Advertisements
Feeds:
Posts
Comments

Archive for the ‘Uncategorized’ Category


Live Conference Coverage  from Mediterranean Diet and Lifestyle: A Symposium on Diet and Human Health : 12:00 – 1:00

Reporter: Stephen J. Williams, Ph.D.

12.00 The Italian Mediterranean Diet as a Model of Identity of a People with a Universal Good to Safeguard Health?

Prof. Antonino De Lorenzo, MD, PhD.

Director of the School of Specialization in Clinical Nutrition, University of Rome “Tor Vergata”

It is important to determine how our bodies interacts with the environment, such as absorption of nutrients.

Studies shown here show decrease in life expectancy of a high sugar diet, but the quality of the diet, not just the type of diet is important, especially the role of natural probiotics and phenolic compounds found in the Mediterranean diet.

The WHO report in 2005 discusses the unsustainability of nutrition deficiencies and suggest a proactive personalized and preventative/predictive approach of diet and health.

Most of the noncommunicable diseases like CV (46%) cancer 21% and 11% respiratory and 4% diabetes could be prevented and or cured with proper dietary approaches

Italy vs. the US diseases: in Italy most disease due to environmental contamination while US diet plays a major role

The issue we are facing in less than 10% of the Italian population (fruit, fibers, oils) are not getting the proper foods, diet and contributing to as we suggest 46% of the disease

The Food Paradox: 1.5 billion are obese; we notice we are eating less products of quality and most quality produce is going to waste;

  •  growing BMI and junk food: our studies are correlating the junk food (pre-prepared) and global BMI
  • modern diet and impact of human health (junk food high in additives, salt) has impact on microflora
  • Western Diet and Addiction: We show a link (using brain scans) showing correlation of junk food, sugar cravings, and other addictive behaviors by affecting the dopamine signaling in the substantia nigra
  • developed a junk food calculator and a Mediterranean diet calculator
  • the intersection of culture, food is embedded in the Mediterranean diet; this is supported by dietary studies of two distinct rural Italian populations (one of these in the US) show decrease in diet
  • Impact of diet: have model in Germany how this diet can increase health and life expectancy
  • from 1950 to present day 2.7 unit increase in the diet index can increase life expectancy by 26%
  • so there is an inverse relationship with our index and breast cancer

Environment and metal contamination and glyphosate: contribution to disease and impact of maintaining the healthy diet

  • huge problem with use of pesticides and increase in celiac disease

12:30 Environment and Health

Dr. Iris Maria Forte, PhD.

National Cancer Institute “Pascale” Foundation | IRCCS · Department of Research, Naples, Italy

Cancer as a disease of the environment.  Weinberg’s hallmarks of Cancer reveal how environment and epigenetics can impact any of these hallmarks.

Epigenetic effects

  • gene gatekeepers (Rb and P53)
  • DNA repair and damage stabilization

Heavy Metals and Dioxins:( alterations of the immune system as well as epigenetic regulations)

Asbestos and Mesothelioma:  they have demonstrated that p53 can be involved in development of mesothelioma as reactivating p53 may be a suitable strategy for therapy

Diet, Tomato and Cancer

  • looked at tomato extract on p53 function in gastric cancer: tomato extract had a growth reduction effect and altered cell cycle regulation and results in apoptosis
  • RBL2 levels are increased in extract amount dependent manner so data shows effect of certain tomato extracts of the southern italian tomato (     )

Antonio Giordano: we tested whole extracts of almost 30 different varieties of tomato.  The tomato variety  with highest activity was near Ravela however black tomatoes have shown high antitumor activity.  We have done a followup studies showing that these varieties, if grow elsewhere lose their antitumor activity after two or three generations of breeding, even though there genetics are similar.  We are also studying the effects of different styles of cooking of these tomatoes and if it reduces antitumor effect

please see post https://news.temple.edu/news/2017-08-28/muse-cancer-fighting-tomatoes-study-italian-food

 

To follow or Tweet on Twitter please use the following handles (@) and hashtags (#):

@ handles


@S_H_R_O 

@SbarroHealth

@Pharma_BI 

@ItalyinPhilly

@WHO_Europe

@nutritionorg

# hashtags


#healthydiet

#MediterraneanDiet

#health

#nutrition

Please see related articles on Live Coverage of Previous Meetings on this Open Access Journal

Real Time Conference Coverage for Scientific and Business Media: Unique Twitter Hashtags and Handles per Conference Presentation/Session

LIVE – Real Time – 16th Annual Cancer Research Symposium, Koch Institute, Friday, June 16, 9AM – 5PM, Kresge Auditorium, MIT

Real Time Coverage and eProceedings of Presentations on 11/16 – 11/17, 2016, The 12th Annual Personalized Medicine Conference, HARVARD MEDICAL SCHOOL, Joseph B. Martin Conference Center, 77 Avenue Louis Pasteur, Boston

Tweets Impression Analytics, Re-Tweets, Tweets and Likes by @AVIVA1950 and @pharma_BI for 2018 BioIT, Boston, 5/15 – 5/17, 2018

BIO 2018! June 4-7, 2018 at Boston Convention & Exhibition Center

LIVE 2018 The 21st Gabay Award to LORENZ STUDER, Memorial Sloan Kettering Cancer Center, contributions in stem cell biology and patient-specific, cell-based therapy

HUBweek 2018, October 8-14, 2018, Greater Boston – “We The Future” – coming together, of breaking down barriers, of convening across disciplinary lines to shape our future

Advertisements

Read Full Post »


Live Conference Coverage  from Mediterranean Diet and Lifestyle: A Symposium on Diet and Human Health @S.H.R.O. and Temple University October 19, 2018

Reporter: Stephen J. Williams, Ph.D.

 

 The Sbarro Health Research Organization, in collaboration with the Consulate General of Italy in Philadelphia will sponsor a symposium on the Mediterranean Diet and Human Health on October 19, 2018 at Temple University in Philadelphia, PA.  This symposium will discuss recent finding concerning the health benefits derived from a Mediterranean-style diet discussed by the leaders in this field of research.

Mediterranean Diet

The description of the Mediterranean Diet stems from the nutritionist Ancel Keys, who in 1945, in the wake of the US Fifth Army, landed in Southern Italy, where he observed one of the highest concentrations of centenarians in the world. He also noticed that cardiovascular diseases, widespread in the USA, were less frequent there. In particular, among the Southern Italians, the prevalence of “wellness” diseases such as hypertension and diabetes mellitus, was particularly associated with fat consumption, suggesting that the main factor responsible for the observations was the type of diet traditionally consumed among people facing the Mediterranean Sea, which is low in animal fat, as opposed to the Anglo-Saxon diet. The link between serum cholesterol and coronary heart disease mortality was subsequently demonstrated by the Seven Countries Study. Later, the concept of Mediterranean Diet was extended to a diet rich in fruits, vegetables, legumes, whole grains, fish and olive oil as the main source of lipid, shared among people living in Spain, Greece, Southern Italy and other countries facing the Mediterranean basin …

Prof. Antonino De Lorenzo, MD, PhD.

   

 

The Symposium will be held at:

Biolife Science Building, Room 234

Temple University, 1900 North 12th street

Philadelphia, PA 19122

 

For further information, please contact:

Ms. Marinela Dedaj – Sbarro Institute,  Office #: 215-204-9521

 

11:00 Welcome

Prof. Antonio Giordano, MD, PhD.

Director and President of the Sbarro Health Research Organization, College of Science and Technology, Temple University

 

Greetings

Fucsia Nissoli Fitzgerald

Deputy elected in the Foreign Circumscription – North and Central America Division

 

Consul General, Honorable Pier Attinio Forlano

General Consul of Italy in Philadelphia

 

11:30 The Impact of Environment and Life Style in Human Disease

Prof. Antonio Giordano MD, PhD.

 

12.00 The Italian Mediterranean Diet as a Model of Identity of a People with a Universal Good to Safeguard Health?

Prof. Antonino De Lorenzo, MD, PhD.

Director of the School of Specialization in Clinical Nutrition, University of Rome “Tor Vergata”

 

12:30 Environment and Health

Dr. Iris Maria Forte, PhD.

National Cancer Institute “Pascale” Foundation | IRCCS · Department of Research, Naples, Italy

 

13:00 Lunch

 

2:30 Mediterranean Diet, Intangible Heritage and Sustainable Tourism?

Prof. Fabio Parasecoli, PhD.

Nutrition and Food Department, New York University

 

3.00 Italy as a Case Study: Increasing Students’ Level of Awareness of the Historical, Cultural, Political and Culinary Significance of Food

Prof. Lisa Sasson

Nutrition and Food Department, New York University

 

3:30 Italian Migration and Global Diaspora

Dr. Vincenzo Milione, PhD

Director of Demographics Studies, Calandra Institute, City University of New York

 

4:00 Pasta Arte: New Model of Circular Agricultural Economy: When an Innovated Tradition Takes Care of You and of the Environment

Dr. Massimo Borrelli

CEO and Founder of Arte

 

4:15 Conclusions

Prof. Antonio Giordano, MD, PhD.

 

Coordinator of the Symposium, Dr. Alessandra Moia, PhD.

 

Prof. Antonio Giordano, MD, PhD.

Professor of Molecular Biology at Temple University in Philadelphia, PA where he is also Director of the Sbarro Institute for Cancer Research and Molecular Medicine. He is also Professor of Pathology at the University of Siena, Italy. He has published over 500 articles, received over 40 awards for his contributions to cancer research and is the holder of 17 patents.

 

Prof. Antonino De Lorenzo, MD, PhD.

Full Professor of Human Nutrition and Director of the Specialization School in Food Science at the University of Rome “Tor Vergata”. He is the Coordinator of the Specialization Schools in Food Science at the National University Council and Coordinator of the PhD. School of “Applied Medical-Surgical Sciences” Director of UOSD “Service of Clinical Nutrition, Parenteral Therapy and Anorexia”. He also serves as President of “Istituto Nazionale per la Dieta Mediterranea e la Nutrigenomica”.

 

Dr. Iris Maria Forte, PhD.

Iris Maria Forte is an oncology researcher of INT G. Pascale Foundation of Naples, Italy. She majored in Medical Biotechnology at the “Federico II” University of Naples, earned a PhD. in “Oncology and Genetics” at the University of Siena in 2012 and a Master of II level in “Environment and Cancer” in 2014. Iris Maria Forte has worked with Antonio Giordano’s group since 2008 and her research interests include both molecular and translational cancer research. She published 21 articles mostly focused in understanding the molecular basis of human cancer. She worked on different kinds of human solid tumors but her research principally focused on pleural mesothelioma and on cell cycle deregulation in cancer.

 

Prof. Fabio Parasecoli, PhD.

Professor in the Department of Nutrition and Food Studies. He has a Doctorate in Agricultural Sciences (Dr.sc.agr.) from Hohenheim University, Stuttgart (Germany), MA in Political Sciences from the Istituto Universitario Orientale, Naples (Italy), BA/MA in Modern Foreign Languages and Literature from the Università La Sapienza, Rome (Italy). His research explores the intersections among food, media, and politics. His most recent projects focus on Food Design and the synergies between Food Studies and design.

 

Prof. Lisa Sasson, MS

Dietetic Internship Director and a Clinical Associate Professor in the department. She has interests in dietetic education, weight and behavior management, and problem-based learning. She also is a private practice nutritionist with a focus on weight management. She serves as co-director of the Food, Nutrition and Culture program in Florence Italy, the New York State Dietetic Association and the Greater New York Dietetic Association (past president and treasurer).

 

Dr. Vincenzo Milione, PhD.

Director of Demographic Studies for The John D. Calandra Italian American Institute, Queens College, City University of New York. He has conducted social science research on Italian Americans. His research has included the educational and occupational achievements; Italian language studies at the elementary and secondary levels, high school non-completion rates; negative media portrayals of ethnic populations including migration studies and global diaspora.

 

Dr. Massimo Borrelli

Agricultural entrepreneur, Manager of the Italian Consortium for Biogas (CIB) and delegate for the Bioeconomy National Department of Confagricoltura. He developed A.R.T.E based on a model of agricultural circular economy, beginning and ending in the ground. He constructed the first biogas plant in the territory creating a new way to make agriculture, investing in research and development, experimentation and most of all, in people. In a few short years, he succeeded to close the production chain producing goods characterized by their high quality and usage of renewable energy.

 

Dr. Alessandra Moia, PhD.

Vice-President for Institutional and International Relations of the Istituto Nazionale per la Dieta Mediterranea e la Nutrigenomica (I.N.D.I.M.). Has managed relations with the academic institutions to increase awareness and develops projects for the diffusion of the Mediterranean Diet. She served as Director of Finance for the National Institute of Nutrition, for the Ministry of Agriculture and Forestry.

 

About the Sbarro Health Research Organization

The Sbarro Health Research Organization (SHRO) is non-profit charity committed to funding excellence in basic genetic research to cure and diagnose cancer, cardiovascular diseases, diabetes and other chronic illnesses and to foster the training of young doctors in a spirit of professionalism and humanism. To learn more about the SHRO please visit www.shro.org

To follow or Tweet on Twitter please use the following handles (@) and hashtags (#):

@ handles


@S_H_R_O 

@SbarroHealth

@Pharma_BI 

@ItalyinPhilly

@WHO_Europe

@nutritionorg

# hashtags


#healthydiet

#MediterraneanDiet

#health

#nutrition

Please see related articles on Live Coverage of Previous Meetings on this Open Access Journal

Real Time Conference Coverage for Scientific and Business Media: Unique Twitter Hashtags and Handles per Conference Presentation/Session

LIVE – Real Time – 16th Annual Cancer Research Symposium, Koch Institute, Friday, June 16, 9AM – 5PM, Kresge Auditorium, MIT

Real Time Coverage and eProceedings of Presentations on 11/16 – 11/17, 2016, The 12th Annual Personalized Medicine Conference, HARVARD MEDICAL SCHOOL, Joseph B. Martin Conference Center, 77 Avenue Louis Pasteur, Boston

Tweets Impression Analytics, Re-Tweets, Tweets and Likes by @AVIVA1950 and @pharma_BI for 2018 BioIT, Boston, 5/15 – 5/17, 2018

BIO 2018! June 4-7, 2018 at Boston Convention & Exhibition Center

LIVE 2018 The 21st Gabay Award to LORENZ STUDER, Memorial Sloan Kettering Cancer Center, contributions in stem cell biology and patient-specific, cell-based therapy

HUBweek 2018, October 8-14, 2018, Greater Boston – “We The Future” – coming together, of breaking down barriers, of convening across disciplinary lines to shape our future

 

Read Full Post »


NIH SBIR Funding Early Ventures: September 26, 2018 sponsored by Pennovation

Stephen J. Williams PhD, Reporter

Penn Center for Innovation (Pennovation) sponsored a “Meet with NCI SBIR” program directors at University of Pennsylvania Medicine Smilow Center for Translational Research with a presentation on advice on preparing a successful SBIR/STTR application to the NCI as well as discussion of NCI SBIR current funding opportunities.   Time was allotted in the afternoon for one-on-one discussions with NCI SBIR program directors.

To find similar presentations and one-on-one discussions with NCI/SBIR program directors in an area nearest to you please go to their page at:

https://sbir.cancer.gov/newsevents/events

For more complete information on the NCI SBIR and STTR programs please go to their web page at: https://sbir.cancer.gov/about

A few notes from the meeting are given below:

  • In 2016 the SBIR/STTR 2016 funded $2.5 billion (US) of early stage companies; this is compared to the $6.6 billion invested in early  stage ventures by venture capital firms so the NCI program is very competitive with alternate sources of funding
  • It was stressed that the SBIR programs are flexible as far as ownership of a company; SBIR allows now that >50% of the sponsoring company can be owned by other ventures;  In addition they are looking more favorably on using outside contractors and giving leeway on budgetary constraints so AS THEY SUGGEST ALWAYS talk to the program director about any questions you may have well before (at least 1 month) you submit. More on eligibility criteria is found at: https://sbir.cancer.gov/about/eligibilitycriteria
  • STTR should have strong preliminary data since more competitive; if don’t have enough go for  an R21 emerging technologies grant which usually does not require preliminary data
  • For entities outside the US need a STRONG reason for needing to do work outside the US

Budget levels were discussed as well as  the waiver program, which allows for additional funds to be requested based on criteria set by NCI (usually for work that is deemed high priority or of a specialized nature which could not be covered sufficiently under the standard funding limits) as below:

Phase I: 150K standard but you can get waivers for certain work up to 300K

Phase II: 1M with waiver up to 2M

Phase IIB waiver up to 4M

You don’t need to apply for the waiver but grant offices may suggest citing a statement requesting a waiver as review panels will ask for this information

Fast Track was not discussed in the presentation but for more information of the Fast Track program please visit the website  

NCI is working hard to cut review times to 7 months between initial review to funding however at beginning of the year they set pay lines and hope to fund 50% of the well scored grants

NCI SBIR is a Centralized system with center director and then program director with specific areas of expertise: Reach out to them

IMAT Program and Low-Resource Setting new programs more suitable for initial studies and also can have non US entities

Phase IIB Bridge funding to cross “valley of death” providing up to 4M for 2-3 years: most were for drug/biological but good amount for device and diagnostics

 

Also they have announced administrative supplements for promoting diversity within a project: can add to the budget

FY18 Contracts Areas

3 on biotherapies

2 imaging related

2 on health IT

4 on radiation therapy related: NOTE They spent alot of time discussing the contracts centered on radiation therapy and seems to be an area of emphasis of the NCI SBIR program this year

4 other varied topics

 

Breakdown of funding

>70% of NCI SBIR budget went to grants (for instance Omnibus grants); about 20-30% for contracts; 16% for phase I and 34 % for phase II ;

ALSO the success rate considerably higher for companies that talk to the program director BEFORE applying than not talking to them; also contracts more successful than Omnibus applications

Take Advantage of these useful Assistance Programs through the NIH SBIR Program (Available to all SBIR grantees)

NICHE ASSESSMENT Program

From the NCI SBIR website:

The Niche Assessment Program is designed to help small businesses “jump start” their commercialization efforts. All active HHS (NIH, CDC, FDA) SBIR/STTR Phase I awardees and Phase I Fast-Track awardees (by grant or contract) are eligible to apply. Registration is on a first-come, first-serve basis!

The Niche Assessment Program provides market insight and data that can be used to help small businesses strategically position their technology in the marketplace. The results of this program can help small businesses develop their commercialization plans for their Phase II application, and be exposed to potential partners. Services are provided by Foresight Science & Technology of Providence, RI.

Technology Niche Analyses® (TNA®) are provided by Foresight, for one hundred and seventy-five (175), HHS SBIR/STTR Phase I awardees. These analyses assess potential applications for a technology and then for one viable application, it provides an assessment of the:

  1. Needs and concerns of end-users;
  2. Competing technologies and competing products;
  3. Competitive advantage of the SBIR/STTR-developed technology;
  4. Market size and potential market share (may include national and/or global markets);
  5. Barriers to market entry (may include but is not limited to pricing, competition, government regulations, manufacturing challenges, capital requirements, etc.);
  6. Market drivers;
  7. Status of market and industry trends;
  8. Potential customers, licensees, investors, or other commercialization partners; and,
  9. The price customers are likely to pay.

Commercialization Acceleration Program  (CAP)

From the NIH SBIR website:

NIH CAP is a 9-month program that is well-regarded for its combination of deep domain expertise and access to industry connections, which have resulted in measurable gains and accomplishments by participating companies. Offered since 2004 to address the commercialization objectives of companies across the spectrum of experience and stage, 1000+ companies have participated in the CAP. It is open only to HHS/NIH SBIR/STTR Phase II awardees, and 80 slots are available each year. The program enables participants to establish market and customer relevance, build commercial relationships, and focus on revenue opportunities available to them.

I-Corps Program

The I-Corps program provides funding, mentoring, and networking opportunities to help commercialize your promising biomedical technology. During this 8-week, hands-on program, you’ll learn how to focus your business plan and get the tools to bring your treatment to the patients who need it most.

Program benefits include:

  • Funding up to $50,000 to cover direct program costs
  • Training from biotech sector experts
  • Expanding your professional network
  • Building the confidence and skills to create a comprehensive business model
  • Gaining years of entrepreneurial skills in only weeks.

 

ICORPS is an Entrepreneurial Program (8 week course) to go out talk to customers, get assistance with business models, useful resource which can guide the new company where they should focus on for the commercialization aspect

THE NCI Applicant Assistance Program (AAP)

The SBIR/STTR Applicant Assistance Program (AAP) is aimed at helping eligible small R&D businesses and individuals successfully apply for Phase I SBIR/STTR funding from the National Cancer Institute (NCI), National Institute for Neurological Disorders and Stroke (NINDS), National Heart, Lung and Blood Institute (NHLBI). Participation in the AAP will be funded by the NCI, NINDS, and NHLBI with NO COST TO PARTICIPANTS. The program will include the following services:

  • Needs Assessment/Small Business Mentoring
  • Phase I Application Preparation Support
  • Application Review
  • Team/Facilities Development
  • Market Research
  • Intellectual Property Consultation

For more details about the program, please refer to NIH Notice NOT-CA-18-072.

 

These programs are free for first time grant applicants and must not have been awarded previous SBIR

Peer Learning Webinar Series goal to improve peer learning .Also they are starting to provide Regulatory Assistance (see below)

NIH also provides Mentoring programs for CEOS and C level

Application tips

  1. Start early: and obtain letters of collaboration
  2. Build a great team: PI multi PI, consider other partners to fill gaps (academic, consultants, seasoned entrepreneurs (don’t need to be paid)
  3. They will pre review 1 month before due date, use NIH Project Reporter to view previous funded grants
  4. Specify study section in SF to specify areas of expertise for review
  5. Specific aims are very important; some of the 20 reviewers focus on this page (describes goals and milestones as well; spend as much time on this page as the rest of the application
  6. Letters of support from KOLs are important to have; necessary from consultants and collaborators; helpful from clinicians
  7. Have a phase II commercialization plan
  8. Note for non US clinical trials:  They will not fund nonUS clinical trials; the company must have a FWA
  9. SBIR budgets defined by direct costs; can request a 7% fee as an indirect cost; and they have a 5,000 $ technical assistance program like regulatory consultants but if requested can’t participate in NIH technical assistance programs so most people don’t apply for TAP

 

  • They are trying to change the definition of innovation as also using innovative methods (previously reviewers liked tried and true methodology)

10.  before you submit solicit independent readers

NCI SBIR can be found on Twitter @NCIsbir ‏

Discussion with Monique Pond, Ph.D. on Establishment of a Regulatory Assistance Program for NCI SBIR

I was able to sit down with Dr. Monique Pond,  AAAS Science & Technology Policy Fellow, Health Scientist within the NCI SBIR Development Center to discuss the new assistance program in regulatory affairs she is developing for the NCI SBIR program.  Dr Pond had received her PhD in chemistry from the Pennsylvania State University, completed a postdoctoral fellow at NIST and then spent many years as a regulatory writer and consultant in the private sector.  She applied through the AAAS for this fellowship and will bring her experience and expertise in regulatory affairs from the private sector to the SBIR program. Dr. Pond discussed the difficulties that new ventures have in formulating regulatory procedures for their companies, the difficulties in getting face time with FDA regulators and helping young companies start thinking about regulatory issues such as pharmacovigilence, oversight, compliance, and navigating the complex regulatory landscape.

In addition Dr. Pond discussed the AAAS fellowship program and alternative career paths for PhD scientists.

 

A formal interview will follow on this same post.

 

Other articles on this OPEN ACCESS JOURNAL on Funding for Startups and Early Ventures are given below:

 

Mapping Medical Device Startups Across The Globe per Funding Criteria

Funding Oncorus’s Immunotherapy Platform: Next-generation Oncolytic Herpes Simplex Virus (oHSV) for Brain Cancer, Glioblastoma Multiforme (GBM)

 

Funding Opportunities for Cancer Research

 

Team Profile: DrugDiscovery @LPBI Group – A BioTech Start Up submitted for Funding Competition to MassChallenge Boston 2016 Accelerator

 

A Message from Faculty Director Lee Fleming on Latest Issue of Crowdfunding; From the Fung Institute at Berkeley

 

PROTOCOL for Drug Screening of 3rd Party Intellectual Property Presented for Funding Representation

 

Foundations as a Funding Source

 

The Bioscience Crowdfunding Environment: The Bigger Better VC?

 

Read Full Post »


Extraordinary Breakthrough in Artificial Eyes and Artificial Muscle Technology

Reporter: Irina Robu, PhD

Metalens, flat surface that use nanostructures to focus light promise to transform optics by replacing the bulky, curved lenses presently used in optical devices with a simple, flat surface.

Scientists at the Harvard John A. Paulson School of Engineering and Applied Sciences designed metalens who are mainly focused on light and minimizes spherical aberrations through a dense pattern of nanostructures, since the information density in each lens will be high due to nanostructures being small.

According to Federico Capasso, “This demonstrates the feasibility of embedded optical zoom and auto focus for a wide range of applications, including cell phone cameras, eyeglasses, and virtual and augmented reality hardware. It also shows the possibility of future optical microscopes, which operate fully electronically and can correct many aberrations simultaneously.”

However, when scientists tried to scale up the lens, the file size of the design alone would balloon up to gigabytes or even terabytes. And as a result, create a new algorithm in order to shrivel the file size to make the metalens flawless with the innovation currently used to create integrated circuits. Afterward, scientists follow the large metalens to an artificial muscle without conceding its ability to focus light. In the human eye, the lens is enclosed by ciliary muscle, which stretches or compresses the lens, changing its shape to adjust its focal length. Scientists at that moment choose a thin, transparent dielectric elastomer with low to attach to the lens.

Within the experiment, when the voltage is applied to elastomers, it stretches, the position of nanopillars on the surface of the lens shift. The scientists as a result show that the lens can focus instantaneous, control abnormalities triggered by astigmatisms, and achieve image shift. Since the adaptive metalens is flat, you can correct those deviations and assimilate diverse optical capabilities onto a single plane of control.

SOURCE

https://news.harvard.edu/gazette/story/2018/02/researchers-combine-artificial-eye-and-artificial-muscle

Read Full Post »


3D Print Shape-Shifting Smart Gel

Reporter: Irina Robu, PhD

Hydrogel scaffolds that mimic the native extracellular matrix (ECM) environment play a crucial role in tissue engineering and they are ubiquitously in our lives, including in contact lenses, diapers and the human body.

Researchers at Rutgers have invented a printing method for a smart gel that can be used to create materials for transporting small molecules like drugs to human organs. The approach includes printing a 3D object with a hydrogel that changes shape over time when temperature changes. The potential of the smart hydrogels could be to create a new are of soft robotics and enable new applications in flexible sensors and actuators, biomedical devices and platforms or scaffolds for cells to grow.

Rutgers engineers operated with a hydrogel that has been in use for decades in devices that generate motion and biomedical applications such as scaffolds for cells to grow on. The engineers learned how to precisely control hydrogel growth and shrinkage. In temperatures below 32 degrees Celsius, the hydrogel absorbs more water and swells in size. When temperatures exceed 32 degrees Celsius, the hydrogel begins to expel water and shrinks, the study showed.

According to the Rutgers engineers, the objects they can produce with the hydrogel range from the width of a human hair to several millimeters long. The engineers also showed that they can grow one area of a 3D-printed object by changing temperatures.

Source

https://news.rutgers.edu/rutgers-engineers-3d-print-shape-shifting-smart-gel/20180131

Read Full Post »


A magnetic wire could replace the lottery of cancer blood tests

Reporter: Irina Robu, PhD

Stanford University scientists developed a magnetic wire which doctors can use to detect cancer before symptoms are detected in patients. The device is threaded into a vein, screens for the disease by attracting scarce and hard to capture tumor cells just like a magnet. The wire would be predominantly valuable to detect ‘silent killers’ such as pancreatic, ovarian and kidney cancer where symptoms only seem in the late stages when it has spread too far to treat. The magnetic wire can save thousands of lives by catching the disease at a time when drugs would be effective. Cells that have broken off a tumor to wander the bloodstream easily can assist as cancer biomarkers signaling the presence of the disease.

Dr. Gambhir’s team published the results in Nature Biomedical Engineering which described how using a wire that has magnetic nano-particles engineered to stick to cancerous cells. The original experiment is on pigs, which are structurally alike to humans and suffer from the same genetic malfunctions that cause cancer. The wire captured 10 to 80 times more tumor cells and was placed in a vein near the pig’s ear which can be removed from and the cells can be used for analysis. In real standings it chosen up 500 to 5,000 more cancerous cells than normal blood samples.

The circulating tumor cells were magnetized with nanoparticles containing an antibody that latch onto them. When attached, the cell carries the tiny magnet around with it and flows past the wire to veer from its regular path in the bloodstream and stick to the wire.  Professor Gambhir hopes that this approach will enrich detection capability and give insight how circulating tumor cells are and how early on they exist once the cancer is present. Once the technology is accepted for humans, the goal is to mature it into a multi-pronged tool that will increase detection, diagnosis, treatment and evaluation of cancer therapy.

It can also be used to gather genetic information about tumors located in places from where it’s hard to take biopsies.

Source

http://med.stanford.edu/news/all-news/2018/07/magnetized-wire-could-be-used-to-detect-cancer-in-people.html

Read Full Post »


Print’s Technology Used to Help Produce 3D Printed Glass Molds for Droplet Microfluidic Chips

Reporter: Irina Robu, PhD

Scientists from Leibniz HKI, Friedrich Schiller University, the Ilmenau University of Technology, FEMTOprint  and the Fraunhofer Institute for Applied Optics and Precision Engineering fabricated 3D polydimethylsiloxane (PDMS) chips for droplet microfluidics by using FEMTOprint’s innovative glass technology to make 3D printed glass molds. The 3D printed glass mold can pack 192 nozzles into a design that’s 25 mm long and 4 mm wide, including all inlets and outlets, which produce monodisperse droplets of 70 µm. It’s also easy to scale this structure so it is capable of holding 1,000 nozzles in a 6.5 cm structure.

FEMTOprint’s direct writing process makes it possible to produce microfluidic designs with diverse levels, continuously changing heights, and complex 3D shapes, along with sub-micrometric resolution. 3D printed glass molds are used to combine the replication and ease of production that soft lithography is capable of with the advantages of high-resolution prototyping. Moreover, it can facilitate fabrication of multilevel structures even ones with gradients of confinement, which can make important droplet microfluidic operations better.

This technique, paired with simple polydimethylsiloxane replica molding, can offer users with a solution for non-specialized and specialized labs in order to customize and expand microfluidic experimentation. In order to leverage the immense potential of droplet microfluidics, the process of chip design and fabrication needs to be simplified. While the PDMS replica molding has significantly transformed the chip-production process, its dependence on 2D-limited photolithography has limited the design possibilities, as well as further dissemination of microfluidics to non-specialized labs. The technique permits new possibilities in the university, meanwhile as of right now, no other methodology exists except this one that allows architectures with structures from 15 µm to hundreds of micrometers in all dimensions to be produced.

According to FEMTOprint, 3D printed glass structures characterize a negative part, and can be used as chips by bonding them to a PDMS slab or glass, which makes it possible to utilize structures, like mirrors, lenses, and filters, that replica molding cannot recreate. Chip fabrication doesn’t have to be the holdup for non-microfluidic labs adopting microfluidic approaches, instead it should be looked at as a way to device novel functionalities, like optical fiber incorporation for fluorescence detection.

 SOURCE

https://www.industrial-lasers.com/articles/2018/07/3d-printing-creates-molds-for-droplet-microfluidic-chips.html

Read Full Post »

Older Posts »