Feeds:
Posts
Comments

Videos on Science from Koch Institute @MIT

Reporter: Aviva Lev-Ari, PhD, RN

 

Learn more about and watch videos from:

The Age of Living Machines: A Conversation with Susan Hockfield and Robin Young

Physical Science – Oncology Center Mini Symposium

Kendall Square Convergence

Mission: Possible (Five Year Anniversary Celebration)

Special Symposium: Bridging the Gap in Ovarian Cancer

One-on-One: Patient-Advocate Linnea Duff & Physician-Scientist Anna Farago

MIT150 Symposium: Conquering Cancer through the Convergence of Science and Engineering

Oncology Solutions Forum 2009

Cancer Briefing 2008

 

SOURCE

https://ki.mit.edu/news/events


19th Annual Koch Institute Summer Symposium on Cancer Immunotherapy, June 12, 2020 at MIT’s Kresge Auditorium

Reporter: Aviva Lev-Ari, PhD, RN

 

 

Summer Symposium 2020

Engineering the Next Wave of Immunotherapy

The 19th Annual Koch Institute Summer Symposium on June 12, 2020 at MIT’s Kresge Auditorium will focus on cancer immunotherapy.

Cancer immunotherapy has revolutionized the landscape of cancer treatment, our thinking of tumor biology and clinical practice. Following the groundbreaking successes of checkpoint blockade therapy and CAR T cell therapy, culminating in multiple FDA-approved treatments and the awarding of the 2018  Nobel Prize in Medicine to Jim Allison and Tasuku Honjo, the field is currently at a critical juncture.

While checkpoint blockade therapy has demonstrated that the immune system can be harnessed to fight cancer,  the next generation of treatments will require us to understand what causes resistance in non-responders, how this can be overcome, and how these issues are best addressed clinically. Discussing these questions will be at the core of this symposium as we move towards our ultimate goal to increase the number of patients benefiting from immunotherapy

Session Speakers


Targeting T Cells
Rafi Ahmed, Michael Dougan, Chris Love

Thinking Beyond T Cells
Angelika Amon, Yasemine Belkaid, Stefani Spranger

Engineering Clinical Translation  
Nina Bhardwaj, Chris Garcia

Panel Discussion: Clinical Translation: A Real Life Perspective


Daniel Chen, Howard Kaufman, Kimberly Schaefer-Weaver
Moderator: Steven Silverstein

SOURCE

https://ki.mit.edu/news/events/symposium/2020


Brain Health – Evidence that Lifestyle Habits can improve Brain Health – APOe4 gene in women appears to more often convert mild cognitive impairment to Alzheimer’s

 

Reporter: Aviva Lev-Ari, PhD, RN

 

Brain health is determined by how the organ is functioning; how much

  • blood flow
  • nutrients and
  • oxygen it is getting; and
  • how it is cleaning and filtering things like harmful proteins – high amyloid burden is decreasing in importance by climbing steps during excercise – proteins that increase the risk for Alzheimer’s can start to deposit in the brain 15-20 years before the onset of symptoms

Factors in boosting brain health

  • Exercise increases blood flow to the brain and increases the size of the anterior hippocampus, leading to improvements in spatial memory vs reduction in size and atrophy. Healthy lifestyle habits can reduce or negate risk — even in the presence of genetic predisposition
  • Diet – Mediterranean, heart-healthy diet can minimize adverse effects on memory and decrease the incidence of Alzheimer’s and dementia. It boost memory and cognition.
  • Exercise and diet increase release of endorphins which can stimulate cognitive functioning and mood improvements
  • Brain Derived Nerve Growth Factor (BDNF) — which can help memory, focus and attention — may increase as a result of physical activity.
  • Sleep and Mood are interconnected

Genetic Factors affecting Brain Health

  • ApoE4 gene carriers have an increased risk.
  • One copy of the gene can increase risk by 2-4 times the risk of the general population, and
  • Two copies of the gene may increase risk up to 10 times that of the general population. But that is risk, not cause.

Age

  • People over age 65, 1-2% have Alzheimer’s disease.
  • Above 85 years old, the prevalence is 30-50%.

Sex

  • Women have a higher risk of Alzheimer’s than do men.
  • Could this just be because women live longer than men?
  • Women may have more physiological risks than men.
  • For example, the APOe4 gene in women appears to more often convert mild cognitive impairment to Alzheimer’s.

Variability by Ethnicity and Race

  • Alzheimer’s disease within specific ethnic groups and races – has different disease profiles, more studies with diversity are needed.

Highest risk for developing Alzheimer’s and other neurodegenerative diseases

  • Genetic predisposition,
  • Low education,
  • High age and
  • Vascular risk factors

 

Minimizing Risk and induce Slower Progression – We can’t change age and we can’t change genetics. The modifiable risk factors are:

  • exercise,
  • sleep,
  • diet, and
  • cognitive stimulation

 

SOURCE

https://hip.stanford.edu/calendar-news/news/boosting-brain-health/


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Early menopause, defined as the cessation of ovarian function before the age of 45 years, affects approximately 10% of women in Western populations. Current research suggests that women who experience early menopause are at increased risk of premature mortality, cognitive decline, osteoporosis, and cardiovascular disease.

 

The reproductive aging process is characterized by the gradual decrease in both quantity and quality of oocytes within ovarian follicles. The number of oocytes a woman is born with, the rate of loss of those oocytes during the life span because of the process of atresia, and the threshold number of oocytes needed to produce sufficient hormones to maintain menstrual cyclicity have been identified as determinants of age at menopause.

 

Women who breastfed their infants exclusively for seven to 12 months may have a significantly lower risk of early menopause than their peers who breastfed their infants for less than a month, according to an analysis funded by the National Institutes of Health. The study was conducted at University of Massachusetts provide the strongest evidence to date that exclusive breastfeeding may reduce the risk of early menopause. The study also suggests that pregnancy can reduce the risk of early menopause.

 

Previous studies have suggested that menopause before age 45 (early menopause) increases the risk of early death, cognitive decline, osteoporosis and cardiovascular disease. Smaller studies have found evidence linking pregnancy and breastfeeding with later menopause, but because of their size and other limitations, the results are inconclusive. Moreover, the earlier studies focused on timing of menopause and not on the risk of early menopause.

 

In the present study, researchers analyzed data from more than 100,000 women ages 25 to 42 years. Every two years, from 1989 to 2015, the participants responded to detailed questionnaires, providing health information and medical history, including pregnancy history. Compared to women who had never been pregnant or who had been pregnant for less than six months, women who had one full-term pregnancy had an 8% lower risk of early menopause. Those who had two pregnancies had a 16% lower risk, and those who had three pregnancies had a 22% lower risk.

 

Women who breastfed had an even smaller risk for early menopause. Those who breastfed for a total of 25 months or more during their premenopausal years had a 26% lower risk than women who breastfed for less than a month. Similarly, women who breastfed exclusively seven to 12 months had a 28% lower risk of early menopause, compared to those who breastfed for less than a month.

 

It is yet to be determined why pregnancy and breastfeeding lower the risk of early menopause. However, researchers theorize that because pregnancy and breastfeeding halt ovulation, the slowing of the egg loss may delay menopause. This study population is fairly homogeneous with respect to race and ethnicity, but it is expected that the physiological association between the reproductive factors of parity, breastfeeding, and early menopause would not differ substantially by race/ethnicity. Additional evaluation of these associations in more diverse populations as well as further study of the association with anti-Müllerian hormone levels are important.

 

References:

 

https://www.nih.gov/news-events/news-releases/pregnancy-breastfeeding-may-lower-risk-early-menopause-nih-study-suggests

 

https://www.ncbi.nlm.nih.gov/pubmed/31968114

 

https://www.ncbi.nlm.nih.gov/pubmed/19733988

 

https://www.ncbi.nlm.nih.gov/pubmed/18192670

 

https://www.ncbi.nlm.nih.gov/pubmed/7856687

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2615483/

 


Among patients with aortic stenosis who were at intermediate surgical risk, there was no significant difference in the incidence of death or disabling stroke at 5 years after TAVR as compared with surgical aortic-valve replacement

Reporter: Aviva Lev-Ari, PhD, RN

Five-Year Outcomes of Transcatheter or Surgical Aortic-Valve Replacement

 

January 29, 2020
DOI: 10.1056/NEJMoa1910555

List of authors.

  • Raj R. Makkar, M.D.,
  • Vinod H. Thourani, M.D.,
  • Michael J. Mack, M.D.,
  • Susheel K. Kodali, M.D.,
  • Samir Kapadia, M.D.,
  • John G. Webb, M.D.,
  • Sung-Han Yoon, M.D.,
  • Alfredo Trento, M.D.,
  • Lars G. Svensson, M.D., Ph.D.,
  • Howard C. Herrmann, M.D.,
  • Wilson Y. Szeto, M.D.,
  • D. Craig Miller, M.D.,
  • et al.,

for the PARTNER 2 Investigators*

 

Abstract

BACKGROUND

There are scant data on long-term clinical outcomes and bioprosthetic-valve function after transcatheter aortic-valve replacement (TAVR) as compared with surgical aortic-valve replacement in patients with severe aortic stenosis and intermediate surgical risk.

METHODS

We enrolled 2032 intermediate-risk patients with severe, symptomatic aortic stenosis at 57 centers. Patients were stratified according to intended transfemoral or transthoracic access (76.3% and 23.7%, respectively) and were randomly assigned to undergo either TAVR or surgical replacement. Clinical, echocardiographic, and health-status outcomes were followed for 5 years. The primary end point was death from any cause or disabling stroke.

RESULTS

At 5 years, there was no significant difference in the incidence of death from any cause or disabling stroke between the TAVR group and the surgery group (47.9% and 43.4%, respectively; hazard ratio, 1.09; 95% confidence interval [CI], 0.95 to 1.25; P=0.21). Results were similar for the transfemoral-access cohort (44.5% and 42.0%, respectively; hazard ratio, 1.02; 95% CI, 0.87 to 1.20), but the incidence of death or disabling stroke was higher after TAVR than after surgery in the transthoracic-access cohort (59.3% vs. 48.3%; hazard ratio, 1.32; 95% CI, 1.02 to 1.71). At 5 years, more patients in the TAVR group than in the surgery group had at least mild paravalvular aortic regurgitation (33.3% vs. 6.3%). Repeat hospitalizations were more frequent after TAVR than after surgery (33.3% vs. 25.2%), as were aortic-valve reinterventions (3.2% vs. 0.8%). Improvement in health status at 5 years was similar for TAVR and surgery.

CONCLUSIONS

Among patients with aortic stenosis who were at intermediate surgical risk, there was no significant difference in the incidence of death or disabling stroke at 5 years after TAVR as compared with surgical aortic-valve replacement. (Funded by Edwards Lifesciences; PARTNER 2 ClinicalTrials.gov number, NCT01314313. opens in new tab.)

 


Imaging (ECHO) marker that would identify early cardiotoxic effects: The impact of high-dose immunosuppression for ICI myocarditis Cardiac Echo Tracks Checkpoint Inhibitor Damage – Predicting cardiac injury before EF falls

Reporter: Aviva Lev-Ari, PhD, RN

The present study is the first to use Global longitudinal strain (GLS) specifically to identify immune checkpoint inhibitors (ICI) myocarditis, Abraham and Aras noted.

The study compared 101 ICI myocarditis cases from a multicenter international registry (30 with serial GLS) against a random sample of 92 ICI users at Neilan’s institution who did not present with myocarditis (14 with serial GLS) during a study period from 2013 through 2019.

Despite not propensity-matching these patients, the investigators ended up with two groups with similar age (around 65), sex (>60% men), and cancer type (most commonly melanoma and lung cancer).

Before ICI therapy, GLS was similar between groups (20.3% among cases and 20.6% among controls, P=0.60).

Patients who had myocarditis still had a normal ejection fraction in 60% of cases.

One major limitation of the study was that serial echocardiograms had not been routinely performed on people with myocarditis. “[T]hus, it was not possible to determine if the GLS decrease occurred prior to the development of myocarditis,” Neilan and colleagues acknowledged.

Furthermore, 97% of ICI myocarditis cases presented with elevated troponin levels, so it’s “unclear if GLS assessment has incremental value to such readily available biomarkers,” the editorialists pointed out.

“Additional work is needed to test if the GLS decrease occurs prior to the development of clinical myocarditis, can provide an early method of detection, and whether tailoring immunosuppressive therapy based on the measurement of GLS at presentation with myocarditis may be of value,” the authors said.

 

SOURCES

 

  • Cardiac Echo Tracks Checkpoint Inhibitor Damage

https://www.medpagetoday.com/cardiology/chf/84682?xid=nl_mpt_DHE_2020-02-04&eun=g99985d0r&utm_source=Sailthru&utm_medium=email&utm_campaign=Daily%20Headlines%20Top%20Cat%20HeC%20%202020-02-04&utm_term=NL_Daily_DHE_dual-gmail-definition


Artificial Intelligence in Medicine – Part 3: in Latest in Genomics Methodologies for Therapeutics: Gene Editing, NGS & BioInformatics, Simulations and the Genome Ontology

 

Updated on 2/10/2020

Eric Topol
@EricTopol

There have only been 5 randomized clinical trials of #AI in medicine to date. Here’s the summary: 4 in gastroenterology (2 @LancetGastroHep, 2 @Gut_BMJ) 1 in ophthalmology (@EClinicalMed) All were conducted in China (None in radiology, pathology, dermatology or other specialties)

Eric Topol
@EricTopol
Following
physician-scientist, author, editor. My new book is #DeepMedicine drerictopol.com

The Lancet Gastroenterology & Hepatology
@LancetGastroHep
Follow
The Lancet Gastroenterology & Hepatology publishes high-quality peer-reviewed research and reviews, comment, and news #gastroenterology #hepatology. IF=12.856

Gut Journal
@Gut_BMJ
Follow
Leading international journal in gastroenterology with an established reputation for publishing 1st class research. Find us on Facebook: facebook.com/Gut.BMJ

EClinicalMedicine – Published by The Lancet
@EClinicalMed
Follow
A new open access clinical journal, published by 

, influencing clinical practice and strengthening health systems

Image

Eric Topol
@EricTopol
While there are now hundreds of in silico, retrospective dataset reports, the number of prospective (non-randomized) trials in a real clinical environment testing #AI performance is limited. I only know of 11. Let me know if I’m missing any.

Image

 

Curators: Stephen J. Williams, PhD, Dror Nir, PhD and Aviva Lev-Ari, PhD, RN

 

 

 

Series Content Consultant:

Larry H. Bernstein, MD, FCAP, Emeritus CSO, LPBI Group

 

Volume Content Consultant:

Prof. Marcus W. Feldman

https://www.youtube.com/watch?v=aT-Jb0lKVT8

BURNET C. AND MILDRED FINLEY WOHLFORD PROFESSOR IN THE SCHOOL OF HUMANITIES AND SCIENCES

Stanford University, Co-Director, Center for Computational, Evolutionary and Human Genetics (2012 – Present)

Latest in Genomics Methodologies for Therapeutics:

Gene Editing, NGS & BioInformatics,

Simulations and the Genome Ontology

2019

Volume Two

https://www.amazon.com/dp/B08385KF87

Product details

  • File Size:3138 KB
  • Print Length:217 pages
  • Publisher:Leaders in Pharmaceutical Business Intelligence (LPBI) Group, Boston; 1 edition (December 28, 2019)
  • Publication Date:December 28, 2019
  • Sold by:Amazon Digital Services LLC
  • Language:English
  • ASIN:B08385KF87
  • Text-to-Speech: Enabled 
  • X-Ray:

Not Enabled 

  • Word Wise:Not Enabled
  • Lending:Enabled
  • Enhanced Typesetting:Enabled 

Prof. Marcus W. Feldman, PhD, Editor

Prof. Stephen J. Williams, PhD, Editor

and

Aviva Lev-Ari, PhD, RN, Editor

Introduction to Part 3: AI in Medicine – Voice of Aviva Lev-Ari & Professor Williams  

 

There is a current consensus that of all specialties in Medicine, Artificial Intelligence technologies will benefit the most the specialty of Radiology.

What AI can do

Of course, there is still a lot AI can do for radiologists. Soonmee Cha, MD, neuroradiologist, has served as a program director at the University of California San Francisco since 2012 and currently oversees 100 radiology trainees, said at RSNA 2019 in Chicago

“we can see a future where AI is improving image quality, decreasing acquisition times, eliminating artifacts, improving patient communication and even decreasing radiation dose.

“If AI can detect when machines are being set up incorrectly and alert us, it’s a win for us and for patients,” she said.

https://www.aiin.healthcare/topics/medical-imaging/rsna-ai-imaging-healthcare-costs-radiology-trainees?utm_source=newsletter&utm_medium=ai_news

Radiology societies team up for new statement on ethics of AI

Numerous imaging societies, including the American College of Radiology (ACR) and RSNA, have published a new statement on the ethical use of AI in radiology.

The European Society of Radiology, Society for Imaging Informatics in Medicine, European Society of Medical Imaging Informatics (EuSoMII), Canadian Association of Radiologists and American Association of Physicists in Medicine all also co-authored the statement which is focused on three key areas of AI development: data, algorithms and practice. A condensed summary was shared in the Journal of the American College of RadiologyRadiologyInsights into Imaging and the Canadian Association of Radiologists Journal.

“Radiologists remain ultimately responsible for patient care and will need to acquire new skills to do their best for patients in the new AI ecosystem,” J. Raymond Geis, MD, ACR Data Science Institute senior scientist and one of the document’s leading contributors, said in a prepared statement. “The radiology community needs an ethical framework to help steer technological development, influence how different stakeholders respond to and use AI, and implement these tools to make the best decisions for—and increasingly with—patients.”

“The application of AI tools in radiological practice lies in the hand of the radiologists, which also means that they have to be well-informed not only about the advantages they can offer to improve their services to patients, but also about the potential risks and pitfalls that might occur when implementing them,” Erik R. Ranschaert, MD, PhD, president of EuSoMII. “This paper is therefore an excellent basis to improve their awareness about the potential issues that might arise, and should stimulate them in thinking proactively on how to answer the existing questions.”

Back in September, the Royal Australian and New Zealand College of Radiologists (RANZCR) published its own guidelines on the ethical application of AI in healthcare. The document, “Ethical Principles for Artificial Intelligence in Medicine,” is available on the RANZCR website.

https://www.radiologybusiness.com/topics/artificial-intelligence/radiology-societies-ethics-ai

Selective examples of applications of AI in the specialty of Radiology include the following:

  • RSNA 2019, the world’s largest radiology conference, kicks off at Chicago’s McCormick Place on Sunday, Dec. 1, 2019, and promises to include more AI content than ever before. There will be an expanded AI Showcase this year, giving attendees access to more than 100 vendors in one location.
  1. “Artificial Intelligence and Precision Education: How AI Can Revolutionize Training in Radiology” | Monday, Dec. 2 | 8:30 – 10 a.m. | Room: E450A
  2. “Learning AI from the Experts: Becoming an AI Leader in Global Radiology (Without Needing a Computer Science Degree)” | Tuesday, Dec. 3 | 4:30-6 p.m. | Room: S406B
  3. “Deep Learning in Radiology: How Do We Do It?” | Wednesday, Dec. 4 | 8:30-10 a.m. | Room: S406B

https://www.aiin.healthcare/topics/medical-imaging/rsna-2019-preview-3-ai-sessions-radiology-imaging?utm_source=newsletter&utm_medium=ai_news

 

  • Interview with George Shih, MD, a radiologist at Weill Cornell Medicine and NewYork-Presbyterian and the co-founder of the healthcare startup MD.ai

An academic gold rush, where people are working to apply the latest AI techniques to both existing problems and brand new problems, and it’s all been really great for the field of radiology.

We’re also holding another machine learning competition this year hosted on Kaggle. In previous years, we’ve annotated existing public data that was used for our competition, but this year, we were actually able to acquire high-quality data—more than 25,000 CT examinations that nobody has used or seen before—from four different institutions. The top 10 winning algorithms will also be made public to anyone in the world, which is an amazing way to advance the use of AI in radiology. I think that’s one of the biggest contributions RSNA is making to the academic community this year.

The other exciting part is that our new and improved AI Showcase will include more vendors—more than 100—than any previous year, which shows just how much the market continues to focus on these technologies.

https://www.aiin.healthcare/topics/medical-imaging/radiologist-rsna-2019-ai-radiology-imaging?utm_source=newsletter&utm_medium=ai_news

 

  • AI model could help radiologists diagnose lung cancer

Michael Walter | November 27, 2019 | Medical Imaging

https://www.aiin.healthcare/topics/medical-imaging/ai-model-radiologists-diagnose-lung-cancer-imaging

 

  • AI a hot topic for radiology researchers in 2019

Michael Walter | November 26, 2019 | Medical Imaging

https://www.aiin.healthcare/topics/medical-imaging/ai-radiology-researchers-rsna-citations-downloads?utm_source=newsletter&utm_medium=ai_news

 

  • GE Healthcare launches new program to simplify AI development, implementation

Michael Walter | November 26, 2019 | Business Intelligence

https://www.aiin.healthcare/topics/business-intelligence/ge-healthcare-new-program-simplify-ai-development?utm_source=newsletter&utm_medium=ai_news

 

  • How teleradiologists are helping underserved regions all over the world

Michael Walter | Medical Imaging Review

Sponsored by vRad, a MEDNAX Company

https://www.radiologybusiness.com/sponsored/1065/topics/medical-imaging-review/qa-how-teleradiologists-are-helping-underserved?utm_source=newsletter&utm_medium=ai_news

AI in Healthcare 2020 Leadership Survey Report: 7 Key Findings

Artificial and augmented intelligence are already helping healthcare improve clinically, operationally and financially—and there is extraordinary room for growth. Success starts with leadership, vision and investment and leaders tell us they have all of the above. Here are the top 7 survey findings.

01 C-level healthcare leaders are leading the charge to AI. AI has earned the attention of the C-suite, with 40% of survey respondents saying their strategy is coming from the top down. Chief information officers are most often managing AI across the healthcare enterprise (27%).

02 AI has moved into the mainstream. The future is now. It’s here. Health systems are hiring data scientists and spending on AI and infrastructure. Some 40% of respondents are using AI, with 50% using between one and 10 apps.

03 Health systems are committed to investing in AI. 93% of respondents agree AI is absolutely essential, very important or important to their strategy. There is great willingness to take advantage of intelligent technology and leverage machine intelligence to enhance human intelligence. Administration holds financial responsibility for AI at 43% of facilities, with IT paying the bill at 26% of sites.

04 Fortifying infrastructure is top of mind. 93% of respondents agree AI is absolutely essential, very important or important to their strategy. There is great willingness to take advantage of intelligent technology and leverage machine
intelligence to enhance human intelligence. Administration holds financial responsibility for AI at 43% of facilities, with IT paying the bill at 26% of sites.

05 Improving care is AI’s greatest benefit. Improving accuracy, efficiency and workflow are the top benefits leaders see coming from AI. AI helps to highlight key findings from the depths of the EMR, identify declines in patient conditions earlier and improve chronic disease management. Cancer, heart disease and stroke are the disease states survey respondents see AI holding the greatest promise—the 2nd, 1st and 5th leading killer of Americans.

06 Health systems are both buying and developing AI apps. Some 50% of respondents tell us they are both buying and developing AI apps. About 38% are exclusively opting to purchase commercially developed apps while 13% are developing everything in-house.

07 Radiology is blazing the AI trail. AI apps for imaging outnumber all other categories of FDA-approved apps to date. It’s no surprise then that respondents tell us that rad apps top the list of tools they’re using to enhance breast, chest and cardiovascular imaging.

SOURCE

https://www.aiin.healthcare/sponsored/9667/topics/ai-healthcare-2020-leadership-survey-report/ai-healthcare-2020-leadership-1

 

WATCH VIDEO

https://www.dropbox.com/s/xayeu7ss7f7cahp/AI%20Launch%20v2.mp4?dl=0

 

Like in the past, Dr. Eric Topol is a Tour de Force, again

Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again 1st Edition

by Eric Topol  (Author)

https://www.amazon.com/gp/product/1541644638/ref=as_li_qf_asin_il_tl?ie=UTF8&tag=wwwsamharris03-20&creative=9325&linkCode=as2&creativeASIN=1541644638&linkId=e8e2d5410e9b5921f1e21883a9c84cff

Dr Mike Warner

5.0 out of 5 starsCrystal Ball for the Next Era of Healthcare

March 13, 2019

Format: HardcoverVerified Purchase

Dr. Topol’s new book, Deep Medicine – How Artificial Intelligence Can Make Healthcare Human Again, is an encyclopedia of the emerging Fourth Industrial Age; a crystal ball in what is about happen in the next era of healthcare. I’m impressed by the detailed references and touching personal and family stories.

Centers for Medicare & Medicaid Services (CMS) policy modifications in the past 10 months reveal sweeping changes that fortify Dr. Topol’s vision: May 2018 medical students can document for attending physicians in the health record (MLN MM10412), 2019 ancillary staff members and patients can document the History/medical interview into the health record, 2021 medical providers can document based only on Medical Decision Making or Time (Federal Register Nov, 23, 2018).

Part of making healthcare human is also making it fun. The joy of practicing medicine is about to return to the healthcare delivery as computers will be used to empower humanistic traits, not overburden medical professionals with clerical tasks. For patients, you will be heard, understood and personally treated. Deep Medicine is not a vision of what will happen in 50 years as much will start to reveal within the next 5!

Bravo Dr. Topol!
Michael Warner, DO, CPC, CPCO, CPMA, AAPC Fellow

https://www.amazon.com/gp/product/1541644638/ref=as_li_qf_asin_il_tl?ie=UTF8&tag=wwwsamharris03-20&creative=9325&linkCode=as2&creativeASIN=1541644638&linkId=e8e2d5410e9b5921f1e21883a9c84cff#customerReviews

 

AUDIT PODCASTS

  • The perspective of what it truly means to be an AI company and AI platform.

  • How MaxQ AI is reinventing the diagnostic process with AI in time sensitive, life threatening environments.

  • How EnvoyAI is working towards a zero-click approach for physicians to feel confident in their findings.

  • Recognizing the right questions to ask when training algorithms for more accurate results.

  • The value of having a powerful world-class image processing algorithm running on an extensible interoperable platform.

Join Jeff, Gene, and Kevin next time as they continue the conversation on the future of artificial intelligence in healthcare.

https://www.terarecon.com/blog/beyond-the-screen-episode-6-next-generation-ai-companies-providing-physicians-a-starting-point-in-ai?utm_campaign=AuntMinnie%20June%202019&utm_medium=email&utm_source=hs_email

Academic Gallup Poll: The Artificial Intelligence Age, June 2019.

New Northeastern-Gallup poll: People in the US, UK, and Canada want to keep up in the artificial intelligence age. They say employers, educators, and governments are letting them down. – News @ Northeastern

https://news.northeastern.edu/2019/06/27/new-northeastern-gallup-poll-people-in-the-us-uk-and-canada-want-to-keep-up-in-the-artificial-intelligence-age-they-say-employers-educators-and-governments-are-letting-them-down/

 

Dense Map of Artificial Intelligence Start ups in Israel

 

Image Sourcehttps://www.startuphub.ai/multinational-corporations-with-artificial-intelligence-research-and-development-centers-in-israel/

(See here for an interactive version of the infographic above).

https://www.forbes.com/sites/gilpress/2018/09/24/the-thriving-ai-landscape-in-israel-and-what-it-means-for-global-ai-competition/#577a107330c5

https://hackernoon.com/israels-artificial-intelligence-landscape-2018-83cdd4f04281

3.1 The Science

VIEW VIDEO

Max Tegmark lecture on Life 3.0 – Being Human in the age of Artificial Intelligence

https://www.youtube.com/watch?v=1MqukDzhlqA

 

3.1.1   World Medical Innovation Forum, Partners Innovations, ARTIFICIAL INTELLIGENCE | APRIL 8–10, 2019 | Westin, BOSTON

https://worldmedicalinnovation.org/agenda/

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2019/02/14/world-medical-innovation-forum-partners-innovations-artificial-intelligence-april-8-10-2019-westin-boston/

 

 

3.1.2   LIVE Day Three – World Medical Innovation Forum ARTIFICIAL INTELLIGENCE, Boston, MA USA, Monday, April 10, 2019

Real Time Coverage: Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2019/04/10/live-day-three-world-medical-innovation-forum-artificial-intelligence-boston-ma-usa-monday-april-10-2019/

 

 

3.1.3   LIVE Day Two – World Medical Innovation Forum ARTIFICIAL INTELLIGENCE, Boston, MA USA, Monday, April 9, 2019

Real Time Coverage: Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2019/04/09/live-day-two-world-medical-innovation-forum-artificial-intelligence-boston-ma-usa-monday-april-9-2019/

 

 

3.1.4   LIVE Day One – World Medical Innovation Forum ARTIFICIAL INTELLIGENCE, Boston, MA USA, Monday, April 8, 2019

Real Time Coverage: Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2019/04/08/live-day-one-world-medical-innovation-forum-artificial-intelligence-westin-copley-place-boston-ma-usa-monday-april-8-2019/

 

 

3.1.5   2018 Annual World Medical Innovation Forum Artificial Intelligence April 23–25, 2018 Boston, Massachusetts  | Westin Copley Place https://worldmedicalinnovation.org/

Real Time Coverage: Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2018/01/18/2018-annual-world-medical-innovation-forum-artificial-intelligence-april-23-25-2018-boston-massachusetts-westin-copley-place/

 

 

3.1.6   Synopsis Days 1,2,3: 2018 Annual World Medical Innovation Forum Artificial Intelligence April 23–25, 2018 Boston, Massachusetts  | Westin Copley Place

Real Time Coverage: Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2018/04/26/synopsis-days-123-2018-annual-world-medical-innovation-forum-artificial-intelligence-april-23-25-2018-boston-massachusetts-westin-copley-place/

 

 

3.1.7   Interview with Systems Immunology Expert Prof. Shai Shen-Orr

Reporter: Aviva Lev-Ari, PhD, RN

https://tmrwedition.com/2018/07/19/interview-with-systems-immunology-expert-prof-shai-shen-orr/

 

 

3.1.8   Unique immune-focused AI model creates largest library of inter-cellular communications at CytoReason. Used  to predict 335 novel cell-cytokine interactions, new clues for drug development.

Reporter: Aviva Lev-Ari, PhD, RN

  • CYTOREASON. CytoReason features in hashtag #DeepKnowledgeVentures‘s detailed Report on AI in hashtag #drugdevelopment report https://lnkd.in/dKV2BB6

https://www.eurekalert.org/pub_releases/2018-06/c-uia061818.php

3.2 Technologies and Methodologies

 

3.2.1   R&D for Artificial Intelligence Tools & Applications: Google’s Research Efforts in 2018

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2019/01/16/rd-for-artificial-intelligence-tools-applications-googles-research-efforts-in-2018/

 

3.2.2   Can Blockchain Technology and Artificial Intelligence Cure What Ails Biomedical Research and Healthcare

Curator: Stephen J. Williams, Ph.D.

https://pharmaceuticalintelligence.com/2018/12/10/can-blockchain-technology-and-artificial-intelligence-cure-what-ails-biomedical-research-and-healthcare/

 

 

3.2.3   N3xt generation carbon nanotubes

Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2015/12/14/n3xt-generation-carbon-nanotubes/

 

3.2.4   Mindful Discoveries

Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2016/01/28/mindful-discoveries/

 

 

3.2.5   Novel Discoveries in Molecular Biology and Biomedical Science

Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2016/05/30/novel-discoveries-in-molecular-biology-and-biomedical-science/

 

3.2.6   Imaging of Cancer Cells

Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2016/04/20/imaging-of-cancer-cells/

 

 

3.2.7   Retrospect on HistoScanning: an AI routinely used in diagnostic imaging for over a decade

Author and Curator: Dror Nir, PhD

https://pharmaceuticalintelligence.com/2019/06/22/retrospect-on-histoscanning-an-ai-routinely-used-in-diagnostic-imaging-for-over-a-decade/

 

 

3.2.8    Prediction of Cardiovascular Risk by Machine Learning (ML) Algorithm: Best performing algorithm by predictive capacity had area under the ROC curve (AUC) scores: 1st, quadratic discriminant analysis; 2nd, NaiveBayes and 3rd, neural networks, far exceeding the conventional risk-scaling methods in Clinical Use

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2019/07/04/prediction-of-cardiovascular-risk-by-machine-learning-ml-algorithm-best-performing-algorithm-by-predictive-capacity-had-area-under-the-roc-curve-auc-scores-1st-quadratic-discriminant-analysis/

 

3.2.9   An Intelligent DNA Nanorobot to Fight Cancer by Targeting HER2 Expression

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

https://pharmaceuticalintelligence.com/2019/07/24/an-intelligent-dna-nanorobot-to-fight-cancer-by-targeting-her2-expression/

3.3   Clinical Aspects

 

Is AI ready for Medical Applications? – The Debate in August 2019 in Nature

 

Eric Topol (@EricTopol)

8/18/19, 2:17 PM

Why I’ve been writing #AI for medicine is long on promise, short of proof

nature.com/articles/s4159… @NatureMedicine

status update in this schematic, among many mismatches pic.twitter.com/mpifYFwlp8

 

The “inconvenient truth” about AI in healthcare

 

However, “the inconvenient truth” is that at present the algorithms that feature prominently in research literature are in fact not, for the most part, executable at the frontlines of clinical practice. This is for two reasons: first, these AI innovations by themselves do not re-engineer the incentives that support existing ways of working.2 A complex web of ingrained political and economic factors as well as the proximal influence of medical practice norms and commercial interests determine the way healthcare is delivered. Simply adding AI applications to a fragmented system will not create sustainable change. Second, most healthcare organizations lack the data infrastructure required to collect the data needed to optimally train algorithms to (a) “fit” the local population and/or the local practice patterns, a requirement prior to deployment that is rarely highlighted by current AI publications, and (b) interrogate them for bias to guarantee that the algorithms perform consistently across patient cohorts, especially those who may not have been adequately represented in the training cohort.9 For example, an algorithm trained on mostly Caucasian patients is not expected to have the same accuracy when applied to minorities.10 In addition, such rigorous evaluation and re-calibration must continue after implementation to track and capture those patient demographics and practice patterns which inevitably change over time.11 Some of these issues can be addressed through external validation, the importance of which is not unique to AI, and it is timely that existing standards for prediction model reporting are being updated specifically to incorporate standards applicable to this end.12 In the United States, there are islands of aggregated healthcare data in the ICU,13 and in the Veterans Administration.14 These aggregated data sets have predictably catalyzed an acceleration in AI development; but without broader development of data infrastructure outside these islands it will not be possible to generalize these innovations.

https://www.nature.com/articles/s41746-019-0155-4

3.3.1   9 AI-based initiatives catalyzing immunotherapy in 2018

By Tanima Bose

https://www.prescouter.com/2018/07/9-ai-based-initiatives-catalyzing-immunotherapy-in-2018/

 

 

3.3.2   mRNA Data Survival Analysis

Curators: Larry H. Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/06/18/mrna-data-survival-analysis/

 

 

3.3.3   Medcity Converge 2018 Philadelphia: Live Coverage @pharma_BI

Reporter: Stephen J. Williams

https://pharmaceuticalintelligence.com/2018/07/11/medcity-converge-2018-philadelphia-live-coverage-pharma_bi/

 

 

3.3.4   Live Coverage: MedCity Converge 2018 Philadelphia: AI in Cancer and Keynote Address

Reporter: Stephen J. Williams, PhD

https://pharmaceuticalintelligence.com/2018/07/11/live-coverage-medcity-converge-2018-philadelphia-ai-in-cancer-and-keynote-address/

 

 

3.3.5   VIDEOS: Artificial Intelligence Applications for Cardiology

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2019/03/11/videos-artificial-intelligence-applications-for-cardiology/

 

 

3.3.6   Artificial Intelligence in Health Care and in Medicine: Diagnosis & Therapeutics

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2019/01/21/artificial-intelligence-in-health-care-and-in-medicine-diagnosis-therapeutics/

 

 

3.3.7   Digital Therapeutics: A Threat or Opportunity to Pharmaceuticals

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

https://pharmaceuticalintelligence.com/2019/03/18/digital-therapeutics-a-threat-or-opportunity-to-pharmaceuticals/

 

 

3.3.8   The 3rd STATONC Annual Symposium, April 25-27, 2019, Hilton Hartford, CT, 315 Trumbull St., Hartford, CT 06103

Reporter: Stephen J. Williams, Ph.D.

https://pharmaceuticalintelligence.com/2019/02/26/the-3rd-stat4onc-annual-symposium-april-25-27-2019-hilton-hartford-connecticut/

 

 

3.3.9   2019 Biotechnology Sector and Artificial Intelligence in Healthcare

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2019/05/10/2019-biotechnology-sector-and-artificial-intelligence-in-healthcare/

 

 

3.3.10   Artificial intelligence can be a useful tool to predict Alzheimer

Reporter: Irina Robu, PhD

https://pharmaceuticalintelligence.com/2019/01/26/artificial-intelligence-can-be-a-useful-tool-to-predict-alzheimer/

 

 

3.3.11   Unlocking the Microbiome

Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2016/02/07/unlocking-the-microbiome/

 

 

3.3.12   Biomarker Development

Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2015/11/16/biomarker-development/

 

 

3.3.13   AI System Used to Detect Lung Cancer

Reporter: Irina Robu, PhD

https://pharmaceuticalintelligence.com/2019/06/28/ai-system-used-to-detect-lung-cancer/

 

 

3.3.14   AI App for People with Digestive Disorders

Reporter: Irina Robu, PhD

https://pharmaceuticalintelligence.com/2019/06/24/ai-app-for-people-with-digestive-disorders/

 

 

3.3.15   Sepsis Detection using an Algorithm More Efficient than Standard Methods

Reporter: Irina Robu, PhD

https://pharmaceuticalintelligence.com/2019/06/25/sepsis-detection-using-an-algorithm-more-efficient-than-standard-methods/

 

 

3.3.16   How Might Sleep Apnea Lead to Serious Health Concerns like Cardiac and Cancer?

Author: Larry H Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2013/03/20/how-might-sleep-apnea-lead-to-serious-health-concerns-like-cardiac-and-cancers/

 

 

3.3.17   An Intelligent DNA Nanorobot to Fight Cancer by Targeting HER2 Expression

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

https://pharmaceuticalintelligence.com/2019/07/24/an-intelligent-dna-nanorobot-to-fight-cancer-by-targeting-her2-expression/

 

3.3.18   Artificial Intelligence and Cardiovascular Disease

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

https://pharmaceuticalintelligence.com/2019/07/26/artificial-intelligence-and-cardiovascular-disease/

 

3.3.19   Using A.I. to Detect Lung Cancer gets an A!

Reporter: Irina Robu, PhD

https://pharmaceuticalintelligence.com/2019/08/04/using-a-i-to-detect-lung-cancer-gets-an-a/

 

 

3.3.20   Complex rearrangements and oncogene amplification revealed by long-read DNA and RNA sequencing of a breast cancer cell line

Reporter: Stephen J. Williams, PhD

https://pharmaceuticalintelligence.com/2019/08/14/complex-rearrangements-and-oncogene-amplification-revealed-by-long-read-dna-and-rna-sequencing-of-a-breast-cancer-cell-line/

 

3.3.21   Multiple Barriers Identified Which May Hamper Use of Artificial Intelligence in the Clinical Setting

Reporter: Stephen J. Williams, PhD.

https://pharmaceuticalintelligence.com/2019/07/21/multiple-barriers-identified-which-may-hamper-use-of-artificial-intelligence-in-the-clinical-setting/

 

3.3.22   Deep Learning–Assisted Diagnosis of Cerebral Aneurysms

Author and Curator: Dror Nir, PhD

https://pharmaceuticalintelligence.com/2019/06/09/deep-learning-assisted-diagnosis-of-cerebral-aneurysms/

 

3.3.23   Artificial Intelligence Innovations in Cardiac Imaging

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2019/12/17/artificial-intelligence-innovations-in-cardiac-imaging/

 

3.4 Business and Legal

Image Source: https://www.linkedin.com/pulse/resources-artificial-intelligence-health-care-note-lev-ari-phd-rn/

 

3.4.1   McKinsey Top Ten Articles on Artificial Intelligence: 2018’s most popular articles – An executive’s guide to AI

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2019/01/21/mckinsey-top-ten-articles-on-artificial-intelligence-2018s-most-popular-articles-an-executives-guide-to-ai/

 

3.4.2   HOTTEST Artificial Intelligence Hub: Israel’s High Tech Industry – Why?

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2018/09/30/hottest-artificial-intelligence-hub-israels-high-tech-industry-why/

 

 

3.4.3   The Regulatory challenge in adopting AI

Author and Curator: Dror Nir, PhD

https://pharmaceuticalintelligence.com/2019/04/07/the-regulatory-challenge-in-adopting-ai/

 

 

3.4.4   HealthCare focused AI Startups from the 100 Companies Leading the Way in A.I. Globally

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2018/01/18/healthcare-focused-ai-startups-from-the-100-companies-leading-the-way-in-a-i-globally/

 

 

3.4.5   IBM’s Watson Health division – How will the Future look like?

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2019/04/24/ibms-watson-health-division-how-will-the-future-look-like/

 

 

3.4.6   HUBweek 2018, October 8-14, 2018, Greater Boston – “We The Future” – coming together, of breaking down barriers, of convening across disciplinary lines to shape our future

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2018/10/08/hubweek-2018-october-8-14-2018-greater-boston-we-the-future-coming-together-of-breaking-down-barriers-of-convening-across-disciplinary-lines-to-shape-our-future/

 

 

3.4.7   Role of Informatics in Precision Medicine: Notes from Boston Healthcare Webinar: Can It Drive the Next Cost Efficiencies in Oncology Care?

Reporter: Stephen J. Williams, Ph.D.

https://pharmaceuticalintelligence.com/2019/01/03/role-of-informatics-in-precision-medicine-can-it-drive-the-next-cost-efficiencies-in-oncology-care/

 

 

3.4.8   Healthcare conglomeration to access Big Data and lower costs

Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2016/01/13/healthcare-conglomeration-to-access-big-data-and-lower-costs/

 

3.4.9   Linguamatics announces the official launch of its AI self-service text-mining solution for researchers.

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2018/05/10/linguamatics-announces-the-official-launch-of-its-ai-self-service-text-mining-solution-for-researchers/

 

3.4.10   Future of Big Data for Societal Transformation

Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2015/12/14/future-of-big-data-for-societal-transformation/

 

 

3.4.11   Deloitte Analysis 2019 Global Life Sciences Outlook

https://www2.deloitte.com/global/en/pages/life-sciences-and-healthcare/articles/global-life-sciences-sector-outlook.html

https://www.cioapplications.com/news/making-a-breakthrough-in-drug-discovery-with-ai-nid-3114.html

https://healthcare.cioapplications.com/cioviewpoint/leveraging-technologies-to-better-position-the-business-nid-1060.html

 

 

3.4.12   OpenAI: $1 Billion to Create Artificial Intelligence Without Profit Motive by Who is Who in the Silicon Valley

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2015/12/26/openai-1-billion-to-create-artificial-intelligence-without-profit-motive-by-who-is-who-in-the-silicon-valley/

 

 

3.4.13   The Health Care Benefits of Combining Wearables and AI

Reporter: Gail S. Thornton, M.A.

https://pharmaceuticalintelligence.com/2019/07/02/the-health-care-benefits-of-combining-wearables-and-ai/

 

 

3.4.14   These twelve artificial intelligence innovations are expected to start impacting clinical care by the end of the decade.

Reporter: Gail S. Thornton, M.A.

https://pharmaceuticalintelligence.com/2019/07/02/top-12-artificial-intelligence-innovations-disrupting-healthcare-by-2020/

 

 

3.4.15   Forbes Opinion: 13 Industries Soon To Be Revolutionized By Artificial Intelligence

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2019/07/31/forbes-opinion-13-industries-soon-to-be-revolutionized-by-artificial-intelligence/

 

3.4.16   AI Acquisitions by Big Tech Firms Are Happening at a Blistering Pace: 2019 Recent Data by CBI Insights

Reporter: Stephen J. Williams, Ph.D.

https://pharmaceuticalintelligence.com/2019/12/11/ai-acquisitions-by-big-tech-firms-are-happening-at-a-blistering-pace-2019-recent-data-by-cbiinsights/

 

3.5 Machine Learning (ML) Algorithms harnessed for Medical Diagnosis: Pattern Recognition & Prediction of Disease Onset

Introduction by Dr. Dror Nir

 

Icahn School of Medicine at Mount Sinai to Establish World Class Center for Artificial Intelligence – Hamilton and Amabel James Center for Artificial Intelligence and Human Health

First center in New York to seamlessly integrate artificial intelligence, data science and genomic screening to advance clinical practice and patient outcomes.

Integrative Omics and Multi-Scale Disease Modeling— Artificial intelligence and machine learning approaches developed at the Icahn Institute have been extensively used for identification of novel pathways, drug targets, and therapies for complex human diseases such as cancer, Alzheimer’s, schizophrenia, obesity, diabetes, inflammatory bowel disease, and cardiovascular disease. Researchers will combine insights in genomics—including state-of-the-art single-cell genomic data—with ‘omics,’ such as epigenomics, pharmacogenomics, and exposomics, and integrate this information with patient health records and data originating from wearable devices in order to model the molecular, cellular, and circuit networks that facilitate disease progression. “Novel data-driven predictions will be tightly integrated with high-throughput experiments to validate the therapeutic potential of each prediction,” said Adam Margolin, PhD, Professor and Chair of the Department of Genetics and Genomic Sciences and Senior Associate Dean of Precision Medicine at Mount Sinai. “Clinical experts in key disease areas will work side-by-side with data scientists to translate the most promising therapies to benefit patients. We have the potential to transform the way care givers deliver cost-effective, high quality health care to their patients, far beyond providing simple diagnoses. Mount Sinai wants to be on the frontlines of discovery.”

Precision Imaging—Researchers will use artificial intelligence to enhance the diagnostic power of imaging technologies—X-ray, MRI, CT, and PET—and molecular imaging, and accelerate the development of therapies. “We see a huge potential in using algorithms to automate the image interpretation and to acquire images much more quickly at high resolution – so that we can better detect disease and make it less burdensome for the patient,” said Zahi Fayad, PhD, Director of the Translational and Molecular Imaging Institute, and Vice Chair for Research for the Department of Radiology, at Mount Sinai. Dr. Fayad plans to broaden the scope of the Translational and Molecular Imaging Institute by recruiting more engineers and scientists who will create new methods to aid in the diagnosis and early detection of disease, treatment protocol development, drug development, and personalized medicine. Dr. Fayad added, “In addition to AI, we envision advance capabilities in two important areas: computer vision and augmented reality, and next generation medical technology enabling development of new medical devices, sensors and robotics.”

https://www.mountsinai.org/about/newsroom/2019/icahn-school-of-medicine-at-mount-sinai-to-establish-world-class-center-for-artificial-intelligence-hamilton-and-amabel-james-center-for-artificial-intelligence-and-human-health

 

A comprehensive overview of ML algorithms applied in health care is presented in the following article:

Survey of Machine Learning Algorithms for Disease Diagnostic

https://www.scirp.org/journal/PaperInformation.aspx?PaperID=73781

 

3.5.1 Cases in Pathology 

 

3.5.1.1   Deep Learning extracts Histopathological Patterns and accurately discriminates 28 Cancer and 14 Normal Tissue Types: Pan-cancer Computational Histopathology Analysis

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2019/10/28/deep-learning-extracts-histopathological-patterns-and-accurately-discriminates-28-cancer-and-14-normal-tissue-types-pan-cancer-computational-histopathology-analysis/

 

3.5.2 Cases in Radiology

 

3.5.2.1   Cardiac MRI Imaging Breakthrough: The First AI-assisted Cardiac MRI Scan Solution, HeartVista Receives FDA 510(k) Clearance for One Click™ Cardiac MRI Package

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2019/10/29/cardiac-mri-imaging-breakthrough-the-first-ai-assisted-cardiac-mri-scan-solution-heartvista-receives-fda-510k-clearance-for-one-click-cardiac-mri-package/

 

3.5.2.2   Disentangling molecular alterations from water-content changes in the aging human brain using quantitative MRI

Reporter: Dror Nir, PhD

https://pharmaceuticalintelligence.com/2019/08/01/disentangling-molecular-alterations-from-water-content-changes-in-the-aging-human-brain-using-quantitative-mri/

 

3.5.2.3   Showcase: How Deep Learning could help radiologists spend their time more efficiently

Reporter and Curator: Dror Nir, PhD

https://pharmaceuticalintelligence.com/2019/08/22/showcase-how-deep-learning-could-help-radiologists-spend-their-time-more-efficiently/

 

3.5.2.4   CancerBase.org – The Global HUB for Diagnoses, Genomes, Pathology Images: A Real-time Diagnosis and Therapy Mapping Service for Cancer Patients – Anonymized Medical Records accessible to anyone on Earth

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/07/28/cancerbase-org-the-global-hub-for-diagnoses-genomes-pathology-images-a-real-time-diagnosis-and-therapy-mapping-service-for-cancer-patients-anonymized-medical-records-accessible-to/

 

3.5.2.5   Applying AI to Improve Interpretation of Medical Imaging

Author and Curator: Dror Nir, PhD

https://pharmaceuticalintelligence.com/2019/05/28/applying-ai-to-improve-interpretation-of-medical-imaging/

 

 

3.5.2.6   Imaging: seeing or imagining? (Part 2)

Author and Curator: Dror Nir, PhD

https://pharmaceuticalintelligence.com/2019/04/07/imaging-seeing-or-imagining-part-2-2/

 

 

3.5.3 Cases in Prediction Cancer Onset

 

3.5.3.1  A Deep Learning Mammography-based Model for Improved Breast Cancer Risk Prediction

 

3.5.3.2   Comparison of a Deep Learning Risk Score and Standard Mammographic Density Score for Breast Cancer Risk Prediction

Karin Dembrower Yue LiuHossein AzizpourMartin EklundKevin SmithPeter LindholmFredrik Strand

Published Online: Dec 17 2019 https://doi.org/10.1148/radiol.2019190872

See editorial by Manisha Bahl

 

Results

A total of 2283 women, 278 of whom were later diagnosed with breast cancer, were evaluated. The age at mammography (mean, 55.7 years vs 54.6 years; P < .001), the dense area (mean, 38.2 cm2 vs 34.2 cm2P < .001), and the percentage density (mean, 25.6% vs 24.0%; P < .001) were higher among women diagnosed with breast cancer than in those without a breast cancer diagnosis. The odds ratios and areas under the receiver operating characteristic curve (AUCs) were higher for age-adjusted DL risk score than for dense area and percentage density: 1.56 (95% confidence interval [CI]: 1.48, 1.64; AUC, 0.65), 1.31 (95% CI: 1.24, 1.38; AUC, 0.60), and 1.18 (95% CI: 1.11, 1.25; AUC, 0.57), respectively (P < .001 for AUC). The false-negative rate was lower: 31% (95% CI: 29%, 34%), 36% (95% CI: 33%, 39%; P = .006), and 39% (95% CI: 37%, 42%; P < .001); this difference was most pronounced for more aggressive cancers.

Conclusion

Compared with density-based models, a deep neural network can more accurately predict which women are at risk for future breast cancer, with a lower false-negative rate for more aggressive cancers.

Related articles

Radiology2019

Volume: 0Issue: 0

Radiology2019

Volume: 293Issue: 2pp. 246-259

Radiology2019

Volume: 291Issue: 3pp. 582-590

 

Summary of ML in Medicine by Dr. Dror Nir

See Introduction to 3.5, above

 

Part 3: Summary – AI in Medicine – Voice of Aviva Lev-Ari & Professor Williams  

AI applications in healthcare

The potential of AI to improve the healthcare delivery system is limitless. It offers a unique opportunity to make sense out of clinical data to enable fully integrated healthcare that is more predictive and precise. Getting all aspects of AI-enabled solutions right requires extensive collaboration between clinicians, data scientists, interaction designers, and other experts. Here are four applications of artificial intelligence to transform healthcare delivery:

1. Improve operational efficiency and performance

On a departmental and enterprise level, the ability of AI to sift through large amounts of data can help hospital administrators to optimize performance, drive productivity, and improve the use of existing resources, generating time and cost savings. For example, in a radiology department, AI could make a difference in the management of referrals, patient scheduling, and exam preparations. Improvements here can help to enhance patient experience and will allow a more effective and efficient use of the facilities at examination sites.

2. Aiding clinical decision support

AI-enabled solutions can help to combine large amounts of clinical data to generate a more holistic view of patients. This supports healthcare providers in their decision making, leading to better patient outcomes and improved population health. “The need for insights and for those insights to lead to clinical operations support is tremendous,” says Dr. Smythe. “Whether that is the accuracy of interventions or the effective use of manpower – these are things that physicians struggle with. That is the imperative.”

3. Enabling population health management

Combining clinical decision support systems with patient self-management, population health management can also benefit from AI. Using predictive analytics with patient populations, healthcare providers will be able to take preventative action, reduce health risk, and save unnecessary costs.

As the population ages, so does a desire to age in place when possible, and to maximize not only disease management, but quality of life as we do so. The possibility of aggregating, analyzing and activating health data from millions of consumers will enable hospitals to see how socio-economic, behavioral, genetic and clinical factors correlate and can offer more targeted, preventative healthcare outside the four walls of the hospital.

4. Empowering consumers, improving patient care

As recently as 2015 patients reported physically carrying x-rays, test results, and other critical health data from one healthcare provider’s office to another3. The burden of multiple referrals, explaining symptoms to new physicians and finding out that their medical history has gaps in it were all too real. Patients now are demanding more personalized, sophisticated and convenient healthcare services.

The great motivation behind AI in healthcare is that increasingly, as patients become more engaged with their own healthcare and better understand their own needs, healthcare will have to take steps towards them and meet them where they are, providing them with health services when they need them, not just when they are ill.

SOURCE

https://www.usa.philips.com/healthcare/nobounds/four-applications-of-ai-in-healthcare?origin=1_us_en_auntminnie_aicommunity

 

Our Summary for AI in Medicine presents to the eReader the results of the 2020 Survey on that topic, all the live links will take the eReader to the report itself. We provided the reference, below

  • AI in Healthcare 2020 Leadership Survey Report: About the Survey

The AI in Healthcare team embarked on this survey to gain a deeper understanding of the current state of artificial and augmented intelligence in use and being planned across healthcare in the next few years. We polled readers of AI in Healthcare, AIin.Healthcare and sister brand HealthExec.com over 2 months. All data is presented in this report in aggregate, with individual responses remaining anonymous.

The content in this report reflects the input of 1,238 physicians, executives, IT and administrative leaders in healthcare, medical devices and IT and software development from across the globe, with 75 percent based in the United States. The report focuses on the responses of providers and professionals at the helm of healthcare systems, integrated delivery networks, academic medical centers, hospitals, imaging centers and physician groups across the U.S. For a deeper dive into survey demographics, click here.

Some respondents chose to share more specific demographics that help us better get to know our survey base. Those 165 healthcare leaders work for 38 unique health systems, hospitals, physician groups and imaging or surgery centers, across 39 states and the District of Columbia. They are large, small and mid-sized, for profit, not for profit, academic and government owned. Respondents, too, herald from all levels of leadership. Here are some of the interesting titles who chimed in—and we are thankful they did: CEO, CFO, CMO, CIO, chief innovation officer, chief data officer, chief administrative officer, medical director of quality, senior VP of quality and innovation officer, system director of transformation, VP of service line development, and plenty of physicians, directors of ICU, imaging, cath lab and surgery, nurses and technologists.

In this report we unpack current trends in AI and machine learning, drill into data from various perspectives such as the C-suite and the physician leader, and learn how healthcare systems are using and planning to use AI. Turn the page and see where we are and where we’re going.

.

Author: Mary C. Tierney, MS, Chief Content Officer, AI in Healthcare magazine and AIin.Healthcare

SOURCE

https://www.aiin.healthcare/sponsored/9667/topics/ai-healthcare-2020-leadership-survey-report/ai-healthcare-2020-leadership-3