Feeds:
Posts
Comments

Archive for the ‘Prostate Cancer: Monitoring vs Treatment’ Category


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Gender of a person can affect the kinds of cancer-causing mutations they develop, according to a genomic analysis spanning nearly 2,000 tumours and 28 types of cancer. The results show striking differences in the cancer-causing mutations found in people who are biologically male versus those who are biologically female — not only in the number of mutations lurking in their tumours, but also in the kinds of mutations found there.

 

Liver tumours from women were more likely to carry mutations caused by a faulty system of DNA mending called mismatch repair, for instance. And men with any type of cancer were more likely to exhibit DNA changes thought to be linked to a process that the body uses to repair DNA with two broken strands. These biases could point researchers to key biological differences in how tumours develop and evolve across sexes.

 

The data add to a growing realization that sex is important in cancer, and not only because of lifestyle differences. Lung and liver cancer, for example, are more common in men than in women — even after researchers control for disparities in smoking or alcohol consumption. The source of that bias, however, has remained unclear.

In 2014, the US National Institutes of Health began encouraging researchers to consider sex differences in preclinical research by, for example, including female animals and cell lines from women in their studies. And some studies have since found sex-linked biases in the frequency of mutations in protein-coding genes in certain cancer types, including some brain cancers and advanced melanoma.

 

But the present study is the most comprehensive study of sex differences in tumour genomes so far. It looks at mutations not only in genes that code for proteins, but also in the vast expanses of DNA that have other functions, such as controlling when genes are turned on or off. The study also compares male and female genomes across many different cancers, which can allow researchers to pick up on additional patterns of DNA mutations, in part by increasing the sample sizes.

 

Researchers analysed full genome sequences gathered by the International Cancer Genome Consortium. They looked at differences in the frequency of 174 mutations known to drive cancer, and found that some of these mutations occurred more frequently in men than in women, and vice versa. When they looked more broadly at the loss or duplication of DNA segments in the genome, they found 4,285 sex-biased genes spread across 15 chromosomes.

 

There were also differences found when some mutations seemed to arise during tumour development, suggesting that some cancers follow different evolutionary paths in men and women. Researchers also looked at particular patterns of DNA changes. Such patterns can, in some cases, reflect the source of the mutation. Tobacco smoke, for example, leaves behind a particular signature in the DNA.

 

Taken together, the results highlight the importance of accounting for sex, not only in clinical trials but also in preclinical studies. This could eventually allow researchers to pin down the sources of many of the differences found in this study. Liver cancer is roughly three times as common in men as in women in some populations, and its incidence is increasing in some countries. A better understanding of its aetiology may turn out to be really important for prevention strategies and treatments.

 

References:

 

https://www.nature.com/articles/d41586-019-00562-7?utm_source=Nature+Briefing

 

https://www.nature.com/news/policy-nih-to-balance-sex-in-cell-and-animal-studies-1.15195

 

https://www.ncbi.nlm.nih.gov/pubmed/26296643

 

https://www.biorxiv.org/content/10.1101/507939v1

 

https://www.ncbi.nlm.nih.gov/pubmed/25985759

 

Read Full Post »

Immunoediting can be a constant defense in the cancer landscape


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

There are many considerations in the cancer immunoediting landscape of defense and regulation in the cancer hallmark biology. The cancer hallmark biology in concert with key controls of the HLA compatibility affinity mechanisms are pivotal in architecting a unique patient-centric therapeutic application. Selection of random immune products including neoantigens, antigens, antibodies and other vital immune elements creates a high level of uncertainty and risk of undesirable immune reactions. Immunoediting is a constant process. The human innate and adaptive forces can either trigger favorable or unfavorable immunoediting features. Cancer is a multi-disease entity. There are multi-factorial initiators in a certain disease process. Namely, environmental exposures, viral and / or microbiome exposure disequilibrium, direct harm to DNA, poor immune adaptability, inherent risk and an individual’s own vibration rhythm in life.

 

When a human single cell is crippled (Deranged DNA) with mixed up molecular behavior that is the initiator of the problem. A once normal cell now transitioned into full threatening molecular time bomb. In the modeling and creation of a tumor it all begins with the singular molecular crisis and crippling of a normal human cell. At this point it is either chop suey (mixed bit responses) or a productive defensive and regulation response and posture of the immune system. Mixed bits of normal DNA, cancer-laden DNA, circulating tumor DNA, circulating normal cells, circulating tumor cells, circulating immune defense cells, circulating immune inflammatory cells forming a moiety of normal and a moiety of mess. The challenge is to scavenge the mess and amplify the normal.

 

Immunoediting is a primary push-button feature that is definitely required to be hit when it comes to initiating immune defenses against cancer and an adaptation in favor of regression. As mentioned before that the tumor microenvironment is a “mixed bit” moiety, which includes elements of the immune system that can defend against circulating cancer cells and tumor growth. Personalized (Precision-Based) cancer vaccines must become the primary form of treatment in this case. Current treatment regimens in conventional therapy destroy immune defenses and regulation and create more serious complications observed in tumor progression, metastasis and survival. Commonly resistance to chemotherapeutic agents is observed. These personalized treatments will be developed in concert with cancer hallmark analytics and immunocentrics affinity and selection mapping. This mapping will demonstrate molecular pathway interface and HLA compatibility and adaptation with patientcentricity.

References:

 

https://www.linkedin.com/pulse/immunoediting-cancer-landscape-john-catanzaro/

 

https://www.cell.com/cell/fulltext/S0092-8674(16)31609-9

 

https://www.researchgate.net/publication/309432057_Circulating_tumor_cell_clusters_What_we_know_and_what_we_expect_Review

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4190561/

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5840207/

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5593672/

 

https://www.frontiersin.org/articles/10.3389/fimmu.2018.00414/full

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5593672/

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4190561/

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4388310/

 

https://www.linkedin.com/pulse/cancer-hallmark-analytics-omics-data-pathway-studio-review-catanzaro/

 

Read Full Post »

Immunotherapy may help in glioblastoma survival


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Glioblastoma is the most common primary malignant brain tumor in adults and is associated with poor survival. But, in a glimmer of hope, a recent study found that a drug designed to unleash the immune system helped some patients live longer. Glioblastoma powerfully suppresses the immune system, both at the site of the cancer and throughout the body, which has made it difficult to find effective treatments. Such tumors are complex and differ widely in their behavior and characteristics.

 

A small randomized, multi-institution clinical trial was conducted and led by researchers at the University of California at Los Angeles involved patients who had a recurrence of glioblastoma, the most common central nervous system cancer. The aim was to evaluate immune responses and survival following neoadjuvant and/or adjuvant therapy with pembrolizumab (checkpoint inhibitor) in 35 patients with recurrent, surgically resectable glioblastoma. Patients who were randomized to receive neoadjuvant pembrolizumab, with continued adjuvant therapy following surgery, had significantly extended overall survival compared to patients that were randomized to receive adjuvant, post-surgical programmed cell death protein 1 (PD-1) blockade alone.

 

Neoadjuvant PD-1 blockade was associated with upregulation of T cell– and interferon-γ-related gene expression, but downregulation of cell-cycle-related gene expression within the tumor, which was not seen in patients that received adjuvant therapy alone. Focal induction of programmed death-ligand 1 in the tumor microenvironment, enhanced clonal expansion of T cells, decreased PD-1 expression on peripheral blood T cells and a decreasing monocytic population was observed more frequently in the neoadjuvant group than in patients treated only in the adjuvant setting. These findings suggest that the neoadjuvant administration of PD-1 blockade enhanced both the local and systemic antitumor immune response and may represent a more efficacious approach to the treatment of this uniformly lethal brain tumor.

 

Immunotherapy has not proved to be effective against glioblastoma. This small clinical trial explored the effect of PD-1 blockade on recurrent glioblastoma in relation to the timing of administration. A total of 35 patients undergoing resection of recurrent disease were randomized to either neoadjuvant or adjuvant pembrolizumab, and surgical specimens were compared between the two groups. Interestingly, the tumoral gene expression signature varied between the two groups, such that those who received neoadjuvant pembrolizumab displayed an INF-γ gene signature suggestive of T-cell activation as well as suppression of cell-cycle signaling, possibly consistent with growth arrest. Although the study was not powered for efficacy, the group found an increase in overall survival in patients receiving neoadjuvant pembrolizumab compared with adjuvant pembrolizumab of 13.7 months versus 7.5 months, respectively.

 

In this small pilot study, neoadjuvant PD-1 blockade followed by surgical resection was associated with intratumoral T-cell activation and inhibition of tumor growth as well as longer survival. How the drug works in glioblastoma has not been totally established. The researchers speculated that giving the drug before surgery prompted T-cells within the tumor, which had been impaired, to attack the cancer and extend lives. The drug didn’t spur such anti-cancer activity after the surgery because those T-cells were removed along with the tumor. The results are very important and very promising but would need to be validated in much larger trials.

 

References:

 

https://www.washingtonpost.com/health/2019/02/11/immunotherapy-may-help-patients-with-kind-cancer-that-killed-john-mccain/?noredirect=on&utm_term=.e1b2e6fffccc

 

https://www.ncbi.nlm.nih.gov/pubmed/30742122

 

https://www.practiceupdate.com/content/neoadjuvant-anti-pd-1-immunotherapy-promotes-immune-responses-in-recurrent-gbm/79742/37/12/1

 

https://www.esmo.org/Oncology-News/Neoadjuvant-PD-1-Blockade-in-Glioblastoma

 

https://neurosciencenews.com/immunotherapy-glioblastoma-cancer-10722/

 

Read Full Post »


Prostate Cancer Patient: Consider Monitoring vs Surgery or Radiation, only if Life Expectancy is less than a Decade

Reporter: Aviva Lev-Ari, PhD, RN

Boldface by ALA

 

Rethinking Prostate Cancer, in THE MOST NOTABLE MEDICAL FINDINGS OF 2016

For many years, American physicians have screened their older male patients for prostate cancer by looking at the level of a particular protein in the blood. The protein, called prostate-specific antigen (P.S.A.), can indicate the presence of a tumor long before any symptoms materialize. Recently, though, there has been a movement within the medical community against P.S.A. testing; since prostate cancers typically grow very slowly and rarely cause discomfort, the thinking goes, early screening may not be all that useful. The U.S. Preventive Services Task Force, based on data from two large clinical trials, currently recommends against routine screening, but other expert groups (using the same evidence) have countered that men should be allowed to choose for themselves.

Now the dispute has become even more fraught. In October, The New England Journal of Medicine published a study by a group of British researchers that examined three classes of prostate-cancer patients: those who had received surgery, those who had received radiation therapy, and those whose disease had been carefully monitored without intervention. After ten years, there was no difference in survival rates among the three groups. Active treatment does not change the over-all risk of death, and this was the headline in most news reports. But largely overlooked in the press was that metastases, meaning spread of the cancer beyond the prostate gland to tissues in the pelvis and to bone, occurred three times more frequently in those being monitored than in those who received surgery or radiation. Not surprisingly, the cancer also progressed more quickly in these men.

In an editorial that accompanied the study, Anthony D’Amico, a radiation oncologist at Boston’s Dana-Farber Cancer Institute, argued that men should be informed of the risk of metastasis and of its consequences, particularly pelvic tumors and bone pain and fracture. D’Amico advises that men who wish to avoid metastases should consider monitoring, rather than surgery or radiation, only if their life expectancy is less than a decade. Having cared for many men with prostate cancer that metastasized—an incurable situation often marked by severe suffering—I strongly concur.

SOURCE

http://www.newyorker.com/tech/elements/the-most-notable-medical-findings-of-2016?mbid=nl_TNY%20Template%20-%20With%20Photo%20(122)&CNDID=22119822&spMailingID=10139434&spUserID=MTMzMTc5ODE3NDQwS0&spJobID=1062494562&spReportId=MTA2MjQ5NDU2MgS2

 

REFERENCES

10-Year Outcomes after Monitoring, Surgery, or Radiotherapy for Localized Prostate Cancer

Freddie C. Hamdy, F.R.C.S.(Urol.), F.Med.Sci., Jenny L. Donovan, Ph.D., F.Med.Sci., J. Athene Lane, Ph.D., Malcolm Mason, M.D., F.R.C.R., Chris Metcalfe, Ph.D., Peter Holding, R.G.N., M.Sc., Michael Davis, M.Sc., Tim J. Peters, Ph.D., F.Med.Sci., Emma L. Turner, Ph.D., Richard M. Martin, Ph.D., Jon Oxley, M.D., F.R.C.Path., Mary Robinson, M.B., B.S., F.R.C.Path., John Staffurth, M.B., B.S., M.D., Eleanor Walsh, M.Sc., Prasad Bollina, M.B., B.S., F.R.C.S.(Urol.), James Catto, Ph.D., F.R.C.S.(Urol.), Andrew Doble, M.S., F.R.C.S.(Urol.), Alan Doherty, F.R.C.S.(Urol.), David Gillatt, M.S., F.R.C.S.(Urol.), Roger Kockelbergh, D.M., F.R.C.S.(Urol.), Howard Kynaston, M.D., F.R.C.S.(Urol.), Alan Paul, M.D., F.R.C.S.(Urol.), Philip Powell, M.D., F.R.C.S., Stephen Prescott, M.D., F.R.C.S.(Urol.), Derek J. Rosario, M.D., F.R.C.S.(Urol.), Edward Rowe, M.D., F.R.C.S.(Urol.), and David E. Neal, F.R.C.S., F.Med.Sci., for the ProtecT Study Group*

N Engl J Med 2016; 375:1415-1424 October 13, 2016 DOI: 10.1056/NEJMoa1606220

 

Treatment or Monitoring for Early Prostate Cancer

Anthony V. D’Amico, M.D., Ph.D.

N Engl J Med 2016; 375:1482-1483 October 13, 2016 DOI: 10.1056/NEJMe1610395

CITING ARTICLES

  1. Matthew R. Cooperberg. . (2016) Re: 10-Year Outcomes After Monitoring, Surgery, or Radiotherapy for Localized Prostate Cancer. European Urology.
    CrossRef

  2. Jean-Jacques Mazeron. . (2016) Cancer de la prostate : to treat or not to treat ?. Bulletin du Cancer.
    CrossRef

Read Full Post »