Posts Tagged ‘CD8+ T cells’

NIH Considers Guidelines for CAR-T therapy: Report from Recombinant DNA Advisory Committee

Reporter: Stephen J. Williams, Ph.D.

UPDATED 5/10/2022

In the mid to late 1970’s a public debate (and related hysteria) had emerged surrounding two emerging advances in recombinant DNA technology;

  1. the development of vectors useful for cloning pieces of DNA (the first vector named pBR322) and
  2. the discovery of bacterial strains useful in propagating such vectors

As discussed by D. S, Fredrickson of NIH’s Dept. of Education and Welfare in his historical review” A HISTORY OF THE RECOMBINANT DNA GUIDELINES IN THE UNITED STATES” this international concern of the biological safety issues of this new molecular biology tool led the National Institute of Health to coordinate a committee (the NIH Recombinant DNA Advisory Committee) to develop guidelines for the ethical use, safe development, and safe handling of such vectors and host bacterium. The first conversations started in 1974 and, by 1978, initial guidelines had been developed. In fact, as Dr. Fredrickson notes, public relief was voiced even by religious organizations (who had the greatest ethical concerns)

On December 16, 1978, a telegram purporting to be from the Vatican was hand delivered to the office of Joseph A. Califano, Jr., Secretary of Health, Education,

and Welfare. “Habemus regimen recombinatum,” it proclaimed, in celebration of the

end of a long struggle to revise the NIH Guidelines for Research Involving

Recombinant DNA Molecules

The overall Committee resulted in guidelines (2013 version) which assured the worldwide community that

  • organisms used in such procedures would have limited pathogenicity in humans
  • vectors would be developed in a manner which would eliminate their ability to replicate in humans and have defined antibiotic sensitivity

So great was the success and acceptance of this committee and guidelines, the NIH felt the Recombinant DNA Advisory Committee should meet regularly to discuss and develop ethical guidelines and clinical regulations concerning DNA-based therapeutics and technologies.

A PowerPoint Slideshow: Introduction to NIH OBA and the History of Recombinant DNA Oversight can be viewed at the following link:


Please see the following link for a video discussion between Dr. Paul Berg, who pioneered DNA recombinant technology, and Dr. James Watson (Commemorating 50 Years of DNA Science):


The Recombinant DNA Advisory Committee has met numerous times to discuss new DNA-based technologies and their biosafety and clinical implication including:

A recent Symposium was held in the summer of 2010 to discuss ethical and safety concerns and discuss potential clinical guidelines for use of an emerging immunotherapy technology, the Chimeric Antigen Receptor T-Cells (CART), which at that time had just been started to be used in clinical trials.

Considerations for the Clinical Application of Chimeric Antigen Receptor T Cells: Observations from a Recombinant DNA Advisory Committee Symposium Held June 15, 2010[1]

Contributors to the Symposium discussing opinions regarding CAR-T protocol design included some of the prominent members in the field including:

Drs. Hildegund C.J. Ertl, John Zaia, Steven A. Rosenberg, Carl H. June, Gianpietro Dotti, Jeffrey Kahn, Laurence J. N. Cooper, Jacqueline Corrigan-Curay, And Scott E. Strome.

The discussions from the Symposium, reported in Cancer Research[1]. were presented in three parts:

  1. Summary of the Evolution of the CAR therapy
  2. Points for Future Consideration including adverse event reporting
  3. Considerations for Design and Implementation of Trials including mitigating toxicities and risks

1. Evolution of Chimeric Antigen Receptors

Early evidence had suggested that adoptive transfer of tumor-infiltrating lymphocytes, after depletion of circulating lymphocytes, could result in a clinical response in some tumor patients however developments showed autologous T-cells (obtained from same patient) could be engineered to express tumor-associated antigens (TAA) and replace the TILS in the clinical setting.

However there were some problems noticed.

  • Problem: HLA restriction of T-cells. Solution: genetically engineer T-cells to redirect T-cell specificity to surface TAAs
  • Problem: 1st generation vectors designed to engineer T-cells to recognize surface epitopes but engineered cells had limited survival in patients.   Solution: development of 2nd generation vectors with co-stimulatory molecules such as CD28, CD19 to improve survival and proliferation in patients

A summary table of limitations of the two types of genetically-modified T-cell therapies were given and given (in modified form) below

                                                                                                Type of Gene-modified T-Cell

Limitations aβ TCR CAR
Affected by loss or decrease of HLA on tumor cells yes no
Affected by altered tumor cell antigen processing? yes no
Need to have defined tumor target antigen? no yes
Vector recombination with endogenous TCR yes no

A brief history of construction of 2nd and 3rd generation CAR-T cells given by cancer.gov:



Differences between  second- and third-generation chimeric antigen receptor T cells. (Adapted by permission from the American Association for Cancer Research: Lee, DW et al. The Future Is Now: Chimeric Antigen Receptors as New Targeted Therapies for Childhood Cancer. Clin Cancer Res; 2012;18(10); 2780–90. doi:10.1158/1078-0432.CCR-11-1920)

Constructing a CAR T Cell (from cancer.gov)

The first efforts to engineer T cells to be used as a cancer treatment began in the early 1990s. Since then, researchers have learned how to produce T cells that express chimeric antigen receptors (CARs) that recognize specific targets on cancer cells.

The T cells are genetically modified to produce these receptors. To do this, researchers use viral vectors that are stripped of their ability to cause illness but that retain the capacity to integrate into cells’ DNA to deliver the genetic material needed to produce the T-cell receptors.

The second- and third-generation CARs typically consist of a piece of monoclonal antibody, called a single-chain variable fragment (scFv), that resides on the outside of the T-cell membrane and is linked to stimulatory molecules (Co-stim 1 and Co-stim 2) inside the T cell. The scFv portion guides the cell to its target antigen. Once the T cell binds to its target antigen, the stimulatory molecules provide the necessary signals for the T cell to become fully active. In this fully active state, the T cells can more effectively proliferate and attack cancer cells.

2. Adverse Event Reporting and Protocol Considerations

The symposium had been organized mainly in response to two reported deaths of patients enrolled in a CART trial, so that clinical investigators could discuss and formulate best practices for the proper conduct and analysis of such trials. One issue raised was lack of pharmacovigilence procedures (adverse event reporting). Although no pharmacovigilence procedures (either intra or inter-institutional) were devised from meeting proceedings, it was stressed that each institution should address this issue as well as better clinical outcome reporting.

Case Report of a Serious Adverse Event Following the Administration of T Cells Transduced With a Chimeric Antigen Receptor Recognizing ERBB2[2] had reported the death of a patient on trial.

In A phase I clinical trial of adoptive transfer of folate receptor-alpha redirected autologous T cells for recurrent ovarian cancer[3] authors: Lana E Kandalaft*, Daniel J Powell and George Coukos from University of Pennsylvania recorded adverse events in pilot studies using a CART modified to recognize the folate receptor, so it appears any adverse event reporting system is at the discretion of the primary investigator.

Other protocol considerations suggested by the symposium attendants included:

  • Plan for translational clinical lab for routine blood analysis
  • Subject screening for pulmonary and cardiac events
  • Determine possibility of insertional mutagenesis
  • Informed consent
  • Analysis of non T and T-cell subsets, e.g. natural killer cells and CD*8 cells

3. Consideration for Design of Trials and Mitigating Toxicities

  • Early Toxic effectsCytokine Release Syndrome– The effectiveness of CART therapy has been manifested by release of high levels of cytokines resulting in fever and inflammatory sequelae. One such cytokine, interleukin 6, has been attributed to this side effect and investigators have successfully used an IL6 receptor antagonist, tocilizumab (Acterma™), to alleviate symptoms of cytokine release syndrome (see review Adoptive T-cell therapy: adverse events and safety switches by Siok-Keen Tey).


Below is a video form Dr. Renier Brentjens, M.D., Ph.D. for Memorial Sloan Kettering concerning the finding he made that the adverse event from cytokine release syndrome may be a function of the tumor cell load, and if they treat the patient with CAR-T right after salvage chemotherapy the adverse events are alleviated..

Please see video below:

http link: https://www.youtube.com/watch?v=4Gg6elUMIVE

  • Early Toxic effects – Over-activation of CAR T-cells; mitigation by dose escalation strategy (as authors in reference [3] proposed). Most trials give billions of genetically modified cells to a patient.
  • Late Toxic Effectslong-term depletion of B-cells . For example CART directing against CD19 or CD20 on B cells may deplete the normal population of CD19 or CD20 B-cells over time; possibly managed by IgG supplementation

Below is a curation of various examples of the need for developing a Pharmacovigilence Framework for Engineered T-Cell Therapies

As shown above the first reported side effects from engineered T-cell or CAR-T therapies stemmed from the first human trial occuring at University of Pennsylvania, the developers of the first CAR-T therapy.  The clinical investigators however anticipated the issue of a potential cytokine storm and had developed ideas in the pre-trial phase of how to ameliorate such toxicity using anti-cytokine antibodies.  However, until the trial was underway they were unsure of which cytokines would be prominent in causing a cytokine storm effect from the CAR-T therapy.  Fortunately, the investigators were able to save patient 1 (described here in other posts) using anti-IL1 and 10 antibodies.  


Over the years, however, multiple trials had to be discontinued as shown below in the following posts:

What does this mean for Immunotherapy? FDA put a temporary hold on Juno’s JCAR015, Three Death of Celebral Edema in CAR-T Clinical Trial and Kite Pharma announced Phase II portion of its CAR-T ZUMA-1 trial

The NIH has put a crimp in the clinical trial work of Steven Rosenberg, Kite Pharma’s star collaborator at the National Cancer Institute. The feds slammed the brakes on the production of experimental drugs at two of its facilities–including cell therapies that Rosenberg works with–after an internal inspection found they weren’t in compliance with safety and quality regulations.

In this instance Kite was being cited for manufacturing issues, apparantly fungal contamination in their cell therapy manufacturing facility.  However shortly after other CAR-T developers were having tragic deaths in their initial phase 1 safety studies.

Juno Halts Cancer Trial Using Gene-Altered Cells After 3 Deaths


Juno halts its immunotherapy trial for cancer after three patient deaths

By DAMIAN GARDE @damiangarde and MEGHANA KESHAVAN @megkesh

JULY 7, 2016

In Juno patient deaths, echoes seen of earlier failed company


JULY 8, 2016


After a deadly clinical trial, will immune therapies for cancer be a bust?

By DAMIAN GARDE @damiangarde

JULY 8, 2016

This led to warnings by FDA and alteration of their trials as well as the use of their CART as a monotherapy

Hours after Juno CAR-T study deaths announced, Kite enrolls CAR-T PhII

Well That Was Quick! FDA Lets Juno Restart Trial With a New Combination Chemotherapuetic

 at Seattle Times

FDA lets Juno restart cancer-treatment trial

Certainly with so many issues there would seem to be more rigorous work to either establish a pharmacovigilence framework or to develop alternative engineered T cells with a safer profile

However here we went again

New paper sheds fresh light on Tmunity’s high-profile CAR-T deaths
Jason Mast
The industry-wide effort to push CAR-T therapies — wildly effective in several blood cancers — into solid tumors took a hit last year when Tmunity, a biotech founded by CAR-T pioneer Carl June and backed by several blue-chip VCs, announced it shut down its lead program for prostate cancer after two patients died.

On a personal note this trial was announced in a Bio International meeting here in Philadelphia a few years ago in 2019

see Live Conference Coverage on this site

eProceedings for BIO 2019 International Convention, June 3-6, 2019 Philadelphia Convention Center; Philadelphia PA, Real Time Coverage by Stephen J. Williams, PhD @StephenJWillia2

and the indication was for prostate cancer, in particular hormone resistant castration resistant.  Another one was planned for pancreatic cancer from the same group and the early indications were favorable.

From Onclive

Source: https://www.onclive.com/view/car-t-cell-therapy-trial-in-solid-tumors-halted-following-2-patient-deaths 

Tmunity Therapeutics, a clinical-stage biotherapeutics company, has halted the development of its lead CAR T-cell product following the deaths of 2 patients who were enrolled to a trial investigating its use in solid tumors.1

The patients reportedly died from immune effector cell-associated neurotoxicity syndrome (ICANS), which is a known adverse effect associated with CAR T-cell therapies.

“What we are discovering is that the cytokine profiles we see in solid tumors are completely different from hematologic cancers,” Oz Azam, co-founder of Tmunity said in an interview with Endpoints News. “We observed ICANS. And we had 2 patient deaths as a result of that. We navigated the first event and obviously saw the second event, and as a result of that we have shut down the version one of that program and pivoted quickly to our second generation.”

Previously, with first-generation CAR T-cell therapies in patients with blood cancers, investigators were presented with the challenge of overcoming cytokine release syndrome. Now ICANS, or macrophage activation, is proving to have deadly effects in the realm of solid tumors. Carl June, the other co-founder of Tmunity, noted that investigators will now need to dedicate their efforts to engineering around this, as had been done with tocilizumab (Actemra) in 2012.

The company is dedicated to the development of novel approaches that produce best-in-class control over T-cell activation and direction in the body.2 The product examined in the trial was developed to utilize engineered patient cells to target prostate-specific membrane antigen; it was also designed to use a dominant TGFβ receptor to block an important checkpoint involved in cancer.

Twenty-four patients were recruited for the dose-escalating study and the company plans to release data from high-dose cohorts later in 2021.

“We are going to present all of this in a peer-reviewed publication because we want to share this with the field,” Azam said. “Because everything we’ve encountered, no matter what…people are going to encounter this when they get into the clinic, and I don’t think they’ve really understood yet because so many are preclinical companies that are not in the clinic with solid tumors. And the rubber meets the road when you get in the clinic, because the ultimate in vivo model is the human model.”

Azam added that the company plans to develop a new investigational new drug for version 2, which they hope will result in a safer product.


  1. Carroll J. Exclusive: Carl June’s Tmunity encounters a lethal roadblock as 2 patient deaths derail lead trial, raise red flag forcing rethink of CAR-T for solid tumors. Endpoints News. June 2, 2021. Accessed June 3, 2021. https://bit.ly/3wPYWm0
  2. Research and Development. Tmunity Therapeutics website. Accessed June 3, 2021. https://bit.ly/3fOH3OR

Forward to 2022

Reprogramming a new type of T cell to go after cancers with less side effects, longer impact

A Sloan Kettering Institute research team thinks new, killer, innate-like T cells could make promising candidates to treat cancers that so far haven’t responded to immunotherapy treatments. (koto_feja)

Immunotherapy is one of the more appealing and effective kinds of cancer treatment when it works, but the relatively new approach is still fairly limited in the kinds of cancer it can be used for. Researchers at the Sloan Kettering Institute have discovered a new kind of immune cell and how it could be used to expand the reach of immunotherapy treatments to a much wider pool of patients.

The cells in question are called killer innate-like T cells, a threatening name for a potentially lifesaving innovation. Unlike normal killer T cells, killer innate-like T cells stay active much longer and can burrow further into potentially cancerous tissue to attack tumors. The research team first reported these cells in 2016, but it’s only recently that they were able to properly understand and identify them.

“We think these killer innate-like T cells could be targeted or genetically engineered for cancer therapy,” said the study’s lead author, Ming Li, Ph.D., in a press release. “They may be better at reaching and killing solid tumors than conventional T cells.”

Below is the referenced paper from Pubmed:

Evaluation of the safety and efficacy of humanized anti-CD19 chimeric antigen receptor T-cell therapy in older patients with relapsed/refractory diffuse large B-cell lymphoma based on the comprehensive geriatric assessment system



Anti-CD19 chimeric antigen receptor (CAR) T-cell therapy has led to unprecedented results to date in relapsed/refractory (R/R) diffuse large B-cell lymphoma (DLBCL), yet its clinical application in elderly patients with R/R DLBCL remains somewhat limited. In this study, a total of 31 R/R DLBCL patients older than 65 years of age were enrolled and received humanized anti-CD19 CAR T-cell therapy. Patients were stratified into a fit, unfit, or frail group according to the comprehensive geriatric assessment (CGA). The fit group had a higher objective response (OR) rate (ORR) and complete response (CR) rate than that of the unfit/frail group, but there was no difference in the part response (PR) rate between the groups. The unfit/frail group was more likely to experience AEs than the fit group. The peak proportion of anti-CD19 CAR T-cells in the fit group was significantly higher than that of the unfit/frail group. The CGA can be used to effectively predict the treatment response, adverse events, and long-term survival.


Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma (NHL), accounting for 30–40% of cases, with the median age of onset being older than 65 years [1]. Although the five-year survival rate for patients with DLBCL has risen to more than 60% with the application of standardized treatments and hematopoietic stem cell transplantation, nearly half of patients progress to relapsed/refractory (R/R) DLBCL. Patients with R/R DLBCL, especially elderly individuals, have a poor prognosis [2,3], so new treatments are needed to prolong survival and improve the prognosis of this population.

As a revolutionary immunotherapy therapy, anti-CD19 chimeric antigen receptor (CAR) T-cell therapy has achieved unprecedented results in hematological tumors [4]. As CD19 is expressed on the surface of most B-cell malignant tumors but not on pluripotent bone marrow stem cells, CD19 has been used as a target for B-cell malignancies, including B-cell acute lymphoblastic leukemia, NHL, multiple myeloma, and chronic lymphocytic leukemia [5]. Despite the wide application and high efficacy of anti-CD19 CAR T-cell therapy, reports of adverse events (AEs) such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxic syndrome (ICANS) have influenced its use [6]. Especially in elderly patients, AEs associated with anti-CD19 CAR T-cell therapy might be more obvious.

Although anti-CD19 CAR T-cell therapy has been reported in the treatment of NHL, including R/R DLBCL, few studies to date have assessed the safety of anti-CD19 CAR T-cell therapy in elderly R/R DLBCL patients, and its clinical application in the elderly R/R DLBCL population is limited. In ZUMA-1 [7] to R/R DLBCL patients who received CAR T-cell therapy, the CR rate in patients ≥65 years was higher than that of in patients <65 years (75% vs. 53%). Lin et al. [8] reported 49 R/R DLBCL patients (24 patients >65 years, 25 patients <65 years) who received CAR T-cell therapy with a median follow-up of 179 days. The CR rate at 100 days was 51%, while the 6-month progression-free survival (PFS) and overall survival (OS) were 48% and 71%, respectively. Neither of the two studies carried out a comprehensive geriatric assessment (CGA) of fit, unfit, and frail groups of R/R DLBCL patients over 65 years of age and further analyzed the differences in efficacy and side effects in the three groups. The CGA is an effective system designed to evaluate the prognosis and improve the survival of elderly patients with cancer. The CGA system includes age, activities of daily living (ADL), instrumental ADL (IADL), and the Cumulative Illness Rating Score for Geriatrics (CIRS-G) [9].

In this study, elderly R/R DLBCL patients were grouped according to their CGA results (fit vs. unfit/frail) before receiving humanized anti-CD19 CAR T-cell therapy. We then analyzed the efficacy and AEs of anti-CD19 CAR T-cell therapy and compared findings between these groups.


Well it appears that the discriminator was only fitness going into the trial  a bit odd that the whole field appears to be lacking in development of Safety Biomarkers.



However Genentech (subsidiary of Roche) may now be using some data to develop therapies which may combat resistance to CART therapies which may provide at least, for now, a toxicokinetic approach to reducing AEs by lowering the amount of CARTs needed to be administered.


Source: https://www.fiercebiotech.com/research/genentech-uncovers-how-cancer-cells-resist-t-cell-attack-potential-boon-immunotherapy

Roche’s Genentech is exploring inhibiting ESCRT as an anticancer strategy, said Ira Mellman, Ph.D., Genentech’s vice president of cancer immunology. (Roche)

Cancer cells deploy various tactics to avoid being targeted and killed by the immune system. A research team led by Roche’s Genentech has now identified one such method that cancer cells use to resist T-cell assault by repairing damage.

To destroy their targets, cancer-killing T cells known as cytotoxic T lymphocytes (CTLs) secrete the toxin perforin to form little pores in the target cells’ surface. Another type of toxin called granzymes are delivered directly into the cells through those portals to induce cell death.

By using high-res imaging in live cells, the Genentech-led team found that the membrane damage caused by perforin could trigger a repair response. The tumor cells could recruit endosomal sorting complexes required for transport (ESCRT) proteins to remove the lesions, thereby preventing granzymes from entering, the team showed in a new study published in Science.

The following is the Science paper

Membrane repair in target cell defenses

Killer T cells destroy virus-infected and cancer cells by secreting two protein toxins that act as a powerful one-two punch. Pore-forming toxins, perforins, form holes in the plasma membrane of the target cell. Cytotoxic proteins released by T cells then pass through these portals, inducing target cell death. Ritter et al. combined high-resolution imaging data with functional analysis to demonstrate that tumor-derived cells fight back (see the Perspective by Andrews). Protein complexes of the ESCRT family were able to repair perforin holes in target cells, thereby delaying or preventing T cell–induced killing. ESCRT-mediated membrane repair may thus provide a mechanism of resistance to immune attack. —SMH


Cytotoxic T lymphocytes (CTLs) and natural killer cells kill virus-infected and tumor cells through the polarized release of perforin and granzymes. Perforin is a pore-forming toxin that creates a lesion in the plasma membrane of the target cell through which granzymes enter the cytosol and initiate apoptosis. Endosomal sorting complexes required for transport (ESCRT) proteins are involved in the repair of small membrane wounds. We found that ESCRT proteins were precisely recruited in target cells to sites of CTL engagement immediately after perforin release. Inhibition of ESCRT machinery in cancer-derived cells enhanced their susceptibility to CTL-mediated killing. Thus, repair of perforin pores by ESCRT machinery limits granzyme entry into the cytosol, potentially enabling target cells to resist cytolytic attack.
Cytotoxic lymphocytes, including cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells, are responsible for identifying and destroying virus-infected or tumorigenic cells. To kill their targets, CTLs and NK cells secrete a pore-forming toxin called perforin through which apoptosis-inducing serine proteases (granzymes) are delivered directly into the cytosol. Successful killing of target cells often requires multiple hits from single or multiple T cells (1). This has led to the idea that cytotoxicity is additive, often requiring multiple rounds of sublethal lytic granule secretion events before a sufficient threshold of cytosolic granzyme activity is reached to initiate apoptosis in the target (2).
Loss of plasma membrane integrity induced by cytolytic proteins or mechanical damage leads to a membrane repair response. Damage results in an influx of extracellular Ca2+, which has been proposed to lead to the removal of the membrane lesion by endocytosis, resealing of the lesions by lysosomal secretion, or budding into extracellular vesicles (3). Perforin pore formation was initially reported to enhance endocytosis of perforin (4), but subsequent work has challenged this claim (5). Endosomal sorting complexes required for transport (ESCRT) proteins can repair small wounds and pores in the plasma membrane caused by bacterial pore-forming toxins, mechanical wounding, and laser ablation (67). ESCRT proteins are transiently recruited to sites of membrane damage in a Ca2+-dependent fashion, where they assemble budding structures that shed to eliminate the wound and restore plasma membrane integrity. ESCRT-dependent membrane repair has been implicated in the resealing of endogenous pore-mediated plasma membrane damage during necroptosis (8) and pyroptosis (9).

Localization of target-derived ESCRT proteins to the cytolytic synapse

To investigate whether ESCRT-mediated membrane repair might be involved in the removal of perforin pores during T cell killing, we first determined whether ESCRT proteins in cancer-derived cells were recruited to sites of CTL engagement after perforin secretion. We used CTLs from OT-I mice that express a high-affinity T cell receptor (TCR) that recognizes the ovalbumin peptide SIINFEKL (OVA257-264) bound to the major histocompatibility complex (MHC) allele H-2Kb (10). We performed live-cell microscopy of OT-I CTLs engaging SIINFEKL-pulsed target cells that express enhanced green fluorescent protein (EGFP)–tagged versions of Tsg101 or Chmp4b, two ESCRT proteins implicated in membrane repair (6). To correlate recruitment of ESCRT proteins with perforin exposure in time, we monitored CTL-target interaction in media with a high concentration of propidium iodide (PI), a cell-impermeable fluorogenic dye that can rapidly diffuse through perforin pores to bind and illuminate nucleic acids in the cytosol and nucleus of the target (5). EGFP-tagged ESCRT proteins were consistently recruited to the site of CTL engagement within 30 to 60 s after PI influx (Fig. 1, A and B). EGFP-Tsg101 and EGFP-Chmp4b in target cells accumulated at the cytolytic synapse after PI influx in 25 of 27 (92.6%) and 31 of 33 (93.9%) of conjugates monitored, respectively, compared with a cytosolic EGFP control, which was not recruited (Fig. 1C and movies S1 to S3). Notably, ESCRT-laden material, presumably membrane fragments, frequently detached from the target cell and adhered to the surface of the CTL (Fig. 1, D and E, and movie S2). We observed this phenomenon in ~60% of conjugates imaged in which targets expressed EGFP-Tsg101 or EGFP-Chmp4b (17 of 27 and 20 of 33 conjugates, respectively; Fig. 1D). Shedding of ESCRT-positive membrane from the cell after repair occurs after laser-induced plasma membrane wounding (67). Plasma membrane fragments shed from the target cell into the synaptic cleft likely contain ligands for CTL-resident receptors. Target cell death would separate the CTL and target, revealing target-derived material on the CTL surface.
FIG. 1. Fluorescently tagged ESCRT proteins in targets localize to site of CTL killing after perforin secretion.
(A) Live-cell spinning disk confocal imaging of a fluorescently labeled OT-I CTL (magenta) engaging an MC38 cancer cell expressing EGFP-Tsg101 (green) in media containing 100 μM PI (red). Yellow arrowheads highlight ESCRT recruitment. T-0:00 is the first frame of PI influx into the target cell (time in minutes:seconds). Scale bar, 10 μm. (B) Graph of EGFP-Tsg101 and PI fluorescence intensity at the IS within the target over time, from example in (A). AU, arbitrary units. (C and D) Quantification of CTL-target conjugates exhibiting accumulation of EGFP at the synapse after PI influx (C) or detectable EGFP-labeled material associated with CTL after target interaction (D) (EGFP condition: N = 22 conjugates in seven independent experiments; EGFP-Tsg101 condition: N = 27 conjugates in nine independent experiments; EGFP-Chmp4b condition: N = 33 conjugates in 24 independent experiments). (E) Live-cell spinning disk confocal imaging of OT-I CTL (magenta) killing MC38 expressing EGFP-Chmp4b (green), demonstrating the presence of target-derived EGFP-Chmp4b material (yellow arrowheads) associated with CTL membrane after a productive target encounter. T-0:00 is the first frame of PI influx into the target cell. Scale bar, 10 μm.

3D cryo-SIM and FIB-SEM imaging of CTLs caught in the act of killing target cells

Although live-cell imaging indicated that ESCRT complexes were rapidly recruited at sites of T cell–target cell contact, light microscopy alone is of insufficient resolution to establish that this event occurred at the immunological synapse (IS). We thus sought to capture a comprehensive view of the IS in the moments immediately after secretion of lytic granules. We used cryo–fluorescence imaging followed by correlative focused ion beam–scanning electron microscopy (FIB-SEM), which can achieve isotropic three-dimensional (3D) imaging of whole cells at 8-nm resolution or better (1113). To capture the immediate response of target cells after perforin exposure, we developed a strategy whereby cryo-fixed CTL-target conjugates were selected shortly after perforation, indicated by the presence of a PI gradient in the target (fig. S1A). In live-cell imaging experiments, PI fluorescence across the nucleus of SIINFEKL-pulsed ID8 target cells began as a gradient and became homogeneous 158 ± 64 s, on average, after initial PI influx (N = 31 conjugates; fig. S1, B and C, and movie S4). Thus, fixed CTL-target conjugates that exhibited a gradient of PI across the nucleus would have been captured within ~3 min of perforin exposure.
Coverslips of CTL-target conjugates underwent high-pressure freezing and were subsequently imaged with wide-field cryogenic fluorescence microscopy followed by 3D cryo–structured illumination microscopy (3D cryo-SIM) performed in a customized optical cryostat (14). We selected candidate conjugates for FIB-SEM imaging on the basis of whether a gradient of PI fluorescence was observed across the nucleus of the target emanating from an attached CTL (movie S5). FIB-SEM imaging of the CTL-target conjugate at 8-nm isotropic voxels resulted in a stack of >10,000 individual electron microscopy (EM) images. The image stack was then annotated using a human-assisted machine learning–computer vision platform to segment the plasma membranes of each cell along with cell nuclei and various organelles (https://ariadne.ai/).
We captured four isotropic 3D 8-nm-resolution EM datasets of CTLs killing cancer cells moments after the secretion of lytic granule contents (Fig. 2A and movie S6). Semiautomated segmentation of the cell membranes, nuclei, lytic granules, Golgi apparatus, mitochondria, and centrosomes of the T cells allow for easier visualization and analysis of the 3D EM data. All FIB-SEM datasets and segmentations can be explored online at https://openorganelle.janelia.org (see links in the supplementary materials). Reconstructed views of the segmented data clearly demonstrate the polarization of the centrosome, Golgi apparatus, and lytic granules to the IS—all of which are hallmarks of CTL killing [Fig. 2A, i to iii, and movie S6, time stamp (TS) 1:33] (1516). On the target cell side, we noted cytoplasmic alterations consistent with cell damage including enhanced electron density of mitochondria adjacent to the IS (fig. S2A). Close visual scanning of the postsynaptic target cell membrane in the raw EM data failed to reveal obvious perforin pores, which have diameters (16 to 22 nm) close to the limit of resolution for this technique (17).
FIG. 2. Eight-nm-resolution 3D FIB-SEM imaging of whole CTL-target conjugate.
(A) 3D rendering of segmented plasma membrane predictions derived from isotropic 8-nm-resolution FIB-SEM imaging of a high-pressure frozen OT-I CTL (red) captured moments after secretion of lytic granules toward a peptide-pulsed ID8 ovarian cancer cell (blue). (i) Side-on sliced view corresponding to the gray horizontal line within the inset box in (A). Seen here are 3D renderings of the segmented plasma membrane of the cancer cell (blue) as well as the CTL plasma membrane (red), centrosome (gold), Golgi apparatus (cyan), lytic granules (purple), mitochondria (green), and nucleus (gray). (ii and iii) A zoomed-in view from the dashed white box in (i) shows the details of the IS (ii) and a single corresponding FIB-SEM slice docked onto the segmented data (iii). (B) Single top-down FIB-SEM slice showing overlaid target cell (blue) and CTL (red) segmentation. (i) Zoomed-in view from dashed white box in (B) details the intercellular material (IM) (gray) between the CTL and target at the IS. (C) Zoomed-in image of a 3D rendering of the surface of the target cell plasma membrane (white) opposite the intercellular material (IM) at the IS. Yellow arrowheads mark plasma membrane buds protruding into the synaptic cleft. (i and ii) Accompanying images demonstrate the orientation of the view in (C) with the rendering of the CTL (red) present (i) and removed (ii), and the dashed yellow box in (ii) indicates the area of detail shown in (C).
The segmentation of the two cells illustrates the detailed topography of the plasma membrane of the CTL and target at the IS (fig. S2B). The raw EM and segmentation data reveal a dense accumulation of particles, vesicles, and multilamellar membranous materials, which crowd the synaptic cleft between the CTL and the target (Fig. 2B and movie S6, TS 0:40 to 0:50). The source of this intercellular material (IM) was likely in part the lytic granules because close inspection revealed similar particles and dense vesicles located within as-yet-unreleased granules (fig. S2C). To determine whether some of the membranous material within the intercellular space might also have been derived from the target cell, we examined the surface topology of the postsynaptic target cell. We noted multiple tubular and bud-like protrusions of the target cell membrane that extended into the synaptic space; thus, at least some of the membrane structures observed were still in continuity with the target cell (Fig. 2C and movie S6, TS 0:58 to 1:11). ESCRT proteins have been shown to generate budding structures in the context of plasma membrane repair (6), which led us to next assess where target-derived ESCRT proteins are distributed in the context of the postsecretion IS.
To map the localization of target-derived ESCRT proteins onto a high-resolution landscape of the IS, we captured three FIB-SEM datasets that have associated 3D cryo-SIM fluorescence data for mEmerald-Chmp4b localization (Fig. 3A, fig. S3, and movie S7). This correlative light and electron microscopy (CLEM) revealed that mEmerald-Chmp4b expressed in the target cell was specifically recruited to the target plasma membrane opposite the secreted IM (Fig. 3, B and C). The topography of the plasma membrane at the site of ESCRT recruitment was markedly convoluted, exhibiting many bud-like projections (movie S7, TS 0:37 to 0:40). mEmerald-Chmp4b fluorescence also overlapped with some vesicular structures in the intercellular synaptic space (Fig. 3C). Together, the live-cell imaging and the 3D cryo-SIM and FIB-SEM CLEM demonstrate the localization of ESCRT proteins at the synapse that was the definitive site of CTL killing and was thus spatially and temporally correlated to perforin secretion. These data implicate the ESCRT complex in the repair of perforin pores.
FIG. 3. Correlative 3D cryo-SIM and FIB-SEM reveal localization of target-derived ESCRT within the cytolytic IS.
(A) Three example datasets showing correlative 3D cryo-SIM and FIB-SEM imaging of OT-I CTLs (red) captured moments after secretion of lytic granules toward peptide-pulsed ID8 cancer cells (blue) expressing mEmerald-Chmp4b (green fluorescence). (B and C) Single FIB-SEM slices corresponding to the orange boxes in (A), overlaid with CTL and cancer cell segmentation (B) or correlative cryo-SIM fluorescence of mEmerald-Chmp4b derived from the target cell (C).

Function of ESCRT proteins in repair of perforin pores

We next investigated whether ESCRT inhibition could enhance the susceptibility of target cells to CTL-mediated killing. Prolonged inactivation of the ESCRT pathway is itself cytotoxic (9). We thus developed strategies to ablate ESCRT function that would allow us a window of time to assess CTL killing (fig. S4). We used two approaches to block ESCRT function: CRISPR knockout of the Chmp4b gene or overexpression of VPS4aE228Q (E228Q, Glu228 → Gln), a dominant-negative kinase allele that impairs ESCRT function (fig. S4, A to C) (10). We took care to complete our assessment of target killing well in advance of spontaneous target cell death (fig. S4D).
We tested the capacity of OT-I CTLs to kill targets presenting one of four previously characterized peptides that demonstrate a range of potencies at stimulating the OT-I TCR: SIINFEKL (N4), the cognate peptide, and three separate variants (in order of highest to lowest affinity), SIITFEKL (T4), SIIQFEHL (Q4H7), and SIIGFEKL (G4) (1819). Target cells were pulsed with peptide, washed, transferred to 96-well plates, and allowed to adhere before the addition of OT-I CTLs. Killing was assessed by monitoring the uptake of a fluorogenic caspase 3/7 indicator (Fig. 4, A to D, and fig. S5A). Killing was significantly more efficient in ESCRT-inhibited target cells for both CRISPR depletion of Chmp4b (Fig. 4, A to C) and expression of the dominant-negative VPS4aE228Q (Fig. 4D). The difference in killing between the ESCRT-inhibited and control cells was greater when the lower-potency T4, Q4H7, and G4 peptides were used. Nevertheless, ESCRT inhibition moderately improved killing efficiency even in the case of the high-potency SIINFEKL peptide. ESCRT inhibition had no effect on MHC class I expression on the surface of target cells (fig. S5B). Thus, ESCRT inhibition could sensitize target cells to perforin- and granzyme-mediated killing, especially at physiologically relevant TCR-peptide MHC affinities.
FIG. 4. ESCRT inhibition enhances susceptibility of cancer cells to CTL killing and recombinant lytic proteins.
(A) Representative time-lapse data of killing of peptide-pulsed Chmp4b knockout (KO) or control B16-F10 cells by OT-I CTLs. Affinity of the pulsed peptide to OT-I TCR decreases from left to right. Error bars indicate SDs. (B) Images extracted from T4 medium-affinity peptide condition show software-detected caspase 3/7+ events in control and Chmp4b KO conditions. (C and D) Data representing the 4-hour time point of assays measuring OT-I T cells killing either Chmp4b KO (C) or VPS4 dominant-negative (D) target cells with matched controls. Error bars indicate SDs of data. Data are representative of at least three independent experimental replicates. pMHC, peptide-MHC; HA, hemagglutinin. (E and F) Determination of sublytic dose of Prf. B16-F10 cells expressing VPS4a (WT or E228Q) were exposed to increasing concentrations of Prf. Cell viability was determined by morphological gating (E). FSC, forward scatter; SSC, side scatter. (G and H) B16-F10 cells expressing VPS4a (WT or E228Q) were exposed to a sublytic dose of Prf in combination with increasing concentrations of recombinant GZMB (rGZMB). Cell death was determined by Annexin V–allophycocyanin (APC) staining (G). Controls include a condition with no perforin and 5000 ng/ml rGZMB and sublytic perforin with no rGZMB. Graphs in (F) and (H) represent the means of three experiments, and error bars indicate SDs. Statistical significance was determined by multiple unpaired t tests with alpha = 0.05. ns, not significant; *P < 0.05; **P < 0.01; ***P < 0.001.
We next directly tested the effects of ESCRT inhibition when target cells were exposed to both recombinant perforin (Prf) and granzyme B (GZMB), the most potently proapoptotic granzyme in humans and mice (20). Prf alone at high concentrations can lyse cells (4), so we first determined a sublytic Prf concentration that would temporarily permeabilize the plasma membrane but permit the cells to recover. B16-F10 cells expressing either VPS4aWT (WT, wild-type) or VPS4aE228Q were exposed to a range of Prf concentrations in the presence of PI, and cell viability and PI uptake were assessed using flow cytometry. Cells that expressed dominant-negative VPS4aE228Q were more sensitive to Prf alone than ESCRT-competent cells (Fig. 4, E and F). At 160 ng/ml Prf, there was no significant difference in cell viability for either condition. Cells in the live gate that were PI+ had been permeabilized by Prf but recovered. Although the percentage of PI+ live cells was similar under both sets of conditions, the mean fluorescence intensity of PI was higher in live ESCRT-inhibited cells (fig. S6). A delay in plasma membrane resealing could account for this difference.
We reasoned that delaying perforin pore repair might also enhance GZMB uptake into the target. ESCRT-inhibited cells were more sensitive to combined perforin-GZMB when cell death was measured by Annexin V staining (Fig. 4, G and H). Similar results were observed when these experiments were repeated with a murine lymphoma cancer cell line (fig. S7). The observation that ESCRT-inhibited target cells are more sensitive to both CTL-secreted and Prf-GZMB supports the hypothesis that the ESCRT pathway contributes to membrane repair after Prf exposure.
Escaping cell death is one of the hallmarks of cancer. Our findings suggest that ESCRT-mediated membrane repair of perforin pores may restrict accessibility of the target cytosol to CTL-secreted granzyme, thus promoting survival of cancer-derived cells under cytolytic attack. Although other factors may contribute to setting the threshold for target susceptibility to killing, the role of active repair of perforin pores must now be considered as a clear contributing factor.


We thank members of the Mellman laboratory for advice, discussion, and reagents; B. Haley for assistance with plasmid construct design; the Genentech FACS Core Facility for technical assistance; S. Van Engelenburg of Denver University for invaluable discussions and guidance; A. Wanner, S. Spaar, and the Ariande AI AG (https://ariadne.ai/) for assistance with FIB-SEM segmentation, CLEM coregistration, data presentation, and rendering; D. Bennett of the Janelia Research Campus for assisting with data upload to https://openorganelle.janelia.org; and the Genentech Postdoctoral Program for support.
Funding: A.T.R. and I.M. are funded by Genentech/Roche. C.S.X., G.S., A.W., D.A., N.I., and H.F.H. are funded by the Howard Hughes Medical Institute (HHMI).

Please look for a Followup Post concerning “Developing a Pharmacovigilence Framework for Engineered T-Cell Therapies”



  1. Ertl HC, Zaia J, Rosenberg SA, June CH, Dotti G, Kahn J, Cooper LJ, Corrigan-Curay J, Strome SE: Considerations for the clinical application of chimeric antigen receptor T cells: observations from a recombinant DNA Advisory Committee Symposium held June 15, 2010. Cancer research 2011, 71(9):3175-3181.
  2. Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA: Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Molecular therapy : the journal of the American Society of Gene Therapy 2010, 18(4):843-851.
  3. Kandalaft LE, Powell DJ, Jr., Coukos G: A phase I clinical trial of adoptive transfer of folate receptor-alpha redirected autologous T cells for recurrent ovarian cancer. Journal of translational medicine 2012, 10:157.

Other posts on this site on Immunotherapy and Cancer include

Report on Cancer Immunotherapy Market & Clinical Pipeline Insight

New Immunotherapy Could Fight a Range of Cancers

Combined anti-CTLA4 and anti-PD1 immunotherapy shows promising results against advanced melanoma

Molecular Profiling in Cancer Immunotherapy: Debraj GuhaThakurta, PhD

Pancreatic Cancer: Genetics, Genomics and Immunotherapy

$20 million Novartis deal with ‘University of Pennsylvania’ to develop Ultra-Personalized Cancer Immunotherapy

Upcoming Meetings on Cancer Immunogenetics

Tang Prize for 2014: Immunity and Cancer

ipilimumab, a Drug that blocks CTLA-4 Freeing T cells to Attack Tumors @DM Anderson Cancer Center

Juno’s approach eradicated cancer cells in 10 of 12 leukemia patients, indicating potential to transform the standard of care in oncology

Read Full Post »

Nanotechnology and HIV/AIDS Treatment

Author: Tilda Barliya, PhD


AIDS was first reported in 1981 followed by the identification of HIV as the cause of the disease in 1983 and is now a global pandemic that has become the leading infectious killer of adults worldwide. By 2006, more than 65 million people had been infected with the HIV virus worldwide and 25 million had died of AIDS (Merson MH. The HIV-AIDS pandemic at 25 – the global response. (1, 2). This has caused tremendous social and economic damage worldwide, with developing countries, particularly Sub-Saharan Africa, heavily affected.

A cure for HIV/AIDS has been elusive in almost 30 years of research. Early treatments focused on antiretroviral drugs that were effective only to a certain degree. The first drug, zidovudine, was approved by the US FDA in 1987, leading to the approval of a total of 25 drugs to date, many of which are also available in fixed-dose combinations and generic formulations for use in resource-limited settings (to date, only zidovudine and didanosine are available as true generics in the USA).

However, it was the advent of a class of drugs known as protease inhibitors and the introduction of triple-drug therapy in the mid-1990s that revolutionized HIV/AIDS treatment (3,4). This launched the era of highly active antiretroviral therapy (HAART), where a combination of three or more different classes of drugs are administered simultaneously.

Challenges of HIV/AIDS treatment

  • HIV resides in latent cellular and anatomical reservoirs where current drugs are unable to completely eradicate the virus.
  • Macrophages are major cellular reservoirs, which also contribute to the generation of elusive mutant viral genotypes by serving as the host for viral genetic recombination.
  • Anatomical latent reservoirs include secondary lymphoid tissue, testes, liver, kidney, lungs, the gut and the brain.
  • The major challenge facing current drug regimens is that they do not fully eramacrdicate the virus from these reservoirs; requiring patients take medications for life. Under current treatment, pills are taken daily, resulting in problems of patient adherence. The drugs also have side effects and in some people the virus develops resistance against certain drugs.

Current treatment in HIV/AIDS

The use of the HAART regimen, particularly in the developed world, has resulted in tremendous success in improving the expectancy and quality of lives for patients. However, some HAART regimens have serious side effects and, in all cases, HAART has to be taken for a lifetime, with daily dosing of one or more pills. Due to the need to take the medication daily for a lifetime, patients fail to adhere to the treatment schedule, leading to ineffective drug levels in the body and rebound of viral replication.Some patients also develop resistance to certain combinations of drugs, resulting in failure of the treatment. The absence of complete cure under current treatment underscores the great need for continued efforts in seeking innovative approaches for treatment of HIV/AIDS.

Drug resistance is mainly caused by the high genetic diversity of HIV-1 and the continuous mutation it undergoes. This problem is being addressed with individualized therapy, whereby resistance testing is performed to select a combination of drugs that is most effective for each patient (5). In addition, side effects due to toxicities of the drugs are also a concern. There are reports that patients taking HAART experience increased rates of heart disease, diabetes, liver disease, cancer and accelerated aging. Most experts agree that these effects could be due to the HIV infection itself or co-infection with another virus, such as co-infection with hepatitis C virus resulting in liver disease. However, the toxicities resulting from the drugs used in HAART could also contribute to these effects.

Under current treatment, complete eradication of the virus from the body has not been possible. The major cause for this is that the virus resides in ‘latent reservoirs’ within memory CD4+ T cells and cells of the macrophage–monocyte lineage. A major study recently found that, in addition to acting as latent reservoirs, macrophages significantly contribute to the generation of elusive mutant viral genotypes by serving as the host for viral genetic recombination (6).  The cells that harbor latent HIV are typically concentrated in specific anatomic sites, such as secondary lymphoid tissue, testes, liver, kidney, lungs, gut and the CNS. The eradication of the virus from such reservoirs is critical to the effective long-term treatment of HIV/AIDS patients.

Therefore, there is a great need to explore new approaches for developing nontoxic, lower-dosage treatment modalities that provide more sustained dosing coverage and effectively eradicate the virus from the reservoirs, avoiding the need for lifetime treatments.

Nanotechnology for HIV/AIDS treatment

The use of nanotechnology platforms for delivery of drugs is revolutionizing medicine in many areas of disease treatment.

Nanotechnology-based platforms for systemic delivery of antiretroviral drugs could have similar advantages.

  • Controlled-release delivery systems can enhance their half-lives, keeping them in circulation at therapeutic concentrations for longer periods of time. This could have major implications in improving adherence to the drugs.
  • Nanoscale delivery systems also enhance and modulate the distribution of hydrophobic and hydrophilic drugs into and within different tissues due to their small size. This particular feature of nanoscale delivery systems appears to hold the most promise for their use in clinical treatment and prevention of HIV. Specifically, targeted delivery of antiretroviral drugs to CD4+ T cells and macrophages as well as delivery to the brain and other organ systems could ensure that drugs reach latent reservoirs
  • Moreover, by controlling the release profiles of the delivery systems, drugs could be released over a longer time and at higher effective doses to the specific targets. Figure 1. Various nanoscale drug delivery systems.

Optional treatments:

  •    Antiretroviral drugs
  •    Gene Therapy
  •    Immune Therapy
  •    Prevention

An external file that holds a picture, illustration, etc.Object name is nihms180336f1.jpg Object name is nihms180336f1.jpg

The use of nanotechnology systems for delivery of antiretroviral drugs has been extensively reviewed by Nowacek et al. and Amiji et al. (7,8).

In a recent study based on polymeric systems, nanosuspensions (200 nm) of the drug rilpivirine (TMC278) stabilized by polyethylene. A series of experiments by Dou et al. showed that nanosuspension of the drug indinavir can be stabilized by a surfactant system comprised of Lipoid E80 for effective delivery to various tissues. The indinavir nanosuspensions were loaded into macrophages and their uptake was investigated. Macrophages loaded with indinavir nanosuspensions were then injected intravenously into mice, resulting in a high distribution in the lungs, liver and spleen. More significantly, the intravenous administration of a single dose of the nanoparticle-loaded macrophages in a rodent mouse model of HIV brain infection resulted in significant antiviral activity in the brain and produced measureable drug levels in the blood up to 14 days post-treatment.polypropylene glycol (poloxamer 338) and PEGylated tocopheryl succinate ester (TPGS 1000) were studied in dogs and mice. A single-dose administration of the drug in nanosuspensions resulted in sustained release over 3 months in dogs and 3 weeks in mice, compared with a half-life of 38 h for free drug. These results serve as a proof-of-concept that nanoscale drug delivery may potentially lower dosing frequency and improve adherence.

Active targeting strategies have also been employed for antiretroviral drug delivery. Macrophages, which are the major HIV reservoir cells, have various receptors on their surface such as formyl peptide, mannose, galactose and Fc receptors, which could be utilized for receptor-mediated internalization. The drug stavudine was encapsulated using various liposomes (120–200 nm) conjugated with mannose and galactose, resulting in increased cellular uptake compared with free drug or plain liposomes, and generating significant level of the drug in liver, spleen and lungs. Stavudine is a water-soluble drug with a very short serum half-life (1 h). Hence, the increased cellular uptake and sustained release in the tissues afforded by targeted liposomes is a major improvement compared with free drug. The drug zidovudine, with half-life of 1 h and low solubility, was also encapsulated in a mannose-targeted liposome made from stearylamine, showing increased localization in lymph node and spleen. An important factor to consider here is that although most of the nucleoside drugs such as stavudine and zidovudine have short serum half-lives, the clinically relevant half-life is that of the intracellular triphosphate form of the drug. For example, despite zidovudine’s 1 h half-life in plasma, it is dosed twice daily based on intracellular pharmacokinetic and clinical efficacy data. Therefore, future nanotechnology-based delivery systems will have to focus in showing significant increase of the half-lives of the encapsulated drugs to achieve a less frequent dosing such as once weekly, once-monthly or even less.

Gene Therapy for HIV/AIDS

In addition to improving existing antiretroviral therapy, there are ongoing efforts to discover alternative approaches for treatment of HIV/AIDS. One promising alternative approach is gene therapy, in which a gene is inserted into a cell to interfere with viral infection or replication. Other nucleic acid-based compounds, such as DNA, siRNA, RNA decoys, ribozymes and aptamers or protein-based agents such as fusion inhibitors and zinc-finger nucleases can also be used to interfere with viral replication.

An external file that holds a picture, illustration, etc.Object name is nihms180336f2.jpg Object name is nihms180336f2.jpg

RNAi is also considered to have therapeutic potential for HIV/AIDS. Gene silencing is induced by double stranded siRNA, which targets for destruction

he mRNA of the gene of interest. For HIV/AIDS, RNAi can either target the various stages of the viral replication cycle or various cellular targets involved in viral infection such as CD4, CCR5, and/or CXCR4, the major cell surface co-receptors responsible for viral entry. HIV replicates by reverse transcription to form DNA and uses the DNA to produce copies of its mRNA for protein synthesis; siRNA therapy could be used to knock down this viral mRNA. As with other gene therapy techniques, delivery of siRNA to specific cells and tissues has been the major challenge in realizing the potential of RNAi.

New nanotechnology platforms are tackling this problem by providing nonviral alternatives for effective and safe delivery. The first nontargeted delivery of siRNA in humans via self-assembling, cyclodextrin polymer-based nanoparticles for cancer treatment have recently entered Phase I clinical trials.

Although at an early stage, nonviral delivery of siRNA for treatment of HIV infection is also gaining ground. A fusion protein, with a peptide transduction domain and a double stranded RNA-binding domain, was used to encapsulate and deliver siRNA to T cells in vivo. CD4- and CD8-specific siRNA delivery caused RNAi responses with no adverse effects such as cyto-toxicity or immune stimulation. Similarly, a protamine-antibody fusion protein-based siRNA delivery demonstrated that siRNA knockdown of the gag gene can inhibit HIV replication in primary T cells

Single-walled nanotubes were shown to deliver CXCR4 and CD4 specific siRNA to human T cells and peripheral blood mononuclear cells. Up to 90% knockdown of CXCR4 receptors and up to 60% knockdown of CD4 expression on T cells was observed while the knockdown of CXCR4 receptors on peripheral blood mononuclear cells was as high as 60%. In a separate study, amino-terminated carbosilane dendrimers (with interior carbon-silicon bonds) were used for delivery of siRNA to HIV-infected lymphocytes.

These pioneering studies demonstrate that nonviral siRNA delivery is possible for HIV/AIDS treatment. However, more work needs to be done in optimizing the delivery systems and utilizing designs for efficient targeting and intracellular delivery. The recent developments in polymer- and liposome-based siRNA delivery systems could be optimized for targeting cells that are infected with HIV, such as T cells and macrophages. Moreover, since HIV mutates and has multiple strains with different genetic sequences, combination siRNA therapy targeting multiple genes should be pursued. For these applications, nanotechnology platforms with capability for co-delivery and targeting need to be developed specifically for HIV-susceptible cells. A macrophage and T-cell-targeted and nanotechnology-based combination gene therapy may be a promising platform for efficient HIV/AIDS treatment.

Immunotherapy for HIV/AIDS

The various treatment approaches described above focus on treating HIV/AIDS by directly targeting HIV at the level of the host cell or the virus itself. An alternative approach is immunotherapy aimed at modulating the immune response against HIV. CD8+ cytotoxic T-cell responses to acute HIV infection appear to be relatively normal, while neutralizing antibody production by B cells is delayed or even absent.

Immunotherapy is a treatment approach involving the use of immunomodulatory agents to modulate the immune response against a disease. Similar to vaccines, it is based on immunization of individuals with various immunologic formulations; however, the purpose is to treat HIV-infected patients as opposed to protect healthy individuals (preventive vaccines will be discussed in an upcoming section). The various immunotherapy approaches for HIV/AIDS could be based on delivering cytokines (such as IL-2, IL-7 and IL-15) or antigens. The development of cellular immunity, and to a large degree humoral immunity, requires antigen-presenting cells (APCs) to process and present antigens to CD4+and CD8+ T cells. Dendritic cells (DCs) are the quintessential professional APCs responsible for initiating and orchestrating the development of cellular and humoral (antibody) immunity.

Various polymeric systems have been explored for in vivo targeting of DCs and delivery of small molecules, proteins or DNAs showing potential for immunotherapy. Poly(ethylene glycol) (PEG) stabilized poly(propylene sulfide) polymer nanoparticles accumulated in DCs in lymph nodes. Following nanoparticle injection, DCs containing nanoparticles accumulated in lymph nodes, peaking at 4 days with 40–50% of DCs and other APCs having internalized nanoparticles.

In another study, nanoparticles of the copolymer poly(D,L-lacticide-co-glycolide) (PLGA) showed efficient delivery of antigens to murine bone marrow-derived DCs in vitro, suggesting their potential use in immunotherapy. More recently, a very interesting work showed that HIV p24 protein adsorbed on the surface of surfactant-free anionic poly(D,L-lactide) (PLA) nanoparticles were efficiently taken-up by mouse DCs, inducing DC maturation. he p24-nanoparticles induced enhanced cellular and mucosal immune responses in mice. Although this targeting is seen in ex vivo-generated DCs and not in vivo DCs, the efficient delivery of the antigen to DCs through the nanoparticles is an important demonstration that may eventually be applied to in vivo DC targeting.

Clinical Trial

he most clinically advanced application of nanotechnology for immunotherapy of HIV/AIDS is the DermaVir patch that has reached Phase II clinical trials (9). DermaVir is a targeted nanoparticle system based on polyethyleimine mannose (PEIm), glucose and HIV antigen coding DNA plasmid formulated into nanoparticles (~100 nm) and administered under a patch after a skin preparation. The nanoparticles are delivered to epidermal Langerhans cells that trap the nanoparticles and mature to become highly immunogenic on their way to the lymph nodes. Mature DCs containing the nanoparticles present antigens to T cells inducing cellular immunity. Preclinical studies and Phase I clinical trials showed safety and tolerability of the DermaVir patch, which led the progression to Phase II trials. This is the first nanotechnology-based immunotherapy for HIV/AIDS that has reached the clinic and encourages further work in this area.

Table 1

Summary of nanotechnology-based treatment approaches for HIV/AIDS.

Type of therapy Therapeutic agent (drug or gene) Nanotechnology delivery platform Development stage Refs.
Antiretroviral therapy Rilpivirine (TMC278) Poloxamer 338/TPGS 1000 Preclinical [35]
Indinavir Liposome-laden macrophages Preclinical [3638]
Stavudine Mannose- and galactose-targeted liposome Preclinical [3941]
Zidovudine Mannose-targeted liposome Preclinical [42]
Efavirenz Mannose-targeted dendrimer Preclinical [43,45]
Lamivudine Mannose-targeted dendrimer Preclinical [46]
Nanomaterials Fullerene derivatives Preclinical [4955]
Dendrimers Preclinical [56,57]
Silver nanoparticles Preclinical [58,59]
SDC-1721/gold nanoparticles Gold nanoparticles Preclinical [60]
Gene therapy siRNA Peptide fusion proteins, protamine–antibody fusion proteins, dendrimers, single walled carbon nanotubes, peptide–antibody conjugates Preclinical [7781]
Immunotherapy P24 protein Poly (D,L-lactide) nanoparticles/dendritic cells Preclinical [98]
Plasmid DNA Mannose-targeted polyethyleimine polymers Phase II clinical trials [99]

Note:  to open the references in the table 1, please go to ref 1 in this post to see full ref info.

Nanotechnology for HIV/AIDS prevention

The search for a safe and effective HIV/AIDS vaccine has been challenging in the almost three decades since the discovery of the disease. Recently, high-profile clinical trial failures have prompted great debate over the vaccine research, with some suggesting the need for a major focus on fundamental research, with fewer efforts on clinical trials.

The major challenges in the development of a preventive HIV/AIDS vaccine have been the extensive viral strain and sequence diversity, viral evasion of humoral and cellular immune responses, coupled with the lack of methods to elicit broadly reactive neutralizing antibodies and cytotoxic T cells. The challenge associated with delivery of any exogenous antigen (such as nanoparticles) to APCs, is that exogenous antigens require specialized ‘cross-presentation’ in order to be presented by MHC class I and activate CD8+cytotoxic T cells.

his requirement for cytosolic delivery of antigens and cross-presentation represents yet another hurdle for HIV intracellular antigen vaccine, but potentially an advantage of nanodelivery. Humoral responses (neutralizing antibodies produced by B cells) are generated to intact antigen presented on the surface for the virus, or nanoparticles, but these humoral responses typically require ‘help’ from CD4+ T cells, but rather both. Nanoparticles have potential as adjuvants and delivery systems for vaccines. Table 2 present the different approaches.

Table 2

Summary of nanotechnology developments for prevention of HIV/AIDS.

Type of preventive agent Antigen/adjuvant or drug Nanotechnology platform Development stage Refs.
Protein or peptide vaccine gp41, gp120, gp160, p24, Env, Gag, Tat Liposomes, nanoemulsion, MF59, PLA nanoparticles, poly(γ-glutamic acid) nanoparticles Preclinical [108111]
DNA vaccine env, rev, gag, tat, CpG ODN Liposomes, nanoemulsion, PLA nanoparticles Preclinical [115,121]
Inactivated viral particle Inactivated HIV viral particle Polystyrene nanospheres Preclinical [126127]
Microbicides L-lysine dendrimer L-lysine dendrimer Phase I/II [136138]
PLGA nanoparticles
PSC-RANTES PLGA Preclinical [139]
siRNA Nanoparticles, lipids, cholesterol conjugation Preclinical [141144]

ODN: Oligonucleotides; PLA: Poly(D,L-lactide); PLGA: Poly(D,L-lacticide-co-glycolide).

Note:  to open the references in the table 2, please go to ref 1 in this post to see full ref info.



Nanotechnology can impact the treatment and prevention of HIV/AIDS with various innovative approaches. Treatment options may be improved using nanotechnology platforms for delivery of antiretroviral drugs. Controlled and sustained release of the drugs could improve patient adherence to drug regimens, increasing treatment effectiveness.

While there is exciting potential for nanomedicine in the treatment of HIV/AIDS, challenges remain to be overcome before the potential is realized. These include toxicity of nanomaterials, stability of nanoparticles in physiological conditions and their scalability for large-scale production. These are challenges general to all areas of nanomedicine and various works are underway to tackle them.

Another important consideration in investigating nanotechnology-based systems for HIV/AIDS is the economic aspect, as the hardest hit and most vulnerable populations reside in underdeveloped and economically poor countries. In the case of antiretroviral therapy, nanotherapeutics may increase the overall cost of treatment, reducing the overall value. However, if the nanotherapeutics could improve patient adherence by reducing dosing frequency as expected, and furthermore, if they can eradicate viral reservoirs leading to a sterile immunity, these advantages may effectively offset the added cost.



1. Mamo T, Moseman EA., Kolishetti N., Salvadoe-Morales C., Shi J., Kuritzkes DR., Langer R., von-Adrian U and Farokhzad OF.   Emerging nanotechnology approaches for HIV/AIDS treatment and prevention. Nanomedicine (Lond) 2010; 5(2): 269-295.


2. Merson MH. The HIV-AIDS pandemic at 25 – the global response. N Engl J Med.2006;354(23):2414–2417

3. Walensky RP, Paltiel AD, Losina E, et al. The survival benefits of AIDS treatment in the United States. J Infect Dis. 2006;194(1):11–19

4. Richman DD, Margolis DM, Delaney M, Greene WC, Hazuda D, Pomerantz RJ. The challenge of finding a cure for HIV infection. Science. 2009;323(5919):1304–1307)

5.Sax PE, Cohen CJ, Kuritzkes DR. HIV Essentials. Physicians’ Press; Royal Oak, MI, USA: 2007.

6. Lamers SL, Salemi M, Galligan DC, et al. Extensive HIV-1 intra-host recombination is common in tissues with abnormal histopathology. PLoS One. 2009;4(3):E5065.

7. Vyas TK, Shah L, Amiji MM. Nanoparticulate drug carriers for delivery of HIV/AIDS therapy to viral reservoir sites. Expert Opin Drug Deliv. 2006;3(5):613–628.

8. Amiji MM, Vyas TK, Shah LK. Role of nanotechnology in HIV/AIDS treatment: Potential to overcome the viral reservoir challenge. Discov Med. 2006;6(34):157–162

9. Lori F, Calarota SA, Lisziewicz J. Nanochemistry-based immunotherapy for HIV-1. Curr Med Chem. 2007;14(18):1911–1919

Read Full Post »

%d bloggers like this: