part 2)

1.9 Neoangiogenic Effect of Grafting an Acellular 3-Dimensional Collagen Scaffold Onto Myocardium (Part 3)

1.10 Transplantation of Modified Human Adipose Derived Stromal Cells Expressing VEGF165

1.11 Three-Dimensional Fibroblast Matrix Improves Left Ventricular Function Post MI

Chapter 2: Regenerative Cell and Molecular Biology

2.1 Circulating Endothelial Progenitors Cells (cEPCs) as Biomarkers

2.2 Stem Cell Research — The Frontier at the Technion in Israel

2.3 Blood vessel-generating stem cells discovered

2.4 Heart Renewal by pre-existing Cardiomyocytes: Source of New Heart Cell Growth Discovered

2.5 The Heart: Vasculature Protection – A Concept-based Pharmacological Therapy including THYMOSIN

2.6 Innovations in Bio instrumentation for Measurement of Circulating Progenetor Endothelial Cells in Human Blood.

2.7 Endothelial Differentiation and Morphogenesis of Cardiac Precursor

Chapter 3: Therapeutics Levels In Molecular Cardiology

3.1 Secrets of Your Cells: Discovering Your Body’s Inner Intelligence (Sounds True, on sale May 1, 2013) by Sondra Barrett

3.2 Human Embryonic-Derived Cardiac Progenitor Cells for Myocardial Repair

3.3 Repair using iPPCs or Stem Cells

3.3.1 Reprogramming cell in Tissue Repair

3.3.2 Heart patients’ skin cells turned into healthy heart muscle cells

3.4 Arteriogenesis and Cardiac Repair: Two Biomaterials – Injectable Thymosin beta4 and Myocardial Matrix Hydrogel 

3.5 Cardiovascular Outcomes: Function of circulating Endothelial Progenitor Cells (cEPCs): Exploring Pharmaco-therapy targeted at Endogenous Augmentation of cEPCs

3.6 Calcium Cycling (ATPase Pump) in Cardiac Gene Therapy: Inhalable Gene Therapy for Pulmonary Arterial Hypertension and Percutaneous Intra-coronary Artery Infusion for Heart Failure: Contributions by Roger J. Hajjar, MD

Chapter 4: Research Proposals for Endogenous Augmentation of circulating Endothelial Progenitor Cells (cEPCs)

4.1 Peroxisome proliferator-activated receptor (PPAR-gamma) Receptors Activation: PPARγ transrepression for Angiogenesis in Cardiovascular Disease and PPARγ transactivation for Treatment of Diabetes

4.2 Clinical Trials Results for Endothelin System: Pathophysiological role in Chronic Heart Failure, Acute Coronary Syndromes and MI – Marker of Disease Severity or Genetic Determination?

4.3 Endothelin Receptors in Cardiovascular Diseases: The Role of eNOS Stimulation

4.4 Inhibition of ET-1, ETA and ETA-ETB, Induction of NO production, stimulation of eNOS and Treatment Regime with PPAR-gamma agonists (TZD): cEPCs Endogenous Augmentation for Cardiovascular Risk Reduction – A Bibliography

4.5 Positioning a Therapeutic Concept for Endogenous Augmentation of cEPCs — Therapeutic Indications for Macrovascular Disease: Coronary, Cerebrovascular and Peripheral

4.6 Endothelial Dysfunction, Diminished Availability of cEPCs, Increasing CVD Risk for Macrovascular Disease – Therapeutic Potential of cEPCs

4.7 Vascular Medicine and Biology: CLASSIFICATION OF FAST ACTING THERAPY FOR PATIENTS AT HIGH RISK FOR MACROVASCULAR EVENTS Macrovascular Disease – Therapeutic Potential of cEPCs

4.8 Cardiovascular Disease (CVD) and the Role of agent alternatives in endothelial Nitric Oxide Synthase (eNOS) Activation and Nitric Oxide Production

4.9 Resident-cell-based Therapy in Human Ischaemic Heart Disease: Evolution in the PROMISE of Thymosin beta4 for Cardiac Repair

4.10 Macrovascular Disease – Therapeutic Potential of cEPCs: Reduction Methods for CV Risk

4.11 Bystolic’s generic Nebivolol – positive effect on circulating Endothelial Proginetor Cells endogenous augmentation

4.12 Heart Vasculature – Regeneration and Protection of Coronary Artery Endothelium and Smooth Muscle: A Concept-based Pharmacological Therapy of a Combination Three Drug Regimen including THYMOSIN

Summary to Part Two

Epilogue to Volume Four

Read Full Post »

Older Posts »