Feeds:
Posts
Comments

Inflammation and potential links with the microbiome: Mechanisms of infection by SARS-CoV-2

Reporter: Aviva Lev-Ari, PhD, RN

Mechanisms of infection by SARS-CoV-2, inflammation and potential links with the microbiome

Published Online:https://doi.org/10.2217/fvl-2020-0310

Human coronaviruses (HCoVs) were first isolated from patients with the common cold in the 1960s [1–3]. Seven HCoVs known to cause disease in humans have since been identified: HCoV-229E, HCoV-NL63, HCoV-OC43, HCoV-HKU1, the SARS coronavirus (SARS-CoV), the Middle East respiratory syndrome coronavirus and the novel SARS-CoV-2 [4]. The latter was identified after a spike in cases of pneumonia of unknown etiology in Wuhan, Hubei Province, China during December 2019 and was initially named novel coronavirus (2019-nCoV) [5,6]. The virus was renamed SARS-CoV-2 according to the International Committee on Taxonomy of Viruses classification criteria due to its genomic closeness to SARS-CoV; the disease caused by this virus was named coronavirus disease (COVID-19) according to the WHO criteria for naming emerging diseases [7]. SARS-CoV-2 belongs to the genera Betacoronavirus and shares a different degree of genomic similarity with the other two epidemic coronaviruses: SARS-CoV (∼79%) and Middle East respiratory syndrome coronavirus (∼50%) [8].

COVID-19 has caused considerable morbidity and mortality worldwide and has become the central phenomenon that is shaping our current societies. Human-to-human transmission is the main route of spread of the virus, mainly through direct contact, respiratory droplets and aerosols [9–12]. Management of COVID-19 has been extremely challenging due to its high infectivity, lack of effective therapeutics and potentially small groups of individuals (i.e., asymptomatic or mild disease) rapidly spreading the disease [13–17]. Although research describing COVID-19 and the mechanisms of infection by SARS-CoV-2 and its pathogenesis has expanded rapidly, there is still much to be learnt. Important gaps in knowledge which remain to be elucidated are the dynamic and complex interactions between the virus and the host’s immune system, as well as the potential interspecies communications occurring between ecological niches encompassing distinct microorganisms in both healthy individuals and persons living with chronic diseases, and how these interactions could determine or modulate disease progression and outcomes.

In this review, we describe recent insights into these topics, as well as remaining questions whose answers will allow us to understand how interactions between the virus, the immune system and microbial components could possibly be related to disease states in patients with COVID-19, as well as existing studies of the microbiome in patients with COVID-19.

SOURCE

How do neurons form long term memories ?

Reporter: Irina Robu, PhD

Neuroscientists at Harvard medical School are trying to understand the biology of long-term memory and fine ways to intercede when memory deficits happen with age or disease. They identified a new mechanism that neurons in the adult mouse hippocampus use to control signals they collect from other neurons, in a process that looks critical for memory consolidation and recall.

The investigators detected new experiences activate sparse populations of neurons in the hippocampus that express two genes, Fos and Scg2. The genes permit neurons to fine-tune inputs, to dampen neuronal excitation. The mechanism allows neurons to better talk to each other so that the next time a memory needs to be remembered, the neurons fire extra synchronously.

According to Dr. Yap and his team, the brain must somehow wire an experience into neurons so that when these neurons are reactivated, the initial experience can be recalled. Researchers hypothesized that Fos can play a vital role in learning and memory, but for decades, the precise function of the gene has stayed a mystery. In order to investigate their theory, the researchers exposed mice to new new environments and observed at pyramidal neurons. They observed that relatively sparse populations of neurons express Fos After exposure to a new experience. Then they prevent these neurons from expressing Fos, using a virus-based tool delivered to a specific area of the hippocampus, which left other cells unaffected.

Mice that had Fos blocked in this manner presented noteworthy memory deficits when evaluated in a maze that required them to recollect spatial details, representing that the gene plays a vital role in memory formation. They evaluated the differences between neurons that expressed Fos and those that did not. Withoptogenics to turn inputs from nearby neurons on or off, they discovered that the activity of Fos-expressing neurons was affected by two types of interneurons. Neurons expressing Fos were created to receive increased activity-dampening signals from one different type of interneuron and reduced inhibitory signals from another type. These signaling patterns vanished in neurons with blocked Fos expression.

Upon further investigation, the researchers looked at the function of Fos, which codes for a transcription factor protein that regulates other genes, which uses single-cell sequencing and additional genomic screens to classify genes activated by Fos. They  found that Scg2 gene played a critical role in regulating inhibitory signals.

In mice with Scg2 gene is silenced by experimentation,  Fos-activated neurons in the hippocampus displayed a defect in signaling and they also had defects in theta and gamma rhythms, brain properties believed to be essential features of learning and memory.

The study results indicate a possible molecular- and circuit-level mechanism for long-term memory. They showed how fundamental biology of memory formation and have broad implications for diseases of memory dysfunction.

SOURCE


50th Annual Lewis S. Rosenstiel Award to Katalin Karikó and Drew Weissman for work on messenger RNA, modification of Nucleic Acids applied in the development of COVID-19 Vaccines

Reporter: Aviva Lev-Ari, PhD, RN

 

Rosenstiel Award given to pioneering scientists behind COVID-19 vaccines

This year’s prize for distinguished work in basic medical research was awarded to Katalin Karikó and Drew Weissman for work on messenger RNA.

Katalin Karikó and Drew WeissmanCourtesy Karikó/University of PennsylvaniaKatalin Karikó and Drew Weissman

Brandeis University and the Rosenstiel Foundation are pleased to award the 50th annual Lewis S. Rosenstiel Award for Distinguished Work in Basic Medical Research to Katalin Karikó and Drew Weissman ’81, MA ’81, P’15, for their groundbreaking work in the modification of nucleic acids to develop RNA therapeutics and vaccines.

Karikó, senior vice president at BioNTech RNA Pharmaceuticals, and Weissman, a professor of medicine at the Perelman School of Medicine at the University of Pennsylvania, pioneered much of the science underlying two of the COVID-19 vaccines now being given to tens of millions of people across the globe.

Rosenstiel Medal

The Rosenstiel Award

By engineering a modified version of the messenger RNA (mRNA) inside human cells and then developing a system to deliver it to its target, the two researchers laid the groundwork for the vaccines brought to fruition by Pfizer/BioNTech and Moderna.

“This award celebrates how basic research in molecular biology can be the foundation for applications that can affect the lives of us all,” said James Haber, the Abraham and Etta Goodman Professor of Biology and director of the Rosenstiel Basic Medical Sciences Research Center.

“Through their painstaking research into mRNA – and persistence despite setbacks – Weissman and Karikó laid the groundwork for vaccines that will save countless lives.”

Peter Gruber Endowed Chair in Neuroscience and 2017 winner of the Nobel Prize in Physiology or Medicine Michael Rosbash said:

“Among the few positive consequences of the current pandemic are the successful efforts made worldwide to generate effective vaccines. The most creative of these rely on the new messenger RNA technology pioneered by Kariko and Weissman. This is a great story where individual initiative in basic science has ended up having a remarkable real-world impact.”

The Rosenstiel Award has had a distinguished record of identifying and honoring scientists who subsequently have been honored with the Lasker and Nobel Prizes. Thirty-six of 93 Rosenstiel Award winners have subsequently been awarded the Nobel Prize in Medicine or Physiology or in Chemistry.

A full list of awardees can be found on the award’s website.

The award will be presented on February 8 at 12 p.m. via webinar.

Register for the event here.

Anthony Fauci, director of the National Institute of Allergy and Infectious Diseases, and Derrick Rossi, co-founder of Moderna, will present congratulatory remarks.

Karikó and Weissman began working together over 20 years ago when both were at U Penn.

At the time, many scientists didn’t believe mRNA, which transport instructions from DNA to the ribosomes for the production of proteins, could be the basis for a vaccine. In experiments, injecting mRNA into mice caused deadly inflammation.

But Karikó and Weissman pressed on, discovering a method of altering mRNA that enabled it to enter cells without triggering the body’s immune system. They did this by tweaking one of the four nucleosides that are the building blocks of mRNA.

Several years later, Karikó and Weissman devised a method of packaging mRNA inside a lipid nanoparticle — a small bubble of oil — so that the molecule didn’t fall apart as it traveled through the body.

“We basically tested every possible delivery system and found this was the best,” Weissman recently told BrandeisNOW.

The COVID-19 mRNA vaccines work by spurring human cells to produce the spike-shaped protein found on SARS-CoV-2, the virus that causes the illness, and triggering the immune system to produce protective antibodies.

In general, mRNA vaccines have the advantage of being cheaper to produce than traditional vaccines for chickenpox, polio, flu or rabies. It’s also hoped they can be adapted to treat other infectious diseases such as genital herpes (which is caused by the herpes simplex virus), influenza, Zika and HIV.

“The COVID-19 vaccine breakthrough is a great example of how basic science innovations, such as the RNA technology pioneered by Weissman and Karikó, can have an enormous impact on advances in the biomedical sciences,” said biochemist Carol Fierke, the university’s new provost and executive vice president.

In addition to her post at BioNTech, Karikó is an adjunct associate professor at the Perelman School of Medicine at the University of Pennsylvania. Weissman is also director of vaccine research at the Perelman school’s division of infectious diseases.

LAST PAST 5 Years Recipients

Past Winners

49th (2019)

for their remarkable contributions to our understanding of the sensations of temperature, pain and touch

David Julius
Morris Herzstein Chair in Molecular Biology and Medicine
Professor and Chair, Department of Physiology
School of Medicine
The University of California, San Francisco
San Francisco, CA USA

Ardem Patapoutian
Investigator, Howard Hughes Medical Institute
Professor, Department of Neuroscience
The Scripps Research Institute
La Jolla, CA USA

48th (2018)

for his fundamental and far-reaching studies of protein structure using X-ray crystallography

Steven C. Harrison
Investigator, Howard Hughes Medical Institute
Giovanni Armenise-Harvard Professor of Basic Medical Sciences
Harvard Medical School
Chief, Division of Molecular Medicine
Boston Children’s Hospital
Boston, MA USA

VIDEO: 48TH AWARD LECTURE

47th (2017)

for her elucidation of the protection of telomeres and the maintenance of genome stability

Titia de Lange
Leon Hess Professor
American Cancer Society Research Professor
Head, Laboratory of Cell Biology and Genetics
Director, Anderson Center for Cancer Research
The Rockefeller University
New York, NY USA

VIDEO: 47TH AWARD LECTURE

46th (2016)

in recognition of her pioneering work on the mechanisms of protein folding and the severe consequences of protein misfolding that are manifest in disease

Susan Lindquist (1949-2016)
Professor
 of Biology
Investigator, Howard Hughes Medical Institute
Member, Whitehead Institute
Massachusetts Institute of Technology
Cambridge, MA USA

VIDEO: 46TH AWARD LECTURES

45th (2015)

in recognition of his pioneering discoveries of molecular pathways and biological functions of protein degradation by autophagy

Yoshinori Ohsumi
(2016 Nobel Prize)
Professor
Frontier Research Center
Tokyo Institute of Technology
Tokyo, Japan

 

SOURCE

https://www.brandeis.edu/now/2021/january/rosenstiel-covid-vaccine.html

https://www.brandeis.edu/rosenstiel/rosenstiel-award/past.html

 

From: Brandeis Special Events <specialevents@brandeis.edu>

Reply-To: <specialevents@brandeis.edu>

Date: Friday, January 22, 2021 at 2:18 PM

To: “Aviva Lev-Ari, PhD, RN” <AvivaLev-Ari@alum.berkeley.edu>

Subject: Brandeis University: 50th Annual Lewis S. Rosenstiel Award Ceremony

 


Plant Cells of Different Species Can Swap Organelles

Reporter : Irina Robu, PhD

Farmers have used plant grafts to grow fruit trees and grapevines, but plant grafts also occur in nature when closely related plants that touch each other eventually fuse, or when parasitic plants form connections to their hosts. At the graft site, the plants form a kind of scar or callus, that reestablishes the flow of water and nutrients through vascular tissues across the wound and sometimes gives rise to new shoots. Plant geneticists noticed that two plants that grew together, the cells of each plant showed signs of having picked up substantial amounts of DNA from the other one. They knew that horizontal transfer of genes is not uncommon in bacteria, even animals, fungi and plants but in this case, the transferred DNA seems to be the entire intact genome of chloroplasts.

And in order to understand this, researchers at Max Planck Institute of Molecular Plant Physiology, in Dr. Ralph Bock’s laboratory discovered that not only are cell walls sometimes more porous than was thought, but plants seem to have developed a mechanism that enables whole organelles to crawl through the cell wall into adjacent cells.  The genetic transfer between plants was not only interesting, but a challenging puzzle. The fact that the only openings in cell walls were tiny narrow bridges (0.05 microns) that allow adjacent plant cells to exchange proteins and RNA molecules. The chloroplast, typically about 5 microns in diameter looked like it miraculously showed up in the other cell.

Researchers in Dr. Brock’s lab were determined to see what exactly was going on with the callus at graft site. He was able to observe that the cells had openings larger than previously noticed, up to 1.5 microns across. While seeing live cells in the callus, he noticed that the chloroplasts can migrate. Some of the chloroplasts changed into more primitive, more motile proto-plastids that could get as small as 0.2 microns and the proto-plastids crawled along the inside of the cell membrane positions underneath the fresh discovered holes in the cell wall. Budlike protrusions of the cell membranes then protruded into neighboring cells and transported the organelles. As the tissue organization in the graft reestablished itself, the plastids returned to the normal size for chloroplasts. 

Even though the metamorphosis of the chloroplasts is not understood, it seems that carbon starvation can lead to photosynthesis. And how well transferred plastids function in their new host cells depend on the related the two species are. If the genetic If the genetic mismatch with the nuclear DNA is too extreme, the organelles may fail to work and will eventually be lost. But they could thrive in the cells of close relatives.  Whole-organelle migration can help clarify the observation that the chloroplasts from clumps of different species. They hypothesized that plants move chloroplasts between cells routinely in response to injuries or other events. The researchers point out that once a graft callus starts to produce roots, shoots and flowers, it could give rise to a new species or subspecies.

SOURCE

https://www.quantamagazine.org/plant-cells-of-different-species-can-swap-organelles-20210120/


Left Ventricular Volume Reduction and Reshaping as a Treatment Option for Heart Failure

Reporter: Aviva Lev-Ari, PhD, RN

 

Left Ventricular Remodeling and Its Reversal

When the myocardium is subjected to abnormal mechanical and neurohormonal stresses, left ventricular remodeling ensues with a progression of structural, cellular, molecular, metabolic, and functional changes.

In chronic heart failure with reduced ejection fraction, this remodeling affects the left ventricle with consequences that include ventricular dilation, transition of the chamber shape from elliptical to spherical, and the shifting of papillary muscles and mitral valve apparatus into abnormal positions. Ironically, while remodeling is an outgrowth of the initial hemodynamic and metabolic insults that lead to heart failure, it is also self-propagating, contributing to the progressive loss of ventricular function over time.

In the July 20 online issue of Structural Heart, heart failure specialists at Columbia University Vagelos College of Physicians and Surgeons present a comprehensive review of treatment options that focus on restoring the normal ventricular size and preventing the remodeling process from continuing. But can preventing or limiting left ventricular remodeling following an insult or reversing it once it is present reduce cardiovascular morbidity?

Their article provides insight into this question with a view toward better understanding the impact of remodeling on ventricular dysfunction and an in-depth look at therapeutic approaches, including those that are well-established, several that are currently under investigation, as well as those that have been invalidated and no longer used. The authors focus on two fundamental therapeutic approaches – those that rely primarily on

  • biological mechanisms to induce responses in the myocardium and improve myocardial function, and
  • physical mechanisms, involving procedures where a portion of the heart is either removed or excluded and devices to reduce myocardial wall stress through ventricular constraint or reshaping.

Read more:

Left Ventricular Volume Reduction and Reshaping as a Treatment Option for Heart Failure.
https://doi.org/10.1080/24748706.2020.1777359

Other related articles published in this Open Access Online Scientific Journal, include the following:

Treatment Options for Left Ventricular Failure  –  Temporary Circulatory Support: Intra-aortic balloon pump (IABP) – Impella Recover LD/LP 5.0 and 2.5, Pump Catheters (Non-surgical) vs Bridge Therapy: Percutaneous Left Ventricular Assist Devices (pLVADs) and LVADs (Surgical) 

Author: Larry H Bernstein, MD, FCAP
and
Curator: Justin D Pearlman, MD, PhD, FACC

https://pharmaceuticalintelligence.com/2013/07/17/treatment-options-for-left-ventricular-failure-temporary-circulatory-support-intra-aortic-balloon-pump-iabp-impella-recover-ldlp-5-0-and-2-5-pump-catheters-non-surgical-vs-bridge-therapy/

Mechanical Circulatory Assist Devices as a Bridge to Heart Transplantation or as “Destination Therapy“: Options for Patients in Advanced Heart Failure

Writer and Curator: Larry H. Bernstein, MD, FCAP

and

Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2013/06/30/advanced-heart-failure/


Allon Klein, Harvard Medical School, and Aviv Regev, Genentech, Recipients of National Academy of Sciences James Prize in Science and Technology Integration 2021 Award

Reporter: Aviva Lev-Ari, PhD, RN

 

The National Academy of Sciences will award the inaugural James Prize in Science and Technology Integration to Allon Klein, Harvard Medical School, and Aviv Regev, Genentech Research and Early Development, the Broad Institute of MIT and Harvard, and Howard Hughes Medical Institute. They are receiving the $50,000 prize for “their concurrent development of now widely adopted massively parallel single-cell genomics to interrogate the gene expression profiles that define, at the level of individual cells, the distinct cell types in metazoan tissues, their developmental trajectories, and disease states, which integrated tools from molecular biology, engineering, statistics, and computer science.” The James Prize honors outstanding contributions made by researchers who are able to adopt or adapt information or techniques from outside their fields, integrating knowledge from two or more disciplines (e.g., engineering, mathematics, physics, chemistry, biology, biomedicine, geosciences, astronomy, or computational sciences) to solve a major contemporary challenge not addressable from a single disciplinary perspective.

Klein is recognized for innovating high-throughput experimental and mathematical approaches to analyze single-cell transcriptomes at an unprecedented level of detail and discover how cell fate is decided in metazoan tissues. His work combines statistics and physics with molecular biology. He has mapped differentiation hierarchies, identified transitional developmental states to predict features of fate control, and discovered new cell types and regenerative programs.

Regev is credited with forging new ways to unite the disciplines of biology, computational science, and engineering as a pioneer in the field of single-cell biology, including developing some of its core experimental and analysis tools, and their application to discover cell types, states, programs,  environmental responses, development, tissue locations, and regulatory circuits, and deploying these to assemble cellular atlases of the human body that illuminate mechanisms of disease with remarkable fidelity.

The prize, made possible through a generous donation from Robert “Bob” James, will be presented to Klein and Regev virtually during the National Academy of Sciences’ 158th annual meeting.

Awards News

» Stay tuned! The 2021 NAS Awards recipients will be announced on January 21 with the NAS Public Welfare Medal announced on January 25.
» In a recent episode of the podcast Clear+Vivid, hosted by 2016 Public Welfare Medalist Alan Alda, Marcia McNutt discusses her framework for delivering science in a crisis and how the National Academies are advising the nation during the COVID-19 pandemic. Click here to listen.

SOURCE

From: NAS Awards Program <awards@nas.edu>

Reply-To: NAS Awards Program <awards@nas.edu>

Date: Tuesday, January 19, 2021 at 11:04 AM

To: “Aviva Lev-Ari, PhD, RN” <AvivaLev-Ari@alum.berkeley.edu>

Subject: Inaugural James Prize in Science and Technology Integration Recipients Announced


World Leaders to meet during Davos Agenda in a crucial year to rebuild trust

Reporter: Aviva Lev-Ari, PhD, RN

 

Davos Agenda

https://www.weforum.org/events/the-davos-agenda-2021

 

Adrian Monck, Managing Director, Public Engagement, public.affairs@weforum.org

日本語 | 中文 | عربي

World Leaders to Meet During Davos Agenda in a Crucial Year to Rebuild Trust

  • The Davos Agenda 2021 will convene under the theme: A Crucial Year to Rebuild Trust
  • The World Economic Forum will gather the world’s foremost leaders to address the economic, environmental, social and technological challenges following the COVID-19 pandemic 
  • More than 1,500 business, government and civil society leaders from over 70 countries will set the agenda for a critical year ahead and discuss how to catalyse impact in the rapidly advancing Fourth Industrial Revolution
  • The conclusions from the Davos Agenda week will feed into task forces working on global issues for the upcoming Special Annual Meeting in Singapore
  • For more information, please visit http://www.weforum.org; share on social media using the hashtag #DavosAgenda

Geneva, Switzerland, 18 January 2021 – The World Economic Forum Davos Agenda, taking place virtually on 25-29 January, will bring together the foremost leaders of the world to address the new global situation. Heads of state and government, chief executives and leaders from civil society will convene under the theme: A Crucial Year to Rebuild Trust.

The meeting will focus on creating impact, rebuilding trust and shaping the policies and partnerships needed in 2021.

“In the context of the COVID-19 pandemic, the need to reset priorities and the urgency to reform systems have been growing stronger around the world,” said Klaus Schwab, Founder and Executive Chairman of the World Economic Forum. “Rebuilding trust and increasing global cooperation are crucial to fostering innovative and bold solutions to stem the pandemic and drive a robust recovery. This unique meeting will be an opportunity for leaders to outline their vision and address the most important issues of our time, such as the need to accelerate job creation and to protect the environment.”

The COVID-19 pandemic has demonstrated that no institution or individual alone can address the economic, environmental, social and technological challenges of our complex, interdependent world. The pandemic has accelerated systemic changes that were apparent before its inception. The fault lines that emerged in 2020 now appear as critical crossroads in 2021. The Davos Agenda will help leaders choose innovative and bold solutions to stem the pandemic and drive a robust recovery over the next year.

The five programme themes are:

  1. Designing cohesive, sustainable, resilient economic systems (25 January)
  2. Driving responsible industry transformation and growth (26 January)
  3. Enhancing stewardship of the global commons (27 January)
  4. Harnessing the technologies of the Fourth Industrial Revolution (28 January)
  5. Advancing global and regional cooperation (29 January)

Special addresses from G20 heads of state and government and international organizations will provide crucial insights into a range of important issues in the year ahead. Participants will hear first-hand how these public figures will demonstrate leadership and drive action in areas such as the environment, jobs, and advances in innovation brought by the Fourth Industrial Revolution.

Heads of state and government include:

Xi Jinping, President of the People’s Republic of China; Narendra Modi, Prime Minister of India; Yoshihide Suga, Prime Minister of Japan; Emmanuel Macron, President of France; Angela Merkel, Federal Chancellor of Germany; Ursula von der Leyen, President of the European Commission; Giuseppe Conte, Prime Minister of Italy; Moon Jae-in, President of the Republic of Korea; Alberto Fernández, President of Argentina; Cyril Ramaphosa, President of South Africa; Pedro Sánchez, Prime Minister of Spain; Guy Parmelin, President of the Swiss Confederation and Federal Councillor for Economic Affairs, Education and Research; Ivan Duque, President of Colombia; Carlos Alvarado Quesada, President of Costa Rica; Nana Addo Dankwa Akufo-Addo, President of the Republic of Ghana; Kyriakos Mitsotakis, Prime Minister of Greece; Benjamin Netanyahu, Prime Minister of Israel; Abdullah II ibn Al Hussein, King of the Hashemite Kingdom of Jordan; Paul Kagame, President of Rwanda; Lee Hsien Loong, Prime Minister of Singapore, the host of the World Economic Forum Special Annual Meeting 2021.

Other world leaders are expected to confirm.

Leaders from international organizations, government agencies and central banks include:

António Guterres, Secretary-General, United Nations (UN); Tedros Adhanom Ghebreyesus, Director-General, World Health Organization (WHO); Kristalina Georgieva, Managing Director, International Monetary Fund (IMF); Amina Mohammed, Deputy Secretary-General, United Nations (UN); Achim Steiner, Administrator, United Nations Development Programme (UNDP); Phumzile Mlambo-Ngcuka, Undersecretary-General and Executive Director, United Nations Entity for Gender Equality and the Empowerment of Women (UN WOMEN); Dongyu Qu, Director-General, Food and Agriculture Organization of the United Nations (FAO); Inger Andersen, Executive Director, United Nations Environment Programme (UNEP); Henrietta Fore, Executive Director, United Nations Children’s Fund (UNICEF); David Beasley, Executive Director, United Nations World Food Programme (WFP); Fang Liu, Secretary-General, International Civil Aviation Organization (ICAO); Anthony Fauci, Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, USA; Angel Gurría, Secretary-General, Organisation for Economic Co-operation and Development (OECD); Mauricio Claver-Carone, President, Inter-American Development Bank (IDB); Guy Ryder, Director-General, International Labour Organization (ILO); Jürgen Stock, Secretary-General, International Criminal Police Organization (INTERPOL); Fatih Birol, Executive Director, International Energy Agency (IEA); Rebecca Fatima Sta Maria, Executive Director, APEC Secretariat (Asia-Pacific Economic Cooperation).

Christine Lagarde, President, European Central Bank; François Villeroy de Galhau, Governor of the Central Bank of France; Andrew Bailey, Governor of the Bank of England.

The private sector will be represented by more than 1,000 leaders from the Forum’s member and partner organizations. Seven of the top ten companies by market capitalization are engaged year-round with the Forum and many will participate in The Davos Agenda week. As a working meeting to advance ongoing project work, more than 500 chief executives and chairpersons will take part in sessions throughout the week.

Leaders from civil society are a critical voice in shaping the agenda. Those taking part in the meeting include:

Seth Berkley, Chief Executive Officer, Gavi, the Vaccine Alliance; Gabriela Bucher, Executive Director, Oxfam International; Sharan Burrow, General Secretary, International Trade Union Confederation (ITUC); Hindou Oumarou Ibrahim, President, Association for Indigenous Women and Peoples of Chad (AFPAT); Marco Lambertini, Director-General, WWF International; Laura Liswood, Secretary-General, Council of Women World Leaders; Delia Ferreira Rubio, Chair, Transparency International; Peter Sands, Executive Director, Global Fund to Fight AIDS, Tuberculosis and Malaria (GF). 

Drawn from over 10,000 civic-minded young leaders, members of the World Economic Forum’s Global Shapers, Young Global Leaders, Technology Pioneers and Social Entrepreneurs communities will bring unique perspectives to The Davos Agenda.

Flagship reports, initiatives, and the latest book on Stakeholder Capitalism 

On January 25, Professor Schwab will release his latest book, titled “Stakeholder Capitalism: A Global Economy that Works for Progress, People and Planet.” It explores how societies can build the future post-COVID, and builds on the Forum’s 50-year-old advocacy of the stakeholder approach.

The World Economic Forum will release its Global Risks Report 2021 on 19 January. The flagship report is an important marker for prioritizing action in public and private sectors in the year ahead.

The Davos Agenda will also mark the launch of several World Economic Forum initiatives to accelerate the race to net-zero emissions, to champion new standards for racial justice, to ensure artificial intelligence is developed ethically and in the global public interest and to close the digital divide. More details on these initiatives and others will be disclosed at the meeting.

Opening Event and Crystal Awards

The meeting will be preceded by the Opening Event, available on YouTube on Sunday 24 January at 19.00 CET, featuring a welcome from Klaus Schwab and a special address by Guy Parmelin, President of the Swiss Confederation, just before the 27th Crystal Awards hosted by Hilde Schwab, Chairperson and Co-founder, Schwab Foundation for Social Entrepreneurship, and the photographer Platon.

The awards will be followed by the world premiere of “See Me: A Global Concert.” The official programme of The Davos Agenda will begin on 25 January.

Notes to editors

Media registration and sign-up

Explore the guide on how to follow and embed sessions on your website here

Watch the livestreamed sessions here

Follow the Forum on Twitter via @wef@davos and join the conversation using #DavosAgenda | Instagram | LinkedIn | TikTok | Weibo | Podcasts

Become a fan of the Forum on Facebook

Read the Forum Agenda also in French | Spanish | Mandarin | Japanese

Check out the Forum’s Strategic Intelligence Platform and Transformation Maps

Watch Forum videos

Learn about the Forum’s impact

Subscribe to Forum news releases and Podcasts

SOURCE

From: “<Adrian Monck>”, World Economic Forum <Public.Affairs@weforum.org>

Reply-To: “<Adrian Monck>”, World Economic Forum <Public.Affairs@weforum.org>

Date: Monday, January 18, 2021 at 9:37 AM

To: “Aviva Lev-Ari, PhD, RN” <AvivaLev-Ari@alum.berkeley.edu>

Subject: World Leaders to meet during Davos Agenda in a crucial year to rebuild trust


Joe Biden Announced Science Team Nominations for the New Administration

Reporter: Stephen J. Williams, PhD

 

UPDATED on 1/18/2021

As we move forward, we should all take pride in the continuation of UC Berkeley’s legacy of service and leadership to our political, economic and civic institutions. We congratulate alumni and faculty of the social sciences playing prominent roles in the incoming administration. Dr. Lisa D. Cook (‘04 Ph.D., Economics) is leading the economic transition team. Professor Emeritus Janet Yellen , (Berkeley Haas, Berkeley Economics) is the first woman nominated to serve as Secretary of  the Treasury; Wally Adeyemo (‘03 Political Economy) is the first African-American to serve as the Deputy Secretary of the Treasury; and Alejandro Mayorkas (‘81 History) is both the first Latino American and the first Jewish American nominated as Director of Homeland Security.  

SOURCE

From: Dean Raka Ray <socialsciences@berkeley.edu>

Reply-To: socialsciences@berkeley.edu” <reply-fe841079776d017a72-101_HTML-19495415-7300855-42@our.berkeley.edu>

Date: Monday, January 18, 2021 at 11:01 AM

To: “Aviva Lev-Ari, PhD, RN” <AvivaLev-Ari@alum.berkeley.edu>

Subject: A message from the Dean of Social Sciences

 

Biden Science Team Nominations

President-elect Joe Biden and Vice President-elect Kamala Harris announced several members of their White House science team. Eric Lander is the nominee for director of the Office of Science and Technology Policy, elevated to a Cabinet-level position. Mr. Biden also selected Alondra Nelson for deputy director of the President’s Council of Advisers on Science and Technology, and appointed Frances Arnold and Maria Zuber as co-chairs of the Office of Science and Technology Policy

 

 

In an announcement televised on C-Span, President Elect Joseph Biden announced his new Science Team to advise on science policy matters, as part of the White House Advisory Committee on Science and Technology. Below is a video clip and the transcript, also available at

https://www.c-span.org/video/?508044-1/president-elect-biden-introduces-white-house-science-team

The video link is

https://www.c-span.org/video/?508044-1/president-elect-biden-introduces-white-house-science-team

 

 

COMING UP TONIGHT ON C-SPAN, NEXT, PRESIDENT-ELECT JOE BIDEN AND VICE PRESIDENT-ELECT KAMALA HARRIS ANNOUNCE SEVERAL MEMBERS OF THEIR WHITE HOUSE SCIENCE TEAM. AND THEN SENATE MINORITY LEADER CHUCK SCHUMER TALKS ABOUT THE IMPEACHMENT OF PRESIDENT TRUMP IN THE WEEKLY DEMOCRATIC ADDRESS. AND AFTER THAT, TODAY’S SPEECH BY VICE PRESIDENT MIKE PENCE TO SAILORS AT NAVAL AIR STATION LAMORE IN CALIFORNIA. NEXT, PRESIDENT-ELECT JOE BIDEN AND VICE PRESIDENT-ELECT KAMALA HARRIS ANNOUNCE SEVERAL MEMBERS OF THEIR WHITE HOUSE SCIENCE TEAM. FROM WILMINGTON, DELAWARE, THIS IS ABOUT 40 MINUTES. PRESIDENT-ELECT BIDEN: GOOD AFTERNOON, FOLKS. I WAS TELLING THESE FOUR BRILLIANT SCIENTISTS AS I STOOD IN THE BACK, IN A WAY, THEY — THIS IS THE MOST EXCITING ANNOUNCEMENT THAT I’VE GOTTEN TO MAKE IN THE ENTIRE CABINET RAISED TO A CABINET LEVEL POSITION IN ONE CASE. THESE ARE AMONG THE BRIGHTEST MOST DEDICATED PEOPLE NOT ONLY IN THE COUNTRY BUT THE WORLD. THEY’RE COMPOSED OF SOME OF THE MOST SCIENTIFIC BRILLIANT MINDS IN THE WORLD. WHEN I WAS VICE PRESIDENT AS — I I HAD INTENSE INTEREST IN EVERYTHING THEY WERE DOING AND I PAID ENORMOUS ATTENTION. AND I WOULD — LIKE A KID GOING BACK TO SCHOOL. SIT DOWN AND CAN YOU EXPLAIN TO ME AND THEY WERE — VERY PATIENT WITH ME. AND — BUT AS PRESIDENT, I WANTED YOU TO KNOW I’M GOING TO PAY A GREAT DEAL OF ATTENTION. WHEN I TRAVEL THE WORLD AS VICE PRESIDENT, I WAS OFTEN ASKED TO EXPLAIN TO WORLD LEADERS, THEY ASKED ME THINGS LIKE DEFINE AMERICA. TELL ME HOW CAN YOU DEFINE AMERICA? WHAT’S AMERICA? AND I WAS ON A TIBETAN PLATEAU WITH AT THE TIME WITH XI ZIN PING AND WE HAD AN INTERPRETER CAN I DEFINE AMERICA FOR HIM? I SAID YES, I CAN. IN ONE WORD. POSSIBILITIES. POSSIBILITIES. I THINK IT’S ONE OF THE REASONS WHY WE’VE OCCASIONALLY BEEN REFERRED TO AS UGLY AMERICANS. WE THINK ANYTHING’S POSSIBLE GIVEN THE CHANCE, WE CAN DO ANYTHING. AND THAT’S PART OF I THINK THE AMERICAN SPIRIT. AND WHAT THE PEOPLE ON THIS STAGE AND THE DEPARTMENTS THEY WILL LEAD REPRESENT ENORMOUS POSSIBILITIES. THEY’RE THE ONES ASKING THE MOST AMERICAN OF QUESTIONS, WHAT NEXT? WHAT NEXT? NEVER SATISFIED, WHAT’S NEXT? AND WHAT’S NEXT IS BIG AND BREATHTAKING. HOW CAN — HOW CAN WE MAKE THE IMPOSSIBLE POSSIBLE? AND THEY WERE JUST ASKING QUESTIONS FOR THE SAKE OF QUESTIONS, THEY’RE ASKING THESE QUESTIONS AS CALL TO ACTION. , TO INSPIRE, TO HELP US IMAGINE THE FUTURE AND FIGURE OUT HOW TO MAKE IT REAL AND IMPROVE THE LIVES OF THE AMERICAN PEOPLE AND PEOPLE AROUND THE WORLD. THIS IS A TEAM THAT ASKED US TO IMAGINE EVERY HOME IN AMERICA BEING POWERED BY RENEWABLE ENERGY WITHIN THE NEXT 10 YEARS. OR 3-D IMAGE PRINTERS RESTORING TISSUE AFTER TRAUMATIC INJURIES AND HOSPITALS PRINTING ORGANS FOR ORGAN TRANSPLANTS. IMAGINE, IMAGINE. AND THEY REALLY — AND, YOU KNOW, THEN RALLY, THE SCIENTIFIC COMMUNITY TO GO ABOUT DOING WHAT WE’RE IMAGINING. YOU NEED SCIENCE, DATA AND DISCOVERY WAS A GOVERNING PHILOSOPHY IN THE OBAMA-BIDEN ADMINISTRATION. AND EVERYTHING FROM THE ECONOMY TO THE ENVIRONMENT TO CRIMINAL JUSTICE REFORM AND TO NATIONAL SECURITY. AND ON HEALTH CARE. FOR EXAMPLE, A BELIEF IN SCIENCE LED OUR EFFORTS TO MAP THE HUMAN BRAIN AND TO DEVELOP MORE PRECISE INDIVIDUALIZED MEDICINES. IT LED TO OUR ONGOING MISSION TO END CANCER AS WE KNOW IT, SOMETHING THAT IS DEEPLY PERSONAL TO BOTH MY FAMILY AND KAMALA’S FAMILY AND COUNTLESS FAMILIES IN AMERICA. WHEN PRESIDENT OBAMA ASKED ME TO LEAD THE CANCER MOON SHOT, I KNEW WE HAD TO INJECT A SENSE OF URGENCY INTO THE FIGHT. WE BELIEVED WE COULD DOUBLE THE RATE OF PROGRESS AND DO IN FIVE YEARS WHAT OTHERWISE WOULD TAKE 10. MY WIFE, JILL, AND I TRAVELED AROUND THE COUNTRY AND THE WORLD MEETING WITH THOUSANDS OF CANCER PATIENTS AND THEIR FAMILIES, PHYSICIANS, RESEARCHERS, PHILANTHROPISTS, TECHNOLOGY LEADERS AND HEADS OF STATE. WE SOUGHT TO BETTER UNDERSTAND AND BREAK DOWN THE SILOS AND STOVE PIPES THAT PREVENT THE SHARING OF INFORMATION AND IMPEDE ADVANCES IN CANCER RESEARCH AND TREATMENT WHILE BUILDING A FOCUSED AND COORDINATED EFFORT HERE AT HOME AND ABROAD. WE MADE PROGRESS. BUT THERE’S SO MUCH MORE THAT WE CAN DO. WHEN I ANNOUNCED THAT I WOULD NOT RUN IN 2015 AT THE TIME, I SAID I ONLY HAD ONE REGRET IN THE ROSE GARDEN AND IF I HAD ANY REGRETS THAT I HAD WON, THAT I WOULDN’T GET TO BE THE PRESIDENT TO PRESIDE OVER CANCER AS WE KNOW IT. WELL, AS GOD WILLING, AND ON THE 20TH OF THIS MONTH IN A COUPLE OF DAYS AS PRESIDENT I’M GOING TO DO EVERYTHING I CAN TO GET THAT DONE. I’M GOING TO — GOING TO BE A PRIORITY FOR ME AND FOR KAMALA AND IT’S A SIGNATURE ISSUE FOR JILL AS FIRST LADY. WE KNOW THE SCIENCE IS DISCOVERY AND NOT FICTION. AND IT’S ALSO ABOUT HOPE. AND THAT’S AMERICA. IT’S IN THE D.N.A. OF THIS COUNTRY, HOPE. WE’RE ON THE CUSP OF SOME OF THE MOST REMARKABLE BREAKTHROUGHS THAT WILL FUNDAMENTALLY CHANGE THE WAY OF LIFE FOR ALL LIFE ON THIS PLANET. WE CAN MAKE MORE PROGRESS IN THE NEXT 10 YEARS, I PREDICT, THAN WE’VE MADE IN THE LAST 50 YEARS. AND EXPONENTIAL MOVEMENT. WE CAN ALSO FACE SOME OF THE MOST DIRE CRISES IN A GENERATION WHERE SCIENCE IS CRITICAL TO WHETHER OR NOT WE MEET THE MOMENT OF PERIL AND PROMISE THAT WE KNOW IS WITHIN OUR REACH. IN 1944, FRANKLIN ROOSEVELT ASKED HIS SCIENCE ADVISOR HOW COULD THE UNITED STATES FURTHER ADVANCE SCIENTIFIC RESEARCH IN THE CRITICAL YEARS FOLLOWING THE SECOND WORLD WAR? THE RESPONSE LED TO SOME OF THE MOST GROUND BREAKING DISCOVERIES IN THE LAST 75 YEARS. AND WE CAN DO THAT AGAIN. AND WE CAN DO MORE. SO TODAY, I’M PROUD TO ANNOUNCE A TEAM OF SOME OF THE COUNTRY’S MOST BRILLIANT AND ACCOMPLISHED SCIENTISTS TO LEAD THE WAY. AND I’M ASKING THEM TO FOCUS ON FIVE KEY AREAS. FIRST THE PANDEMIC AND WHAT WE CAN LEARN ABOUT WHAT IS POSSIBLE OR WHAT SHOULD BE POSSIBLE TO ADDRESS THE WIDEST RANGE OF PUBLIC HEALTH NEEDS. SECONDLY, THE ECONOMY, HOW CAN WE BUILD BACK BETTER TO ENSURE PROSPERITY IS FULLY SHARED ALL ACROSS AMERICA? AMONG ALL AMERICANS? AND THIRDLY, HOW SCIENCE HELPS US CONFRONT THIS CLIMATE CRISIS WE FACE IN AMERICA AND THE WORLD BUT IN AMERICA HOW IT HELPS US CONFRONT THE CLIMATE CRISIS WITH AMERICAN JOBS AND INGENUITY. AND FOURTH, HOW CAN WE ENSURE THE UNITED STATES LEADS THE WORLD IN TECHNOLOGIES AND THE INDUSTRIES THAT THE FUTURE THAT WILL BE CRITICAL FOR OUR ECONOMIC PROSPERITY AND NATIONAL SECURITY? ESPECIALLY WITH THE INTENSE INCREASED COMPETITION AROUND THE WORLD FROM CHINA ON? AND FIFTH, HOW CAN WE ASSURE THE LONG-TERM HEALTH AND TRUST IN SCIENCE AND TECHNOLOGY IN OUR NATION? YOU KNOW, THESE ARE EACH QUESTIONS THAT CALL FOR ACTION. AND I’M HONORED TO ANNOUNCE A TEAM THAT IS ANSWERING THE CALL TO SERVE. AS THE PRESIDENTIAL SCIENCE ADVISOR AND DIRECTOR OF THE OFFICE OF SCIENCE AND TECHNOLOGY POLICY, I NOMINATE ONE OF THE MOST BRILLIANT GUYS I KNOW, PERSONS I KNOW, DR. ERIC LANDER. AND THANK YOU, DOC, FOR COMING BACK. THE PIONEER — HE’S A PIONEER IN THE STIFFING COMMUNITY. PRINCIPAL LEADER IN THE HUMAN GENOME PROJECT. AND NOT HYPERBOLE TO SUGGEST THAT DR. LANDER’S WORK HAS CHANGED THE COURSE OF HUMAN HISTORY. HIS ROLE IN HELPING US MAP THE GENOME PULLED BACK THE CURTAIN ON HUMAN DISEASE, ALLOWING SCIENTISTS, EVER SINCE, AND FOR GENERATIONS TO COME TO EXPLORE THE MOLECULAR BASIS FOR SOME OF THE MOST DEVASTATING ILLNESSES AFFECTING OUR WORLD. AND THE APPLICATION OF HIS PIONEERING WORK AS — ARE POISED TO LEAD TO INCREDIBLE CURES AND BREAKTHROUGHS IN THE YEARS TO COME. DR. LANDER NOW SERVES AS THE PRESIDENT AND FOUNDING DIRECTOR OF THE BRODE INSTITUTE AT M.I.T. AND HARVARD, THE WORLD’S FOREMOST NONPROFIT GENETIC RESEARCH ORGANIZATION. AND I CAME TO APPRECIATE DR. LANDER’S EXTRAORDINARY MIND WHEN HE SERVED AS THE CO-CHAIR OF THE PRESIDENT’S COUNCIL ON ADVISORS AND SCIENCE AND TECHNOLOGY DURING THE OBAMA-BIDEN ADMINISTRATION. AND I’M GRATEFUL, I’M GRATEFUL THAT WE CAN WORK TOGETHER AGAIN. I’VE ALWAYS SAID THAT BIDEN-HARRIS ADMINISTRATION WILL ALSO LEAD AND WE’RE GOING TO LEAD WITH SCIENCE AND TRUTH. WE BELIEVE IN BOTH. [LAUGHTER] GOD WILLING OVERCOME THE PANDEMIC AND BUILD OUR COUNTRY BETTER THAN IT WAS BEFORE. AND THAT’S WHY FOR THE FIRST TIME IN HISTORY, I’M GOING TO BE ELEVATING THE PRESIDENTIAL SCIENCE ADVISOR TO A CABINET RANK BECAUSE WE THINK IT’S THAT IMPORTANT. AS DEPUTY DIRECTOR OF THE OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND SCIENCE AND — SCIENCE AND SOCIETY, I APPOINT DR. NELSON. SHE’S A PROFESSOR AT THE INSTITUTE OF ADVANCED STUDIES AT PRINCETON UNIVERSITY. THE PRESIDENT OF THE SOCIAL SCIENCE RESEARCH COUNCIL. AND ONE OF AMERICA’S LEADING SCHOLARS IN THE — AN AWARD-WINNING AUTHOR AND RESEARCHER AND EXPLORING THE CONNECTIONS BETWEEN SCIENCE AND OUR SOCIETY. THE DAUGHTER OF A MILITARY FAMILY, HER DAD SERVED IN THE UNITED STATES NAVY AND HER MOM WAS AN ARMY CRIPPING TO RAFFER. DR. NELSON DEVELOPED A LOVE OF TECHNOLOGY AT A VERY YOUNG AGE PARTICULARLY WITH THE EARLY COMPUTER PRODUCTS. COMPUTING PRODUCTS AND CODE-BREAKING EQUIPMENT THAT EVERY KID HAS AROUND THEIR HOUSE. AND SHE GREW UP WITHIN HER HOME. WHEN I WROTE THAT DOWN, I THOUGHT TO MYSELF, I MEAN, HOW MANY KIDS — ANY WAY, THAT PASSION WAS A PASSION FORGED A LIFELONG CURIOSITY ABOUT THE INEQUITIES AND THE POWER DIAMONDICS THAT SIT BENEATH THE SURFACE OF SCIENTIFIC RESEARCH AND THE TECHNOLOGY WE BUILD. DR. NELSON IS FOCUSED ON THOSE INSIGHTS. AND THE SCIENCE, TECHNOLOGY AND SOCIETY, LIKE FEW BEFORE HER EVER HAVE IN AMERICAN HISTORY. BREAKING NEW GROUND ON OUR UNDERSTANDING OF THE ROLE SCIENCE PLAYS IN AMERICAN LIFE AND OPENING THE DOOR TO — TO A FUTURE WHICH SCIENCE BETTER SERVES ALL PEOPLE. AS CO-CHAIR OF THE PRESIDENT’S COUNCIL ON ADVISORS OF SCIENCE AND TECHNOLOGY,APPOINT DR. FRANCIS ARNOLD, DIRECTOR OF THE ROSE BIOENGINEERING CENTER AT CALTECH AND ONE OF THE WORLD’S LEADING EXPERTS IN PROTEIN ENGINEERING, A LIFE-LONG CHAMPION OF RENEWABLE ENERGY SOLUTIONS WHO HAS BEEN INDUCTED INTO THE NATIONAL INVENTORS’ HALL OF FAME. THAT AIN’T A BAD PLACE TO BE. NOT ONLY IS SHE THE FIRST WOMAN TO BE ELECTED TO ALL THREE NATIONAL ACADEMIES OF SCIENCE, MEDICINE AND ENGINEERING AND ALSO THE FIRST WOMAN, AMERICAN WOMAN, TO WIN A NOBEL PRIZE IN CHEMISTRY. A VERY SLOW LEARNER, SLOW STARTER, THE DAUGHTER OF PITTSBURGH, SHE WORKED AS A CAB DRIVER, A JAZZ CLUB SERVER, BEFORE MAKING HER WAY TO BERKELEY AND A CAREER ON THE LEADING EDGE OF HUMAN DISCOVERY. AND I WANT TO MAKE THAT POINT AGAIN. I WANT — IF ANY OF YOUR CHILDREN ARE WATCHING, LET THEM KNOW YOU CAN DO ANYTHING. THIS COUNTRY CAN DO ANYTHING. ANYTHING AT ALL. AND SO SHE SURVIVED BREAST CANCER, OVERCAME A TRAGIC LOSS IN HER FAMILY WHILE RISING TO THE TOP OF HER FIELD, STILL OVERWHELMINGLY DOMINATED BY MEN. HER PASSION HAS BEEN A STEADFAST COMMITMENT TO RENEWABLE ENERGY FOR THE BETTERMENT OF OUR PLANET AND HUMANKIND. SHE IS AN INSPIRING FIGURE TO SCIENTISTS ACROSS THE FIELD AND ACROSS NATIONS. AND I WANT TO THANK DR. ARNOLD FOR AGREEING TO CO-CHAIR A FIRST ALL WOMAN TEAM TO LEAD THE PRESIDENT’S COUNCIL OF ADVISORS ON SCIENCE AND TECHNOLOGY WHICH LEADS ME TO THE NEXT MEMBER OF THE TEAM. AS CO-CHAIR, THE PRESIDENT’S COUNCIL OF ADVISORS ON SCIENCE AND TECHNOLOGY, I APPOINT DR. MARIE ZUBER. A TRAIL BLAZER BRAISING GEO PHYSICIST AND PLANETARY SCIENTIST A. FORMER CHAIR OF THE NATIONAL SCIENCE BOARD. FIRST WOMAN TO LEAD THE SCIENCE DEPARTMENT AT M.I.T. AND THE FIRST WOMAN TO LEAD NASA’S ROBOTIC PLANETARY MISSION. GROWING UP IN COLE COUNTRY NOT FAR FROM HEAVEN, SCRANTON, PENNSYLVANIA, IN CARBON COUNTY, PENNSYLVANIA, ABOUT 50 MILES SOUTH OF WHERE I WAS A KID, SHE DREAMED OF EXPLORING OUTER SPACE. COULD HAVE TOLD HER SHE WOULD JUST GO TO GREEN REACH IN SCRANTON AND FIND WHERE IT WAS. AND I SHOULDN’T BE SO FLIPPANT. BUT I’M SO EXCITED ABOUT THESE FOLKS. YOU KNOW, READING EVERY BOOK SHE COULD FIND AND LISTENING TO HER MOM’S STORIES ABOUT WATCHING THE EARLIEST ROCKET LAUNCH ON TELEVISION, MARIE BECAME THE FIRST PERSON IN HER FAMILY TO GO TO COLLEGE AND NEVER LET GO OF HER DREAM. TODAY SHE OVERSEES THE LINCOLN LABORATORY AT M.I.T. AND LEADS THE INSTITUTION’S CLIMATE ACTION PLAN. GROWING UP IN COLD COUNTRY, NOT AND FINALLY, COULD NOT BE HERE TODAY, BUT I’M PLEASED TO ANNOUNCE THAT I’VE HAD A LONG CONVERSATION WITH DR. FRANCIS COLLINS AND COULD NOT BE HERE TODAY. AND I’VE ASKED THEM TO STAY ON AS DIRECTOR OF THE INSTITUTE OF HEALTH AND — AT THIS CRITICAL MOMENT. I’VE KNOWN DR. COLLINS FOR MANY YEARS. I WORKED WITH HIM CLOSELY. HE’S BRILLIANT. A PIONEER. A TRUE LEADER. AND ABOVE ALL, HE’S A MODEL OF PUBLIC SERVICE AND I’M HONORED TO BE WORKING WITH HIM AGAIN. AND IT IS — IN HIS ABSENCE I WANT TO THANK HIM AGAIN FOR BEING WILLING TO STAY ON. I KNOW THAT WASN’T HIS ORIGINAL PLAN. BUT WE WORKED AN AWFUL LOT ON THE MOON SHOT AND DEALING WITH CANCER AND I JUST WANT TO THANK HIM AGAIN. AND TO EACH OF YOU AND YOUR FAMILIES, AND I SAY YOUR FAMILIES, THANK YOU FOR THE WILLINGNESS TO SERVE. AND NOT THAT YOU HAVEN’T BEEN SERVING ALREADY BUT TO SERVE IN THE ADMINISTRATION. AND THE AMERICAN PEOPLE, TO ALL THE AMERICAN PEOPLE, THIS IS A TEAM THAT’S GOING TO HELP RESTORE YOUR FAITH IN AMERICA’S PLACE IN THE FRONTIER OF SCIENCE AND DISCOVER AND HOPE. I’M NOW GOING TO TURN THIS OVER STARTING WITH DR. LANDER, TO EACH OF OUR NOMINEES AND THEN WITH — HEAR FROM THE VICE PRESIDENT. BUT AGAIN, JUST CAN’T THANK YOU ENOUGH AND I REALLY MEAN IT. THANK YOU, THANK YOU, THANK YOU FOR WILLING TO DO THIS. DOCTOR, IT’S ALL YOURS. I BETTER PUT MY MASK ON OR I’M GOING TO GET IN TROUBLE.

 

Director’s Page


Potential interest in LPBI Group’s BioMed e-Series 

Advisor: Conxa Catot · BDM, ex-Elsevier

 

Conxa Catot · BDM
CONTENT ED NET
conxa.catot@contentednet.com
+34 639 357 643
Avda. Josep Tarradellas, 8, 4-4

08029 Barcelona, Spain

 

LPBI Group’s BioMed e-Series – 18 Volumes in Medicina and Life Sciences

Series A: e-Books on Cardiovascular Diseases

                    6 Volumes

Series B: Frontiers in Genomics Research

                    2 Volumes

Series C: e-Books on Cancer & Oncology

                    2 Volumes

Series D: e-Books on BioMedicine – Metabolomics, Immunology, Infectious Diseases, Reproductive Genomic Endocrinology

                    4 Volumes

Series E: Patient-Centered Medicine – LINKS to e-Books & Cover Pages for Volumes 1,2,3,4

                    4 Volumes

Advice offered by Conxa Catot · BDM, ex-Elsevier

 

  • Panamericana to offer the ebooks

https://www.medicapanamericana.com/

  • Springer Nature

https://www.springernature.com/la

  • Exlibris Group was purchased by Proquest

https://exlibrisgroup.com/

  • Proquest

https://about.proquest.com/

Ana Neira ana.neira@proquest.com and offer your ebooks and contents; she will forward you to the right contact in case they have interest.

  • ebook platform from Proquest

https://ebookcentral.proquest.com/

 


Dysregulation of ncRNAs in association with Neurodegenerative Disorders

Curator: Amandeep Kaur

Research over the years has added evidences to the hypothesis of “RNA world” which explains the evolution of DNA and protein from a simple RNA molecule. Our understanding of RNA biology has dramatically changed over the last 50 years and rendered the scientists with the conclusion that apart from coding for protein synthesis, RNA also plays an important role in regulation of gene expression.

Figure: Overall Taxonomy of ncRNAs
Figure: Overall Taxonomy of ncRNAs
https://www.nature.com/articles/s42256-019-0051-2

The universe of non-coding RNAs (ncRNAs) is transcending the margins of preconception and altered the traditional thought that the coding RNAs or messenger RNAs (mRNAs) are more prevalent in our cells. Research on the potential use of ncRNAs in therapeutic relevance increased greatly after the discovery of RNA interference (RNAi) and provided important insights into our further understanding of etiology of complex disorders.

Figure: Atomic Structure of Non-coding RNA
https://en.wikipedia.org/wiki/Non-coding_RNA

Latest research on neurodegenerative disorders has shown the perturbed expression of ncRNAs which provides the functional association between neurodegeneration and ncRNAs dysfunction. Due to the diversity of functions and abundance of ncRNAs, they are classified into Housekeeping RNAs and Regulatory ncRNAs.

The best known classes of ncRNAs are the microRNAs (miRNAs) which are extensively studied and are of research focus. miRNAs are present in both intronic and exonic regions of matured RNA (mRNA) and are crucial for development of CNS. The reduction of Dicer-1, a miRNA biogenesis-related protein affects neural development and the elimination of Dicer in specifically dopaminergic neurons causes progressive degeneration of these neuronal cells in striatum of mice.

A new class of regulatory ncRNAs, tRNAs-derived fragments (tRFs) is superabundantly present in brain cells. tRFs are considered as risk factors in conditions of neural degeneration because of accumulation with aging. tRFs have heterogenous functions with regulation of gene expression at multiple layers including regulation of mRNA processing and translation, inducing the activity of silencing of target genes, controlling cell growth and differentiation processes.

The existence of long non-coding RNAs (lncRNAs) was comfirmed by the ENCODE project. Numerous studies reported that approximately 40% of lncRNAs are involved in gene expression, imprinting and pluripotency regulation in the CNS. lncRNA H19 is of paramount significance in neural viability and contribute in epilepsy condition by activating glial cells. Other lncRNAs are highly bountiful in neurons including Evf2 and MALAT1 which play important function in regulating neural differentiation and synapse formation and development of dendritic cells respectively.

Recently, a review article in Nature mentioned about the complex mechanisms of ncRNAs contributing to neurodegenerative conditions. The ncRNA-mediated mechanisms of regulation are as follows:

  • Epigenetic regulation: Various lncRNAs such as BDNF-AS, TUG1, MEG3, NEAT1 and TUNA are differentially expressed in brain tissue and act as epigenetic regulators.
  • RNAi: RNA interference includes post-transcriptional repression by small-interfering RNAs (siRNAs) and binding of miRNAs to target genes. In a wide spectrum of neurodegenerative diseases such as Alzheimer’s disease, Parkinson disease, Huntington’s disease, Amyotrophic lateral sclerosis, Fragile X syndrome, Frontotemporal dementia, and Spinocerebellar ataxia, have shown perturbed expression of miRNA.
  • Alternative splicing: Variation in splicing of transcripts of ncRNAs has shown adverse affects in neuropathology of degenerative diseases.
  • mRNA stability: The stability of mRNA may be affected by RNA-RNA duplex formation which leads to the degradation of sense mRNA or blocking the access to proteins involved in RNA turnover and modify the progression of neurodegenerative disorders.
  • Translational regulation: Numerous ncRNAs including BC200 directly control the translational process of transcripts of mRNAs and effect human brain of Alzheimer’s disease.
  • Molecular decoys: Non-coding RNAs (ncRNAs) dilute the expression of other RNAs by molecular trapping, also known as competing endogenous RNAs (ceRNAs) which hinder the normal functioning of RNAs. The ceRNAs proportion must be equivalent to the number of target miRNAs that can be sequestered by each ncRNAs in order to induce consequential de-repression of the target molecules.
Table: ncRNAs and related processes involved in neurodegenerative disorders
https://www.nature.com/articles/nrn.2017.90

The unknown functions of numerous annotated ncRNAs may explain the underlying complexity in neurodegenerative disorders. The profiling of ncRNAs of patients suffering from neurodevelopmental and neurodegenerative conditions are required to outline the changes in ncRNAs and their role in specific regions of brain and cells. Analysis of Large-scale gene expression and functional studies of ncRNAs may contribute to our understanding of these diseases and their remarkable connections. Therefore, targeting ncRNAs may provide effective therapeutic perspective for the treatment of neurodegenerative diseases.

References https://www.nature.com/scitable/topicpage/rna-functions-352/ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6035743/ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7695195/ https://link.springer.com/article/10.1007/s13670-012-0023-4 https://www.nature.com/articles/nrn.2017.90

 

Other related articles were published in this Open Access Online Scientific Journal, including the following:

RNA in synthetic biology

Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2016/03/26/rna-in-synthetic-biology/

mRNA Data Survival Analysis

Curators: Larry H. Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/06/18/mrna-data-survival-analysis/

Recent progress in neurodegenerative diseases and gliomas

Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2016/05/28/recent-progress-in-neurodegenerative-diseases-and-gliomas/

Genomic Promise for Neurodegenerative Diseases, Dementias, Autism Spectrum, Schizophrenia, and Serious Depression

Reporter and writer: Larry H Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2013/02/19/genomic-promise-for-neurodegenerative-diseases-dementias-autism-spectrum-schizophrenia-and-serious-depression/