Advertisements
Feeds:
Posts
Comments

Archive for the ‘Immunotherapy’ Category


Live 12:00 – 1:00 P.M  Mediterranean Diet and Lifestyle: A Symposium on Diet and Human Health : October 19, 2018

Reporter: Stephen J. Williams, Ph.D.

12.00 The Italian Mediterranean Diet as a Model of Identity of a People with a Universal Good to Safeguard Health?

Prof. Antonino De Lorenzo, MD, PhD.

Director of the School of Specialization in Clinical Nutrition, University of Rome “Tor Vergata”

It is important to determine how our bodies interacts with the environment, such as absorption of nutrients.

Studies shown here show decrease in life expectancy of a high sugar diet, but the quality of the diet, not just the type of diet is important, especially the role of natural probiotics and phenolic compounds found in the Mediterranean diet.

The WHO report in 2005 discusses the unsustainability of nutrition deficiencies and suggest a proactive personalized and preventative/predictive approach of diet and health.

Most of the noncommunicable diseases like CV (46%) cancer 21% and 11% respiratory and 4% diabetes could be prevented and or cured with proper dietary approaches

Italy vs. the US diseases: in Italy most disease due to environmental contamination while US diet plays a major role

The issue we are facing in less than 10% of the Italian population (fruit, fibers, oils) are not getting the proper foods, diet and contributing to as we suggest 46% of the disease

The Food Paradox: 1.5 billion are obese; we notice we are eating less products of quality and most quality produce is going to waste;

  •  growing BMI and junk food: our studies are correlating the junk food (pre-prepared) and global BMI
  • modern diet and impact of human health (junk food high in additives, salt) has impact on microflora
  • Western Diet and Addiction: We show a link (using brain scans) showing correlation of junk food, sugar cravings, and other addictive behaviors by affecting the dopamine signaling in the substantia nigra
  • developed a junk food calculator and a Mediterranean diet calculator
  • the intersection of culture, food is embedded in the Mediterranean diet; this is supported by dietary studies of two distinct rural Italian populations (one of these in the US) show decrease in diet
  • Impact of diet: have model in Germany how this diet can increase health and life expectancy
  • from 1950 to present day 2.7 unit increase in the diet index can increase life expectancy by 26%
  • so there is an inverse relationship with our index and breast cancer

Environment and metal contamination and glyphosate: contribution to disease and impact of maintaining the healthy diet

  • huge problem with use of pesticides and increase in celiac disease

12:30 Environment and Health

Dr. Iris Maria Forte, PhD.

National Cancer Institute “Pascale” Foundation | IRCCS · Department of Research, Naples, Italy

Cancer as a disease of the environment.  Weinberg’s hallmarks of Cancer reveal how environment and epigenetics can impact any of these hallmarks.

Epigenetic effects

  • gene gatekeepers (Rb and P53)
  • DNA repair and damage stabilization

Heavy Metals and Dioxins:( alterations of the immune system as well as epigenetic regulations)

Asbestos and Mesothelioma:  they have demonstrated that p53 can be involved in development of mesothelioma as reactivating p53 may be a suitable strategy for therapy

Diet, Tomato and Cancer

  • looked at tomato extract on p53 function in gastric cancer: tomato extract had a growth reduction effect and altered cell cycle regulation and results in apoptosis
  • RBL2 levels are increased in extract amount dependent manner so data shows effect of certain tomato extracts of the southern italian tomato (     )

Antonio Giordano: we tested whole extracts of almost 30 different varieties of tomato.  The tomato variety  with highest activity was near Ravela however black tomatoes have shown high antitumor activity.  We have done a followup studies showing that these varieties, if grow elsewhere lose their antitumor activity after two or three generations of breeding, even though there genetics are similar.  We are also studying the effects of different styles of cooking of these tomatoes and if it reduces antitumor effect

please see post https://news.temple.edu/news/2017-08-28/muse-cancer-fighting-tomatoes-study-italian-food

 

To follow or Tweet on Twitter please use the following handles (@) and hashtags (#):

@ handles


@S_H_R_O 

@SbarroHealth

@Pharma_BI 

@ItalyinPhilly

@WHO_Europe

@nutritionorg

# hashtags


#healthydiet

#MediterraneanDiet

#health

#nutrition

Please see related articles on Live Coverage of Previous Meetings on this Open Access Journal

Real Time Conference Coverage for Scientific and Business Media: Unique Twitter Hashtags and Handles per Conference Presentation/Session

LIVE – Real Time – 16th Annual Cancer Research Symposium, Koch Institute, Friday, June 16, 9AM – 5PM, Kresge Auditorium, MIT

Real Time Coverage and eProceedings of Presentations on 11/16 – 11/17, 2016, The 12th Annual Personalized Medicine Conference, HARVARD MEDICAL SCHOOL, Joseph B. Martin Conference Center, 77 Avenue Louis Pasteur, Boston

Tweets Impression Analytics, Re-Tweets, Tweets and Likes by @AVIVA1950 and @pharma_BI for 2018 BioIT, Boston, 5/15 – 5/17, 2018

BIO 2018! June 4-7, 2018 at Boston Convention & Exhibition Center

LIVE 2018 The 21st Gabay Award to LORENZ STUDER, Memorial Sloan Kettering Cancer Center, contributions in stem cell biology and patient-specific, cell-based therapy

HUBweek 2018, October 8-14, 2018, Greater Boston – “We The Future” – coming together, of breaking down barriers, of convening across disciplinary lines to shape our future

Advertisements

Read Full Post »


2018 Nobel Prize in Physiology or Medicine for contributions to Cancer Immunotherapy to James P. Allison, Ph.D., of the University of Texas, M.D. Anderson Cancer Center, Houston, Texas. Dr. Allison shares the prize with Tasuku Honjo, M.D., Ph.D., of Kyoto University Institute, Japan

Reporter: Aviva Lev-Ari, PhD, RN

 

See

Immune System Stimulants: Articles of Note @pharmaceuticalintelligence.com

Curators: Larry H. Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/05/01/immune-system-stimulants-articles-of-note-pharmaceuticalintelligence-com/

 

Immune-Oncology Molecules In Development & Articles on Topic in @pharmaceuticalintelligence.com

Curators: Stephen J Williams, PhD and Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/01/11/articles-on-immune-oncology-molecules-in-development-pharmaceuticalintelligence-com/

 

 

Monday, October 1, 2018

NIH grantees win 2018 Nobel Prize in Physiology or Medicine.

The 2018 Nobel Prize in Physiology or Medicine has been awarded to National Institutes of Health grantee James P. Allison, Ph.D., of the University of Texas, M.D. Anderson Cancer Center, Houston, Texas. Dr. Allison shares the prize with Tasuku Honjo, M.D., Ph.D., of Kyoto University Institute, Japan, for their discovery of cancer therapy by inhibition of negative immune regulation.

The Royal Swedish Academy of Sciences said, “by stimulating the inherent ability of our immune system to attack tumor cells this year’s Nobel Laureates have established an entirely new principle for cancer therapy.”

Dr. Allison discovered that a particular protein (CTLA-4) acts as a braking system, preventing full activation of the immune system when a cancer is emerging. By delivering an antibody that blocks that protein, Allison showed the brakes could be released. The discovery has led to important developments in cancer drugs called checkpoint inhibitors and dramatic responses to previously untreatable cancers. Dr. Honjo discovered a protein on immune cells and revealed that it also operates as a brake, but with a different mechanism of action.

“Jim’s work was pivotal for cancer therapy by enlisting our own immune systems to launch an attack on cancer and arrest its development,” said NIH Director Francis S. Collins, M.D., Ph.D. “NIH is proud to have supported this groundbreaking research.”

Dr. Allison has received continuous funding from NIH since 1979, receiving more than $13.7 million primarily from NIH’s National Cancer Institute (NCI) and National Institute of Allergy and Infectious Diseases (NIAID).

“This work has led to remarkably effective, sometime curative, therapy for patients with advanced cancer, who we were previously unable to help,” said NCI Director Ned Sharpless, M.D. “Their findings have ushered in the era of cancer immunotherapy, which along with surgery, radiation and cytotoxic chemotherapy, represents a ‘fourth modality’ for treating cancer. A further understanding of the biology underlying the immune system and cancer has the potential to help many more patients.”

“Dr. Allison’s elegant and groundbreaking work in basic immunology over four decades and its important applicability to cancer is a vivid demonstration of the critical nature of interdisciplinary biomedical research supported by NIH,” says NIAID Director Anthony S. Fauci, M.D.

About the National Institutes of Health (NIH): NIH, the nation’s medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

SOURCE

https://www.nih.gov/news-events/news-releases/nih-grantees-win-2018-nobel-prize-physiology-or-medicine

 

Dr. Lev-Ari covered in person the following curated articles about James Allison, PhD since his days at University of California, Berkeley, including the prizes awarded prior to the 2018 Nobel Prize in Physiology.

 

2018 Albany Medical Center Prize in Medicine and Biomedical Research goes to NIH’s Dr. Rosenberg and fellow immunotherapy researchers James P. Allison, Ph.D., and Carl H. June, M.D.

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2018/08/15/2018-albany-medical-center-prize-in-medicine-and-biomedical-research-goes-to-nihs-dr-rosenberg-and-fellow-immunotherapy-researchers-james-p-allison-ph-d-and-carl-h-june-m-d/

 

Lectures by The 2017 Award Recipients of Warren Alpert Foundation Prize in Cancer Immunology, October 5, 2017, HMS, 77 Louis Paster, Boston

REAL TIME Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2017/09/08/lectures-by-the-2017-award-recipients-of-warren-alpert-foundation-prize-in-cancer-immunology-october-5-2017-hms-77-louis-paster-boston/

 

Cancer-free after immunotherapy treatment: Treating advanced colon cancer – targeting KRAS gene mutation by tumor-infiltrating lymphocytes (TILs) and Killer T-cells (NK)

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/12/08/cancer-free-after-immunotherapy-treatment-treating-advanced-colon-cancer-targeting-kras-gene-mutation-by-tumor-infiltrating-lymphocytes-tils-and-killer-t-cells-nk/

 

New Class of Immune System Stimulants: Cyclic Di-Nucleotides (CDN): Shrink Tumors and bolster Vaccines, re-arm the Immune System’s Natural Killer Cells, which attack Cancer Cells and Virus-infected Cells

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/04/24/new-class-of-immune-system-stimulants-cyclic-di-nucleotides-cdn-shrink-tumors-and-bolster-vaccines-re-arm-the-immune-systems-natural-killer-cells-which-attack-cancer-cells-and-virus-inf/

 

UC Berkeley research led to Nobel Prize-winning immunotherapy

Immunologist James P. Allison today shared the 2018 Nobel Prize in Physiology or Medicine for groundbreaking work he conducted on cancer immunotherapy at UC Berkeley during his 20 years as director of the campus’s Cancer Research Laboratory.

James Allison

James Allison, who for 20 years was a UC Berkeley immunologist conducting fundamental research on cancer, is now at the M.D. Anderson Cancer Center in Houston, Texas.

Now at the University of Texas M.D. Anderson Cancer Center in Houston, Allison shared the award with Tasuku Honjo of Kyoto University in Japan “for their discovery of cancer therapy by inhibition of negative immune regulation.”

Allison, 70, conducted basic research on how the immune system – in particular, a cell called a T cell – fights infection. His discoveries led to a fundamentally new strategy for treating malignancies that unleashes the immune system to kill cancer cells. A monoclonal antibody therapy he pioneered was approved by the Food and Drug Administration in 2011 to treat malignant melanoma, and spawned several related therapies now being used against lung, prostate and other cancers.

“Because this approach targets immune cells rather than specific tumors, it holds great promise to thwart diverse cancers,” the Lasker Foundation wrote when it awarded Allison its 2015 Lasker-DeBakey Clinical Medical Research Award.

Allison’s work has already benefited thousands of people with advanced melanoma, a disease that used to be invariably fatal within a year or so of diagnosis. The therapy he conceived has resulted in elimination of cancer in a significant fraction of patients for a decade and counting, and it appears likely that many of these people are cured.

“Targeted therapies don’t cure cancer, but immunotherapy is curative, which is why many consider it the biggest advance in a generation,” Allison said in a 2015 interview. “Clearly, immunotherapy now has taken its place along with surgery, chemotherapy and radiation as a reliable and objective way to treat cancer.”

“We are thrilled to see Jim’s work recognized by the Nobel Committee,” said Russell Vance, the current director of the Cancer Research Laboratory and a UC Berkeley professor of molecular and cell biology. “We congratulate him on this highly deserved honor. This award is a testament to the incredible impact that the fundamental research Jim conducted at Berkeley has had on the lives of cancer patients”

“I don’t know if I could have accomplished this work anywhere else than Berkeley,” Allison said. “There were a lot of smart people to work with, and it felt like we could do almost anything. I always tell people that it was one of the happiest times of my life, with the academic environment, the enthusiasm, the students, the faculty.”

In this video about UC Berkeley’s new Immunotherapeutics and Vaccine Research Initiative (IVRI), Allison discusses his groundbreaking work on cancer immunotherapy.

In fact, Allison was instrumental in creating the research environment of the current Department of Molecular and Cell Biology at UC Berkeley as well as the department’s division of immunology, in which he served stints as chair and division head during his time at Berkeley, said David Raulet, director of Berkeley’s Immunotherapeutics and Vaccine Research Initiative (IVRI).

“His actions helped create the superb research environment here, which is so conducive to making the fundamental discoveries that will be the basis of the next generation of medical breakthroughs,” Raulet said.

Self vs. non-self

Allison joined the UC Berkeley faculty as a professor of molecular and cell biology and director of the Cancer Research Laboratory in 1985. An immunologist with a Ph.D. from the University of Texas, Austin, he focused on a type of immune system cell called the T cell or T lymphocyte, which plays a key role in fighting off bacterial and viral infections as well as cancer.

Supercharging the immune system to cure disease: immunotherapy research at UC Berkeley. (UC Berkeley video by Roxanne Makasdjian and Stephen McNally)

At the time, most doctors and scientists believed that the immune system could not be exploited to fight cancer, because cancer cells look too much like the body’s own cells, and any attack against cancer cells would risk killing normal cells and creating serious side effects.

“The community of cancer biologists was not convinced that you could even use the immune system to alter cancer’s outcome, because cancer was too much like self,” said Matthew “Max” Krummel, who was a graduate student and postdoctoral fellow with Allison in the 1990s and is now a professor of pathology and a member of the joint immunology group at UCSF. “The dogma at the time was, ‘Don’t even bother.’ ”

“What was heady about the moment was that we didn’t really listen to the dogma, we just did it,” Krummel added. Allison, in particular, was a bit “irreverent, but in a productive way. He didn’t suffer fools easily.” This attitude rubbed off on the team.

Trying everything they could in mice to tweak the immune system, Krummel and Allison soon found that a protein receptor called CTLA-4 seemed to be holding T cells back, like a brake in a car.

Postdoctoral fellow Dana Leach then stepped in to see if blocking the receptor would unleash the immune system to actually attack a cancerous tumor. In a landmark paper published in Science in 1996, Allison, Leach and Krummel showed not only that antibodies against CTLA-4 released the brake and allowed the immune system to attack the tumors, but that the technique was effective enough to result in long-term disappearance of the tumors.

“When Dana showed me the results, I was really surprised,” Allison said. “It wasn’t that the anti-CTLA-4 antibodies slowed the tumors down. The tumors went away.”

After Allison himself replicated the experiment, “that’s when I said, OK, we’ve got something here.”

Checkpoint blockade

The discovery led to a concept called “checkpoint blockade.” This holds that the immune system has many checkpoints designed to prevent it from attacking the body’s own cells, which can lead to autoimmune disease. As a result, while attempts to rev up the immune system are like stepping on the gas, they won’t be effective unless you also release the brakes.

Allison in 1993

James Allison in 1993, when he was conducting research at UC Berkeley on a promising immunotherapy now reaching fruition. (Jane Scherr photo)

“The temporary activation of the immune system though ‘checkpoint blockade’ provides a window of opportunity during which the immune system is mobilized to attack and eliminate tumors,” Vance said.

Allison spent the next few years amassing data in mice to show that anti-CTLA-4 antibodies work, and then, in collaboration with a biotech firm called Medarex, developed human antibodies that showed promise in early clinical trials against melanoma and other cancers. The therapy was acquired by Bristol-Myers Squibb in 2011 and approved by the FDA as ipilimumab (trade name Yervoy), which is now used to treat skin cancers that have metastasized or that cannot be removed surgically.

Meanwhile, Allison left UC Berkeley in 2004 for Memorial Sloan Kettering research center in New York to be closer to the drug companies shepherding his therapy through clinical trials, and to explore in more detail how checkpoint blockade works.

“Berkeley was my favorite place, and if I could have stayed there, I would have,” he said. “But my research got to the point where all the animal work showed that checkpoint blockade had a lot of potential in people, and working with patients at Berkeley wasn’t possible. There’s no hospital, no patients.”

Thanks to Allison’s doggedness, anti-CTLA-4 therapy is now an accepted therapy for cancer and it opened the floodgates for a slew of new immunotherapies, Krummel said. There now are several hundred ongoing clinical trials involving monoclonal antibodies to one or more receptors that inhibit T cell activity, sometimes combined with lower doses of standard chemotherapy.

Antibodies against one such receptor, PD-1, which Honjo discovered in 1992, have given especially impressive results. Allison’s initial findings can be credited for prompting researchers, including Allison himself, to carry out the studies that have demonstrated the potent anti-cancer effects of PD-1 antibodies. In 2015, the FDA approved anti-PD-1 therapy for malignant melanoma, and has since approved it for non-small-cell lung, gastric and several other cancers.

Science magazine named cancer immunotherapy its breakthrough of 2013 because that year, “clinical trials … cemented its potential in patients and swayed even the skeptics. The field hums with stories of lives extended: the woman with a grapefruit-size tumor in her lung from melanoma, alive and healthy 13 years later; the 6-year-old near death from leukemia, now in third grade and in remission; the man with metastatic kidney cancer whose disease continued fading away even after treatment stopped.”

Allison pursued more clinical trials for immunotherapy at Sloan-Kettering and then in 2012 returned to his native Texas.

Born in Alice, Texas, on Aug. 7, 1948, Allison earned a B.S. in microbiology in 1969 and a Ph.D. in biological science in 1973 from the University of Texas, Austin.

RELATED INFORMATION

SOURCE

http://news.berkeley.edu/2018/10/01/uc-berkeley-research-led-to-nobel-prize-winning-immunotherapy/

Read Full Post »


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

The CRISPR-Cas9 system has proven to be a powerful tool for genome editing allowing for the precise modification of specific DNA sequences within a cell. Many efforts are currently underway to use the CRISPR-Cas9 system for the therapeutic correction of human genetic diseases. CRISPR/Cas9 has revolutionized our ability to engineer genomes and conduct genome-wide screens in human cells.

 

CRISPR–Cas9 induces a p53-mediated DNA damage response and cell cycle arrest in immortalized human retinal pigment epithelial cells, leading to a selection against cells with a functional p53 pathway. Inhibition of p53 prevents the damage response and increases the rate of homologous recombination from a donor template. These results suggest that p53 inhibition may improve the efficiency of genome editing of untransformed cells and that p53 function should be monitored when developing cell-based therapies utilizing CRISPR–Cas9.

 

Whereas some cell types are amenable to genome engineering, genomes of human pluripotent stem cells (hPSCs) have been difficult to engineer, with reduced efficiencies relative to tumour cell lines or mouse embryonic stem cells. Using hPSC lines with stable integration of Cas9 or transient delivery of Cas9-ribonucleoproteins (RNPs), an average insertion or deletion (indel) efficiency greater than 80% was achieved. This high efficiency of insertion or deletion generation revealed that double-strand breaks (DSBs) induced by Cas9 are toxic and kill most hPSCs.

 

The toxic response to DSBs was P53/TP53-dependent, such that the efficiency of precise genome engineering in hPSCs with a wild-type P53 gene was severely reduced. These results indicate that Cas9 toxicity creates an obstacle to the high-throughput use of CRISPR/Cas9 for genome engineering and screening in hPSCs. As hPSCs can acquire P53 mutations, cell replacement therapies using CRISPR/Cas9-enginereed hPSCs should proceed with caution, and such engineered hPSCs should be monitored for P53 function.

 

CRISPR-based editing of T cells to treat cancer, as scientists at the University of Pennsylvania are studying in a clinical trial, should also not have a p53 problem. Nor should any therapy developed with CRISPR base editing, which does not make the double-stranded breaks that trigger p53. But, there are pre-existing humoral and cell-mediated adaptive immune responses to Cas9 in humans, a factor which must be taken into account as the CRISPR-Cas9 system moves forward into clinical trials.

 

References:

 

https://techonomy.com/2018/06/new-cancer-concerns-shake-crispr-prognosis/

 

https://www.statnews.com/2018/06/11/crispr-hurdle-edited-cells-might-cause-cancer/

 

https://www.biorxiv.org/content/early/2017/07/26/168443

 

https://www.nature.com/articles/s41591-018-0049-z.epdf?referrer_access_token=s92jDP_yPBmDmi-USafzK9RgN0jAjWel9jnR3ZoTv0MRjuB3dEnTctGtoy16n3DDbmISsvbln9SCISHVDd73tdQRNS7LB8qBlX1vpbLE0nK_CwKThDGcf344KR6RAm9k3wZiwyu-Kb1f2Dl7pArs5yYSiSLSdgeH7gst7lOBEh9qIc6kDpsytWLHqX_tyggu&tracking_referrer=www.statnews.com

 

https://www.nature.com/articles/s41591-018-0050-6.epdf?referrer_access_token=2KJ0L-tmvjtQdzqlkVXWVNRgN0jAjWel9jnR3ZoTv0Phq6GCpDlJx7lIwhCzBRjHJv0mv4zO0wzJJCeuxJjzoUWLeemH8T4I3i61ftUBkYkETi6qnweELRYMj4v0kLk7naHF-ujuz4WUf75mXsIRJ3HH0kQGq1TNYg7tk3kamoelcgGp4M7UTiTmG8j0oog_&tracking_referrer=www.statnews.com

 

https://www.biorxiv.org/content/early/2018/01/05/243345

 

https://www.nature.com/articles/nmeth.4293.epdf

 

Read Full Post »


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Hepatitis B virus can cause serious, long-term health problems, such as liver disease and cancer, and can spread from mother-to-child during delivery. According to the latest estimates from the World Health Organization (WHO), approximately 257 million people in 2015 were living with the virus. Countries in Asia have a high burden of hepatitis B. There is no cure, and antiviral drugs used to treat the infection usually need to be taken for life.

 

To prevent infection, WHO recommends that all newborns receive their first dose of hepatitis B vaccine within 24 hours of delivery. Infants born to hepatitis B-infected mothers are also given protective antibodies called hepatitis B immune globulin (HBIG). However, mother-to-child transmission can still occur in women with high levels of virus in their blood, as well as those with mutated versions of the virus.

 

Tenofovir disoproxil fumarate (TDF), an antiviral drug commonly prescribed to treat hepatitis B infection, does not significantly reduce mother-to-child transmission of hepatitis B virus when taken during pregnancy and after delivery, according to a phase III clinical trial in Thailand funded by the National Institutes of Health. The study tested TDF therapy in addition to the standard preventative regimen — administration of hepatitis B vaccine and protective antibodies at birth — to explore the drug’s potential effects on mother-to-child transmission rates. The results appear in the New England Journal of Medicine.

 

The present study was conducted at 17 hospitals of the Ministry of Public Health in Thailand. It screened more than 2,500 women for eligibility and enrolled 331 pregnant women with hepatitis B. The women received placebo (163) or TDF (168) at intervals from 28 weeks of pregnancy to two months after delivery. All infants received standard hepatitis B preventatives given in Thailand, which include HBIG at birth and five doses of the hepatitis B vaccine by age 6 months (which differs from the three doses given in the United States). A total of 294 infants (147 in each group) were followed through age 6 months.

 

Three infants in the placebo group had hepatitis B infection at age 6 months, compared to zero infants in the TDF treatment group. Given the unexpectedly low transmission rate in the placebo group, the researchers concluded that the addition of TDF to current recommendations did not significantly reduce mother-to-child transmission of the virus.

 

According to the study, the clinical trial had enough participants to detect statistical differences if the transmission rate in the placebo group reached at least 12 percent, a rate observed in previous studies. Though the reasons are unknown, the researchers speculate that the lower transmission rate seen in the study may relate to the number of doses of hepatitis B vaccine given to infants in Thailand, lower rates of amniocentesis and Cesarean section deliveries in this study, or the lower prevalence of mutated viruses that result in higher vaccine efficacy in Thailand compared to other countries.

 

References:

 

https://www.nih.gov/news-events/news-releases/antiviral-drug-not-beneficial-reducing-mother-child-transmission-hepatitis-b-when-added-existing-preventatives

 

https://www.ncbi.nlm.nih.gov/pubmed/29514030

 

https://www.ncbi.nlm.nih.gov/pubmed/29514035

 

https://www.ncbi.nlm.nih.gov/pubmed/25240752

 

https://www.ncbi.nlm.nih.gov/pubmed/28188612

 

Read Full Post »


Juno acquired by Celgene for $9Billion following Gilead acquisition of Kite Pharma for 12.9 Billion

Reporter: Aviva Lev-Ari, PhD, RN

 

UPDATED on 2/5/2018

Hans Bishop gets a $287M payday as Juno execs see windfall fortunes — with a $922M payoff for Arch

by john carroll — on February 5, 2018 05:47 AM EST
Updated: 05:48 AM

https://endpts.com/hans-bishop-gets-a-287m-payday-as-juno-execs-see-windfall-fortunes-with-a-922m-payoff-for-arch/?utm_medium=email&utm_campaign=Monday%20February%205%202018&utm_content=Monday%20February%205%202018+CID_aecea465e79bcafc58b92d3615dfacda&utm_source=ENDPOINTS%20emails&utm_term=Hans%20Bishop%20gets%20a%20287M%20payday%20as%20Juno%20execs%20see%20windfall%20fortunes%20%20with%20a%20922M%20payoff%20for%20Arch

Anatomy of a $9B buyout: Celgene’s quick turn from Juno’s close collaborator to new owner

 john carroll — on February 5, 2018 05:50 AM EST

https://endpts.com/anatomy-of-a-9b-buyout-celgenes-quick-turn-from-junos-close-collaborator-to-new-owner/?utm_medium=email&utm_campaign=Monday%20February%205%202018&utm_content=Monday%20February%205%202018+CID_aecea465e79bcafc58b92d3615dfacda&utm_source=ENDPOINTS%20emails&utm_term=Anatomy%20of%20a%209B%20buyout%20Celgenes%20quick%20turn%20from%20Junos%20close%20collaborator%20to%20new%20owner

 

Other related articles on JUNO published in this Open Access Online Scientific Journal include the following:

Anatomy of a $9B buyout: Celgene’s quick turn from Juno’s close collaborator to new owner

https://pharmaceuticalintelligence.com/2018/02/05/anatomy-of-a-9b-buyout-celgenes-quick-turn-from-junos-close-collaborator-to-new-owner/

Juno Therapeutics to Resume JCAR015 Phase II ROCKET Trial AND Acquires privately held Boston, MA-based RedoxTherapies

https://pharmaceuticalintelligence.com/2016/07/14/juno-therapeutics-to-resume-jcar015-phase-ii-rocket-trial-and-acquires-privately-held-boston-ma-based-redoxtherapies/

What does this mean for Immunotherapy? FDA put a temporary hold on Juno’s JCAR015, Three Death of Celebral Edema in CAR-T Clinical Trial and Kite Pharma announced Phase II portion of its CAR-T ZUMA-1 trial

https://pharmaceuticalintelligence.com/2016/07/09/what-does-this-mean-for-immunotherapy-fda-put-a-temporary-hold-on-jcar015-three-death-of-celebral-edema-in-car-t-clinical-trial-and-kite-pharma-announced-phase-ii-portion-of-its-car-t-zuma-1-trial/

Juno Acquires AbVitro for $125M: high-throughput and single-cell sequencing capabilities for Immune-Oncology Drug Discovery

https://pharmaceuticalintelligence.com/2016/01/12/juno-acquires-abvitro-for-125m-high-throughput-and-single-cell-sequencing-capabilities-for-immune-oncology-drug-discovery/

Juno’s approach eradicated cancer cells in 10 of 12 leukemia patients, indicating potential to transform the standard of care in oncology

https://pharmaceuticalintelligence.com/2014/01/14/junos-approach-eradicated-cancer-cells-in-10-of-12-leukemia-patients-indicating-potential-to-transform-the-standard-of-care-in-oncology/

 

Economic Potential of a Drug Invention (Prof. Zelig Eshhar, Weitzman Institute, registered the patent) versus a Cancer Drug in Clinical Trials: CAR-T as a Case in Point, developed by Kite Pharma, under Arie Belldegrun, CEO, acquired by Gilead for $11.9 billion, 8/2017.

https://pharmaceuticalintelligence.com/2017/10/04/economic-potential-of-a-drug-invention-prof-zelig-eshhar-weitzman-institute-registered-the-patent-versus-a-cancer-drug-in-clinical-trials-car-t-as-a-case-in-point-developed-by-kite-pharma-unde/

 

 

 

Read Full Post »


Cracking Tumor Defiance

Reporter: Irina Robu, PhD

Two research groups from Harvard Medical School based at Dana Faber Cancer Institute have discovered a genetic mechanism in a cancer cells that influence whether they respond or resist to immunotherapy drugs, otherwise called as checkpoint inhibitors. The results are published in Science as part of two articles. One article is focused on clinical trial patients with advanced kidney cancer treated with checkpoint inhibitors comes from Eliezer van Allen’s group at Dana Farber Cancer Institute and Toni Choueiri group at Lank Center for Genitourinary Oncology at Dana Farber. The second articles is focused on identifying the immunotherapy resistance mechanism in melanoma cells comes from Kai Wucherpfennig at Dana-Farber and Shirley Liu at Dana -Farber. The two groups joined on that the resistance to immune checkpoint blockade is critically controlled by changes in a group of proteins that regulate how DNA is packaged in cells. The assortment of proteins, called a chromatin remodeling complex, is known as SWI/SNF. Its components are encoded by different genes, among them ARID2PBRM1 and BRD7. SWI/SNF’s job is to open up stretches of tightly wound DNA so that its blueprints can be read by the cell to activate certain genes to make proteins.

Scientists led by Van Allen and Choueiri wanted a clarification for why some patients with a form of metastatic kidney cancer, clear cell renal carcinoma (ccRCC) gain clinical benefit from treatment with immune checkpoint inhibitors that block the PD-1 checkpoint while others patients don’t. The researchers use whole exome DNA sequencing to analyze tumor samples from 35 patients treated in a clinical trial with Opdivo, a checkpoint blocker nivolumab to search for other characteristics of ccRCC tumors that influence immunotherapy response and/or resistance. The scientist discovered that patients from the trial benefited from the immunotherapy treatment with longer survival and progression free survival were those whose tumors lacked a functioning PRBM1 gene. Loss of PRBM1 gene function caused cancer cells to have increased expression of other genes including those in the gene pathway known as IL6/JAK-STAT3, which is involved in immune system stimulation.

When the PBRM1 gene was knocked out in experiments, the melanoma cells became more sensitive to interferon gamma produced by T cells and, in response, produced signaling molecules that recruited more tumor-fighting T cells into the tumor. The two other genes in the PBAF complex—ARID2 and BRD7—are also found mutated in some cancers, according to the researchers, and those cancers, like the melanoma lacking ARID2 function, may also respond better to checkpoint blockade. According to the researchers, finding ways to alter those target molecules “will be important to extend the benefit of immunotherapy to larger patient populations, including cancers that thus far are refractory to immunotherapy.”

SOURCE

http://globalnewsconnect.com/cracking-tumor-defiance

Read Full Post »


NEW Book #InfectiousDiseases #Immunology #StressSignaling #Therapeutics check https://www.amazon.com/dp/B075CXHY1B

Editor-in-Chief: Aviva Lev-Ari, PhD, RN

 

 

Includes FDA Approved Drugs for Infections and Infectious Diseases: Bacterial Infection, Viral Infection, Fungal Infection, Allergy-related Infections and Other, 1995 – 2016

VOLUME 2: covers the frontier of research on Infectious Diseases and the Human Immune System. The Immune Response, Disease Specific Immune Response, Immunodiagnostics and Immunotherapy, Immunotherapy and Autoimmunity,
Bacterial Infections, Bacteria Types, Antibactirial Therapeutics, FDA Approved Drugs for Infections and Infectious Diseases: Bacterial Infection, 1995 – 2016. Viral Infection: Virus Types, Antiviral Therapeutics, and FDA Approved Drugs for Infections and Infectious Diseases: Viral Infection, Fungal Infections, Allergy-related Infections, Other Infections,1995 – 2016,

VOLUME 3: covers the state of Science on the Historical Perspective of Immunology, Development of the Immune System, Signaling and Immunology, Cellular Immunity, Immunology and Inflammatory Response. Antibody-based Immunity, Vaccines and Microbiome, Immuno-Pharmaceutics, Cancer Immunotherapy, Immunomodulation and Neuro-Immunology.

Volume 2: Summary
The material that has been covered is a considerable material on the basic types of infections – bacterial, viral, and fungal, and diseases related to immune mechanisms. There has been a substantial coverage of the drugs and the manufacturers. This material brings to the discussion an international problem of drug resistance that applies much to bacteria, and a considerable amount of material on advances in drug development that takes into consideration protein structure and protein-protein interactions. The coverage of virus diseases brings to the forefront vaccines. However, in such cases as the influenza virus, a rapid genetic change of the virus makes the use of vaccines an issue for continuing revision.

Volume 3: Summary
The second volume is only concerned with the pathobiology of the inflammatory response, including sepsis, and it does not leave out hematopoiesis, and it lays out the difference between the B-clles and the T-cells that are related to the Toll receptor. Here we have looked closely at two immune disorders, Inflammatory Bowel Disease (Crohn’s Disease) and Rheumatoid Arthritis. Here we have discussed immunomodulation and signaling of the pathways involved, and the programmed cell death response. We have also covered the relationship of the immune response to autoimmune disorders and to cancer. The treatment of cancer now heavily leans toward the blocking of destructive processes in the immunomodulatory pathways.

Epilogue – Volume 2
Volume 2 has covered the most common bacterial and viral diseases that we find widely, or sporadically. It detailed the development of sepsis, and the immune response factor. The immune response involves local cellular invasion of lymphocytes related to initiation of T-cells and macrophages, and also the proteomic generated B-cell antibodies. These reactions are both local and systemic, as bacterial invasion is local and usually related to the tissue of residence (large intestine, oral, lung, genital). In the case of virus, the site of entry is often respiratory or by food intake, but these agents may rapidly become systemic. The other matter of the immune response is autoimmune, a reaction against the self. It is not entirely clear how this is initiated, but it has been related to failure to develop immunity in the prenatal or postnatal period. The only other possibility that might be considered would be by the mechanism of cell remodeling by an apoptotic related mechanism. The other chapters deal with therapeutics.

Epilogue – Volume 3
These two volumes have traversed a large knowledge-base. The first was directed largely at the well known bacterial, virus, fungal diseases, as well as autoimmunity. It specified recent FDA approved recommendations of pharmaceutics for these conditions. It also gives some attention to the immune response in inflammatory and autoimmune diseases, but not cancer. The second volume gives a concise history of development of Leukemias, Lymphomas pathology.

Read Full Post »

Older Posts »