Advertisements
Feeds:
Posts
Comments

Posts Tagged ‘clinical trial guidelines’


 

Multiple factors related to initial trial design may predict low patient accrual for cancer clinical trials

Reporter: Stephen J. Williams, Ph.D.

UPDATED 5/15/2019

A recently published paper in JCNI highlights results determining factors which may affect cancer trial patient accrual and the development of a predictive model of accrual issues based on those factors.

To hear a JCNI podcast on the paper click here

but below is a good posting from scienmag.com which describes their findings:

Factors predicting low patient accrual in cancer clinical trials

source: http://scienmag.com/factors-predicting-low-patient-accrual-in-cancer-clinical-trials/

Nearly one in four publicly sponsored cancer clinical trials fail to enroll enough participants to draw valid conclusions about treatments or techniques. Such trials represent a waste of scarce human and economic resources and contribute little to medical knowledge. Although many studies have investigated the perceived barriers to accrual from the patient or provider perspective, very few have taken a trial-level view and asked why certain trials are able to accrue patients faster than expected while others fail to attract even a fraction of the intended number of participants. According to a study published December 29 in the JNCI: Journal of the National Cancer Institute, a number of measurable trial characteristics are predictive of low patient accrual.

Caroline S. Bennette, M.P.H., Ph.D., of the Pharmaceutical Outcomes Research and Policy Program, University of Washington, Seattle, and colleagues from the University of Washington and the Fred Hutchinson Cancer Research Center analyzed information on 787 phase II/III clinical trials sponsored by the National Clinical Trials Network (NCTN; formerly the Cooperative Group Program) launched between 2000 and 2011. After excluding trials that closed because of toxicity or interim results, Bennette et al. found that 145 (18%) of NCTN trials closed with low accrual or were accruing at less than 50% of target accrual 3 years or more after opening.

The authors identified potential risk factors from the literature and interviews with clinical trial experts and found multiple trial-level factors that were associated with poor accrual to NCTN trials, such as increased competition for patients from currently ongoing trials, planning to enroll a higher proportion of the available patient population, and not evaluating a new investigational agent or targeted therapy. Bennette et al. then developed a multivariable prediction model of low accrual using 12 trial-level risk factors, which they reported had good agreement between predicted and observed risks of low accrual in a preliminary validation using 46 trials opened between 2012 and 2013.

The researchers conclude that “Systematically considering the overall influence of these factors could aid in the design and prioritization of future clinical trials…” and that this research provides a response to the recent directive from the Institute of Medicine to “improve selection, support, and completion of publicly funded cancer clinical trials.”

In an accompanying editorial, Derek Raghavan, M.D., Levine Cancer Institute, writes that the focus needs to be on getting more patients involved in trials, saying, “we should strive to improve trial enrollment, giving the associated potential for improved results. Whether the basis is incidental, because of case selection bias, or reflects the support available to trial patients has not been determined, but the fact remains that outcomes are better.”

###

Contact info:

Article: Caroline S. Bennette, M.P.H., Ph.D., cb11@u.washington.edu

Editorial: Derek Raghavan, M.D., derek.raghavan@carolinashealthcare.org

Other investigators also feel that initial trial design is of UTMOST importance for other reasons, especially in the era of “precision” or “personalized” medicine and why the “basket trial” or one size fits all trial strategy is not always feasible.

In Why the Cancer Research Paradigm Must Transition to “N-of-1” Approach

Dr. Maurie Markman, MD gives insight into why the inital setup of a trial and the multi-center basket type of  accrual can be a problematic factor in obtaining meaningful cohorts of patients with the correct mutational spectrum.

The anticancer clinical research paradigm has rapidly evolved so that subject selection is increasingly based on the presence or absence of a particular molecular biomarker in the individual patient’s malignancy. Even where eligibility does not mandate the presence of specific biological features, tumor samples are commonly collected and an attempt is subsequently made to relate a particular outcome (eg, complete or partial objective response rate; progression-free or overall survival) to the individual cancer’s molecular characteristics.

One important result of this effort has been the recognition that there are an increasing number of patient subsets within what was previously—and incorrectly—considered a much larger homogenous patient population; for example, non–small cell lung cancer (NSCLC) versus EGFR-mutation–positive NSCLC. And, while it may still be possible to conduct phase III randomized trials involving a relatively limited percentage of patients within a large malignant entity, extensive and quite expensive effort may be required to complete this task. For example, the industry-sponsored phase III trial comparing first-line crizotinib with chemotherapy (pemetrexed plus either carboplatin or cisplatin) in ALK-rearrangement–positive NSCLC, which constitutes 3% to 5% of NSCLCs, required an international multicenter effort lasting 2.5 years to accrue the required number of research subjects.1

But what if an investigator, research team, or biotech company desired to examine the clinical utility of an antineoplastic in a patient population representing an even smaller proportion of patients with NSCLC such as in the 1% of the patient population with ROS1 abnormalities,2 or in a larger percentage of patients representing 4%-6% of patients with a less common tumor type such as ovarian cancer? How realistic is it that such a randomized trial could ever be conducted?

Further, considering the resources required to initiate and successfully conduct a multicenter international phase III registration study, it is more than likely that in the near future only the largest pharmaceutical companies will be in a position to definitively test the clinical utility of an antineoplastic in a given clinical situation.

One proposal to begin to explore the benefits of targeted antineoplastics in the setting of specific molecular abnormalities has been to develop a socalled “basket trial” where patients with different types of cancers with varying treatment histories may be permitted entry, assuming a well-defined molecular target is present within their cancer. Of interest, several pharmaceutical companies have initiated such clinical research efforts.

Yet although basket trials represent an important research advance, they may not provide the answer to the molecular complexities of cancer that many investigators believe they will. The research establishment will have to take another step toward innovation to “N-of-1” designs that truly explore the unique nature of each individual’s cancer.

Trial Illustrates Weaknesses

A recent report of the results of one multicenter basket trial focused on thoracic cancers demonstrates both the strengths but also a major fundamental weakness of the basket trial approach.3

However, the investigators were forced to conclude that despite accrual of more than 600 patients onto a study conducted at two centers over a period of approximately 2 years, “this basket trial design was not feasible for many of the arms with rare mutations.”3

They concluded that they needed a larger number of participating institutions and the ability to adapt the design for different drugs and mutations. So the question to be asked is as follows: Is the basket-type approach the only alternative to evaluate the clinical relevance of a targeted antineoplastic in the presence of a specific molecular abnormality?

Of course, the correct answer to this question is surely: No!

– See more at: http://www.onclive.com/publications/Oncology-live/2015/July-2015/Why-the-Cancer-Research-Paradigm-Must-Transition-to-N-of-1-Approach#sthash.kLGwNzi3.dpuf

The following is a video on the website ClinicalTrials.gov which is a one-stop service called EveryClinicalTrial to easily register new clinical trials and streamline the process:

 

UPDATED 5/15/2019

Another possible roadblock to patient accrual has always been the fragmentation of information concerning the availability of clinical trails and coordinating access among the various trial centers, as well as performing analytics on trial data to direct new therapeutic directions.  The NIH has attempted to circumvent this problem with the cancer trials webpage trials.gov however going through the vast number of trials, patient accrual requirements, and finding contact information is a daunting task.  However certain clinical trial marketplaces are now being developed which may ease access problems to clinical trials as well as data analytic issues, as highlighted by the Scientist.com article below:

Scientist.com Launches Trial Insights, A Transformative Clinical Trials Data Analytics Solution

The world’s largest online marketplace rolls out first original service, empowering researchers with on demand insights into clinical trials to help drive therapeutic decisions

SAN DIEGO–(BUSINESS WIRE)–Scientist.com, the online marketplace for outsourced research, announced today the launch of Trial Insights, a digital reporting solution that simplifies data produced through clinical trial, biomarker and medical diagnostic studies into an intuitive and user-friendly dashboard. The first of its kind, Trial Insights curates publicly available data nightly from information hubs such as clinicaltrials.gov and customizes it to fit a researcher or research organization’s specific project needs.

Trial Insights, new clinical trial reporting solution, allows researchers to keep track of the evolving landscape of drugs, diseases, sponsors, investigators and medical devices important to their work.

Tweet this

“Trial Insights offers researchers an easy way to navigate the complexity of clinical trials information,” said Ron Ranauro, Founder of Incite Advisors. “Since Trial Insights’ content is digitally curated, researchers can continuously keep track of the evolving landscape of drugs, diseases, sponsors, investigators and medical devices important to their work.”

As the velocity, variety and veracity of data available on sites like clinicaltrials.gov continues to increase, the ability to curate it becomes more valuable to different audiences. With the advancement of personalized medicine, it is important to make the data accessible to the health care and patient communities. Information found on the Trial Insights platform can help guide decision making across the pharmaceutical, biotechnology and contract research organization industries as clinical trial data is a primary information source for competitive intelligence, research planning and clinical study planning.

“We are extremely excited to launch the first Scientist.com exclusive, original service offering to our clients in the life sciences,” said Mark Herbert, Scientist.com Chief Business Officer. “Our goal at Scientist.com is to help cure all diseases by 2050, and we believe solutions like Trial Insights, which greatly simplifies access to and reporting of clinical trial data, will get us one step closer to reaching that goal.”

source: https://www.businesswire.com/news/home/20190416005362/en/Scientist.com-Launches-Trial-Insights-Transformative-Clinical-Trials?utm_source=TrialIO+List

 

Other article on this Open Access Journal on Cancer Clinical Trial Design include:

Advertisements

Read Full Post »


NIH Considers Guidelines for CAR-T therapy: Report from Recombinant DNA Advisory Committee

Reporter: Stephen J. Williams, Ph.D.

In the mid to late 1970’s a public debate (and related hysteria) had emerged surrounding two emerging advances in recombinant DNA technology;

  1. the development of vectors useful for cloning pieces of DNA (the first vector named pBR322) and
  2. the discovery of bacterial strains useful in propagating such vectors

As discussed by D. S, Fredrickson of NIH’s Dept. of Education and Welfare in his historical review” A HISTORY OF THE RECOMBINANT DNA GUIDELINES IN THE UNITED STATES” this international concern of the biological safety issues of this new molecular biology tool led the National Institute of Health to coordinate a committee (the NIH Recombinant DNA Advisory Committee) to develop guidelines for the ethical use, safe development, and safe handling of such vectors and host bacterium. The first conversations started in 1974 and, by 1978, initial guidelines had been developed. In fact, as Dr. Fredrickson notes, public relief was voiced even by religious organizations (who had the greatest ethical concerns)

On December 16, 1978, a telegram purporting to be from the Vatican was hand delivered to the office of Joseph A. Califano, Jr., Secretary of Health, Education,

and Welfare. “Habemus regimen recombinatum,” it proclaimed, in celebration of the

end of a long struggle to revise the NIH Guidelines for Research Involving

Recombinant DNA Molecules

The overall Committee resulted in guidelines (2013 version) which assured the worldwide community that

  • organisms used in such procedures would have limited pathogenicity in humans
  • vectors would be developed in a manner which would eliminate their ability to replicate in humans and have defined antibiotic sensitivity

So great was the success and acceptance of this committee and guidelines, the NIH felt the Recombinant DNA Advisory Committee should meet regularly to discuss and develop ethical guidelines and clinical regulations concerning DNA-based therapeutics and technologies.

A PowerPoint Slideshow: Introduction to NIH OBA and the History of Recombinant DNA Oversight can be viewed at the following link:

http://www.powershow.com/view1/e1703-ZDc1Z/Introduction_to_NIH_OBA_and_the_History_of_Recombinant_DNA_Oversight_powerpoint_ppt_presentation

Please see the following link for a video discussion between Dr. Paul Berg, who pioneered DNA recombinant technology, and Dr. James Watson (Commemorating 50 Years of DNA Science):

http://media.hhmi.org/interviews/berg_watson.html

The Recombinant DNA Advisory Committee has met numerous times to discuss new DNA-based technologies and their biosafety and clinical implication including:

A recent Symposium was held in the summer of 2010 to discuss ethical and safety concerns and discuss potential clinical guidelines for use of an emerging immunotherapy technology, the Chimeric Antigen Receptor T-Cells (CART), which at that time had just been started to be used in clinical trials.

Considerations for the Clinical Application of Chimeric Antigen Receptor T Cells: Observations from a Recombinant DNA Advisory Committee Symposium Held June 15, 2010[1]

Contributors to the Symposium discussing opinions regarding CAR-T protocol design included some of the prominent members in the field including:

Drs. Hildegund C.J. Ertl, John Zaia, Steven A. Rosenberg, Carl H. June, Gianpietro Dotti, Jeffrey Kahn, Laurence J. N. Cooper, Jacqueline Corrigan-Curay, And Scott E. Strome.

The discussions from the Symposium, reported in Cancer Research[1]. were presented in three parts:

  1. Summary of the Evolution of the CAR therapy
  2. Points for Future Consideration including adverse event reporting
  3. Considerations for Design and Implementation of Trials including mitigating toxicities and risks

1. Evolution of Chimeric Antigen Receptors

Early evidence had suggested that adoptive transfer of tumor-infiltrating lymphocytes, after depletion of circulating lymphocytes, could result in a clinical response in some tumor patients however developments showed autologous T-cells (obtained from same patient) could be engineered to express tumor-associated antigens (TAA) and replace the TILS in the clinical setting.

However there were some problems noticed.

  • Problem: HLA restriction of T-cells. Solution: genetically engineer T-cells to redirect T-cell specificity to surface TAAs
  • Problem: 1st generation vectors designed to engineer T-cells to recognize surface epitopes but engineered cells had limited survival in patients.   Solution: development of 2nd generation vectors with co-stimulatory molecules such as CD28, CD19 to improve survival and proliferation in patients

A summary table of limitations of the two types of genetically-modified T-cell therapies were given and given (in modified form) below

                                                                                                Type of Gene-modified T-Cell

Limitations aβ TCR CAR
Affected by loss or decrease of HLA on tumor cells yes no
Affected by altered tumor cell antigen processing? yes no
Need to have defined tumor target antigen? no yes
Vector recombination with endogenous TCR yes no

A brief history of construction of 2nd and 3rd generation CAR-T cells given by cancer.gov:

http://www.cancer.gov/cancertopics/research-updates/2013/CAR-T-Cells

cartdiagrampic

Differences between  second- and third-generation chimeric antigen receptor T cells. (Adapted by permission from the American Association for Cancer Research: Lee, DW et al. The Future Is Now: Chimeric Antigen Receptors as New Targeted Therapies for Childhood Cancer. Clin Cancer Res; 2012;18(10); 2780–90. doi:10.1158/1078-0432.CCR-11-1920)

Constructing a CAR T Cell (from cancer.gov)

The first efforts to engineer T cells to be used as a cancer treatment began in the early 1990s. Since then, researchers have learned how to produce T cells that express chimeric antigen receptors (CARs) that recognize specific targets on cancer cells.

The T cells are genetically modified to produce these receptors. To do this, researchers use viral vectors that are stripped of their ability to cause illness but that retain the capacity to integrate into cells’ DNA to deliver the genetic material needed to produce the T-cell receptors.

The second- and third-generation CARs typically consist of a piece of monoclonal antibody, called a single-chain variable fragment (scFv), that resides on the outside of the T-cell membrane and is linked to stimulatory molecules (Co-stim 1 and Co-stim 2) inside the T cell. The scFv portion guides the cell to its target antigen. Once the T cell binds to its target antigen, the stimulatory molecules provide the necessary signals for the T cell to become fully active. In this fully active state, the T cells can more effectively proliferate and attack cancer cells.

2. Adverse Event Reporting and Protocol Considerations

The symposium had been organized mainly in response to two reported deaths of patients enrolled in a CART trial, so that clinical investigators could discuss and formulate best practices for the proper conduct and analysis of such trials. One issue raised was lack of pharmacovigilence procedures (adverse event reporting). Although no pharmacovigilence procedures (either intra or inter-institutional) were devised from meeting proceedings, it was stressed that each institution should address this issue as well as better clinical outcome reporting.

Case Report of a Serious Adverse Event Following the Administration of T Cells Transduced With a Chimeric Antigen Receptor Recognizing ERBB2[2] had reported the death of a patient on trial.

In A phase I clinical trial of adoptive transfer of folate receptor-alpha redirected autologous T cells for recurrent ovarian cancer[3] authors: Lana E Kandalaft*, Daniel J Powell and George Coukos from University of Pennsylvania recorded adverse events in pilot studies using a CART modified to recognize the folate receptor, so it appears any adverse event reporting system is at the discretion of the primary investigator.

Other protocol considerations suggested by the symposium attendants included:

  • Plan for translational clinical lab for routine blood analysis
  • Subject screening for pulmonary and cardiac events
  • Determine possibility of insertional mutagenesis
  • Informed consent
  • Analysis of non T and T-cell subsets, e.g. natural killer cells and CD*8 cells

3. Consideration for Design of Trials and Mitigating Toxicities

  • Early Toxic effectsCytokine Release Syndrome– The effectiveness of CART therapy has been manifested by release of high levels of cytokines resulting in fever and inflammatory sequelae. One such cytokine, interleukin 6, has been attributed to this side effect and investigators have successfully used an IL6 receptor antagonist, tocilizumab (Acterma™), to alleviate symptoms of cytokine release syndrome (see review Adoptive T-cell therapy: adverse events and safety switches by Siok-Keen Tey).

 

Below is a video form Dr. Renier Brentjens, M.D., Ph.D. for Memorial Sloan Kettering concerning the finding he made that the adverse event from cytokine release syndrome may be a function of the tumor cell load, and if they treat the patient with CAR-T right after salvage chemotherapy the adverse events are alleviated..

Please see video below:

http link: https://www.youtube.com/watch?v=4Gg6elUMIVE

  • Early Toxic effects – Over-activation of CAR T-cells; mitigation by dose escalation strategy (as authors in reference [3] proposed). Most trials give billions of genetically modified cells to a patient.
  • Late Toxic Effectslong-term depletion of B-cells . For example CART directing against CD19 or CD20 on B cells may deplete the normal population of CD19 or CD20 B-cells over time; possibly managed by IgG supplementation

 Please look for a Followup Post concerning “Developing a Pharmacovigilence Framework for Engineered T-Cell Therapies”

References

  1. Ertl HC, Zaia J, Rosenberg SA, June CH, Dotti G, Kahn J, Cooper LJ, Corrigan-Curay J, Strome SE: Considerations for the clinical application of chimeric antigen receptor T cells: observations from a recombinant DNA Advisory Committee Symposium held June 15, 2010. Cancer research 2011, 71(9):3175-3181.
  2. Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA: Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Molecular therapy : the journal of the American Society of Gene Therapy 2010, 18(4):843-851.
  3. Kandalaft LE, Powell DJ, Jr., Coukos G: A phase I clinical trial of adoptive transfer of folate receptor-alpha redirected autologous T cells for recurrent ovarian cancer. Journal of translational medicine 2012, 10:157.

Other posts on this site on Immunotherapy and Cancer include

Report on Cancer Immunotherapy Market & Clinical Pipeline Insight

New Immunotherapy Could Fight a Range of Cancers

Combined anti-CTLA4 and anti-PD1 immunotherapy shows promising results against advanced melanoma

Molecular Profiling in Cancer Immunotherapy: Debraj GuhaThakurta, PhD

Pancreatic Cancer: Genetics, Genomics and Immunotherapy

$20 million Novartis deal with ‘University of Pennsylvania’ to develop Ultra-Personalized Cancer Immunotherapy

Upcoming Meetings on Cancer Immunogenetics

Tang Prize for 2014: Immunity and Cancer

ipilimumab, a Drug that blocks CTLA-4 Freeing T cells to Attack Tumors @DM Anderson Cancer Center

Juno’s approach eradicated cancer cells in 10 of 12 leukemia patients, indicating potential to transform the standard of care in oncology

Read Full Post »