Archive for the ‘Immunotherapy’ Category


G L O B A L  M A R K E T  A N A L Y S I S  A N D

I N D U S T R Y  F O R E C A S T



LPBI Group’s decision to publish the Table of Contents of this Report does not imply endorsement of the Report

Aviva Lev-Ari, PhD, RN, Founder 1.0 & 2.0 LPBI Group

Guest Reporter: MIKE WOOD

Marketing Executive



BIOTECH FORECASTS is a full-service market research and business- consulting firm primarily focusing on healthcare, pharmaceutical, and biotechnology industries. BIOTECH FORECASTS provides global as well as medium and small Pharmaceutical and Biotechnology businesses with unmatched quality of “Market Research Reports” and “Business Intelligence Solutions”. BIOTECH FORECASTS has a targeted view to provide business insights and consulting to assist its clients to make strategic business decisions, and achieve sustainable growth in their respective market domain.

UPDATED on 10/13/2020


Mike Wood

Mike Wood

Marketing Executive at Biotech Forecasts

CAR T-cell therapy as a part of adoptive cell therapy (ACT), has become one of the most rapidly growing and promising fields in the Immuno-oncology. As compared to the conventional cancer therapies, CAR T-cell therapy is the single-dose solution for the treatment of various cancers, significantly for some lethal forms of hematological malignancies.

CAR T-cell therapy mainly involves the use of engineered T-cells, the process starts with the extraction of T-cells through leukapheresis, either from the patient (autologous) or a healthy donor (allogeneic). After the expression of a synthetic receptor (Chimeric Antigen Receptor) in the lab, the altered T-cells are expanded to the right dose and administered into the patient’s body. where they target and attach to a specific antigen on the tumor surface, to kill the cancerous cells by igniting the apoptosis.

The global CAR T-cell therapy market was valued at $734 million in 2019 and is estimated to reach $4,078 million by 2027, registering a CAGR of 23.91% from 2020 to 2027.

Factors that drive the market growth involve, (1) Increased in funding for R&D activities pertaining to cell and gene therapy. By H1 2020 cell and gene therapy companies set new records in the fundraising despite the pandemic crisis. For Instance, by June 2020 totaled $1,452 Million raised in Five IPOs including, Legend Biotech ($487M), Passage Bio ($284M), Akouos ($244M), Generation Bio ($230M), and Beam Therapeutics ($207M), which is 2.5 times the total IPO of 2019.

Moreover, in 2019 cell therapy companies specifically have raised $560 million of venture capital, including Century Therapeutics ($250M), Achilles Therapeutics Ltd. ($121M in series B), NKarta Therapeutics Inc. ($114M), and Tmunity Therapeutics ($75M in Series B).

(2) Increased in No. of Approved Products, By July 2020, there are a total of 03 approved CAR T-cell therapy products, including KYMRIAH®, YESCARTA®, and the most recently approved TECARTUS™ (formerly KTE-X19). Furthermore, two CAR T-cell therapies BB2121, and JCAR017 are expected to get the market approval by the end of 2020 or in early 2021.

Other factors that boost the market growth involves; (3) increase in government support, (4) ethical acceptance of Cell and Gene therapy for cancer treatment, (5) rise in the prevalence of cancer, and (6) an increase in awareness regarding the CAR T-cell therapy.

However, high costs associated with the treatment (KYMRIAH® cost around $475,000, and YESCARTA® costs $373,000 per infusion), long production hours, obstacles in treating solid tumors, and unwanted immune responses & potential side effects might hamper the market growth.

The report also presents a detailed quantitative analysis of the current market trends and future estimations from 2020 to 2027.

The forecasts cover 2 Approach Types, 5 Antigen Types, 5 Application Types, Regions, and 14 Countries.

The report comes with an associated file covering quantitative data from all numeric forecasts presented in the report, as well as with a Clinical Trials Data File.


The report has the following key findings:

  • The global CAR T-cell therapy market accounted for $734 million in 2019 and is estimated to reach $4,078 million by 2027, registering a CAGR of 23.91% from 2020 to 2027.
  • By approach type the autologous segment was valued at $655.26 million in 2019 and is estimated to reach $ 3,324.52 million by 2027, registering a CAGR of 22.51% from 2020 to 2027.
  • By approach type, the allogeneic segment exhibits the highest CAGR of 32.63%.
  • Based on the Antigen segment CD19 was the largest contributor among the other segments in 2019.
  • The Acute lymphocytic leukemia (ALL) segment generated the highest revenue and is expected to continue its dominance in the future, followed by the Diffuse large B-cell lymphoma (DLBCL) segment.
  • North America dominated the global CAR T-cell therapy market in 2019 and is projected to continue its dominance in the future.
  • China is expected to grow the highest in the Asia-Pacific region during the forecast period.


The report covers the following topics:

  • Market Drivers, Restraints, and Opportunities
  • Porters Five Forces Analysis
  • CAR T-Cell Structure, Generations, Manufacturing, and Pricing Models
  • Top Winning Strategies, Top Investment Pockets
  • Analysis of by Approach Type, Antigen Type, Application, and Region
  • 51 Company Profiles, Product Portfolio, and Key Strategies
  • Approved Products Profiles, and list of Expected Approvals
  • COVID-19 Impact on the Cell and Gene Therapy Industry
  • CAR T-cell therapy clinical trials analysis from 1997 to 2019
  • Market analysis and forecasts from 2020 to 2027


By Approach Type

  • Autologous
  • Allogeneic

By Antigen Type

  • CD19
  • CD20
  • BCMA
  • MSLN
  • Others

By Application

  • Acute lymphoblastic leukemia (ALL)
  • Diffuse large B-Cell lymphoma (DLBCL)
  • Multiple Myeloma (MM)
  • Acute Myeloid Leukemia (AML)
  • Other Cancer Indications

By Region

  • North America: USA, Canada, Mexico
  • Europe: UK, Germany, France, Spain, Italy, Rest of Europe
  • Asia-Pacific: China, Japan, India, South Korea, Rest of Asia-Pacific
  • LAMEA: Brazil, South Africa, Rest of LAMEA

Contact at info@biotechforecasts.com for any Queries or Free Report Sample

Report this

Published by

Mike Wood
Marketing Executive at Biotech Forecasts
1 article
The global CAR T-cell therapy market was valued at $734 million in 2019 and is estimated to reach $4,078 million by 2027, registering a CAGR of 23.91% from 2020 to 2027. hashtagcelltherapy hashtaggenetherapy hashtagimmunotherapy hashtagcancertreatment hashtagcartcell hashtagregenerativemedicine hashtagbiotech hashtagcancer


Table of Contents







3.4.1.Top winning strategies, by year, 2017-2019* 34
3.4.2.Top winning strategies, by development, 2017-2019*(%) 34
3.4.3.Top winning strategies, by company, 2017-2019* 35
3.8.1    Drivers 46   Increase in funding for R&D activities of CAR T-cell therapy 46   The rise in the prevalence of cancer 47   Increase in awareness regarding CAR T-cell therapy 47


3.8.2    Restrains 48   The high cost of CAR T-cell therapy treatment 48   Unwanted immune responses and side effects 48   Long production time 48   Obstacles in treating solid tumors 49
3.8.3    Opportunities 49   Untapped potential for emerging markets 49




5.1.1    Market size and forecast 62
5.2.1    Key market trends 63
5.2.2    Key growth factors and opportunities 64
5.2.3    Market size and forecast 64
5.2.4    Market size and forecast by country 65
5.3.1    Key market trends 67
5.3.2    Key growth factors and opportunities 68
5.3.3    Market size and forecast 68
5.3.4    Market size and forecast by country 69


6.1.1         Market size and forecast 71
6.2 CD19 72
6.2.1         Market size and forecast 73
6.2.2         Market size and forecast by country 74


6.3 CD20 75
6.3.1 Market size and forecast 76
6.3.2 Market size and forecast by country 77
6.4 BCMA 78
6.4.1 Market size and forecast 79
6.4.2 Market size and forecast by country 80
6.5 MSLN 81
6.5.1 Market size and forecast 82
6.5.2 Market size and forecast by country 83
6.6 OTHERS 84
6.6.1 Market size and forecast 85
6.6.2 Market size and forecast by country 86


7.1.1       Market size and forecast 88
7.2.1       Market size and forecast 90
7.2.2       Market size and forecast by country 91
7.3.1       Market size and forecast 93
7.3.2       Market size and forecast by country 94
7.4.1       Market size and forecast 96
7.4.2       Market size and forecast by country 97
7.5.1       Market size and forecast 99
7.5.2       Market size and forecast by country 100
7.6 OTHERS 101
7.6.1       Market size and forecast 102
7.6.2       Market size and forecast by country 103


8.1 OVERVIEW 104
8.1.1       Market size and forecast 104
8.2.1       Key market trends 105
8.2.2       Key growth factors and opportunities 105


8.2.3       Market size and forecast, by country 106
8.2.4       Market size and forecast, by approach type 106
8.2.5       Market size and forecast, by antigen type 107
8.2.6 Market size and forecast, by application 107 U.S. market size and forecast, by approach type 108 U.S. market size and forecast, by antigen type 108 U.S. market size and forecast, by application 109 Canada market size and forecast, by approach type 110 Canada market size and forecast, by antigen type 110 Canada market size and forecast, by application 111 Mexico market size and forecast, by approach type 112 Mexico market size and forecast, by antigen type 112 Mexico market size and forecast, by application 113
8.3 EUROPE 114
8.4.1 Key market trends 114
8.4.2 Key growth factors and opportunities 114
8.4.3 Market size and forecast, by country 115
8.4.4 Market size and forecast, by approach type 115
8.4.5 Market size and forecast, by antigen type 116
8.4.6 Market size and forecast, by application 116 UK market size and forecast, by approach type 117 UK market size and forecast, by antigen type 117 UK market size and forecast, by application 118 Germany market size and forecast, by approach type 119 Germany market size and forecast, by antigen type 119 Germany market size and forecast, by application 120 France market size and forecast, by approach type 121 France market size and forecast, by antigen type 121 France market size and forecast, by application 122 Spain market size and forecast, by approach type 123 Spain market size and forecast, by antigen type 123 Spain market size and forecast, by application 124 Italy market size and forecast, by approach type 125 Italy market size and forecast, by antigen type 125 Italy market size and forecast, by application 126 Rest of Europe market size and forecast, by approach type 127 Rest of Europe market size and forecast, by antigen type 127 Rest of Europe market size and forecast, by application 128
8.4.1 Key market trends 129
8.4.2 Key growth factors and opportunities 129
8.4.3 Market size and forecast, by country 130
8.4.4 Market size and forecast, by approach type 130


8.4.5       Market size and forecast, by antigen type 131
8.4.6 Market size and forecast, by application 131 China market size and forecast, by approach type 132 China market size and forecast, by antigen type 132 China market size and forecast, by application 133 Japan market size and forecast, by approach type 134 Japan market size and forecast by antigen type 134 Japan market size and forecast, by application 135 India market size and forecast, by approach type 136 India market size and forecast, by antigen type 136 India market size and forecast, by application 137 South Korea market size and forecast, by approach type 138 South Korea market size and forecast, by antigen type 138 South Korea market size and forecast, by application 139 Rest of Asia-Pacific market size and forecast, by approach type 140 Rest of Asia-Pacific market size and forecast, by antigen type 140 Rest of Asia-Pacific market size and forecast, by application 141
8.5 LAMEA 142
8.5.1 Key market trends 142
8.5.2 Key growth factors and opportunities 142
8.5.3 Market size and forecast, by country 143
8.5.4 Market size and forecast, by approach type 143
8.5.5 Market size and forecast, by antigen type 144
8.5.6 Market size and forecast, by application 144 Brazil market size and forecast by approach type 145 Brazil market size and forecast, by antigen type 145 Brazil market size and forecast, by application 146 South Africa market size and forecast, by approach type 147 South Africa market size and forecast, by antigen type 147 South Africa market size and forecast, by application 148 Rest of LAMEA market size and forecast by approach type 149 Rest of LAMEA market size and forecast, by antigen type 149 Rest of LAMEA market size and forecast, by application 150


9.1 OVERVIEW 151
9.1.1      No. of Clinical Trials from 1997 to 2019 151
9.1.2      Clinical Trials from 1997 to 2019: Based on Approach Type 152
9.1.3      Clinical Trials from 1997 to 2019: Based on Antigen Type 153
9.1.4      Clinical Trials from 1997 to 2019: Based on Application 154
9.1.5      Clinical Trials from 1997 to 2019: Based on Region 155


9.3.1      KYMRIAH® 157
9.3.2      YESCARTA® 159
9.3.3      TECARTUS™ 161


10.1       Abbvie Inc. 162
10.2       Adaptimmune Therapeutics Plc 164
10.3 Allogene Therapeutics, Inc. 166
10.4 Amgen, Inc 168
10.5 Anixa Biosciences, Inc. 170
10.6 Arcellx, Inc. 172
10.7 Atara Biotherapeutics, Inc. 173
10.8 Autolus Therapeutics Plc. 175
10.9 Beam Therapeutics, Inc. 177
10.10 Bellicum Pharmaceuticals, Inc. 179
10.11 BioNtech SE 181
10.12 Bluebird Bio, Inc. 183
10.13 Carsgen Therapeutics, Ltd 185
10.14 Cartesian Therapeutics, Inc. 187
10.15 Cartherics Pty Ltd. 188
10.16 Celgene Corporation 189
10.17 Cellectis SA 191
10.18 Cellular Biomedicine Group, Inc. 193
10.19 Celularity, Inc. 195
10.20 Celyad SA 196
10.21 CRISPR Therapeutics AG 198
10.22 Eureka Therapeutics, Inc. 200
10.23 Fate Therapeutics, Inc. 201
10.24 Fortress Biotech, Inc 203
10.25 Gilead Sciences, Inc. 205
10.26 Gracell Biotechnology Ltd 207
10.27 icell Gene Therapeutics 208
10.28 Johnson & Johnson 209
10.29 Juventas Cell Therapy Ltd. 211
10.30 Kuur Therapeutics 212
10.31 Legend Biotech Corp. 213
10.32 Leucid Bio Ltd. 214
10.33 Minerva Biotechnologies Corp. 215


10.34     Molecular Medicine SPA (Molmed) 216
10.35     Nanjing Bioheng Biotech Co., Ltd. 218
10.36     Noile-Immune Biotech Inc. 219
10.37     Novartis AG 220
10.38     Oxford Biomedica PLC 222
10.39     Persongen Biotherapeutics (Suzhou) Co., Ltd. 224
10.40     Poseida Therapeutics, Inc. 226
10.41     Precigen, Inc. 227
10.42     Precision Biosciences, Inc. 229
10.43     Sorrento Therapeutics, Inc. 231
10.44     Takara Bio Inc. 233
10.45     Takeda Pharmaceutical Company Ltd. 235
10.46     TC Biopharm Ltd. 237
10.47     Tessa Therapeutics Pte Ltd. 238
10.48     Tmunity Therapeutics, Inc. 239
10.49     Unum Therapeutics Inc. 240
10.50     Xyphos Inc. 242
10.51     Ziopharm Oncology, Inc. 243


11.2     CONCLUSION 247





Marketing Executive


Read Full Post »

Prime Editing as a New CRISPR Tool to Enhance Precision and Versatility


Reporter: Stephen J. Williams, PhD


CRISPR has become a powerful molecular for the editing of genomes tool in research, drug discovery, and the clinic

(see posts and ebook on this site below)


however, as discussed on this site

(see posts below)

there have been many instances of off-target effects where genes, other than the selected target, are edited out.  This ‘off-target’ issue has hampered much of the utility of CRISPR in gene-therapy and CART therapy

see posts


However, an article in Science by Jon Cohen explains a Nature paper’s finding of a new tool in the CRISPR arsenal called prime editing, meant to increase CRISPR specificity and precision editing capabilities.


By Jon Cohen | Oct 25th, 2019

Prime editing promises to be a cut above CRISPR Jon Cohen CRISPR, an extraordinarily powerful genome-editing tool invented in 2012, can still be clumsy. … Prime editing steers around shortcomings of both techniques by heavily modifying the Cas9 protein and the guide RNA. … ” Prime editing “well may become the way that disease-causing mutations are repaired,” he says.

Science Vol. 366, No. 6464; DOI: 10.1126/science.366.6464.406

The effort, led by Drs. David Liu and Andrew Anzalone at the Broad Institute (Cambridge, MA), relies on the modification of the Cas9 protein and guide RNA, so that there is only a nick in a single strand of the double helix.  The canonical Cas9 cuts both strands of DNA, and so relies on an efficient gap repair activity of the cell.  The second part, a new type of guide RNA called a pegRNA, contains an RNA template for a new DNA sequence to be added at the target location.  This pegRNA-directed synthesis of the new template requires the attachment of a reverse transcriptase enzymes to the Cas9.  So far Liu and his colleagues have tested the technology on over 175 human and rodent cell lines with great success.  In addition, they had also corrected mutations which cause Tay Sachs disease, which previous CRISPR systems could not do.  Liu claims that this technology could correct over 89% of pathogenic variants in human diseases.

A company Prime Medicine has been formed out of this effort.

Source: https://science.sciencemag.org/content/366/6464/406.abstract


Read an article on Dr. Liu, prime editing, and the companies that Dr. Liu has initiated including Editas Medicine, Beam Therapeutics, and Prime Medicine at https://www.statnews.com/2019/11/06/questions-david-liu-crispr-prime-editing-answers/

(interview by StatNews  SHARON BEGLEY @sxbegle)

As was announced, prime editing for human therapeutics will be jointly developed by both Prime Medicine and Beam Therapeutics, each focusing on different types of edits and distinct disease targets, which will help avoid redundancy and allow us to cover more disease territory overall. The companies will also share knowledge in prime editing as well as in accompanying technologies, such as delivery and manufacturing.

Reader of StatNews.: Can you please compare the pros and cons of prime editing versus base editing?

The first difference between base editing and prime editing is that base editing has been widely used for the past 3 1/2 years in organisms ranging from bacteria to plants to mice to primates. Addgene tells me that the DNA blueprints for base editors from our laboratory have been distributed more than 7,500 times to more than 1,000 researchers around the world, and more than 100 research papers from many different laboratories have been published using base editors to achieve desired gene edits for a wide variety of applications. While we are very excited about prime editing, it’s brand-new and there has only been one paper published thus far. So there’s much to do before we can know if prime editing will prove to be as general and robust as base editing has proven to be.

We directly compared prime editors and base editors in our study, and found that current base editors can offer higher editing efficiency and fewer indel byproducts than prime editors, while prime editors offer more targeting flexibility and greater editing precision. So when the desired edit is a transition point mutation (C to T, T to C, A to G, or G to A), and the target base is well-positioned for base editing (that is, a PAM sequence exists approximately 15 bases from the target site), then base editing can result in higher editing efficiencies and fewer byproducts. When the target base is not well-positioned for base editing, or when other “bystander” C or A bases are nearby that must not be edited, then prime editing offers major advantages since it does not require a precisely positioned PAM sequence and is a true “search-and-replace” editing capability, with no possibility of unwanted bystander editing at neighboring bases.

Of course, for classes of mutations other than the four types of point mutations that base editors can make, such as insertions, deletions, and the eight other kinds of point mutations, to our knowledge prime editing is currently the only approach that can make these mutations in human cells without requiring double-stranded DNA cuts or separate DNA templates.

Nucleases (such as the zinc-finger nucleases, TALE nucleases, and the original CRISPR-Cas9), base editors, and prime editors each have complementary strengths and weaknesses, just as scissors, pencils, and word processors each have unique and useful roles. All three classes of editing agents already have or will have roles in basic research and in applications such as human therapeutics and agriculture.

Nature Paper on Prime Editing CRISPR

Search-and-replace genome editing without double-strand breaks or donor DNA (6)


Andrew V. Anzalone,  Peyton B. Randolph, Jessie R. Davis, Alexander A. Sousa,

Luke W. Koblan, Jonathan M. Levy, Peter J. Chen, Christopher Wilson,

Gregory A. Newby, Aditya Raguram & David R. Liu


Nature volume 576, pages149–157(2019)



Most genetic variants that contribute to disease1 are challenging to correct efficiently and without excess byproducts2,3,4,5. Here we describe prime editing, a versatile and precise genome editing method that directly writes new genetic information into a specified DNA site using a catalytically impaired Cas9 endonuclease fused to an engineered reverse transcriptase, programmed with a prime editing guide RNA (pegRNA) that both specifies the target site and encodes the desired edit. We performed more than 175 edits in human cells, including targeted insertions, deletions, and all 12 types of point mutation, without requiring double-strand breaks or donor DNA templates. We used prime editing in human cells to correct, efficiently and with few byproducts, the primary genetic causes of sickle cell disease (requiring a transversion in HBB) and Tay–Sachs disease (requiring a deletion in HEXA); to install a protective transversion in PRNP; and to insert various tags and epitopes precisely into target loci. Four human cell lines and primary post-mitotic mouse cortical neurons support prime editing with varying efficiencies. Prime editing shows higher or similar efficiency and fewer byproducts than homology-directed repair, has complementary strengths and weaknesses compared to base editing, and induces much lower off-target editing than Cas9 nuclease at known Cas9 off-target sites. Prime editing substantially expands the scope and capabilities of genome editing, and in principle could correct up to 89% of known genetic variants associated with human diseases.



From Anzolone et al. Nature 2019 Figure 1.

Prime editing strategy

Cas9 targets DNA using a guide RNA containing a spacer sequence that hybridizes to the target DNA site. We envisioned the generation of guide RNAs that both specify the DNA target and contain new genetic information that replaces target DNA nucleotides. To transfer information from these engineered guide RNAs to target DNA, we proposed that genomic DNA, nicked at the target site to expose a 3′-hydroxyl group, could be used to prime the reverse transcription of an edit-encoding extension on the engineered guide RNA (the pegRNA) directly into the target site (Fig. 1b, cSupplementary Discussion).

These initial steps result in a branched intermediate with two redundant single-stranded DNA flaps: a 5′ flap that contains the unedited DNA sequence and a 3′ flap that contains the edited sequence copied from the pegRNA (Fig. 1c). Although hybridization of the perfectly complementary 5′ flap to the unedited strand is likely to be thermodynamically favoured, 5′ flaps are the preferred substrate for structure-specific endonucleases such as FEN122, which excises 5′ flaps generated during lagging-strand DNA synthesis and long-patch base excision repair. The redundant unedited DNA may also be removed by 5′ exonucleases such as EXO123.

  • The authors reasoned that preferential 5′ flap excision and 3′ flap ligation could drive the incorporation of the edited DNA strand, creating heteroduplex DNA containing one edited strand and one unedited strand (Fig. 1c).
  • DNA repair to resolve the heteroduplex by copying the information in the edited strand to the complementary strand would permanently install the edit (Fig. 1c).
  • They had hypothesized that nicking the non-edited DNA strand might bias DNA repair to preferentially replace the non-edited strand.


  • The authors evaluated the eukaryotic cell DNA repair outcomes of 3′ flaps produced by pegRNA-programmed reverse transcription in vitro, and performed in vitro prime editing on reporter plasmids, then transformed the reaction products into yeast cells (Extended Data Fig. 2).
  • Reporter plasmids encoding EGFP and mCherry separated by a linker containing an in-frame stop codon, +1 frameshift, or −1 frameshift were constructed and when plasmids were edited in vitro with Cas9 nickase, RT, and 3′-extended pegRNAs encoding a transversion that corrects the premature stop codon, 37% of yeast transformants expressed both GFP and mCherry (Fig. 1f, Extended Data Fig. 2).
  • They fused a variant of M—MLV-RT (reverse transcriptase) to Cas9 with an extended linker and this M-MLV RT fused to the C terminus of Cas9(H840A) nickase was designated as PE1. This strategy allowed the authors to generate a cell line containing all the required components of the primer editing system. They constructed 19 variants of PE1 containing a variety of RT mutations to evaluate their editing efficiency in human cells
  • Generated a pentamutant RT incorporated into PE1 (Cas9(H840A)–M-MLV RT(D200N/L603W/T330P/T306K/W313F)) is hereafter referred to as prime editor 2 (PE2).  These were more thermostable versions of RT with higher efficiency.
  • Optimized the guide (pegRNA) using a series of permutations and  recommend starting with about 10–16 nt and testing shorter and longer RT templates during pegRNA optimization.
  • In the previous attempts (PE1 and PE2 systems), mismatch repair resolves the heteroduplex to give either edited or non-edited products. So they next developed an optimal editing system (PE3) to produce optimal nickase activity and found nicks positioned 3′ of the edit about 40–90 bp from the pegRNA-induced nick generally increased editing efficiency (averaging 41%) without excess indel formation (6.8% average indels for the sgRNA with the highest editing efficiency) (Fig. 3b).
  • The cell line used to finalize and validate the system was predominantly HEK293T immortalized cell line
  • Together, their findings establish that PE3 systems improve editing efficiencies about threefold compared with PE2, albeit with a higher range of indels than PE2. When it is possible to nick the non-edited strand with an sgRNA that requires editing before nicking, the PE3b system offers PE3-like editing levels while greatly reducing indel formation.
  • Off Target Effects: Strikingly, PE3 or PE2 with the same 16 pegRNAs containing these four target spacers resulted in detectable off-target editing at only 3 out of 16 off-target sites, with only 1 of 16 showing an off-target editing efficiency of 1% or more (Extended Data Fig. 6h). Average off-target prime editing for pegRNAs targeting HEK3HEK4EMX1, and FANCFat the top four known Cas9 off-target sites for each protospacer was <0.1%, <2.2 ± 5.2%, <0.1%, and <0.13 ± 0.11%, respectively (Extended Data Fig. 6h).
  • The PE3 system was very efficient at editing the most common mutation that causes Tay-Sachs disease, a 4-bp insertion in HEXA(HEXA1278+TATC).


  1. Landrum, M. J. et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res44, D862–D868 (2016).
  2. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science337, 816–821 (2012).
  3. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science339, 819–823 (2013).


  1. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science339, 823–826 (2013).
  2. Kosicki, M., Tomberg, K. & Bradley, A. Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements.  Biotechnol. 36, 765–771 (2018).
  3. Anzalone, A.V., Randolph, P.B., Davis, J.R. et al.Search-and-replace genome editing without double-strand breaks or donor DNA. Nature576, 149–157 (2019). https://doi.org/10.1038/s41586-019-1711-4

Read Full Post »

Did FDA Reverse Course on Convalescent Plasma Therapy for COVID-19?

Reporter: Stephen J. Williams, PhD


Starting with a timeline of recent announcements by the FDA on convalescent plasma therapy

April 16, 2020


Coronavirus (COVID-19) Update: FDA Encourages Recovered Patients to Donate Plasma for Development of Blood-Related Therapies


As part of the all-of-America approach to fighting the COVID-19 pandemic, the U.S. Food and Drug Administration has been working with partners across the U.S. government, academia and industry to expedite the development and availability of critical medical products to treat this novel virus. Today, we are providing an update on one potential treatment called convalescent plasma and encouraging those who have recovered from COVID-19 to donate plasma to help others fight this disease.

Convalescent plasma is an antibody-rich product made from blood donated by people who have recovered from the disease caused by the virus. Prior experience with respiratory viruses and limited data that have emerged from China suggest that convalescent plasma has the potential to lessen the severity or shorten the length of illness caused by COVID-19. It is important that we evaluate this potential therapy in the context of clinical trials, through expanded access, as well as facilitate emergency access for individual patients, as appropriate.

The response to the agency’s recently announced national efforts to facilitate the development of and access to convalescent plasma has been tremendous. More than 1,040 sites and 950 physician investigators nationwide have signed on to participate in the Mayo Clinic-led expanded access protocol. A number of clinical trials are also taking place to evaluate the safety and efficacy of convalescent plasma and the FDA has granted numerous single patient emergency investigational new drug (eIND) applications as well.

Source: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-encourages-recovered-patients-donate-plasma-development-blood

August 23, 2020


Recommendations for Investigational COVID-19 Convalescent Plasma


  • FDA issues guidelines on clinical trials and obtaining emergency enrollment concerning convalescent plasma

FDA has issued guidance to provide recommendations to health care providers and investigators on the administration and study of investigational convalescent plasma collected from individuals who have recovered from COVID-19 (COVID-19 convalescent plasma) during the public health emergency.

The guidance provides recommendations on the following:

Because COVID-19 convalescent plasma has not yet been approved for use by FDA, it is regulated as an investigational product.  A health care provider must participate in one of the pathways described below.  FDA does not collect COVID-19 convalescent plasma or provide COVID-19 convalescent plasma.  Health care providers or acute care facilities should instead obtain COVID-19 convalescent plasma from an FDA-registered blood establishment.

Excerpts from the guidance document are provided below.


The Food and Drug Administration (FDA or Agency) plays a critical role in protecting the United States (U.S.) from threats including emerging infectious diseases, such as the Coronavirus Disease 2019 (COVID-19) pandemic.  FDA is committed to providing timely guidance to support response efforts to this pandemic.

One investigational treatment being explored for COVID-19 is the use of convalescent plasma collected from individuals who have recovered from COVID-19.  Convalescent plasma that contains antibodies to severe acute respiratory syndrome coronavirus 2 or SARS-CoV-2 (the virus that causes COVID-19) is being studied for administration to patients with COVID-19. Use of convalescent plasma has been studied in outbreaks of other respiratory infections, including the 2003 SARS-CoV-1 epidemic, the 2009-2010 H1N1 influenza virus pandemic, and the 2012 MERS-CoV epidemic.

Although promising, convalescent plasma has not yet been shown to be safe and effective as a treatment for COVID-19. Therefore, it is important to study the safety and efficacy of COVID-19 convalescent plasma in clinical trials.

Pathways for Use of Investigational COVID-19 Convalescent Plasma

The following pathways are available for administering or studying the use of COVID-19 convalescent plasma:

  1. Clinical Trials

Investigators wishing to study the use of convalescent plasma in a clinical trial should submit requests to FDA for investigational use under the traditional IND regulatory pathway (21 CFR Part 312). CBER’s Office of Blood Research and Review is committed to engaging with sponsors and reviewing such requests expeditiously. During the COVID-19 pandemic, INDs may be submitted via email to CBERDCC_eMailSub@fda.hhs.gov.

  1. Expanded Access

An IND application for expanded access is an alternative for use of COVID-19 convalescent plasma for patients with serious or immediately life-threatening COVID-19 disease who are not eligible or who are unable to participate in randomized clinical trials (21 CFR 312.305). FDA has worked with multiple federal partners and academia to open an expanded access protocol to facilitate access to COVID-19 convalescent plasma across the nation. Access to this investigational product may be available through participation of acute care facilities in an investigational expanded access protocol under an IND that is already in place.

Currently, the following protocol is in place: National Expanded Access Treatment Protocol

  1. Single Patient Emergency IND

Although participation in clinical trials or an expanded access program are ways for patients to obtain access to convalescent plasma, for various reasons these may not be readily available to all patients in potential need. Therefore, given the public health emergency that the COVID-19 pandemic presents, and while clinical trials are being conducted and a national expanded access protocol is available, FDA also is facilitating access to COVID-19 convalescent plasma for use in patients with serious or immediately life-threatening COVID-19 infections through the process of the patient’s physician requesting a single patient emergency IND (eIND) for the individual patient under 21 CFR 312.310. This process allows the use of an investigational drug for the treatment of an individual patient by a licensed physician upon FDA authorization, if the applicable regulatory criteria are met.  Note, in such case, a licensed physician seeking to administer COVID-19 convalescent plasma to an individual patient must request the eIND (see 21 CFR 312.310(b)).

To Obtain a Single Patient Emergency IND  

The requesting physician may contact FDA by completing Form FDA 3926 (https://www.fda.gov/media/98616/download) and submitting the form by email to CBER_eIND_Covid-19@FDA.HHS.gov.


  • FDA issues fact sheet for patients on donating plasma

August 23, 2020


FDA Issues Emergency Use Authorization for Convalescent Plasma as Potential Promising COVID–19 Treatment, Another Achievement in Administration’s Fight Against Pandemic


Today, the U.S. Food and Drug Administration issued an emergency use authorization (EUA) for investigational convalescent plasma for the treatment of COVID-19 in hospitalized patients as part of the agency’s ongoing efforts to fight COVID-19. Based on scientific evidence available, the FDA concluded, as outlined in its decision memorandum, this product may be effective in treating COVID-19 and that the known and potential benefits of the product outweigh the known and potential risks of the product.

Today’s action follows the FDA’s extensive review of the science and data generated over the past several months stemming from efforts to facilitate emergency access to convalescent plasma for patients as clinical trials to definitively demonstrate safety and efficacy remain ongoing.

The EUA authorizes the distribution of COVID-19 convalescent plasma in the U.S. and its administration by health care providers, as appropriate, to treat suspected or laboratory-confirmed COVID-19 in hospitalized patients with COVID-19.

Alex Azar, Health and Human Services Secretary:
“The FDA’s emergency authorization for convalescent plasma is a milestone achievement in President Trump’s efforts to save lives from COVID-19,” said Secretary Azar. “The Trump Administration recognized the potential of convalescent plasma early on. Months ago, the FDA, BARDA, and private partners began work on making this product available across the country while continuing to evaluate data through clinical trials. Our work on convalescent plasma has delivered broader access to the product than is available in any other country and reached more than 70,000 American patients so far. We are deeply grateful to Americans who have already donated and encourage individuals who have recovered from COVID-19 to consider donating convalescent plasma.”

Stephen M. Hahn, M.D., FDA Commissioner:
“I am committed to releasing safe and potentially helpful treatments for COVID-19 as quickly as possible in order to save lives. We’re encouraged by the early promising data that we’ve seen about convalescent plasma. The data from studies conducted this year shows that plasma from patients who’ve recovered from COVID-19 has the potential to help treat those who are suffering from the effects of getting this terrible virus,” said Dr. Hahn. “At the same time, we will continue to work with researchers to continue randomized clinical trials to study the safety and effectiveness of convalescent plasma in treating patients infected with the novel coronavirus.”

Scientific Evidence on Convalescent Plasma

Based on an evaluation of the EUA criteria and the totality of the available scientific evidence, the FDA’s Center for Biologics Evaluation and Research determined that the statutory criteria for issuing an EUA criteria were met.

The FDA determined that it is reasonable to believe that COVID-19 convalescent plasma may be effective in lessening the severity or shortening the length of COVID-19 illness in some hospitalized patients. The agency also determined that the known and potential benefits of the product, when used to treat COVID-19, outweigh the known and potential risks of the product and that that there are no adequate, approved, and available alternative treatments.


August 24, 2020

Donate COVID-19 Plasma


  • FDA posts video and blog about how to donate plasms if you had been infected with COVID





Please go to https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/donate-covid-19-plasma

to read more from FDA



August 25, 2020


CLINICAL MEMORANDUM From: , OBRR/DBCD/CRS To: , OBRR Through: , OBRR/DBCD , OBRR/DBCD , OBRR/DBCD/CRS Re: EUA 26382: Emergency Use Authorization (EUA) Request (original request 8/12/20; amended request 8/23/20) Product: COVID-19 Convalescent Plasma Items reviewed: EUA request Fact Sheet for Health Care Providers Fact Sheet for Recipients Sponsor: Robert Kadlec, M.D. Assistant Secretary for Preparedness and Response (ASPR) Office of Assistant Secretary for Preparedness and Response (ASPR) U.S. Department of Health and Human Services (HHS) EXECUTIVE SUMMARY COVID-19 Convalescent Plasma (CCP), an unapproved biological product, is proposed for use under an Emergency Use Authorization (EUA) under section 564 of the Federal Food, Drug, and Cosmetic Act (the Act),(21 USC 360bbb-3) as a passive immune therapy for the treatment of hospitalized patients with COVID-19, a serious or life-threatening disease. There currently is no adequate, approved, and available alternative to CCP for treating COVID-19. The sponsor has pointed to four lines of evidence to support that CCP may be effective in the treatment of hospitalized patients with COVID-19: 1) History of convalescent plasma for respiratory coronaviruses; 2) Evidence of preclinical safety and efficacy in animal models; 3) Published studies of the safety and efficacy of CCP; and 4) Data on safety and efficacy from the National Expanded Access Treatment Protocol (EAP) sponsored by the Mayo Clinic. Considering the totality of the scientific evidence presented in the EUA, I conclude that current data for the use of CCP in adult hospitalized patients with COVID-19 supports the conclusion that CCP meets the “may be effective” criterion for issuance of an EUA from section 564(c)(2)(A) of the Act. It is reasonable to conclude that the known and potential benefits of CCP outweigh the known and potential risks of CCP for the proposed EUA. Current data suggest the largest clinical benefit is associated with high-titer units of CCP administered early course of the disease.

Source: https://www.fda.gov/media/141480/download


And Today August 26, 2020

  • A letter, from Senator Warren, to Commissioner Hahn from Senate Committee asking for documentation for any communication between FDA and White House

August 25, 2020 Dr. Stephen M. Hahn, M.D. Commissioner of Food and Drugs U.S. Food and Drug Administration 10903 New Hampshire Avenue Silver Spring, MD 20993 Dear Commissioner Hahn: We write regarding the U.S. Food and Drug Administration’s (FDA) troubling decision earlier this week to issue an Emergency Use Authorization (EUA) for convalescent plasma as a treatment for coronavirus disease 2019 (COVID-19).1 Reports suggests that the FDA granted the EUA amid intense political pressure from President Trump and other Administration officials, despite limited evidence of convalescent plasma’s effectiveness as a COVID-19 treatment.2 To help us better understand whether the issuance of the blood plasma EUA was motivated by politics, we request copies of any and all communications between FDA and White House officials regarding the blood plasma EUA.

Source: https://www.warren.senate.gov/imo/media/doc/2020.08.25%20Letter%20to%20FDA%20re%20Blood%20Plasma%20EUA.pdf

…….. which may have been a response to this article

FDA chief walks back comments on effectiveness of coronavirus plasma treatment


From CNBC: https://www.cnbc.com/2020/08/25/fda-chief-walks-back-comments-on-effectiveness-of-coronavirus-plasma-treatment.html


Berkeley Lovelace Jr.@BERKELEYJR



  • The authorization will allow health-care providers in the U.S. to use the plasma to treat hospitalized patients with Covid-19.
  • The FDA’s emergency use authorization came a day after President Trump accused the agency of delaying enrollment in clinical trials for vaccines or therapeutics.
  • The criticism from Trump and action from the FDA led some scientists to believe the authorization, which came on the eve of the GOP national convention, was politically motivated.

FDA Commissioner Dr. Stephen Hahn is walking back comments on the benefits of convalescent plasma, saying he could have done a better job of explaining the data on its effectiveness against the coronavirus after authorizing it for emergency use over the weekend.

Commisioners responses over Twitter



August 26, 2020

In an interview with Bloomberg’s , FDA Commissioner Hahn reiterates that his decision was based on hard evidence and scientific fact, not political pressure.  The whole interview is at the link below:


Some key points:

  • Dr. Hahn corrected his initial statement about 35% of people would be cured by convalescent plasma. In the interview he stated:

I was trying to do what I do with patients, because patients often understand things in absolute terms versus relative terms. And I should’ve been more careful, there’s no question about it. What I was trying to get to is that if you look at a hundred patients who receive high titre, and a hundred patients who received low titre, the difference between those two particular subset of patients who had these specific criteria was a 35% reduction in mortality. So I frankly did not do a good job of explaining that.

  • FDA colleagues had frank discussion after the statement was made.  He is not asking for other people in HHS to retract their statements, only is concerned that FDA has correct information for physicians and patients
  • Hahn is worried that people will not enroll due to chance they may be given placebo
  • He gave no opinion when asked if FDA should be an independent agency


For more articles on COVID19 please go to our Coronavirus Portal at



Read Full Post »

RNA from the SARS-CoV-2 virus taking over the cells it infects: Virulence – Pathogen’s ability to infect a Resistant Host: The Imbalance between Controlling Virus Replication versus Activation of the Adaptive Immune Response

Curator: Aviva Lev-Ari, PhD, RN – I added colors and bold face


UPDATED on 9/8/2020

What bats can teach us about developing immunity to Covid-19 | Free to read

Clive Cookson, Anna Gross and Ian Bott, London



UPDATED on 6/29/2020

Another duality and paradox in the Treatment of COVID-19 Patients in ICUs was expressed by Mike Yoffe, MD, PhD, David H. Koch Professor of Biology and Biological Engineering, Massachusetts Institute of Technology. Dr. Yaffe has a joint appointment in Acute Care Surgery, Trauma, and Surgical Critical Care, and in Surgical Oncology @BIDMC

on 6/29 at SOLUTIONS with/in/sight at Koch Institute @MIT

How Are Cancer Researchers Fighting COVID-19? (Part II)” Jun 29, 2020 11:30 AM EST

Mike Yoffe, MD, PhD 

In COVID-19 patients: two life threatening conditions are seen in ICUs:

  • Blood Clotting – Hypercoagulability or Thrombophilia
  • Cytokine Storm – immuno-inflammatory response
  • The coexistence of 1 and 2 – HINDERS the ability to use effectively tPA as an anti-clotting agent while the cytokine storm is present.

Mike Yoffe’s related domain of expertise:

Signaling pathways and networks that control cytokine responses and inflammation

Misregulation of cytokine feedback loops, along with inappropriate activation of the blood clotting cascade causes dysregulation of cell signaling pathways in innate immune cells (neutrophils and macrophages), resulting in tissue damage and multiple organ failure following trauma or sepsis. Our research is focused on understanding the role of the p38-MK2 pathway in cytokine control and innate immune function, and on cross-talk between cytokines, clotting factors, and neutrophil NADPH oxidase-derived ROS in tissue damage, coagulopathy, and inflammation, using biochemistry, cell biology, and mouse knock-out/knock-in models.  We recently discovered a particularly important link between abnormal blood clotting and the complement pathway cytokine C5a which causes excessive production of extracellular ROS and organ damage by neutrophils after traumatic injury.





The Genome Structure of CORONAVIRUS, SARS-CoV-2

Reporter: Aviva Lev-Ari, PhD, RN



Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19

Open Access Published:May 15, 2020DOI:https://doi.org/10.1016/j.cell.2020.04.026


  • SARS-CoV-2 infection induces low IFN-I and -III levels with a moderate ISG response
  • Strong chemokine expression is consistent across in vitroex vivo, and in vivo models
  • Low innate antiviral defenses and high pro-inflammatory cues contribute to COVID-19


Viral pandemics, such as the one caused by SARS-CoV-2, pose an imminent threat to humanity. Because of its recent emergence, there is a paucity of information regarding viral behavior and host response following SARS-CoV-2 infection. Here we offer an in-depth analysis of the transcriptional response to SARS-CoV-2 compared with other respiratory viruses. Cell and animal models of SARS-CoV-2 infection, in addition to transcriptional and serum profiling of COVID-19 patients, consistently revealed a unique and inappropriate inflammatory response. This response is defined by low levels of type I and III interferons juxtaposed to elevated chemokines and high expression of IL-6. We propose that reduced innate antiviral defenses coupled with exuberant inflammatory cytokine production are the defining and driving features of COVID-19.

Graphical Abstract



Defining the Transcriptional Response to SARS-CoV-2 Relative to Other Respiratory Viruses

To compare the transcriptional response of SARS-CoV-2 with other respiratory viruses, including MERS-CoV, SARS-CoV-1, human parainfluenza virus 3 (HPIV3), respiratory syncytial virus (RSV), and IAV, we first chose to focus on infection in a variety of respiratory cell lines (Figure 1). To this end, we collected poly(A) RNA from infected cells and performed RNA sequencing (RNA-seq) to estimate viral load. These data show that virus infection levels ranged from 0.1% to more than 50% of total RNA reads (Figure 1A).


In the present study, we focus on defining the host response to SARS-CoV-2 and other human respiratory viruses in cell lines, primary cell cultures, ferrets, and COVID-19 patients. In general, our data show that the overall transcriptional footprint of SARS-CoV-2 infection was distinct in comparison with other highly pathogenic coronaviruses and common respiratory viruses such as IAV, HPIV3, and RSV. It is noteworthy that, despite a reduced IFN-I and -III response to SARS-CoV-2, we observed a consistent chemokine signature. One exception to this observation is the response to high-MOI infection in A549-ACE2 and Calu-3 cells, where replication was robust and an IFN-I and -III signature could be observed. In both of these examples, cells were infected at a rate to theoretically deliver two functional virions per cell in addition to any defective interfering particles within the virus stock that were not accounted for by plaque assays. Under these conditions, the threshold for PAMP may be achieved prior to the ability of the virus to evade detection through production of a viral antagonist. Alternatively, addition of multiple genomes to a single cell may disrupt the stoichiometry of viral components, which, in turn, may itself generate PAMPs that would not form otherwise. These ideas are supported by the fact that, at a low-MOI infection in A549-ACE2 cells, high levels of replication could also be achieved, but in the absence of IFN-I and -III induction. Taken together, these data suggest that, at low MOIs, the virus is not a strong inducer of the IFN-I and -III system, as opposed to conditions where the MOI is high.
Taken together, the data presented here suggest that the response to SARS-CoV-2 is imbalanced with regard to controlling virus replication versus activation of the adaptive immune response. Given this dynamic, treatments for COVID-19 have less to do with the IFN response and more to do with controlling inflammation. Because our data suggest that numerous chemokines and ILs are elevated in COVID-19 patients, future efforts should focus on U.S. Food and Drug Administration (FDA)-approved drugs that can be rapidly deployed and have immunomodulating properties.



SARS-CoV-2 ORF3b is a potent interferon antagonist whose activity is further increased by a naturally occurring elongation variant

Yoriyuki KonnoIzumi KimuraKeiya UriuMasaya FukushiTakashi IrieYoshio KoyanagiSo NakagawaKei Sato


One of the features distinguishing SARS-CoV-2 from its more pathogenic counterpart SARS-CoV is the presence of premature stop codons in its ORF3b gene. Here, we show that SARS-CoV-2 ORF3b is a potent interferon antagonist, suppressing the induction of type I interferon more efficiently than its SARS-CoV ortholog. Phylogenetic analyses and functional assays revealed that SARS-CoV-2-related viruses from bats and pangolins also encode truncated ORF3b gene products with strong anti-interferon activity. Furthermore, analyses of more than 15,000 SARS-CoV-2 sequences identified a natural variant, in which a longer ORF3b reading frame was reconstituted. This variant was isolated from two patients with severe disease and further increased the ability of ORF3b to suppress interferon induction. Thus, our findings not only help to explain the poor interferon response in COVID-19 patients, but also describe a possibility of the emergence of natural SARS-CoV-2 quasi-species with extended ORF3b that may exacerbate COVID-19 symptoms.


  • ORF3b of SARS-CoV-2 and related bat and pangolin viruses is a potent IFN antagonist

  • SARS-CoV-2 ORF3b suppresses IFN induction more efficiently than SARS-CoV ortholog

  • The anti-IFN activity of ORF3b depends on the length of its C-terminus

  • An ORF3b with increased IFN antagonism was isolated from two severe COVID-19 cases

Competing Interest Statement

The authors have declared no competing interest.

Paper in collection COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv






A deep dive into how the new coronavirus infects cells has found that it orchestrates a hostile takeover of their genes unlike any other known viruses do, producing what one leading scientist calls “unique” and “aberrant” changes.Recent studies show that in seizing control of genes in the human cells it invades, the virus changes how segments of DNA are read, doing so in a way that might explain why the elderly are more likely to die of Covid-19 and why antiviral drugs might not only save sick patients’ lives but also prevent severe disease if taken before infection.“It’s something I have never seen in my 20 years of” studying viruses, said virologist Benjamin tenOever of the Icahn School of Medicine at Mount Sinai, referring to how SARS-CoV-2, the virus that causes Covid-19, hijacks cells’ genomes.The “something” he and his colleagues saw is how SARS-CoV-2 blocks one virus-fighting set of genes but allows another set to launch, a pattern never seen with other viruses. Influenza and the original SARS virus (in the early 2000s), for instance, interfere with both arms of the body’s immune response — what tenOever dubs “call to arms” genes and “call for reinforcement” genes.The first group of genes produces interferons. These proteins, which infected cells release, are biological semaphores, signaling to neighboring cells to activate some 500 of their own genes that will slow down the virus’ ability to make millions of copies of itself if it invades them. This lasts seven to 10 days, tenOever said, controlling virus replication and thereby buying time for the second group of genes to act.This second set of genes produce their own secreted proteins, called chemokines, that emit a biochemical “come here!” alarm. When far-flung antibody-making B cells and virus-killing T cells sense the alarm, they race to its source. If all goes well, the first set of genes holds the virus at bay long enough for the lethal professional killers to arrive and start eradicating viruses.

“Most other viruses interfere with some aspect of both the call to arms and the call for reinforcements,” tenOever said. “If they didn’t, no one would ever get a viral illness”: The one-two punch would pummel any incipient infection into submission.

SARS-CoV-2, however, uniquely blocks one cellular defense but activates the other, he and his colleagues reported in a study published last week in Cell. They studied healthy human lung cells growing in lab dishes, ferrets (which the virus infects easily), and lung cells from Covid-19 patients. In all three, they found that within three days of infection, the virus induces cells’ call-for-reinforcement genes to produce cytokines. But it blocks their call-to-arms genes — the interferons that dampen the virus’ replication.

The result is essentially no brakes on the virus’s replication, but a storm of inflammatory molecules in the lungs, which is what tenOever calls an “unique” and “aberrant” consequence of how SARS-CoV-2 manipulates the genome of its target.

In another new study, scientists in Japan last week identified how SARS-CoV-2 accomplishes that genetic manipulation. Its ORF3b gene produces a protein called a transcription factor that has “strong anti-interferon activity,” Kei Sato of the University of Tokyo and colleagues found — stronger than the original SARS virus or influenza viruses. The protein basically blocks the cell from recognizing that a virus is present, in a way that prevents interferon genes from being expressed.

In fact, the Icahn School team found no interferons in the lung cells of Covid-19 patients. Without interferons, tenOever said, “there is nothing to stop the virus from replicating and festering in the lungs forever.”

That causes lung cells to emit even more “call-for-reinforcement” genes, summoning more and more immune cells. Now the lungs have macrophages and neutrophils and other immune cells “everywhere,” tenOever said, causing such runaway inflammation “that you start having inflammation that induces more inflammation.”

At the same time, unchecked viral replication kills lung cells involved in oxygen exchange. “And suddenly you’re in the hospital in severe respiratory distress,” he said.

In elderly people, as well as those with diabetes, heart disease, and other underlying conditions, the call-to-arms part of the immune system is weaker than in younger, healthier people, even before the coronavirus arrives. That reduces even further the cells’ ability to knock down virus replication with interferons, and imbalances the immune system toward the dangerous inflammatory response.

The discovery that SARS-CoV-2 strongly suppresses infected cells’ production of interferons has raised an intriguing possibility: that taking interferons might prevent severe Covid-19 or even prevent it in the first place, said Vineet Menachery of the University of Texas Medical Branch.

In a study of human cells growing in lab dishes, described in a preprint (not peer-reviewed or published in a journal yet), he and his colleagues also found that SARS-CoV-2 “prevents the vast amount” of interferon genes from turning on. But when cells growing in lab dishes received the interferon IFN-1 before exposure to the coronavirus, “the virus has a difficult time replicating.”

After a few days, the amount of virus in infected but interferon-treated cells was 1,000- to 10,000-fold lower than in infected cells not pre-treated with interferon. (The original SARS virus, in contrast, is insensitive to interferon.)

Ending the pandemic and preventing its return is assumed to require an effective vaccine to prevent infectionand antiviral drugs such as remdesivir to treat the very sick, but the genetic studies suggest a third strategy: preventive drugs.

It’s possible that treatment with so-called type-1 interferon “could stop the virus before it could get established,” Menachery said.

Giving drugs to healthy people is always a dicey proposition, since all drugs have side effects — something considered less acceptable than when a drug is used to treat an illness. “Interferon treatment is rife with complications,” Menachery warned. The various interferons, which are prescribed for hepatitis, cancers, and many other diseases, can cause flu-like symptoms.

But the risk-benefit equation might shift, both for individuals and for society, if interferons or antivirals or other medications are shown to reduce the risk of developing serious Covid-19 or even make any infection nearly asymptomatic.

Interferon “would be warning the cells the virus is coming,” Menachery said, so such pretreatment might “allow treated cells to fend off the virus better and limit its spread.” Determining that will of course require clinical trials, which are underway.

Read Full Post »

A Series of Recently Published Papers Report the Development of SARS-CoV2 Neutralizing Antibodies and Passive Immunity toward COVID19

Curator: Stephen J. Williams, Ph.D.


Passive Immunity and Treatment of Infectious Diseases

The ability of one person to pass on immunity to another person (passive immunity) is one of the chief methods we develop immunity to many antigens.  For instance, maternal antibodies are passed to the offspring in the neonatal setting as well as in a mother’s milk during breast feeding.  In the clinical setting this is achieved by transferring antibodies from one patient who has been exposed to an antigen (like a virus) to the another individual.   However, the process of purifying the most efficacious antibody as well as its mass production is limiting due to its complexity and cost and can be prohibitively long delay during a pandemic outbreak, when therapies are few and needed immediately.  Regardless, the benefits of developing neutralizing antibodies to confer passive immunity versus development of a vaccine are evident, as the former takes considerable less time than development of a safe and effective vaccine.  For a good review on the development and use of neutralizing antibodies and the use of passive immunity to treat infectious diseases please read the following review:

Margaret A. Keller1,* and E. Richard Stiehm. Passive Immunity in Prevention and Treatment of Infectious Diseases. Clin Microbiol Rev. 2000 Oct; 13(4): 602–614. doi: 10.1128/cmr.13.4.602-614.2000


Antibodies have been used for over a century in the prevention and treatment of infectious disease. They are used most commonly for the prevention of measles, hepatitis A, hepatitis B, tetanus, varicella, rabies, and vaccinia. Although their use in the treatment of bacterial infection has largely been supplanted by antibiotics, antibodies remain a critical component of the treatment of diptheria, tetanus, and botulism. High-dose intravenous immunoglobulin can be used to treat certain viral infections in immunocompromised patients (e.g., cytomegalovirus, parvovirus B19, and enterovirus infections). Antibodies may also be of value in toxic shock syndrome, Ebola virus, and refractory staphylococcal infections. Palivizumab, the first monoclonal antibody licensed (in 1998) for an infectious disease, can prevent respiratory syncytial virus infection in high-risk infants. The development and use of additional monoclonal antibodies to key epitopes of microbial pathogens may further define protective humoral responses and lead to new approaches for the prevention and treatment of infectious diseases.


Summary of the efficacy of antibody in the prevention and treatment of infectious diseases

Bacterial infections
 Respiratory infections (streptococcus, Streptococcus pneumoniaeNeisseria meningitisHaemophilus influenzae)
 Other clostridial infections
  C. botulinum
  C. difficile
 Staphylococcal infections
  Toxic shock syndrome
  Antibiotic resistance
  S. epidermidis in newborns
 Invasive streptococcal disease (toxic shock syndrome)
 High-risk newborns
 Shock, intensive care, and trauma
Pseudomonas infection
  Cystic Fibrosis
Viral diseases
 Hepatitis A
 Hepatitis B
 Hepatitis C
 HIV infection
 RSV infection
 Herpesvirus infections
 Parvovirus infection
 Enterovirus infection
  In newborns
 Tick-borne encephalitis

Go to:

A Great Explanation of Active versus Passive Immunity by Dr. John Campbell, one of the pioneers in the field of immunology:Antibodies have been used for over a century in the prevention and treatment of infectious disease. They are used most commonly for the prevention of measles, hepatitis A, hepatitis B, tetanus, varicella, rabies, and vaccinia. Although their use in the treatment of bacterial infection has largely been supplanted by antibiotics, antibodies remain a critical component of the treatment of diptheria, tetanus, and botulism. High-dose intravenous immunoglobulin can be used to treat certain viral infections in immunocompromised patients (e.g., cytomegalovirus, parvovirus B19, and enterovirus infections). Antibodies may also be of value in toxic shock syndrome, Ebola virus, and refractory staphylococcal infections. Palivizumab, the first monoclonal antibody licensed (in 1998) for an infectious disease, can prevent respiratory syncytial virus infection in high-risk infants. The development and use of additional monoclonal antibodies to key epitopes of microbial pathogens may further define protective humoral responses and lead to new approaches for the prevention and treatment of infectious diseases.


However, developing successful neutralizing antibodies can still be difficult but with the latest monoclonal antibody technology, as highlighted by the following papers, this process has made much more efficient.  In addition, it is not feasable to isolate antibodies from the plasma of covalescent patients in a scale that is needed for a worldwide outbreak.

A good explanation of the need can be found is Dr. Irina Robu’s post Race to develop antibody drugs for COVID-19 where:

When fighting off foreign invaders, our bodies make antibodies precisely produced for the task. The reason vaccines offer such long-lasting protection is they train the immune system to identify a pathogen, so immune cells remember and are ready to attack the virus when it appears. Monoclonal antibodies for coronavirus would take the place of the ones our bodies might produce to fight the disease. The manufactured antibodies would be infused into the body to either tamp down an existing infection, or to protect someone who has been exposed to the virus. However, these drugs are synthetic versions of the convalescent plasma treatments that rely on antibodies from people who have recovered from infection. But the engineered versions are easier to scale because they’re manufactured in rats, rather than from plasma donors.

The following papers represent the latest published work on development of therapeutic and prophylactic neutralizing antibodies to the coronavirus SARS-CoV2

1.  Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody.

Pinto, D., Park, Y., Beltramello, M. et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature (2020).                                                                            https://doi.org/10.1038/s41586-020-2349-y


SARS-CoV-2 is a newly emerged coronavirus responsible for the current COVID-19 pandemic that has resulted in more than 3.7 million infections and 260,000 deaths as of 6 May 20201,2. Vaccine and therapeutic discovery efforts are paramount to curb the pandemic spread of this zoonotic virus. The SARS-CoV-2 spike (S) glycoprotein promotes entry into host cells and is the main target of neutralizing antibodies. Here we describe multiple monoclonal antibodies targeting SARS-CoV-2 S identified from memory B cells of an individual who was infected with SARS-CoV in 2003. One antibody, named S309, potently neutralizes SARS-CoV-2 and SARS-CoV pseudoviruses as well as authentic SARS-CoV-2 by engaging the S receptor-binding domain. Using cryo-electron microscopy and binding assays, we show that S309 recognizes a glycan-containing epitope that is conserved within the sarbecovirus subgenus, without competing with receptor attachment. Antibody cocktails including S309 along with other antibodies identified here further enhanced SARS-CoV-2 neutralization and may limit the emergence of neutralization-escape mutants. These results pave the way for using S309- and S309-containing antibody cocktails for prophylaxis in individuals at high risk of exposure or as a post-exposure therapy to limit or treat severe disease.


2.  Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients’ B cells

Yunlong Cao et al.  Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients’ B cells. Cell (2020).



The COVID-19 pandemic urgently needs therapeutic and prophylactic interventions. Here we report the rapid identification of SARS-CoV-2 neutralizing antibodies by high-throughput single-cell RNA and VDJ sequencing of antigen-enriched B cells from 60 convalescent patients. From 8,558 antigen-binding IgG1+ clonotypes, 14 potent neutralizing antibodies were identified with the most potent one, BD-368-2, exhibiting an IC50 of 1.2 ng/mL and 15 ng/mL against pseudotyped and authentic SARS-CoV-2, respectively. BD-368-2 also displayed strong therapeutic and prophylactic efficacy in SARS-CoV-2-infected hACE2-transgenic mice. Additionally, the 3.8Å Cryo-EM structure of a neutralizing antibody in complex with the spike-ectodomain trimer revealed the antibody’s epitope overlaps with the ACE2 binding site. Moreover, we demonstrated that SARS-CoV-2 neutralizing antibodies could be directly selected based on similarities of their predicted CDR3H structures to those of SARS-CoV neutralizing antibodies. Altogether, we showed that human neutralizing antibodies could be efficiently discovered by high-throughput single B-cell sequencing in response to pandemic infectious diseases.

3. A human monoclonal antibody blocking SARS-CoV-2 infection

Wang, C., Li, W., Drabek, D. et al. A human monoclonal antibody blocking SARS-CoV-2 infection. Nat Commun 11, 2251 (2020). https://doi.org/10.1038/s41467-020-16256-y


The emergence of the novel human coronavirus SARS-CoV-2 in Wuhan, China has caused a worldwide epidemic of respiratory disease (COVID-19). Vaccines and targeted therapeutics for treatment of this disease are currently lacking. Here we report a human monoclonal antibody that neutralizes SARS-CoV-2 (and SARS-CoV) in cell culture. This cross-neutralizing antibody targets a communal epitope on these viruses and may offer potential for prevention and treatment of COVID-19.

Extra References on Development of Neutralizing antibodies for COVID19 {Sars-CoV2} published this year (2020)  [1-4]

  1. Fan P, Chi X, Liu G, Zhang G, Chen Z, Liu Y, Fang T, Li J, Banadyga L, He S et al: Potent neutralizing monoclonal antibodies against Ebola virus isolated from vaccinated donors. mAbs 2020, 12(1):1742457.
  2. Dussupt V, Sankhala RS, Gromowski GD, Donofrio G, De La Barrera RA, Larocca RA, Zaky W, Mendez-Rivera L, Choe M, Davidson E et al: Potent Zika and dengue cross-neutralizing antibodies induced by Zika vaccination in a dengue-experienced donor. Nature medicine 2020, 26(2):228-235.
  3. Young CL, Lyons AC, Hsu WW, Vanlandingham DL, Park SL, Bilyeu AN, Ayers VB, Hettenbach SM, Zelenka AM, Cool KR et al: Protection of swine by potent neutralizing anti-Japanese encephalitis virus monoclonal antibodies derived from vaccination. Antiviral research 2020, 174:104675.
  4. Sautto GA, Kirchenbaum GA, Abreu RB, Ecker JW, Pierce SR, Kleanthous H, Ross TM: A Computationally Optimized Broadly Reactive Antigen Subtype-Specific Influenza Vaccine Strategy Elicits Unique Potent Broadly Neutralizing Antibodies against Hemagglutinin. J Immunol 2020, 204(2):375-385.


For More Articles on COVID-19 Please see Our Coronavirus Portal on this Open Access Scientific Journal at:


and the following Articles on  Immunity at

Race to develop antibody drugs for COVID-19
Bispecific and Trispecific Engagers: NK-T Cells and Cancer Therapy
Issues Need to be Resolved With ImmunoModulatory Therapies: NK cells, mAbs, and adoptive T cells
Antibody-bound Viral Antigens

Read Full Post »

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Symposium: New Drugs on the Horizon Part 3 12:30-1:25 PM

Reporter: Stephen J. Williams, PhD

New Drugs on the Horizon: Part 3

Andrew J. Phillips, C4 Therapeutics

  • symposium brought by AACR CICR and had about 30 proposals for talks and chose three talks
  • unfortunately the networking event is not possible but hope to see you soon in good health

ABBV-184: A novel survivin specific T cell receptor/CD3 bispecific therapeutic that targets both solid tumor and hematological malignancies

Edward B Reilly
AbbVie Inc. @abbvie

  • T-cell receptors (TCR) can recognize the intracellular targets whereas antibodies only recognize the 25% of potential extracellular targets
  • survivin is expressed in multiple cancers and correlates with poor survival and prognosis
  • CD3 bispecific TCR to survivn (Ab to CD3 on T- cells and TCR to survivin on cancer cells presented in MHC Class A3)
  • ABBV184  effective in vivo in lung cancer models as single agent;
  • in humanized mouse tumor models CD3/survivin bispecific can recruit T cells into solid tumors; multiple immune cells CD4 and CD8 positive T cells were found to infiltrate into tumor
  • therapeutic window as measured by cytokine release assays in tumor vs. normal cells very wide (>25 fold)
  • ABBV184 does not bind platelets and has good in vivo safety profile
  • First- in human dose determination trial: used in vitro cancer cell assays to determine 1st human dose
  • looking at AML and lung cancer indications
  • phase 1 trial is underway for safety and efficacy and determine phase 2 dose
  • survivin has very few mutations so they are not worried about a changing epitope of their target TCR peptide of choice

The discovery of TNO155: A first in class SHP2 inhibitor

Matthew J. LaMarche
Novartis @Novartis

  • SHP2 is an intracellular phosphatase that is upstream of MEK ERK pathway; has an SH2 domain and PTP domain
  • knockdown of SHP2 inhibits tumor growth and colony formation in soft agar
  • 55 TKIs there are very little phosphatase inhibitors; difficult to target the active catalytic site; inhibitors can be oxidized at the active site; so they tried to target the two domains and developed an allosteric inhibitor at binding site where three domains come together and stabilize it
  • they produced a number of chemical scaffolds that would bind and stabilize this allosteric site
  • block the redox reaction by blocking the cysteine in the binding site
  • lead compound had phototoxicity; used SAR analysis to improve affinity and reduce phototox effects
  • was very difficult to balance efficacy, binding properties, and tox by adjusting stuctures
  • TNO155 is their lead into trials
  • SHP2 expressed in T cells and they find good combo with I/O with uptick of CD8 cells
  • TNO155 is very selective no SHP1 inhibition; SHP2 can autoinhibit itself when three domains come together and stabilize; no cross reactivity with other phosphatases
  • they screened 1.5 million compounds and got low hit rate so that is why they needed to chemically engineer and improve on the classes they found as near hits

Closing Remarks


Xiaojing Wang
Genentech, Inc. @genentech

Follow on Twitter at:








Read Full Post »

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 27, 2020 Minisymposium on Drugging Undrugged Cancer Targets 1:30 pm – 5:00 pm

SESSION VMS.ET01.01 – Drugging Undrugged Cancer Targets

April 27, 2020, 1:30 PM – 3:30 PM
Virtual Meeting: All Session Times Are U.S. EDT

Session Type
Virtual Minisymposium
Experimental and Molecular Therapeutics,Drug Development
18 Presentations
1:30 PM – 1:30 PM
– ChairpersonPeter C. Lucas. University of Pittsburgh School of Medicine, Pittsburgh, PA

1:30 PM – 1:30 PM
– ChairpersonJohn S. Lazo. University of Virginia, Charlottesville, VA

1:30 PM – 1:35 PM
– IntroductionPeter C. Lucas. University of Pittsburgh School of Medicine, Pittsburgh, PA

1:35 PM – 1:45 PM
3398 – PTPN22 is a systemic target for augmenting antitumor immunityWon Jin Ho, Jianping Lin, Ludmila Danilova, Zaw Phyo, Soren Charmsaz, Aditya Mohan, Todd Armstrong, Ben H. Park, Elana J. Fertig, Zhong-Yin Zhang, Elizabeth M. Jaffee. Johns Hopkins Sidney Kimmel Comp. Cancer Center, Baltimore, MD, Purdue University, Baltimore, MD, Johns Hopkins Sidney Kimmel Comp. Cancer Center, Baltimore, MD, Vanderbilt University Medical Center, Baltimore, MD

Abstract: Remarkable progress in cancer immunology has revolutionized cancer therapy. The majority of patients, however, do not respond to immunotherapeutic options, warranting the ongoing search for better strategies. Leveraging the established role of protein tyrosine phosphatase non-receptor type 22 (PTPN22) in autoimmune diseases, we hypothesized that PTPN22 is a novel target for cancer immunotherapy. PTPN22 is a physiologic regulator of T cell receptor (TCR) signaling acting by dephosphorylating activating tyrosine residues in Lck and Zap70. We first confirmed the relevance of PTPN22 expression by exploring its expression in multiple human cancer types using The Cancer Genome Atlas (TCGA). PTPN22 expression positively correlated with T cell and M1 macrophage gene signatures and immune regulatory genes, especially inflamed tumor types. Next, we directly investigated the role of PTPN22 in antitumor immunity by comparing in vivo tumor characteristics in wild-type (WT) and PTPN22 knockout (KO) mice. Consistent with our hypothesis, PTPN22 KO mice resisted MC38 and EG7 tumors significantly compared with WT. Mass cytometry (CyTOF) profiling of the immune tumor microenvironment demonstrated that MC38 tumors in PTPN22 KO mice were infiltrated with greater numbers of T cells, particularly CD8+ T cells expressing granzyme B and PD1. To further delineate the effects of PTPN22 KO on TCR signaling, we established an optimized CyTOF panel of 9 phosphorylation sites involved in the TCR signaling pathway, including two enzymatic substrates of PTPN22 (Lck Y394 and Zap70 Y493) and 15 immune subtyping markers. CyTOF phospho-profiling of CD8 T cells from tumor-bearing mouse spleens and the peripheral blood of immunotherapy-naïve cancer patients showed that the phosphorylated state of Zap70 Y493 correlated strongly with granzyme B expression. Furthermore, phospho-profiling of tumor-infiltrating CD8+ T cells (a measure of T cell activation) revealed the highest TCR-pathway phosphorylation levels in memory CD8+ T cells that express PD1. The difference in phosphorylation levels between WT and PTPN22 KO was most pronounced for Lck Y394. Based on these findings, we then hypothesized that PD1 inhibition will further enhance the antitumor immune responses promoted by the lack of PTPN22. Indeed, PTPN22 KO mice bearing MC38 and EG7 tumors responded more significantly to anti-PD1 therapy when compared with tumor-bearing WT mice. Finally, we treated WT tumor bearing mice with two different small molecule inhibitors of PTPN22, one previously published compound, LTV1, and one novel compound, L1 (discovered through structure based synthesis). While both inhibitors phenocopied the PTPN22 KO mice in resisting MC38 tumor growth, L1 treatment gave an immune profile that resembled what was observed in tumor-bearing PTPN22 KO mice. Taken together, our results demonstrate that PTPN22 is a novel systemic target for augmenting antitumor immunity.

  • can they leverage autoimmune data to look at new targets for checkpoint inhibition; we have a long way to go in immunooncology as only less than 30-40% of cancer types respond
  • using Cancer Genome Atlas PTPN22 is associated with autoimmune disorders
  • PTPN22 KO increases many immune cells; macrophages t-cells and when KO in tumors get more t cell infiltrate
  • PTP KO enhances t cell response, and may be driving t cells to exhaustion
  • made a inhibitor or PTPN22; antitumor phenotype when given inhibitor was like KO mice; a PDL1 inhibitor worked in KO mice
  • PTPN22 only in select hematopoetic cells

1:45 PM – 1:50 PM
– Discussion

1:50 PM – 2:00 PM
3399 – Preclinical evaluation of eFT226, a potent and selective eIF4A inhibitor with anti-tumor activity in FGFR1,2 and HER2 driven cancers. Peggy A. Thompson, Nathan P. Young, Adina Gerson-Gurwitz, Boreth Eam, Vikas Goel, Craig R. Stumpf, Joan Chen, Gregory S. Parker, Sarah Fish, Maria Barrera, Eric Sung, Jocelyn Staunton, Gary G. Chiang, Kevin R. Webster. eFFECTOR Therapeutics, San Diego, CA @RuggeroDavide

Abstract: Mutations or amplifications affecting receptor tyrosine kinases (RTKs) activate the RAS/MAPK and PI3K/AKT signaling pathways thereby promoting cancer cell proliferation and survival. Oncoprotein expression is tightly controlled at the level of mRNA translation and is regulated by the eukaryotic translation initiation factor 4F (eIF4F) complex consisting of eIF4A, eIF4E, and eIF4G. eIF4A functions to catalyze the unwinding of secondary structure in the 5’-untranslated region (5’-UTR) of mRNA facilitating ribosome scanning and translation initiation. The activation of oncogenic signaling pathways, including RAS and PI3K, facilitate formation of eIF4F and enhance eIF4A activity promoting the translation of oncogenes with highly structured 5’-UTRs that are required for tumor cell proliferation, survival and metastasis. eFT226 is a selective eIF4A inhibitor that converts eIF4A into a sequence specific translational repressor by increasing the affinity between eIF4A and 5’-UTR polypurine motifs leading to selective downregulation of mRNA translation. The polypurine element is highly enriched in the 5’-UTR of eFT226 target genes, many of which are known oncogenic drivers, including FGFR1,2 and HER2, enabling eFT226 to selectively inhibit dysregulated oncogene expression. Formation of a ternary complex [eIF4A-eFT226-mRNA] blocks ribosome scanning along the 5’-UTR leading to dose dependent inhibition of RTK protein expression. The 5’-UTR sequence dependency of eFT226 translational inhibition was evaluated in cell-based reporter assays demonstrating 10-45-fold greater sensitivity for reporter constructs containing an RTK 5’-UTR compared to a control. In solid tumor cell lines driven by alterations in FGFR1, FGFR2 or HER2, downregulation of RTK expression by eFT226 resulted in decreased MAPK and AKT signaling, potent inhibition of cell proliferation and an induction of apoptosis suggesting that eFT226 could be effective in treating tumor types dependent on these oncogenic drivers. Solid tumor xenograft models harboring FGFR1,2 or HER2 amplifications treated with eFT226 resulted in significant in vivo tumor growth inhibition and regression at well tolerated doses in breast, non-small cell lung and colorectal cancer models. Treatment with eFT226 also decreased RTK protein levels supporting the potential to use these eFT226 target genes as pharmacodynamic markers of target engagement. Further evaluation of predictive markers of sensitivity or resistance showed that RTK tumor models with mTOR mediated activation of eIF4A are most sensitive to eFT226. The association of eFT226 activity in RTK tumor models with mTOR pathway activation provides a means to further enrich for sensitive patient subsets during clinical development. Clinical trials with eFT226 in patients with solid tumor malignancies have initiated.
  • ternary complex formed blocks transcription selectively downregulating RTKs
  • drug binds in 5′ UTR and inhibits translation
  • RTKs activate eIF4 and are also transcribed through them so inhibition destroys this loop;  also with KRAS too
  • main antitumor activity are by an apoptotic mechanisms; refractory tumors are not sensitive to drug induced apoptosis
  • drug inhibits FGFR2 in colorectal cancer
  • drug also effective in HER2+ tumors
  • mTOR mediated eIF4 inhibited by drug
  • they get prolonged antitumor activity after washout of drug because forms this tight terniary complex

2:00 PM – 2:05 PM
– Discussion

2:05 PM – 2:15 PM
3400 – Adenosine receptor antagonists exhibit potent and selective off-target killing of FOXA1-high cancers: Steven M. Corsello, Ryan D. Spangler, Ranad Humeidi, Caitlin N. Harrington, Rohith T. Nagari, Ritu Singh, Vickie Wang, Mustafa Kocak, Jordan Rossen, Amael Madec, Nancy Dumont, Todd R. Golub. Dana-Farber Cancer Institute, Boston, MA, Broad Institute of MIT and Harvard, Cambridge, MA @corsellos

Abstract: Drugs targeting adenosine receptors were originally developed for the treatment of Parkinson’s disease and are now being tested in immuno-oncology clinical trials in combination with checkpoint inhibitors. We recently reported the killing activity of 4,518 drugs against 578 diverse cancer cell lines determined using the PRISM molecular barcoding approach. Surprisingly, three established adenosine receptor antagonists (CGS-15943, MRS-1220, and SCH-58261) showed potent and selective killing of FOXA1-high cancer cell lines without the need for immune cells. FOXA1 is a lineage-restricted transcription factor in luminal breast cancer, hepatocellular carcinoma, and prostate cancer without known small molecule inhibitors. We find that cytotoxic activity is limited to adenosine antagonists with a three-member aromatic core bound to a furan group, thus indicating a potential off-target mechanism of action. To identify genomic modulators of drug response, we performed genome-wide CRISPR/Cas9 knockout modifier screens. Killing by CGS-15943 and MRS-1220 was rescued by knockout of the aryl hydrocarbon receptor (AHR) and its nuclear partner ARNT. In confirmatory studies, knockout of AHR completely rescued killing by CGS-15943 in multiple cell types. Co-treatment with an AHR small molecule antagonist also rescued cell viability. Knockout of adenosine receptors did not alter drug response. Given that AHR is a known transcriptional regulator, we performed global mRNA sequencing to assess transcriptional changes induced by CGS-15943. The top two genes induced were the p450 enzymes CYP1A1 and CYP1B1. To determine sufficiency, we overexpressed CYP1A1 in a resistant cell line. Ectopic CYP1A1 expression sensitized to CGS-15943-mediated killing. Mass spectrometry revealed covalent trapping of a reactive metabolite by glutathione and potassium cyanide following in vitro incubation with liver microsomes. In addition, treatment of breast cancer cells with CGS-15943 for 24 hours resulted in increased γ-H2AX phosphorylation by western blot, indicative of DNA double stranded breaks. In summary, we identified off-target anti-cancer activity of multiple established adenosine receptor antagonists mediated by activation of AHR. Future studies will evaluate the functional contribution of FOXA1 and activity in vivo. Starting from a phenotypic screening hit, we leverage functional genomics to unlock the underlying mechanism of action. This project will pave the way for developing more effective therapies for biomarker-selected cancers, with potential to improve the care of patients with liver, breast, and prostate cancer.

  • developed a chemical library of over 6000 compounds (QC’d) to determine drugs that have antitumor effects
  • used a PRISM barcoded library to make cell lines to screen genotype-phenotype screens
  • for nononcology drugs fourteen drugs had activity in the PRISM assay
  • FOXA1 transcription factor high cancer cells seemed to be inhibited best with adenosine receptor inhibitor found in PRISM assay

2:15 PM – 2:20 PM
– Discussion

2:20 PM – 2:30 PM
3401 – Targeting lysosomal homeostasis in ovarian cancer through drug repurposing: Stefano Marastoni, Aleksandra Pesic, Sree Narayanan Nair, Zhu Juan Li, Ali Madani, Benjamin Haibe-Kains, Bradly G. Wouters, Anthony Joshua. University Health Network, Toronto, ON, Canada, Janssen Inc, Toronto, ON, Canada, The Kinghorn Cancer Centre, Sydney, Australia

Background: Drug repurposing has become increasingly attractive as it avoids the long processes and costs associated with drug discovery. Itraconazole (Itra) is a broad-spectrum anti-fungal agent which has an established broad spectrum of activity in human cell lines including cholesterol antagonism and inhibition of Hedgehog and mTOR pathways. Many in vitro, in vivo and clinical studies have suggested anti-proliferative activity both alone and in combination with other chemotherapeutic agents, in particular in ovarian cancer. This study is aimed at supporting the therapeutic potential of Itra and discovering and repurposing new drugs that can increase Itra anticancer activity as well as identifying new targets in the treatment of ovarian cancer.
Methods: We tested a panel of 32 ovarian cancer cell lines with different doses of Itra and identified a subset of cells which showed significant sensitivity to the drug. To identify genetic vulnerabilities and find new therapeutic targets to combine with Itra, we performed a whole genome sensitivity CRISPR screen in 2 cell lines (TOV1946 and OVCAR5) treated with non-toxic (IC10) concentrations of Itra.
Results: Pathway analysis on the top hits from both the screens showed a significant involvement of lysosomal compartments, and in particular dynamics between trans Golgi network and late endosomes/lysosomes, pathways that are affected by the autophagy inhibitor Chloroquine (CQ). We subsequently demonstrated that the combination of Itra and CQ had a synergistic effect in many ovarian cancer cell lines, even in those resistant to Itra. Further, genetic and pharmacological manipulation of autophagy indicated that upstream inhibition of autophagy is not a key mediator of the Itra/CQ mechanism of action. However, combination of Itra with other lysosomotropic agents (Concanamycin A, Bafilomycin A and Tamoxifen) displayed overlapping activity with Itra/CQ, supporting the lysosomal involvement in sensitizing cells to Itra resulted from the CRISPR screens. Analysis of lysosomal pattern and function showed a combined effect of Itra and CQ in targeting lysosomes and neutralizing their activity.
Conclusion: We identified two FDA approved drugs – CQ and Tamoxifen – that can be used in combination with Itra and exert a potent anti-tumor effect in ovarian cancer by affecting lyosomal function and suggesting a likely dependency of these cells on lysosomal biology. Further studies are in progress.

  • repurposing itraconozole in ovarian cancer potential mechanism of action is pleitropic
  • increasing doses of chloroquine caused OVCA cell death by accumulating in Golgi

2:30 PM – 2:35 PM
– Discussion

2:35 PM – 2:45 PM
3402 – BCAT1 as a druggable target in immuno-oncologyAdonia E. Papathanassiu, Francesca Lodi, Hagar Elkafrawy, Michelangelo Certo, Hong Vu, Jeong Hun Ko, Jacques Behmoaras, Claudio Mauro, Diether Lambrechts. Ergon Pharmaceuticals, Washington, DC, VIB Cancer Centre-KULeuven, Leuven, Belgium, Alexandria University, Alexandria, Egypt, University of Birmingham, Birmingham, United Kingdom, Ergon Pharmaceuticals, Washington, DC, Imperial College London, London, United Kingdom

2:45 PM – 2:50 PM
– Discussion

2:50 PM – 3:00 PM
3403 – Drugging the undruggable: Lessons learned from protein phosphatase 2A: Derek Taylor, Goutham Narla. Case Western Reserve University, Cleveland, OH, University of Michigan, Ann Arbor, MI @gouthamnarla

Abstract: Protein phosphatase 2A (PP2A) is a key tumor suppressor responsible for the dephosphorylation of many oncogenic signaling pathways. The PP2A holoenzyme is comprised of a scaffolding subunit (A), which serves as the structural platform for the catalytic subunit (C) and for an array of regulatory subunits (B) to assemble. Impairment of PP2A is essential for the pathogenesis of many diseases including cancer. In cancer, PP2A is inactivated through a variety of mechanisms including somatic mutation of the Aαsubunit. Our studies show that the most recurrent Aαmutation, P179R, results in an altered protein conformation which prevents the catalytic subunit from binding. Additionally, correcting this mutation, by expressing wild type PP2A Aαin cell lines harboring the P179R mutation, causes a reduction in tumor growth and metastasis. Given its central role in human disease pathogenesis, many strategies have been developed to therapeutically target PP2A.Our lab developed a series of small molecules activators of protein phosphatase 2A. One of our more advanced analogs in this series, DT-061, drives dephosphorylation and degradation of select pathogenic substrates of PP2A such as c-MYC in cellular and in vivo systems. Additionally, we have demonstrated the phosphomimetics of MYC that prevent PP2A mediated dephosphorylation and degradation markedly reduce the anti-tumorigenic activity of this series of PP2A activators further validating the target-substrate specificity of this approach. Specific mutations in the site of drug interaction or overexpression of the DNA tumor virus small T antigen which has been shown to specifically bind to and inactivate PP2A abrogate the in vivo activity of this small molecule series further validating the PP2A specificity of this approach. Importantly, treatment with DT-061 results in tumor growth inhibition in an array of in vivocancer models and marked regressions in combination with MEKi and PARPi.To further define the mechanism of action of this small molecule series, we have used cryo-electron microscopy (cryo-EM) to visualize directly theinteraction between DT-061 and a PP2A heterotrimeric complex. We have identified molecular interactions between DT-061 and all three PP2A subunits that prevent dissociation of the active enzyme through the marked prolongation of the kOFF of the native complex. Furthermore, we demonstrate that DT-061 specifically stabilizes the B56α-PP2A holoenzyme in a fully assembled, active state to dephosphorylate oncogenic targets such as c-MYC in both cellular and in vivo systems. This 3.6 Å structure identifies dynamic molecular interactions between the three distinct PP2A subunits and highlight the inherent mechanisms of PP2A complex assembly and disassembly in both cell free and cellular systems. Thus, our findings provide fundamental insights into PP2A complex assembly and regulation, identify a unique interfacial stabilizing mode of action for the therapeutic targeting of previously undruggable proteins, and aid in the development of phosphatase-based therapeutics tailored against disease specific phosphor-protein targets. The marriage of multidisciplinary scientific practices has allowed us to present here a previously unrecognized therapeutic strategy of complex stabilization for the activation of endogenous disease combating enzymes.

  • Reactivating PP2A; dephosphorylation of proteins (serine/threonine phosphatases); regulates multiple processes in the cell
  • SV40T has an antigen that inactivates PP2A; recurrent mutations in high grade endometrial cancers
  • P179R mutation promotes uterine tumor formation (also in a distal tubule ligation model)
  • project started in a phenotypic screen that tricyclic antidepressants could have an off target which was phosphatase activators (uncoupling GPCR from anticancer activity)
  • small T antigen block the activity of these small molecule activators;
  • acts as a molecular glue to bring the activators with a heterotrimer of phosphatases
  • so their small molecule activators effective in triple negative breast cancers;  one of targets of PP2A is MYC
  • question: have not yet seen resistance to these compounds but are currently looking at this


3:00 PM – 3:05 PM
– Discussion

3:05 PM – 3:15 PM
3404 – Inhibition of BCL10-MALT1 interaction to treat diffuse large B-cell lymphomaH: eejae Kang, Dong Hu, Marcelo Murai, Ahmed Mady, Bill Chen, Zaneta Nikolovska-Coleska, Linda M. McAllister-Lucas, Peter C. Lucas. University of Pittsburgh School of Medicine, Pittsburgh, PA, Merck, Kenilworth, NJ, University of Michigan School of Medicine, Ann Arbor, MI, University of Pittsburgh School of Medicine, Pittsburgh, PA, University of Michigan School of Medicine, Ann Arbor, MI, UPMC Children’s Hospital, Pittsburgh, PA

Abstract: The CARMA1/BCL10/MALT1 (CBM) signaling complex mediates antigen receptor-induced activation of NF-kB in lymphocytes to support normal adaptive immunity. As the effector protein of the complex, MALT1 exhibits two activities: protease and scaffolding activities. Gain-of-function mutations in the CARMA1 moiety or its upstream regulators trigger antigen-independent assembly of oligomeric CBM complexes, leading to constitutive activation of MALT1, unregulated NF-kB activity, and development of Activated B-Cell subtype of Diffuse Large B-Cell Lymphoma (ABC-DLBCL). Existing MALT1 inhibitors block only MALT1 protease activity, causing incomplete and unbalanced inhibition of MALT1, and have the potential for inducing autoimmune side effects. Since MALT1 is recruited to the CBM complex via its interaction with BCL10, we sought to identify inhibitors of BCL10-MALT1 interaction in order to target both the protease and scaffolding activities of MALT1 to treat ABC-DLBCL.
Our previous work suggested that an antibody-epitope-like interface governs the interaction between BCL10 and MALT1, so that a therapeutic opportunity exists for developing a small molecule inhibitor of the interaction to terminate inappropriate CBM activity. Using co-immunoprecipitation studies, a mammalian two-hybrid system, and surface plasmon resonance (SPR), we confirmed that BCL10 residues 107-119 and the tandem Ig-like domains of MALT1 are critical for this interaction. We then performed a structure-guided in silico screen of 3 million compounds, based on a computational model of the BCL10-MALT1 interaction interface, to identify compounds with potential for disrupting the interaction.
Compound 1 from the initial screening hits showed dose-responsive inhibition of BCL10-MALT1 interaction in both SPR and ELISA-based assays. Functionally, Compound 1 inhibits both MALT1 protease and scaffolding activities in Jurkat T cells, as demonstrated by its inhibition of CD3/CD28-induced RelB and N4BP1 cleavage, and inhibition of IKK phosphorylation, respectively. Compound 1 also blocks IL-2 transcription and IL-2 secretion by PMA/ionomycin-treated Jurkat T cells, as well as constitutive CBM-dependent secretion of IL-6 and IL-10 by ABC-DLBCL cells. Accordingly, Compound 1 selectively suppresses the growth of ABC-DLBCL cell lines, but does not affect the growth of MALT1-independent GCB-DLBCL cell lines.
In conclusion, we have identified an early-stage small molecule compound that inhibits the BCL10-MALT1 interaction, MALT1 protease and scaffolding activities, downstream CBM-dependent signaling, and ABC-DLBCL cell growth. Structure-guided modification of this lead compound is underway to further develop a new class of protein-protein interaction inhibitors that could provide more efficacious blockade of MALT1, while offering protection from undesirable autoimmune side effects in the treatment of this aggressive form of lymphoma.

3:15 PM – 3:20 PM
– Discussion

3:20 PM – 3:30 PM
– Closing RemarksJohn S. Lazo. University of Virginia, Charlottesville, VA

Read Full Post »

Live Notes and Conference Coverage in Real Time. COVID19 And The Impact on Cancer Patients Town Hall with Leading Oncologists; April 4, 2020 

Live Notes and Conference Coverage in Real Time. COVID19 And The Impact on Cancer Patients Town Hall with Leading Oncologists; April 4, 2020

Reporter: Stephen J. Williams, PhD 


UPDATED 5/11/2020 see below

This update is the video from the COVID-19 Series 4.

UPDATED 4/08/2020 see below

The Second in a Series of Virtual Town Halls with Leading Oncologist on Cancer Patient Care during COVID-19 Pandemic: What you need to know

The second virtual Town Hall with Leading International Oncologist, discussing the impact that the worldwide COVID-19 outbreak has on cancer care and patient care issues will be held this Saturday April 4, 2020.  This Town Hall Series is led by Dr. Roy Herbst and Dr. Hossain Borghaei who will present a panel of experts to discuss issues pertaining to oncology practice as well as addressing physicians and patients concerns surrounding the risk COVID-19 presents to cancer care.  Some speakers on the panel represent oncologist from France and Italy, and will give their views of the situation in these countries.


Speakers include:

Roy S. Herbst, MD, PhD, Ensign Professor of Medicine (Medical Oncology) and Professor of Pharmacology; Chief of Medical Oncology, Yale Cancer Center and Smilow Cancer Hospital; Associate Cancer Center Director for Translational Research, Yale Cancer Center

Hossain Borghaei, DO, MS , Chief of Thoracic Medical Oncology and Director of Lung Cancer Risk Assessment, Fox Chase Cancer Center

Giuseppe Curigliano, MD, PhD, University of Milan and Head of Phase I Division at IEO, European Institute of Oncology

Paolo Ascierto, MD National Tumor Institute Fondazione G. Pascale, Medical oncologist from National Cancer Institute of Naples, Italy

Fabrice Barlesi, MD, PhD, Thoracic oncologist Cofounder Marseille Immunopole Coordinator #ThePioneeRproject, Institut Gustave Roussy

Jack West, MD, Department of Medical Oncology & Therapeutics Research, City of Hope California

Rohit Kumar, MD Department of Medicine, Section of Pulmonary Medicine, Fox Chase Cancer Center

Christopher Manley, MD Director, Interventional Pulmonology Fox Chase Cancer Center

Hope Rugo, MD FASCO Division of Hematology and Oncology, University of California San Francisco (UCSF) Helen Diller Family Comprehensive Cancer Center

Harriet Kluger, MD Professor of Medicine (Medical Oncology); Director, Yale SPORE in Skin Cancer, Yale Cancer Center

Marianne J. Davies, DNP, MSN, RN, APRN, CNS-BC, ACNP-BC, AOCNP Assistant Professor of Nursing, Yale University

Barbara Burtness, MD Professor of Medicine (Medical Oncology);  Head and Neck Cancers Program, Yale University


@pharma_BI and @StephenJWillia2 will be Tweeting out live notes using #CancerCareandCOVID19

Live Notes

Part I: Practice Management

Dr. Jack West from City of Hope talked about telemedicine:  Coordination of the patient experience, which used to be face to face now moved to a telemedicine alternative.  For example a patient doing well on personalized therapy, many patients are well suited for a telemedicine experience.  A benefit for both patient and physician.

Dr. Rohit Kumar: In small cancer hospitals, can be a bit difficult to determine which patient needs to come in and which do not.  For outpatients testing for COVID is becoming very pertinent as these tests need to come back faster than it is currently.  For inpatients the issue is personal protection equipment.  They are starting to reuse masks after sterilization with dry heat.   Best to restructure the system of seeing patients and scheduling procedures.

Dr. Christopher Manley: hypoxia was an issue for COVID19 patients but seeing GI symptoms in 5% of patients.  Nebulizers have potential to aerosolize.  For patients in surgery prep room surgical masks are fine.  Ventilating these patients are a challenge as hypoxia a problem.  Myocarditis is a problem in some patients.  Diffuse encephalopathy and kidney problems are being seen. So Interleukin 6 (IL6) inhibitors are being used to reduce the cytokine storm presented in patients suffering from COVID19.

Dr. Hope Rugo from UCSF: Breast cancer treatment during this pandemic has been challenging, even though they don’t use too much immuno-suppressive drugs.  How we decide on timing of therapy and future visits is crucial.  For early stage breast cancer, neoadjuvant therapy is being used to delay surgeries.  Endocrine therapy is more often being used. In patients that need chemotherapy, they are using growth factor therapy according to current guidelines.  Although that growth factor therapy might antagonize some lung problems, there is less need for multiple visits.

For metastatic breast cancer,  high risk ER positive are receiving endocrine therapy and using telemedicine for followups.  For chemotherapy they are trying to reduce the schedules or frequency it is given. Clinical trials have been put on hold, mostly pharmokinetic studies are hard to carry out unless patients can come in, so as they are limiting patient visits they are putting these type of clinical studies on hold.

Dr. Harriet Kluger:  Melanoma community of oncologists gathered together two weeks ago to discuss guidelines and best practices during this pandemic.   The discussed that there is a lack of data on immunotherapy long term benefit and don’t know the effectiveness of neoadjuvant therapy.  She noted that many patients on BRAF inhibitors like Taflinar (dabrafenib)   or Zelboraf (vemurafenib) might get fevers as a side effect from these inhibitors and telling them to just monitor themselves and get tested if they want. Yale has also instituted a practice that, if a patient tests positive for COVID19, Yale wants 24 hours between the next patient visit to limit spread and decontaminate.

Marianne Davies:  Blood work is now being done at satellite sites to limit number of in person visits to Yale.  Usually they did biopsies to determine resistance to therapy but now relying on liquid biopsies (if insurance isn’t covering it they are working with patient to assist).  For mesothelioma they are dropping chemotherapy that is very immunosuppressive and going with maintenance pembrolizumab (Keytruda).  It is challenging in that COPD mimics the symptoms of COVID and patients are finding it difficult to get nebulizers at the pharmacy because of shortages; these patients that develop COPD are also worried they will not get the respirators they need because of rationing.

Dr. Barbara Burtness: Head and neck cancer.  Dr. Burtness stresses to patients that the survival rate now for HPV positive head and neck is much better and leaves patients with extra information on their individual cancers.  She also noted a registry or database that is being formed to track data on COVID in patients undergoing surgery  and can be found here at https://globalsurg.org/covidsurg/

About CovidSurg

  • There is an urgent need to understand the outcomes of COVID-19 infected patients who undergo surgery.
  • Capturing real-world data and sharing international experience will inform the management of this complex group of patients who undergo surgery throughout the COVID-19 pandemic, improving their clinical care.
  • CovidSurg has been designed by an international collaborating group of surgeons and anesthetists, with representation from Canada, China, Germany, Hong Kong, Italy, Korea, Singapore, Spain, United Kingdom, and the United States.

Dr. Burtness had noted that healthcare care workers are at high risk of COVID exposure during ear nose and throat (ENT) procedures as the coronavirus resides in the upper respiratory tract.  As for therapy for head and neck cancers, they are staying away from high dose cisplatin because of the nephrotoxicity seen with high dose cisplatin.  An alternative is carboplatin which generally you do not see nephrotoxicity as an adverse event (a weekly carboplatin).  Changing or increasing dose schedule (like 6 weeks Keytruda) helps reduce immunologic problems related to immunosupression and patients do not have to come in as often.

Italy and France

Dr. Paolo Ascierto:   with braf inhibitors, using in tablet form so patients can take from home.  Also they are moving chemo schedules for inpatients so longer dosing schedules.  Fever still a side effect from braf inhibitors and they require a swab to be performed to ascertain patient is COVID19 negative.  Also seeing pneumonitis as this is an adverse event from checkpoint inhibitors so looking at CT scans and nasal swab to determine if just side effect of I/O drugs or a COVID19 case.  He mentioned that their area is now doing okay with resources.

Dr. Guiseppe Curigliano mentioned about the redesign of the Italian health system with spokes and hubs of health care.  Spokes are generalized medicine while the hubs represent more specialized centers like CV hubs or cancer hubs.  So for instance, if a melanoma patient in a spoke area with COVID cases they will be referred to a hub.  He says they are doing better in his area

In the question and answer period, Dr. West mentioned that they are relaxing many HIPAA regulations concerning telemedicine.  There is a website on the Centers for Connective Health Policy that shows state by state policy on conducting telemedicine.   On immuno oncology therapy, many in the panel had many questions concerning the long term risk to COVID associated with this type of therapy.  Fabrice mentioned they try to postpone use of I/O and although Dr. Kluger said there was an idea floating around that PD1/PDL1 inhibitors could be used as a prophylactic agent more data was needed.

Please revisit this page as the recording of this Town Hall will be made available next week.

UPDATED 4/08/2020

Below find the LIVE RECORDING and TAKEAWAYS by the speakers


Town Hall Takeaways

Utilize Telehealth to Its Fullest Benefit


·       Patients doing well on targeted therapy or routine surveillance are well suited to telemedicine

·       Most patients are amenable to this, as it is more convenient for them and minimizes their exposure

·       A patient can speak to multiple specialists with an ease that was not previously possible

·       CMS has relaxed some rules to accommodate telehealth, though private insurers have not moved as quickly, and the Center for Connected Health Policy maintains a repository of current state-by-state regulations:  https://www.cchpca.org/


Practice Management Strategies


·       In the face of PPE shortages, N95 masks can be decontaminated using UV light, hydrogen peroxide, or autoclaving with dry heat; the masks can be returned to the original user until the masks are no longer suitable for use

·       For blood work or scans, the use of external satellite facilities should be explored

·       Keep pumps outside of the room so nurses can attend to them quickly

·       Limit the use of nebulizers, CPAPs, and BiPAPs due to risk of aerosolization


Pool Our Knowledge for Care of COVID Patients


·       There is now a global registry for tracking surgeries in COVID-positive cancer patients:  https://globalsurg.org/cancercovidsurg/

·       Caution is urged in the presence of cardiac complications, as ventilated patients may appear to improve, only to suffer severe myocarditis and cardiac arrest following extubation

·       When the decision is made to intubate, intubate quickly, as less invasive methods result in aerosolization and increased risks to staff


Study the Lessons of Europe


·       The health care system in Italy has been reorganized into “spokes” and “hubs,” with a number of cancer hubs; if there is a cancer patient in a spoke hospital with many COVID patients, this patient may be referred to a hub hospital

·       Postpone adjuvant treatments whenever possible

·       Oral therapies, which can be managed at home, are preferred over therapies that must be administered in a healthcare setting

·       Pneumonitis patients without fevers may be treated with steroids, but nasal swab testing is needed in the presence of concomitant fever

·       Any staff who are not needed on site should be working from home, and rotating schedules can be used to keep people healthy

·       Devise an annual epidemic control plan now that we have new lessons from COVID


We Must Be Advocates for Our Cancer Patients


·       Be proactive with other healthcare providers on behalf of patients with a good prognosis

·       Consider writing letters for cancer patients for inclusion into their chart, or addendums on notes, then encourage patients to print these out, or give it to them during their visit

·       The potential exists for a patient to be physiologically stable on a ventilator, but intolerant of decannulation; early discussions are necessary to determine reasonable expectations of care

·       Be sure to anticipate a second wave of patients, comprised of cancer patients for whom treatments and surgery have been delayed!


Tumor-Specific Learnings


Ø  Strategies in Breast Cancer:

·       In patients with early-stage disease, promote the use of neoadjuvant therapy where possible to delay the need for surgery

·       For patients with metastatic disease in the palliative setting, transition to less frequent chemotherapy dosing if possible

·       While growth factors may pose a risk in interstitial lung disease, new guidelines are emerging


Ø  Strategies in Melanoma:

·       The melanoma community has released specific recommendations for treatment during the pandemic:  https://www.nccn.org/covid-19/pdf/Melanoma.pdf

·       The use of BRAF/MEK inhibitors can cause fevers that are drug-related, and access to an alternate clinic where patients can be assessed is a useful resource


Ø  Strategies in Lung Cancer:

·       For patients who are stable on an oral, targeted therapy, telehealth check-in is a good option

·       For patients who progress on targeted therapies, increased use of liquid biopsies when appropriate can minimize use of bronchoscopy suites and other resources

·       For patients on pembrolizumab monotherapy, consider switching to a six-week dosing of 400 mg

·       Many lung cancer patients worry about “discrimination” should they develop a COVID infection; it is important to support patients and help manage expectations and concerns



UPDATED 5/11/2020

Townhall on COVID-19 and Cancer Care with Leading Oncologists Series 4

Addressing the Challenges of Cancer Care in the Community



Read Full Post »

Responses to the #COVID-19 outbreak from Oncologists, Cancer Societies and the NCI: Important information for cancer patients

Curator: Stephen J. Williams, Ph.D.

UPDATED 3/20/2020

Among the people who are identified at risk of coronovirus 2019 infection and complications of the virus include cancer patients undergoing chemotherapy, who in general, can be immunosuppressed, especially while patients are undergoing their treatment.  This has created anxiety among many cancer patients as well as their care givers and prompted many oncologist professional groups, cancer societies, and cancer centers to formulate some sort of guidelines for both the cancer patients and the oncology professional with respect to limiting the risk of infection to coronavirus (COVID19). 


This information will be periodically updated and we are working to get a Live Twitter Feed to bring oncologist and cancer patient advocacy groups together so up to date information can be communicated rapidly.  Please see this page regularly for updates as new information is curated.

IN ADDITION, I will curate a listing of drugs with adverse events of immunosuppression for people who might wonder if the medications they are taking are raising their risk of infections.

Please also see @pharma_BI for updates as well.

Please also see our Coronavirus Portal at https://pharmaceuticalintelligence.com/coronavirus-portal/

For ease of reading information for patients are BOLDED and in RED

ASCO’s Response to COVID-19

From the Cancer Letter: The following is a guest editorial by American Society of Clinical Oncology (ASCO) Executive Vice President and Chief Medical Officer Richard L. Schilsky MD, FACP, FSCT, FASCO. This story is part of The Cancer Letter’s ongoing coverage of COVID-19’s impact on oncology. A full list of our coverage, as well as the latest meeting cancellations, is available here.


The worldwide spread of the coronavirus (COVID-19) presents unprecedented challenges to the cancer care delivery system.

Our patients are already dealing with a life-threatening illness and are particularly vulnerable to this viral infection, which can be even more deadly for them. Further, as restrictions in daily movement and social distancing take hold, vulnerable patients may be disconnected from friends, family or other support they need as they manage their cancer.

As providers, we rely on evidence and experience when treating patients but now we face uncertainty. There are limited data to guide us in the specific management of cancer patients confronting COVID-19 and, at present, we have no population-level guidance regarding acceptable or appropriate adjustments of treatment and practice operations that both ensure the best outcome for our patients and protect the safety of our colleagues and staff.

As normal life is dramatically changed, we are all feeling anxious about the extreme economic challenges we face, but these issues are perhaps even more difficult for our patients, many of whom are now facing interruption

As we confront this extraordinary situation, the health and safety of members, staff, and individuals with cancer—in fact, the entire cancer community—is ASCO’s highest priority.

ASCO has been actively monitoring and responding to the pandemic to ensure that accurate information is readily available to clinicians and their patients. Recognizing that this is a rapidly evolving situation and that limited oncology-specific, evidence-based information is available, we are committed to sharing what is known and acknowledging what is unknown so that the most informed decisions can be made.

To help guide oncology professionals as they deal with the impact of coronavirus on both their patients and staff, ASCO has collated questions from its members, posted responses at asco.org and assembled a compendium of additional resources we hope will be helpful as the virus spreads and the disease unfolds. We continue to receive additional questions regarding clinical care and we are updating our FAQs on a regular basis.

We hope this information is helpful even when it merely confirms that there are no certain answers to many questions. Our answers are based on the best available information we identify in the literature, guidance from public health authorities, and input received from oncology and infectious disease experts.

For patients, we have posted a blog by Dr. Merry Jennifer Markham, chair of ASCO’s Cancer Communications Committee. This can be found on Cancer.Net, ASCO’s patient information website, and it provides practical guidance to help patients reduce their risk of exposure, better understand COVID-19 symptoms, and locate additional information.

This blog is available both in English and Spanish. Additional blog posts addressing patient questions will be posted as new questions are received and new information becomes available.

Find below a Tweet from Dr.Markham which includes links to her article on COVID-19 for cancer patients


NCCN’s Response to COVID-19 and COVID-19 Resources

JNCCN: How to Manage Cancer Care during COVID-19 Pandemic

Experts from the Seattle Cancer Care Alliance (SCCA)—a Member Institution of the National Comprehensive Cancer Network® (NCCN®)—are sharing insights and advice on how to continue providing optimal cancer care during the novel coronavirus (COVID-19) pandemic. SCCA includes the Fred Hutchinson Cancer Research Center and the University of Washington, which are located in the epicenter of the COVID-19 outbreak in the United States. The peer-reviewed article sharing best practices is available for free online-ahead-of-print via open access at JNCCN.org.

Coronavirus disease 2019 (COVID-19) Resources for the Cancer Care Community

NCCN recognizes the rapidly changing medical information relating to COVID-19 in the oncology ecosystem, but understands that a forum for sharing best practices and specific institutional responses may be helpful to others.  Therefore, we are expeditiously providing documents and recommendations developed by NCCN Member Institutions or Guideline Panels as resources for oncology care providers. These resources have not been developed or reviewed by the standard NCCN processes, and are provided for information purposes only. We will post more resources as they become available so check back for additional updates.



National Cancer Institute Response to COVID-19

More information at https://www.cancer.gov/contact/emergency-preparedness/coronavirus

What people with cancer should know: https://www.cancer.gov/coronavirus

Get the latest public health information from CDC: https://www.coronavirus.gov

Get the latest research information from NIH: https://www.nih.gov/coronavirus


Coronavirus: What People with Cancer Should Know


Both the resources at cancer.gov (NCI) as well as the resources from ASCO are updated as new information is evaluated and more guidelines are formulated by members of the oncologist and cancer care community and are excellent resources for those living with cancer, and also those who either care for cancer patients or their family and relatives.

Related Resources for Patients (please click on links)




Some resources and information for cancer patients from Twitter

Twitter feeds which may be useful sources of discussion and for cancer patients include:


@OncLive OncLive.com includes healthcare information for patients and includes videos and newsletters



@DrMarkham Dr. Markham is Chief of Heme-Onc & gyn med onc @UF | AD Med Affairs @UFHealthCancer and has collected very good information for patients concerning #Covid19 



@DrMaurieMarkman Dr. Maurie Markman is President of Medicine and Science (Cancer Centers of America, Philadelphia) @CancerCenter #TreatThePerson #Oncology #Genomics #PrecisionMedicine and hosts a great online live Tweet feed discussing current topics in cancer treatment and care for patients called #TreatThePerson Chat


The following is a listing with links of NCI Designated Comprehensive Cancer Centers and some select designated Cancer Centers* which have information on infectious risk guidance for cancer patients as well as their physicians and caregivers.   There are 51 NCI Comprehensive Cancer Centers and as more cancer centers formulate guidance this list will be updated. 


Cancer Center State Link to COVID19 guidance
City of Hope CA Advice for cancer patients, survivors and caregivers
Jonsson Cancer Center at UCLA CA Cancer and COVID19
UCSF Hellen Diller Family Comprehensive Cancer CA COVID-19 Links for Patients and Providers
Lee Moffit FL Protecting against Coronavirus 19
University of Kansas Cancer Center* KS COVID19 Info for patients
Barbara & Karmanos Cancer Institute (Wayne State) MI COVID19 Resources
Rogel Cancer Center (Univ of Michigan) MI COVID19 Patient Specific Guidelines
Alvin J. Siteman Cancer Center (MO) Coronavirus
Fred & Pamela Buffet CC* NE Resources for Patients and Providers
Rutgers Cancer Institute of NJ NJ What patients should know about COVID19
Memorial Sloan Kettering NY What COVID19 means for cancer patients
Herbert Irving CC (Columbia University) NY Coronavirus Resource Center
MD Anderson Cancer  TX Planning for Patients, Providers
Hunstman Cancer Center UT COVID19 What you need to know
Fred Hutchinson WA COVID19 What patients need to know



Please also see related information on Coronavirus 2019 and Cancer and Immunotherapy at the following links on the Open Access Online Journal:

Volume Two: Cancer Therapies: Metabolic, Genomics, Interventional, Immunotherapy and Nanotechnology in Therapy Delivery 




Coronavirus Portal





Read Full Post »

Predicting the Protein Structure of Coronavirus: Inhibition of Nsp15 can slow viral replication and Cryo-EM – Spike protein structure (experimentally verified) vs AI-predicted protein structures (not experimentally verified) of DeepMind (Parent: Google) aka AlphaFold


Curators: Stephen J. Williams, PhD and Aviva Lev-Ari, PhD, RN

This illustration, created at the Centers for Disease Control and Prevention (CDC), reveals ultrastructural morphology exhibited by coronaviruses. Note the spikes that adorn the outer surface of the virus, which impart the look of a corona surrounding the virion, when viewed electron microscopically. A novel coronavirus virus was identified as the cause of an outbreak of respiratory illness first detected in Wuhan, China in 2019.

Image and Caption Credit: Alissa Eckert, MS; Dan Higgins, MAM available at https://phil.cdc.gov/Details.aspx?pid=23311


UPDATED on 8/9/2020


UPDATED on 3/11/2020


According to the World Health Organization, coronaviruses make up a large family of viruses named for the crown-like spikes found on their surface (Figure 1). They carry their genetic material in single strands of RNA and cause respiratory problems and fever. Like HIV, coronaviruses can be transmitted between animals and humans.  Coronaviruses have been responsible for the Severe Acute Respiratory Syndrome (SARS) pandemic in the early 2000s and the Middle East Respiratory Syndrome (MERS) outbreak in South Korea in 2015. While the most recent coronavirus, COVID-19, has caused international concern, accessible and inexpensive sequencing is helping us understand COVID-19 and respond to the outbreak quickly.

Figure 1. Coronaviruses with the characteristic spikes as seen under a microscope.

First studies that explore genetic susceptibility to COVID-19 are now being published. The first results indicate that COVID-19 infects cells using the ACE2 cell-surface receptor. Genetic variants in the ACE2 receptor gene are thus likely to influence how effectively COVID-19 can enter the cells in our bodies. Researchers hope to discover genetic variants that confer resistance to a COVID-19 infection, similar to how some variants in the CCR5 receptor gene make people immune to HIV. At Nebula Genomics, we are monitoring the latest COVID-19 research and will add any relevant discoveries to the Nebula Research Library in a timely manner.

The Role of Genomics in Responding to COVID-19

Scientists in China sequenced COVID-19’s genome just a few weeks after the first case was reported in Wuhan. This stands in contrast to SARS, which was discovered in late 2002 but was not sequenced until April of 2003. It is through inexpensive genome-sequencing that many scientists across the globe are learning and sharing information about COVID-19, allowing us to track the evolution of COVID-19 in real-time. Ultimately, sequencing can help remove the fear of the unknown and allow scientists and health professionals to prepare to combat the spread of COVID-19.

Next-generation DNA sequencing technology has enabled us to understand COVID-19 is ~30,000 bases long. Moreover, researchers in China determined that COVID-19 is also almost identical to a coronavirus found in bats and is very similar to SARS. These insights have been critical in aiding in the development of diagnostics and vaccines. For example, the Centers for Disease Control and Prevention developed a diagnostic test to detect COVID-19 RNA from nose or mouth swabs.

Moreover, a number of different government agencies and pharmaceutical companies are in the process of developing COVID-19 vaccines to stop the COVID-19 from infecting more people. To protect humans from infection inactivated virus particles or parts of the virus (e.g. viral proteins) can be injected into humans. The immune system will recognize the inactivated virus as foreign, priming the body to build immunity against possible future infection. Of note, Moderna Inc., the National Institute of Allergy and Infectious Diseases, and Coalition for Epidemic Preparedness Innovations identified a COVID-19 vaccine candidate in a record 42 days. This vaccine will be tested in human clinical trials starting in April.

For more information about COVID-19, please refer to the World Health Organization website.



Aviva Lev-Ari
13.3K Tweets

Aviva Lev-Ari

My BIO lnkd.in/eEyn69r MediaPharma ex-SRI ex-MITRE ex-McGraw-Hill Followed by

Aviva Lev-Ari

Predicting the #ProteinStructure of #Coronavirus: #Inhibition of #Nsp15 #Cryo-EM – #spike #protein structure (#experimentally verified) vs #AI-predicted protein structures (not verified) of


) #AlphaFold

Quote Tweet
Eric Topol
The problem w/ visionaries is that we don’t recognize them in a timely manner (too late) Ralph Baric @UNCpublichealth and Vineet Menachery deserve recognition for being 5 yrs ahead of #COVID19 nature.com/articles/nm.39 @NatureMedicine pnas.org/content/113/11 @PNASNews via @hoondy







Senior, A.W., Evans, R., Jumper, J. et al. Improved protein structure prediction using potentials from deep learningNature 577, 706–710 (2020)https://doi.org/10.1038/s41586-019-1923-7


Protein structure prediction can be used to determine the three-dimensional shape of a protein from its amino acid sequence1. This problem is of fundamental importance as the structure of a protein largely determines its function2; however, protein structures can be difficult to determine experimentally. Considerable progress has recently been made by leveraging genetic information. It is possible to infer which amino acid residues are in contact by analysing covariation in homologous sequences, which aids in the prediction of protein structures3. Here we show that we can train a neural network to make accurate predictions of the distances between pairs of residues, which convey more information about the structure than contact predictions. Using this information, we construct a potential of mean force4 that can accurately describe the shape of a protein. We find that the resulting potential can be optimized by a simple gradient descent algorithm to generate structures without complex sampling procedures. The resulting system, named AlphaFold, achieves high accuracy, even for sequences with fewer homologous sequences. In the recent Critical Assessment of Protein Structure Prediction5 (CASP13)—a blind assessment of the state of the field—AlphaFold created high-accuracy structures (with template modelling (TM) scores6 of 0.7 or higher) for 24 out of 43 free modelling domains, whereas the next best method, which used sampling and contact information, achieved such accuracy for only 14 out of 43 domains. AlphaFold represents a considerable advance in protein-structure prediction. We expect this increased accuracy to enable insights into the function and malfunction of proteins, especially in cases for which no structures for homologous proteins have been experimentally determined7. https://doi.org/10.1038/s41586-019-1923-7

[ALA added bold face]

COVID-19 outbreak

The scientific community has galvanised in response to the recent COVID-19 outbreak, building on decades of basic research characterising this virus family. Labs at the forefront of the outbreak response shared genomes of the virus in open access databases, which enabled researchers to rapidly develop tests for this novel pathogen. Other labs have shared experimentally-determined and computationally-predicted structures of some of the viral proteins, and still others have shared epidemiological data. We hope to contribute to the scientific effort using the latest version of our AlphaFold system by releasing structure predictions of several under-studied proteins associated with SARS-CoV-2, the virus that causes COVID-19. We emphasise that these structure predictions have not been experimentally verified, but hope they may contribute to the scientific community’s interrogation of how the virus functions, and serve as a hypothesis generation platform for future experimental work in developing therapeutics. We’re indebted to the work of many other labs: this work wouldn’t be possible without the efforts of researchers across the globe who have responded to the COVID-19 outbreak with incredible agility.

Knowing a protein’s structure provides an important resource for understanding how it functions, but experiments to determine the structure can take months or longer, and some prove to be intractable. For this reason, researchers have been developing computational methods to predict protein structure from the amino acid sequence.  In cases where the structure of a similar protein has already been experimentally determined, algorithms based on “template modelling” are able to provide accurate predictions of the protein structure. AlphaFold, our recently published deep learning system, focuses on predicting protein structure accurately when no structures of similar proteins are available, called “free modelling”.  We’ve continued to improve these methods since that publication and want to provide the most useful predictions, so we’re sharing predicted structures for some of the proteins in SARS-CoV-2 generated using our newly-developed methods.

It’s important to note that our structure prediction system is still in development and we can’t be certain of the accuracy of the structures we are providing, although we are confident that the system is more accurate than our earlier CASP13 system. We confirmed that our system provided an accurate prediction for the experimentally determined SARS-CoV-2 spike protein structure shared in the Protein Data Bank, and this gave us confidence that our model predictions on other proteins may be useful. We recently shared our results with several colleagues at the Francis Crick Institute in the UK, including structural biologists and virologists, who encouraged us to release our structures to the general scientific community now. Our models include per-residue confidence scores to help indicate which parts of the structure are more likely to be correct. We have only provided predictions for proteins which lack suitable templates or are otherwise difficult for template modeling.  While these understudied proteins are not the main focus of current therapeutic efforts, they may add to researchers’ understanding of SARS-CoV-2.

Normally we’d wait to publish this work until it had been peer-reviewed for an academic journal. However, given the potential seriousness and time-sensitivity of the situation, we’re releasing the predicted structures as we have them now, under an open license so that anyone can make use of them.

Interested researchers can download the structures here, and can read more technical details about these predictions in a document included with the data. The protein structure predictions we’re releasing are for SARS-CoV-2 membrane protein, protein 3a, Nsp2, Nsp4, Nsp6, and Papain-like proteinase (C terminal domain). To emphasise, these are predicted structures which have not been experimentally verified. Work on the system continues for us, and we hope to share more about it in due course.

Citation:  John Jumper, Kathryn Tunyasuvunakool, Pushmeet Kohli, Demis Hassabis, and the AlphaFold Team, “Computational predictions of protein structures associated with COVID-19”, DeepMind website, 5 March 2020, https://deepmind.com/research/open-source/computational-predictions-of-protein-structures-associated-with-COVID-19



Computational predictions of protein structures associated with COVID-19


AlphaFold: Using AI for scientific discovery 



DeepMind has shared its results with researchers at the Francis Crick Institute, a biomedical research lab in the UK, as well as offering it for download from its website.

“Normally we’d wait to publish this work until it had been peer-reviewed for an academic journal. However, given the potential seriousness and time-sensitivity of the situation, we’re releasing the predicted structures as we have them now, under an open license so that anyone can make use of them,” it said. [ALA added bold face]

There are 93,090 cases of COVID-19, and 3,198 deaths, spread across 76 countries, according to the latest report from the World Health Organization at time of writing. ®




  • MHC content – The spike protein is thought to be the key to binding to cells via the angiotensin II receptor, the major mechanism the immune system uses to distinguish self from non-self

Preliminary Identification of Potential Vaccine Targets for the COVID-19 Coronavirus (SARS-CoV-2) Based on SARS-CoV Immunological Studies

Syed Faraz Ahmed 1,† , Ahmed A. Quadeer 1, *,† and Matthew R. McKay 1,2, *

1 Department of Electronic and Computer Engineering, The Hong Kong University of Science and

Technology, Hong Kong, China; sfahmed@connect.ust.hk

2 Department of Chemical and Biological Engineering, The Hong Kong University of Science and

Technology, Hong Kong, China

* Correspondence: eeaaquadeer@ust.hk.com (A.A.Q.); m.mckay@ust.hk (M.R.M.)

These authors contributed equally to this work.

Received: 9 February 2020; Accepted: 24 February 2020; Published: 25 February 2020


The beginning of 2020 has seen the emergence of COVID-19 outbreak caused by a novel coronavirus, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). There is an imminent need to better understand this new virus and to develop ways to control its spread. In this study, we sought to gain insights for vaccine design against SARS-CoV-2 by considering the high genetic similarity between SARS-CoV-2 and SARS-CoV, which caused the outbreak in 2003, and leveraging existing immunological studies of SARS-CoV. By screening the experimentally determined SARS-CoV-derived B cell and T cell epitopes in the immunogenic structural proteins of SARS-CoV, we identified a set of B cell and T cell epitopes derived from the spike (S) and nucleocapsid (N) proteins that map identically to SARS-CoV-2 proteins. As no mutation has been observed in these identified epitopes among the 120 available SARS-CoV-2 sequences (as of 21 February 2020), immune targeting of these epitopes may potentially offer protection against this novel virus. For the T cell epitopes, we performed a population coverage analysis of the associated MHC alleles and proposed a set of epitopes that is estimated to provide broad coverage globally, as well as in China. Our findings provide a screened set of epitopes that can help guide experimental efforts towards the development of vaccines against SARS-CoV-2.

Keywords: Coronavirus; 2019-nCoV; 2019 novel coronavirus; SARS-CoV-2; COVID-19; SARS-CoV; MERS-CoV; T cell epitopes; B cell epitopes; vaccine [ALA added bold face]




Selected Online COMMENTS to


MuscleguySilver badge

Re: Protein structure prediction has been done for ages…

Not quite, Natural Selection does not measure methods, it measures outputs, usually at the organism level.

Sure correct folding is necessary for much protein function and we have prions and chaperone proteins to get it wrong and right.

The only way NS measures methods and mechanisms is if they are very energetically wasteful. But there are some very wasteful ones out there. Beta-Catenin at the end of point of Wnt signalling comes particularly to mind.


Re: Does not matter at all

“Determining the structure of the virus proteins might also help in developing a molecule that disrupts the operation of just those proteins, and not anything else in the human body.”

Well it might, but predicting whether a ‘drug’ will NOT interact with any other of the 20000+ protein in complex organisms is well beyond current science. If we could do that we could predict/avoid toxicity and other non-mechanism related side-effects & mostly we can’t.

rob miller


There are 480 structures on PDBe resulting from a search on ‘coronavirus,’ the top hits from MERS and SARS. PR stunt or not, they did win the most recent CASP ‘competition’, so arguably it’s probably our best shot right now – and I am certainly not satisfied that they have been sufficiently open in explaining their algorithms though I have not checked in the last few months. No one is betting anyone’s health on this, and it is not like making one wrong turn in a series of car directions. Latest prediction algorithms incorporate contact map predictions, so it’s not like a wrong dihedral angle sends the chain off in the wrong direction. A decent model would give something to run docking algorithms against with a series of already approved drugs, then we take that shortlist into the lab. A confirmed hit could be an instantly available treatment, no two year wait as currently estimated. [ALA added bold face]

jelabarre59Silver badge

Re: these structure predictions have not been experimentally verified

Naaaah. Can’t possibly be a stupid marketing stunt.

Well yes, a good possibility. But it can also be trying to build on the open-source model of putting it out there for others to build and improve upon. Essentially opening that “peer review” to a larger audience quicker. [ALA added bold face]

We shall see.

Anonymous Coward

Anonymous CowardWhat bothers me, besides the obvious PR stunt, is that they say this prediction is licensed. How can a prediction from software be protected by, I presume, patents? And if this can be protected without even verifying which predictions actually work, what’s to stop someone spitting out millions of random, untested predictions just in case they can claim ownership later when one of them is proven to work? [ALA added bold face]





  • AI-predicted protein structures could unlock vaccine for Wuhan coronavirus… if correct… after clinical trials It’s not quite DeepMind’s ‘Come with me if you want to live’ moment, but it’s close, maybe

Experimentally derived by a group of scientists at the University of Texas at Austin and the National Institute of Allergy and Infectious Diseases, an agency under the US National Institute of Health. They both feature a “Spike protein structure.”

  • Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation

See all authors and affiliations

Science  19 Feb 2020:
DOI: 10.1126/science.abb2507


  • Israeli scientists: We have developed a coronavirus vaccine


Other related articles published in this Open Access Online Scientific Journal include the following:


  • Group of Researchers @ University of California, Riverside, the University of Chicago, the U.S. Department of Energy’s Argonne National Laboratory, and Northwestern University solve COVID-19 Structure and Map Potential Therapeutics

Reporters: Stephen J Williams, PhD and Aviva Lev-Ari, PhD, RN



  • Is It Time for the Virtual Scientific Conference?: Coronavirus, Travel Restrictions, Conferences Cancelled Curator:

Stephen J. Williams, PhD


Read Full Post »

Older Posts »