Feeds:
Posts
Comments

Archive for the ‘Pharmaceutical Discovery’ Category


Tweet Collection by @pharma_BI and @AVIVA1950 and Re-Tweets for e-Proceedings 14th Annual BioPharma & Healthcare Summit, Friday, September 4, 2020, 8 AM EST to 3-30 PM EST – Virtual Edition

Real Time Press Coverage: Aviva Lev-Ari, PhD, RN

 

e-Proceedings 14th Annual BioPharma & Healthcare Summit, Friday, September 4, 2020, 8 AM EST to 3-30 PM EST – Virtual Edition

Real Time Press Coverage: Aviva Lev-Ari, PhD, RN

Founder & Director, LPBI Group

https://pharmaceuticalintelligence.com/2020/07/28/14th-annual-biopharma-healthcare-summit-friday-september-4-2020-8-am-est-to-3-30-pm-est-virtual-edition/

 

Aviva Lev-Ari
@AVIVA1950

#USAIC20 Dr. Hal Barron, Chief Scientific Officer and President R&D, GlaxoSmithKline GWAS not easy to find which gene drives the association  Functional Genomics gene by gene with phenotypes using machine learning significant help

Aviva Lev-Ari
@AVIVA1950

#USAIC20 Dr. Hal Barron, Chief Scientific Officer and President R&D, GSK GWAS not easy to find which gene drives the association  Functional Genomics gene by gene with phenotypes using machine learning significant help

Srihari Gopal
@sgopal2

Enjoyed hearing enthusiasm for Neuroscience R&D by Roy Vagelos at #USAIC20. Wonderful interview by Mathai Mammen

Image

1
2
Show this thread

Aviva Lev-Ari
@AVIVA1950

#USAIC20 Nina Kjellson, General Partner, Canaan Data science is a winner in Healthcare Women – Data Science is an excellent match

Aviva Lev-Ari
@AVIVA1950

#USAIC20 Arpa Garay, President, Global Pharmaceuticals, Commercial Analytics, Merck & Co. Data on Patients and identification who will benefit fro which therapy  cultural bias risk aversion

Aviva Lev-Ari
@AVIVA1950

#USAIC20 Dr. Najat Khan, Chief Operating Officer, Janssen R&D Data Sciences, Johnson & Johnson Data Validation  Deployment of algorithms embed data by type early on in the crisis to understand the disease

Aviva Lev-Ari
@AVIVA1950

#USAIC20 Sastry Chilukuri, President, Acorn AI- Medidata Opportunities in Data Science in Paharma COVID-19 and Data Science

Aviva Lev-Ari
@AVIVA1950

#USAIC20 Dr. Maya Said, Chief Executive Officer, Outcomes4Me Cancer patients taking change of their care Digital Health – consumerization of Health, patient demand to be part of the decision, part the information FDA launched a Program Project Patient Voice

USAIC
@USAIC

We’re taking a quick break at #USAIC20 before our next panel on rare diseases starts at 12:20pm EDT. USAIC would like to thank our Sponsors and Partners for supporting this year’s digital event.

Image

Aviva Lev-Ari
@AVIVA1950

#USAIC20 Dr. Roy Vagelos, Chairman of the Board, Regeneron HIV-AIDS: reverse transcriptase converted a lethal disease to a chronic disease, tried hard to make vaccine – the science was not there

Aviva Lev-Ari
@AVIVA1950

#USAIC20 Dr. Roy Vagelos, Chairman of the Board, Regeneron Pharmaceuticals Congratulates Big Pharma for taking the challenge on COVID-19 Vaccine, Antibody and anti-viral Government funding Merck was independent from Government – to be able to set the price

1

Dr Kapil Khambholja
@kapilmk

Christopher Viehbacher, Gurnet Point Capital touches very sensitive topic at #USAIC20 He claims that we are never going to have real innovation out of big pharma! Well this isn’t new but not entirely true either… any more thoughts?
1
1
Show this thread

Aviva Lev-Ari
@AVIVA1950

#USAIC20 Daphne Zohar, Founder & CEO, PureTech Health Disease focus, best science is the decision factors

1

Aviva Lev-Ari
@AVIVA1950

#USAIC20 Christopher Viehbacher, Managing Partner, Gurnet Point Capital Dream of every Biotech – get Big Pharma coming to acquire and pay a lot Morph and adapt

anju ghangurde
@scripanjug

Biogen’s chair Papadopoulos big co mergers is an attempt to solve problems; typically driven by patent expirations.. #usaic20

2

anju ghangurde
@scripanjug

Chris Viehbacher/Gurnet Point Capital on US election: industry will work with whoever wins; we’ll have to ‘morph & adapt’ #usaic20

1

Dr Kapil Khambholja
@kapilmk

of

talks about various philosophies and key reasons why certain projects/molecules are killed early. My counter questions- What are chances of losing hope little early? Do small #biopharma publish negative results to aid to the knowledge pool? #USAIC20

Image

2
2
Show this thread

Aviva Lev-Ari
@AVIVA1950

#USAIC20 Dr. Laurie Glimcher, President & CEO, Dana-Farber Cancer Institute DNA repair and epignetics are the future of medicine

Aviva Lev-Ari
@AVIVA1950

#USAIC20 Dr. Laurie Glimcher, President & CEO, Dana-Farber Cancer Institute COlonorectal cancer is increasing immuno therapy 5 drugs marketed 30% cancer patients are treated early detection key vs metastatic 10% of cancer are inherited treatment early

Aviva Lev-Ari
@AVIVA1950

#USAIC20 Rehan Verjee, President, EMD Serono Charities funding cancer research – were impacted and resources will come later and in decreased amount New opportunities support access to Medicine improve investment across the board

Aviva Lev-Ari
@AVIVA1950

#USAIC20 Dr. Philip Larsen, Global Head of Research, Bayer AG Repurposing drugs as antiviral from drug screening innovating methods Cytokine storm in OCVID-19 – kinase inhibitors may be antiviral data of tested positive allows research of pathway in new ways

Aviva Lev-Ari
@AVIVA1950

#USAIC20 Dr. Laurie Glimcher, President & CEO, Dana-Farber 3,000 Telemedicine session in the first week of the Pandemic vs 300 before – patient come back visits patient happy with Telemedicine team virtually need be reimbursed same rate working remotely

Aviva Lev-Ari
@AVIVA1950

#USAIC20 Dr. Raju Kucherlapati, Professor of Genetics, Harvard Medical School New normal as a result of the pandemic role of personalized medicine

Aviva Lev-Ari
@AVIVA1950

#USAIC20 Rehan Verjee, President, EMD Serono entire volume of clinical trials at Roche went down same at EMD delay of 6 month, some were to be initiated but was put on hold Charities funding cancer research were impacted and resources will come later smaller

Aviva Lev-Ari
@AVIVA1950

#USAIC20 Dr. Laurie Glimcher, President & CEO, Dana-Farber Cancer Institute Dana Farber saw impact of COVID-19 on immunosuppressed patients coming in for Cancer Tx – switch from IV Tx to Oral 96% decrease in screenings due to Pandemic – increase with Cancer

Aviva Lev-Ari
@AVIVA1950

#USAIC20 Kenneth Frazier, Chairman of the Board and Chief Executive Officer, Merck & Co. Pharma’s obligation for next generations requires investment in R&D vs Politicians running for 4 years Patients must come first vs shareholders vs R&D investment in 2011

Aviva Lev-Ari
@AVIVA1950

#USAIC20 Kenneth Frazier, Chairman of the Board and Chief Executive Officer, Merck & Co. Antibiotic research at Merck – no market incentives on pricing for Merck to invest in antibiotics people will die from bacterial resistance next pandemic be bacterial

Aviva Lev-Ari
@AVIVA1950

#USAIC20 Kenneth Frazier, Chairman of the Board and Chief Executive Officer, Merck & Co. Strategies of Merck = “Medicine is for the People not for Profit” – Ketruda in India is not reembureable in India and million are in need it Partnership are encouraged

Dr Kapil Khambholja
@kapilmk

Chairman Stelios Papadopoulos asks #KennethFrazier if wealthy nations will try to secure large proportion of #COVID19 drugs/vaccines. #KennethFrazie rightly mentions: pharma industry’s responsibility to balance the access to diff countries during pandemic. #USAIC20

1
3
Show this thread

Dr Kapil Khambholja
@kapilmk

Almost 60% participants at #USAIC20 feel that MNCs are more likely to run their #clinicalTrials in #INDIA seeing changing environment here, reveals the poll. Exciting time ahead for scientific fraternity as this can substantially increase the speed of #DrugDevelopment globally

Clapping hands sign

Image

1
1
Show this thread

Aviva Lev-Ari
@AVIVA1950

#USAIC20 Dr. Barry Bloom, Professor & former Dean, Harvard School of Public Health Vaccine in clinical trials, public need to return for 2nd shot, hesitancy Who will get the Vaccine first in the US  most vulnerable of those causing transmission Pharma’s risk

4

Aviva Lev-Ari
@AVIVA1950

#USAIC20 Dr. Barry Bloom, Professor & former Dean, Harvard School of Public Health Testing – PCR expensive does not enable quick testing is expensive result come transmission occurred Antibody testing CRISPR test based Vaccine in clinical trials

1

Aviva Lev-Ari
@AVIVA1950

#USAIC20 Dr Andrew Plump, President of R&D, Takeda Pharmaceuticals COllaboration effort around the Globe in the Pandemic therapy solutions including Vaccines

Read Full Post »


National Public Radio interview with Dr. Anthony Fauci on his optimism on a COVID-19 vaccine by early 2021

Reporter: Stephen J. Williams, PhD

Below I am giving a link to an important interview by NPR’s Judy Woodruff with Dr. Anthony Fauci on his thoughts regarding the recent spikes in cases, the potential for a COVID-19 vaccine by next year, and promising therapeutics in the pipeline.  The interview link is given below however I will summarize a few of the highlights of the interview.

 

Some notes on the interview

Judy Woodruff began her report with some up to date news regarding the recent spike and that Miami Florida has just ordered the additional use of facemasks.  She asked Dr. Anthony Fauci, head of the National Institute of Allergy and Infectious Diseases (NIAD), about if the measures currently in use are enough to bring this spike down.  Dr. Fauci said that we need to reboot our efforts, mainly because people are not doing three things which could have prevented this spike mainly

  1. universal wearing of masks
  2. distancing properly from each other
  3. close the bars and pubs (see Wisconsin bars packed after ruling)

It hasn’t been a uniform personal effort

Dr. Fauci on testing

We have to use the tests we have out there efficiently and effectively And we have to get them out to the right people who can do the proper identification, isolation, and do proper contract tracing and need to test more widely in a surveillance way to get a feel of the extent and penetrance of this community spread.  there needs to be support and money for these testing labs

We have a problem and we need to admit and own it but we need to do the things we know are effective to turn this thing around.

On Vaccines

“May be later this year”

His response to Merck’s CEO Ken Frazer who said officials are giving false hop if they say ‘end of year’ but Dr. Fauci disagrees.  He says a year end goal is not outlandish.

What we have been doing is putting certain things in line with each other in an unprecedented way.

Dr. Fauci went on to say that, in the past yes, it took a long time, even years to develop a vaccine but now they have been able to go from sequence of virus to a vaccine development program in days, which is unheard of.  Sixty two days later we have gone into phase 1 trials. the speed at which this is occurring is so much faster.  He says that generally it would take a couple of years to get a neutralizing antibody but we are already there.  Another candidate will be undergoing phase 3 trials by end of this month (July 2020).

He is “cautiously optimistic” that we will have one or more vaccines to give to patients by end of year because given the amount of cases it will be able to get a handle on safety and efficacy by late fall.

Now he says the game changer is that the government is working with companies to ramp up the production of doses of the candidate vaccines so when we find which one works we will have ample doses on hand.  He is worried about the anti vaccine movement derailing vaccine testing and vaccinations but says if we keep on informing the public we can combat this.

Going back to school

Dr. Fauci is concerned for the safety of the vulnerable in schools, including students and staff.  He wants the US to get down to a reasonable baseline of cases but in the US that baseline after the first wave was still significantly higher than in most countries, where the baseline was more like tens of cases not hundreds of cases.

For more information on COVID-19 Please go to our Coronavirus Portal at

https://pharmaceuticalintelligence.com/coronavirus-portal/

 

Read Full Post »


The Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV) Partnership on May 18, 2020: Leadership of AbbVie, Amgen, AstraZeneca, Bristol Myers Squibb, Eisai, Eli Lilly, Evotec, Gilead, GlaxoSmithKline, Johnson & Johnson, KSQ Therapeutics, Merck, Novartis, Pfizer, Roche, Sanofi, Takeda, and Vir. We also thank multiple NIH institutes (especially NIAID), the FDA, BARDA, CDC, the European Medicines Agency, the Department of Defense, the VA, and the Foundation for NIH

Reporter: Aviva Lev-Ari, PhD, RN

May 18, 2020

Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV) An Unprecedented Partnership for Unprecedented Times

JAMA. Published online May 18, 2020. doi:10.1001/jama.2020.8920

First reported in Wuhan, China, in December 2019, COVID-19 is caused by a highly transmissible novel coronavirus, SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2). By March 2020, as COVID-19 moved rapidly throughout Europe and the US, most researchers and regulators from around the world agreed that it would be necessary to go beyond “business as usual” to contain this formidable infectious agent. The biomedical research enterprise was more than willing to respond to the challenge of COVID-19, but it soon became apparent that much-needed coordination among important constituencies was lacking.

Clinical trials of investigational vaccines began as early as January, but with the earliest possible distribution predicted to be 12 to 18 months away. Clinical trials of experimental therapies had also been initiated, but most, except for a trial testing the antiviral drug remdesivir,2 were small and not randomized. In the US, there was no true overarching national process in either the public or private sector to prioritize candidate therapeutic agents or vaccines, and no efforts were underway to develop a clear inventory of clinical trial capacity that could be brought to bear on this public health emergency. Many key factors had to change if COVID-19 was to be addressed effectively in a relatively short time frame.

On April 3, leaders of the National Institutes of Health (NIH), with coordination by the Foundation for the National Institutes of Health (FNIH), met with multiple leaders of research and development from biopharmaceutical firms, along with leaders of the US Food and Drug Administration (FDA), the Biomedical Advanced Research and Development Authority (BARDA), the European Medicines Agency (EMA), and academic experts. Participants sought urgently to identify research gaps and to discuss opportunities to collaborate in an accelerated fashion to address the complex challenges of COVID-19.

These critical discussions culminated in a decision to form a public-private partnership to focus on speeding the development and deployment of therapeutics and vaccines for COVID-19. The group assembled 4 working groups to focus on preclinical therapeutics, clinical therapeutics, clinical trial capacity, and vaccines (Figure). In addition to the founding members, the working groups’ membership consisted of senior scientists from each company or agency, the Centers for Disease Control and Prevention (CDC), the Department of Veterans Affairs (VA), and the Department of Defense.

Figure.

Accelerating COVID-19 Therapeutic Interventions and Vaccines

ACTIV’s 4 working groups, each with one cochair from NIH and one from industry, have made rapid progress in establishing goals, setting timetables, and forming subgroups focused on specific issues (Figure). The goals of the working group, along with a few examples of their accomplishments to date, include the following.

 

The Preclinical Working Group was charged to standardize and share preclinical evaluation resources and methods and accelerate testing of candidate therapies and vaccines to support entry into clinical trials. The aim is to increase access to validated animal models and to enhance comparison of approaches to identify informative assays. For example, through the ACTIV partnership, this group aims to extend preclinical researchers’ access to high-throughput screening systems, especially those located in the Biosafety Level 3 (BSL3) facilities currently required for many SARS-CoV-2 studies. This group also is defining a prioritization approach for animal use, assay selection and staging of testing, as well as completing an inventory of animal models, assays, and BSL 3/4 facilities.

 

The Therapeutics Clinical Working Group has been charged to prioritize and accelerate clinical evaluation of a long list of therapeutic candidates for COVID-19 with near-term potential. The goals have been to prioritize and test potential therapeutic agents for COVID-19 that have already been in human clinical trials. These may include agents with either direct-acting or host-directed antiviral activity, including immunomodulators, severe symptom modulators, neutralizing antibodies, or vaccines. To help achieve these goals, the group has established a steering committee with relevant expertise and objectivity to set criteria for evaluating and ranking potential candidate therapies submitted by industry partners. Following a rigorous scientific review, the prioritization subgroup has developed a complete inventory of approximately 170 already identified therapeutic candidates that have acceptable safety profiles and different mechanisms of action. On May 6, the group presented its first list of repurposed agents recommended for inclusion in ACTIV’s master protocol for adaptive clinical trials. Of the 39 agents that underwent final prioritization review, the group identified 6 agents—including immunomodulators and supportive therapies—that it proposes to move forward into the master protocol clinical trial(s) expected to begin later in May.

 

The Clinical Trial Capacity Working Group is charged with assembling and coordinating existing networks of clinical trials to increase efficiency and build capacity. This will include developing an inventory of clinical trial networks supported by NIH and other funders in the public and private sectors, including contract research organizations. For each network, the working group seeks to identify their specialization in different populations and disease stages to leverage infrastructure and expertise from across multiple networks, and establish a coordination mechanism across networks to expedite trials, track incidence across sites, and project future capacity. The clinical trials inventory subgroup has already identified 44 networks, with access to adult populations and within domestic reach, for potential inclusion in COVID-19 trials. Meanwhile, the survey subgroup has developed 2 survey instruments to assess the capabilities and capacities of those networks, and its innovation subgroup has developed a matrix to guide deployment of innovative solutions throughout the trial life cycle.

 

The Vaccines Working Group has been charged to accelerate evaluation of vaccine candidates to enable rapid authorization or approval.4 This includes development of a harmonized master protocol for adaptive trials of multiple vaccines, as well as development of a trial network that could enroll as many as 100 000 volunteers in areas where COVID-19 is actively circulating. The group also aims to identify biomarkers to speed authorization or approval and to provide evidence to address cross-cutting safety concerns, such as immune enhancement. Multiple vaccine candidates will be evaluated, and the most promising will move to a phase 2/3 adaptive trial platform utilizing large geographic networks in the US and globally.5 Because time is of the essence, ACTIV will aim to have the next vaccine candidates ready to enter clinical trials by July 1, 2020.

References

1.

Desai  A .  Twentieth-century lessons for a modern coronavirus pandemic.   JAMA. Published online April 27, 2020. doi:10.1001/jama.2020.4165
ArticlePubMedGoogle Scholar

2.

NIH clinical trial shows remdesivir accelerates recovery from advanced COVID-19. National Institutes of Health. Published April 29, 2020. Accessed May 7, 2020. https://www.nih.gov/news-events/news-releases/nih-clinical-trial-shows-remdesivir-accelerates-recovery-advanced-covid-19

3.

NIH to launch public-private partnership to speed COVID-19 vaccine and treatment options. National Institutes of Health. Published April 17, 2020. Accessed May 7, 2020. https://www.nih.gov/news-events/news-releases/nih-launch-public-private-partnership-speed-covid-19-vaccine-treatment-options

4.

Corey  L , Mascola  JR , Fauci  AS , Collins  FS .  A strategic approach to COVID-19 vaccine R&D.   Science. Published online May 11, 2020. doi:10.1126/science.abc5312PubMedGoogle Scholar

5.

Angus  DC .  Optimizing the trade-off between learning and doing in a pandemic.   JAMA. Published online March 30, 2020. doi:10.1001/jama.2020.4984
ArticlePubMedGoogle Scholar

6.

Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV) portal. National Institutes of Health. Accessed May 15, 2020. https://www.nih.gov/ACTIV

7.

Accelerating Medicines Partnership (AMP). National Institutes of Health. Published February 4, 2014. Accessed May 7, 2020. https://www.nih.gov/research-training/accelerating-medicines-partnership-amp
SOURCE

Read Full Post »


Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Symposium: New Drugs on the Horizon Part 3 12:30-1:25 PM

Reporter: Stephen J. Williams, PhD

New Drugs on the Horizon: Part 3
Introduction

Andrew J. Phillips, C4 Therapeutics

  • symposium brought by AACR CICR and had about 30 proposals for talks and chose three talks
  • unfortunately the networking event is not possible but hope to see you soon in good health

ABBV-184: A novel survivin specific T cell receptor/CD3 bispecific therapeutic that targets both solid tumor and hematological malignancies

Edward B Reilly
AbbVie Inc. @abbvie

  • T-cell receptors (TCR) can recognize the intracellular targets whereas antibodies only recognize the 25% of potential extracellular targets
  • survivin is expressed in multiple cancers and correlates with poor survival and prognosis
  • CD3 bispecific TCR to survivn (Ab to CD3 on T- cells and TCR to survivin on cancer cells presented in MHC Class A3)
  • ABBV184  effective in vivo in lung cancer models as single agent;
  • in humanized mouse tumor models CD3/survivin bispecific can recruit T cells into solid tumors; multiple immune cells CD4 and CD8 positive T cells were found to infiltrate into tumor
  • therapeutic window as measured by cytokine release assays in tumor vs. normal cells very wide (>25 fold)
  • ABBV184 does not bind platelets and has good in vivo safety profile
  • First- in human dose determination trial: used in vitro cancer cell assays to determine 1st human dose
  • looking at AML and lung cancer indications
  • phase 1 trial is underway for safety and efficacy and determine phase 2 dose
  • survivin has very few mutations so they are not worried about a changing epitope of their target TCR peptide of choice

The discovery of TNO155: A first in class SHP2 inhibitor

Matthew J. LaMarche
Novartis @Novartis

  • SHP2 is an intracellular phosphatase that is upstream of MEK ERK pathway; has an SH2 domain and PTP domain
  • knockdown of SHP2 inhibits tumor growth and colony formation in soft agar
  • 55 TKIs there are very little phosphatase inhibitors; difficult to target the active catalytic site; inhibitors can be oxidized at the active site; so they tried to target the two domains and developed an allosteric inhibitor at binding site where three domains come together and stabilize it
  • they produced a number of chemical scaffolds that would bind and stabilize this allosteric site
  • block the redox reaction by blocking the cysteine in the binding site
  • lead compound had phototoxicity; used SAR analysis to improve affinity and reduce phototox effects
  • was very difficult to balance efficacy, binding properties, and tox by adjusting stuctures
  • TNO155 is their lead into trials
  • SHP2 expressed in T cells and they find good combo with I/O with uptick of CD8 cells
  • TNO155 is very selective no SHP1 inhibition; SHP2 can autoinhibit itself when three domains come together and stabilize; no cross reactivity with other phosphatases
  • they screened 1.5 million compounds and got low hit rate so that is why they needed to chemically engineer and improve on the classes they found as near hits

Closing Remarks

 

Xiaojing Wang
Genentech, Inc. @genentech

Follow on Twitter at:

@pharma_BI

@AACR

@CureCancerNow

@pharmanews

@BiotechWorld

@HopkinsMedicine

#AACR20

Read Full Post »


The Problem and Challenges of Commercialization

Curator and Reporter: Joel Shertok, PhD

 

As the old saying goes,

Anybody can do something once; the problem is: can you do it twice, or for that matter, over and over again?

This is the essential issue faced by those personnel in the throes of the commercialization process.

Any successful commercial process has to meet a number of criteria:

  1. The process must be reproducible — it must yield the same product/results given the same inputs.
  2. The process must be economically viable: given the constraints of raw material, energy, and labor costs, depreciation schedules for equipment, expected process failures, R/D, Marketing, and Sales support costs, the process needs to yield both a profit and positive cash flow
  3. The process should be implemented using readily available commercial components and control instrumentation. On occasion, successful implementation of a project will require specialized components; however these components themselves must meet the criteria for successful commercialization
  4. The process must be “simple” enough so that suitably trained operators can manage the process. A unit that requires Ph.D.’s to maintain operations is doomed to failure

History is replete with novel processes that worked on the lab scale, but were failures when a commercial operation was attempted. The issues that are most responsible for lab-to-production failure are listed under the general classification of “scale-up”. Scale-up principles are covered in my monograph, “The Art of Scale-up” (www.artofscaleup.com), but in general follow these rules:

  • Identification of those process parameters that will have major impact on commercial viability: reaction kinetics, mass transfer vs. temperature/kinetic control; if multi-phase systems are involved, the type and energy of required stirring; heat transfer considerations; side reactions; etc.

  • Materials of construction; raw material and product hazards; etc.

  • Regulatory considerations: FDA, OSHA, EPA.

Failure to address any of these issues prior to commercialization will lead to surprises during commercialization.

In addition to the engineering/scale-up aspects of commercialization, there are several other criteria that may need attention:

  1. When to launch a product – where will the new product fit into the overall corporate product portfolio?
  2. Where is the proper location to launch?  A product aimed at flu symptom suppression in cold-weather conditions may not do well in Florida; ….. super-sweet tea does well in the South, and not so well in New England, so that a product to replace sugar might do well in the South.
  3. Who is going to use the product?  Are you targeting doctor’s offices, hospitals, or direct to consumer routes?
  4. How to launch – social media and “influencers” have given rise to new avenues of product introductions.

The old aphorism of “measure twice, cut once” has a special resonance when doing commercialization of a new process or product. The more the process is thought out ahead of time, the less issues there will be down the road. In the commercial world, there is constant pressure to rush things to meet management deadlines, which always leads to problems and extra expense. A crusty of R/D chemist once remarked, “There is never time to do it right, but always time to do it twice.” Everyone needs to keep this in the back of their mind

Read Full Post »


Advancing Drug Development – 12/12/2019, 8:30AM – 8:30PM at The University of Massachusetts Club, One Beacon Street, Boston, MA

 

Reporter: Aviva Lev-Ari, PhD, RN

4th Advancing Drug Development Forum – Making the Impossible Possible – Harnessing Small Molecule Drug Development scheduled to take place December 12th, 2019 at The University of Massachusetts Club, in Boston, Massachusetts from 8:30 AM – 8:30 PM.

http://advdrug.com/agenda/

 

Scientists are more than just chipping away and kicking down the barricades to develop complex small molecule products better and faster.  Successful companies are spending quality time finding novel and clever approaches and powerful technologies to better support their knowledgeable teams.  Often it takes establishing strong partnerships with 1 or more specialized service providers, cleverly combining resources – always striving to raise the bar in order to make life threatening diseases more of a chronic and tolerable disease or eradicated completely.

Hear from key opinion leaders in pharma, biotech, the investment community and innovative service providers on how they are meeting the challenges. Keep in mind, it takes being open-minded, flexible and willing sometimes to redesigning a new formulation that better enhances bioavailability, optimizes drug-delivery profiles, reduces dosing frequency, or improves the patient experience to have the potential to deliver quicker returns on investments than developing a completely new drug.

PROGRAM AGENDA Thursday, December 12, 2019
8:30 AM Registration and Networking Continental Breakfast
9:00 AM Welcome Address and Opening Remarks
Kevin Bittorf, Ph.D., & Shelly Amster
9:15 AM Opening VC Keynote
9:45 AM Bridging the Gap between Experimentation and Implementation
Panel Discussion
10:15 AM Refreshment Break
10:45 AM Cross-Talk Between Clin-Ops and Tech-Ops
Panel Discussion
11:15 AM The Cost of Speed and Value in Drug Development
Panel Discussion
12:00 PM Networking Luncheon
1:00 PM Advances in the Delivery of Therapeutics to the Brain
Academic Keynote
Mansoor M. Amiji, Ph.D., University Distinguished Professor, Professor of Pharmaceutical Sciences & Professor of Chemical Engineering, Northeastern University
1:30 PM Advancing Drug Delivery and Controlled Release
Panel Discussion
2:00 PM Drowning in DATA
2:30 PM Disruptive AI Technologies Improving Drug Development
3:00 PM Refreshment Break
3:30 PM Small Specialty VS Full Service – What Makes Sense for US?
Panel Discussion
4:00 PM Fireside Chat
Michael Bonney, Executive Chair, Kaleido Biosciences
Heinrich Schlieker, Ph.D., SVP Technical Operations, Sage Therapeutics
5:00 PM – 8:00 PM Networking Social
Direct electronic communication with Shelly Amster

Read Full Post »


eProceedings – Day 1: Charles River Laboratories – 3rd World Congress, Delivering Therapies to the Clinic Faster, September 23 – 24, 2019, 25 Edwin H. Land Boulevard, Cambridge, MA

 

https://events.criver.com/event/9eab0ee1-982e-42c6-a4cd-fb43f9f2f1d0/confirmation:7c68cf9b-c599-469e-b602-42178c77e4f9

 

ANNOUNCEMENT

 

Leaders in Pharmaceutical Business Intelligence (LPBI) Group will cover this event in Real Time for pharmaceuticalintelligence.com 

Confirmation Number: 8ZNCBYNGHCK

In attendance generating in realtime event’s eProceeding and social media coverage by

 

Aviva Lev-Ari, PhD, RN

Director & Founder

Leaders in Pharmaceutical Business Intelligence (LPBI) Group, Boston

Editor-in-Chief

http://pharmaceuticalintelligence.com 

e-Mail: avivalev-ari@alum.berkeley.edu

(M) 617-775-0451

https://cal.berkeley.edu/AvivaLev-Ari,PhD,RN

SkypeID: HarpPlayer83          LinkedIn Profile        Twitter Profile

#crlworldcon

@CRiverLabs

@pharma_BI

@AVIVA1950

 

 

Join us this year as we explore novel approaches to drug development that effectively reduce program timelines and accelerate delivery to the clinic. Using a variety of case studies, our speakers will illustrate methods that successfully cut time to market and highlight how artificial intelligence and genomics are expediting target discovery and drug development. In an agenda that includes presentations, panel discussions, and short technology demonstrations, you will learn how the latest science and regulatory strategies are helping us get drugs to patients faster than ever.

AGENDA

Day One, September 23, 2019

  • Novel approaches to silence disease drivers
  • The role of AI in expediting drug discovery

Monday, September 23

8:30 – 9:00 a.m. Introduction and Welcome Remarks James C. Foster, Chairman of the Board, President, and Chief Executive Officer, Charles River
9:00 – 9:30 a.m. 2019 Award Winner: A Silicon Valley Approach to Understanding and Treating Disease Matt Wilsey, Chairman, President, and Co-Founder, Grace Science Foundation
9:30 – 10:15 a.m. Keynote Session Brian Hubbard, PhD, Chief Executive Officer, Dogma Therapeutics
10:15 – 10:30 a.m. Break
10:30 – 11:15 a.m. Novel Approaches to Silence Disease Drivers Systemic Delivery of Investigational RNAi Therapeutics: Safety Considerations and Clinical Outcomes Peter Smith, PhD, Senior Vice President, Early Development, Alnylam Pharmaceuticals
11:15 a.m. – 12:00 p.m. Novel Approaches to Silence Disease Drivers: Considerations for Viral Vector Manufacturing to Support Product Commercialization Richard Snyder, PhD, Chief Scientific Officer and Founder, Brammer Bio
12:00 – 1:00 p.m. Lunch
1:00 – 1:45 p.m. Accelerating Drug Discovery Through the Power of Microscopy Images Anne E. Carpenter, Ph.D., Institute Scientist, Sr. Director, Imaging Platform, Merkin Institute Fellow, Broad Institute of Harvard and MIT
1:45 – 2:30 p.m. The Role of AI in Expediting Drug Discovery Target Identification for Nonalcoholic Steatohepatitis Using Machine Learning: The Case for nference Tyler Wagner PhD, Head of Cardiovascular Research, nference
2:30 – 2:45 p.m. Break
2:45 – 3:30 p.m. Technobite Sessions with Emulate Bio and University of Pittsburgh Drug Discovery Institute

Kyung Jin H Jang, VP of Bio Product development, Emulate, Inc.

Albert Gough, PhD, U Pittsburg School of Medicine

3:30 – 4:15 p.m. Artificial Intelligence Panel Discussion: Real World Applications from Discovery to Clinic Moderated by Carey Goldberg, WBUR
4:15 – 4:45 p.m. Jack’s Journey Jake and Elizabeth Burke, Cure NF with Jack
4:45 – 5:00 p.m. Closing Remarks
5:00 – 6:00 p.m. Networking Reception

 

 

Day Two – September 24, 2019

  • How genomics is expediting drug discovery
  • Accelerating therapies through the regulatory process

Tuesday, September 24

8:45 – 9:00 a.m. Opening Remarks and Recap James C. Foster, Chairman of the Board, President, and Chief Executive Officer, Charles River
9:00 – 9:30 a.m. 2018 Award Winner Update David Hysong, Patient Founder and Chief Executive Officer, Shepherd Therapeutics William Siders, CDO, Shepherd Therapeutics
9:30 – 10:15 a.m. Advances in Human Genetics and Therapeutic Modalities Enable Novel Therapies Eric Green, Vice President of Research and Development, Maze Therapeutics
10:15 – 11:00 a.m. How Genomics is Expediting Drug Discovery Manuel Rivas, Assistant Professor, Department of Biomedical Data Science, Stanford University
11:00 – 11:15 a.m. Break
11:15 a.m. – 12:00 p.m. Genomics Panel Discussion: Signposting Targets That Will Speed the Path to Market Moderated by Martin Mackay, Co-Founder, RallyBio
12:00 – 1:00 p.m. Lunch
1:00 – 1:45 p.m Truly Personalized Medicines for Ultra-rare Diseases: New Opportunities in Genomic Medicine Timothy Yu, Attending Physician, Division of Genetics and Genomics and Assistant Professor in Pediatrics, Boston Children’s Hospital
1:45 – 2:30 p.m. Application of Machine Learning Technology for the Assessment of Bulbar Symptoms in ALS Fernando Vieira, Chief Scientific Officer, ALS Therapy Development Institute
2:30 – 2:45 p.m. Break
2:45 – 3:30 p.m. Accelerating Rare Disease Therapies Through the Regulatory Process Martine Zimmermann, Senior Vice President and Head of Global Regulatory Affairs, Alexion Pharmaceuticals, Inc.
3:30 – 4:00 p.m. Wearing ALL the Hats: From Impossible to Possible Allyson Berent, Chief Operating Officer, GeneTx Biotherapeutics
4:00 – 4:15 p.m. Closing Remarks

 

jim.jpg
Matt_Wilsey.jpg
  • Find a cause and work with passion
  • CVD increased 53% from 2005 to 2016
  • Cholesterol, LDL receptor and CV disease
  • Genetics  evolution and discovery of PCSK9
  1. A PCSK9 Variant lowers CV risk
  2. complete lack of PCSK9 is safe – protects from CVD
  • LDL receptor
  • Statins do not work on LDL receptor if the mutation exists
  • Antibody and antisense for the PCSK9 mutation – Inexpensive Oral Medications can change Global Diseases
  • Dogma of Drug DIscovery: Approach a Patent vs Approach a Disease
  • Ligands bind within a cryptic binding pocket adjacent to a novel PCSK9 polymorphism

12 years of drug discovery

  1. 2003: PCSK9 mutation discovered
  2. 2005:
  3. 2006:
  4. 2012;
  5. 2012: Dogma Scientists begin
  6. compound found binds to primates
  7. 2015:
  8. 2018: Efficiency DGM-4403 lowers LDL-c by 55% 0ver 14 days
peter smith.jpg
  • 2014 – @Moderna, mRNA
  • 2017 – Alnylam

RNAi – delivery is the most difficult

  • gene silencing changes medicine and diseases
  • Small Interfeering RNA (siRNA) Therapeutics
  • Delivery challenges – stability and targeting
  • RNA Interference (RNAi) – Onpattro (patisiran)
  • GalNAc-siRNA Conjugates – delivery to the hepatocytes
  • N-Acetyl Galactosamine (GalNACc-siRNA conjugates
  • Hepatocyte specific : Liver across species: ASGPR expression
  • Metabolic Stability: Chemistry to Improve siRNA
  • Platform for genetic diseases
  • Evolution of COnjugate Design: GalNAc-siRNA – enhanced stabilization chemistry
  • ALN-TTRSC02 compared to Revusiran
  • ALN-TTRsc02 (advanced) –  – tetrameric protein binds transports serum retinol binding
  • AL Amyloidosis
  • ApoA1 Amyloidosis
  • ATTR Amyloidosis – manufacture in the Liver: Hereditery vs non-hereditary – Wild-Type
  • Patisiran Therapeutic Hypothesis – siRNA targeting TTR formulated
  • Pharmacology of TTR siRNA in Animal Model
  • V30M TTR Transgenic Mouse Model: Patisiran Phase 1 Study to Phase 3 APOLLA Study Design for any TTR mutation – Prior tetramer stabilizer used permitted
  • hATTR Amyloidosis and APOLLO Assessment: Phase 3 is Global – Cardiomyopathy – potential,
  • Patisiran met all secondary Endpoints: Canadian, Japanese approval – US approved indication, European approved
  • Alnylam Investigational RNAi Therapeutics:
  • Pipeline: Genetic medicines
  • Hepatic Infectious diseases
  • CNS & Ocular
  • Cardiovascular
11:15 AM-12:00 PM
richard snyder.jpg
  • Viral-Vector-mediated in vivo Gene Therapy
  • VVS Viral Vector Platforms:
  1. Adenovirus immunogenicity
  2. Lentivirus
  3. Retrovirus
  4. Herpes
  5. Recombinant Adeno-Associated Viral Vectors: Glybera, Luxturna
  6. Zolgenzma
  • Establish the product specifications based on data (CQAs)
  • Is the vector product: parenteral or anciliary material

Considerations:

  • Large scall vs small
  • lot demand vs platform choice
  • Proof of concept
  • Own/License the manufacturing reagents (portability) vs reliance on providers
  • Process and Analytical Design & Development: Cell line: Mamalian, others
  • Raw materials: Viral clearance steps – cell banks generation
  • impurity profiles
  • Cell Substrates
  • Cell clone screening
  • Preclinical/Clinical, Alachua, FL; Phase III/Commercial: Cambridge & Lexington
  • Biologics Upstream Process Flow: Master cell banks
  • Transient Transfection Process (Lenti and AAV)
  • rAAV Proviral cell line
  • Production Vector-based Process (Baculo or HSV)
  • Product purification: Filtration methods, Chromatography, centrifugal separation: Concentration/filtration
  • Formulation
  • Compatibility wiht vial: Glass, CZ, COP: absorption vs Inactivation
  • Single use
  • Frozen storage
  • Storage, Packing and Distribution
  • Technology Transfer: Research vs Mature Process (Qualified cell bank)
  • Plasmids: E.coli MCB backbone
  • Analytics Design & Development: Testing: Nucleic-acid based, protein-based
  1. AAV Vector Lot Release Assays
  2. Lentivirus
  • QA: QA Management System –
  • Analytical Assays
  • FDA Issues SIX New Draft Guidance Documents in 7/2018
  • Process Validation: Life cycle approach: Process caracterizationProcess performance qualification
Anne_Carpenter photo (003).jpg
  • assayGene clusterbased on morphological similarity: Express each gene, gene painting Image analysis, cluster morphological profiles
  • identification of allelle that are not constitutively activating mutants.
  • weakly supervised deep learning to extract features
  • identify similarities and differences among treatments at the same population level
  • Predict many distinct expensive assays on a huge compound library using a single cell painting
  1. Test 5,000 compounds in the assay of interest as well as cell painting
  2. Find combination of iamge-based features that predict in the assay of interest
  3. Predict “hit” from existing 1Million compound cell paining data set
The Role of AI in Expediting Drug Discovery Target Identification for Nonalcoholic Steatohepatitis Using Machine Learning: The Case for nference
Tyler Wagner PhD, Head of Cardiovascular Research, nference
KJ.jpg
DT.jpg
  • Lung-Chip Applications
  • Pulmonary inflammation
  • Intestine-chip Applications
  • Liver-Chip: Building Tissue Complexity: Co-culture, tri-culture, quatro-culture, Transcriptomic Analysis
  • Liver-Chip: Kupffer cells Characterization
  • Stellate Cells
  • parenchymal channel, non-parenchymal channel
  • Liver Chip: Predicting species differences in liver toxicity: Effects of Bosentan on Albumin secretion
  • Acetaminophen Toxicity in Liver-Chip: APAP Metabolism: detected changes in morphology, ATP, GSH – Dosepdependent increase of ROS
  • Steatosis and Stellate Cell Activation: and Species difference in Toxicity Liver chip data correlates with in vivo data
  • Predict Human safety risks with liver chip
Albert Gough, PhD, U Pittsburg School of Medicine
  • Approaches for repurposing drugs:
  1. Integrated, fluidic organ MPD,
  2. cells, 3D structures,
  3. O2 Modulation & Sensing
  4. Biosensors
  5. secretome
  • Higher Biomimetic content Higher throughput
  • regulatory liver-pancreas axis in Type 2 Diabetes model
  • Estradiol-Induced proliferation of mutants in Breast Cancer varies from 2D monoculture to 3D LAMP
  • MPS Models:
  1. celle and organ Structure in MPS
  2. Single organ MPS & Coupled organ
Carey Goldberg.PNG
Carey Goldberg, WBUR
burke family.jpg

September 24, 2019

jim.jpg
david hysong.png
bill siders.png
eric green.jpg
MacArthurD.jpg
mackay_1644931c.jpg
timothy yu.jpg
fernando-vieira.jpg
crop-VOISCHTS-Presenter-ZimmermannM.png
Allyson-Berent.jpg

Read Full Post »


Pfizer buys out Array BioPharma for $11.4 Billion to beef up its oncology offerings

Reporter: Stephen J. Williams, PhD

As reported in FiercePharma.com:

by Angus Liu |

Three years after purchasing Medivation for $14.3 billion, Pfizer is back with another hefty M&A deal. And once again, it’s betting on oncology.

In the first big M&A deal under new CEO Albert Bourla, Pfizer has agreed to buy oncology specialist Array BioPharma for a total value of about $11.4 billion, the two companies unveiled Monday. The $48-per-share offer represents a premium of about 62% to Array stock’s closing price on Friday.

With the acquisition, Pfizer will beef up its oncology offerings with two marketed drugs, MEK inhibitor Mektovi and BRAF inhibitor Braftovi, which are approved as a combo treatment for melanoma and recently turned up positive results in colon cancer.

The buy will enhance the Pfizer innovative drug business’ “long-term growth trajectory,” Bourla said in a Monday statement, dubbing Mektovi-Braftovi “a potentially industry-leading franchise for colorectal cancer.”

RELATED: Array’s ‘extremely compelling’ new colon cancer data spark blockbuster talk

In a recent interim analysis of a trial in BRAF-mutant metastatic colorectal cancer, the pair, used in tandem with Eli Lilly and Merck KGaA’s Erbitux, produced a benefit in 26% of patients, versus the 2% that chemotherapy helped. The combo also showed it could reduce the risk of death by 48%. SVB Leerink analysts at that time called the data “extremely compelling.”

Right now, one in every three new patients with mutated metastatic melanoma is getting the combo, despite its third-to-market behind combos from Roche and Novartis, Andy Schmeltz, Pfizer’s oncology global president, said during an investor briefing on Monday.

It is being studied in more than 30 clinical studies across several solid tumor indications. Moving forward, Pfizer believes the combo could potentially be used in the adjuvant setting to prevent tumor recurrence after surgery, Pfizer’s chief scientific officer, Mikael Dolsten, said on the call. The company is also keen to know how it could be paired up with Pfizer’s own investigational PD-1, he said, as the combo is already in studies with other PD-1/L1s.

But as Pfizer execs have previously said, the company’s current business development strategy no longer centers on adding revenues “now or soon,” but rather on strengthening Pfizer’s pipeline with earlier-stage assets. And Array can help there, too.

“We are very excited by Array’s impressive track record of successfully discovering and developing innovative small-molecules and targeted cancer therapies,” Dolsten said in a statement.

On top of Mektovi and Braftovi, Array has a long list of out-licensed drugs that could generate big royalties over time. For example, Vitrakvi, the first drug to get an initial FDA approval in tumors with a particular molecular feature regardless of their location, was initially licensed to Loxo Oncology—which was itself snapped up by Eli Lilly for $8 billion—but was taken over by pipeline-hungry Bayer. There are other drugs licensed to the likes of AstraZeneca, Roche, Celgene, Ono Pharmaceutical and Seattle Genetics, among others.

Those drugs are also a manifestation of Array’s strong research capabilities. To keep those Array scientists doing what they do best, Pfizer is keeping a 100-person team in Colorado as a standalone research unit alongside Pfizer’s existing hubs, Schmeltz said.

Pfizer is counting on Array to augment its leadership in breast cancer, an area championed by Ibrance, and prostate cancer, the pharma giant markets Astellas-partnered Xtandi. For 2018, revenues from the Pfizer oncology portfolio jumped to $7.20 billion—up from $6.06 billion in 2017—mainly thanks to those two drugs.

Source: https://www.fiercepharma.com/pharma/pfizer-never-say-never-m-a-buys-oncology-innovator-array-for-11-4b

 

About Array BioPharma

Array markets BRAFTOVI® (encorafenib) capsules in combination with MEKTOVI® (binimetinib)  tablets for the treatment of patients with unresectable or metastatic melanoma with a BRAFV600E or BRAFV600K  mutation in the United States and with partners in other major worldwide markets.* Array’s lead clinical programs, encorafenib and binimetinib, are being investigated in over 30 clinical trials across a number of solid tumor indications, including a Phase 3 trial in BRAF-mutant metastatic colorectal cancer. Array’s pipeline includes several additional programs being advanced by Array or current license-holders, including the following programs currently in registration trials: selumetinib (partnered with AstraZeneca), LOXO-292 (partnered with Eli Lilly), ipatasertib (partnered with Genentech), tucatinib (partnered with Seattle Genetics) and ARRY-797. Vitrakvi® (larotrectinib, partnered with Bayer AG) is approved in the United States and Ganovo® (danoprevir, partnered with Roche) is approved in China.

 

Other Articles of Note of Pfizer Merger and Acquisition deals on this Open Access Journal Include:

From Thalidomide to Revlimid: Celgene to Bristol Myers to possibly Pfizer; A Curation of Deals, Discovery and the State of Pharma

Pfizer Near Allergan Buyout Deal But Will Fed Allow It?

Pfizer offers legal guarantees over AstraZeneca bid

Re-Creation of the Big Pharma Model via Transformational Deals for Accelerating Innovations: Licensing vs In-house inventions

Read Full Post »


Real Time Coverage @BIOConvention #BIO2019:  Issues of Risk and Reproduceability in Translational and Academic Collaboration; 2:30-4:00 June 3 Philadelphia PA

Reporter: Stephen J. Williams, PhD @StephenJWillia2

Derisking Academic Science: The Unmet Need  

Translating academic research into products and new therapies is a very risky venture as only 1% of academic research has been successfully translated into successful products.

Speakers
Collaboration from Chicago area universities like U of Chicago, Northwestern, etc.  First phase was enhance collaboration between universities by funding faculty recruitment and basic research.  Access to core facilities across universities.  Have expanded to give alternatives to company formation.
Half of the partnerships from Harvard and companies have been able to spin out viable startups.
Most academic PI are not as savvy to start a biotech so they bring in biotechs and build project teams as well as developing a team of ex pharma and biotech experts.  Derisk as running as one asset project.  Partner as early as possible.  A third of their pipeline have been successfully partnered.  Work with investors and patent attorneys.
Focused on getting PIs to get to startup.  Focused on oncology and vaccines and I/O.  The result can be liscensing or partnership. Running around 50 to 60 projects. Creating a new company from these US PI partnerships.
Most projects from Harvard have been therapeutics-based.  At Harvard they have a network of investors ($50 million).   They screen PI proposals based on translateability and what investors are interested in.
In Chicago they solicit multiple projects but are agnostic on area but as they are limited they are focused on projects that will assist in developing a stronger proposal to investor/funding mechanism.
NYU goes around university doing due diligence reaching out to investigators. They shop around their projects to wet their investors, pharma appetite future funding.  At Takeda they have five centers around US.  They want to have more input so go into the university with their scientists and discuss ideas.
Challenges:

Takeda: Data Validation very important. Second there may be disconnect with the amount of equity the PI wants in the new company as well as management.  Third PIs not aware of all steps in drug development.

Harvard:  Pharma and biotech have robust research and academic does not have the size or scope of pharma.  PIs must be more diligent on e.g. the compounds they get from a screen… they only focus narrowly

NYU:  bring in consultants as PIs don’t understand all the management issues.  Need to understand development so they bring in the experts to help them.  Pharma he feels have to much risk aversion and none of their PIs want 100% equity.

Chicago:  they like to publish at early stage so publication freedom is a challenge

Dr. Freedman: Most scientists responding to Nature survey said yes a reproduceability crisis.  The reasons: experimental bias, lack of validation techniques, reagents, and protocols etc.
And as he says there is a great ECONOMIC IMPACT of preclinical reproducability issues: to the tune of $56 billion of irreproducable results (paper published in PLOS Biology).  If can find the core drivers of this issue they can solve the problem.  STANDARDS are constantly used in various industries however academic research are lagging in developing such standards.  Just the problem of cell line authentication is costing $4 billion.
Dr. Cousins:  There are multiple high throughput screening (HTS) academic centers around the world (150 in US).  So where does the industry go for best practices in assays?  Eli Lilly had developed a manual for HTS best practices and in 1984 made publicly available (Assay Guidance Manual).  To date there have been constant updates to this manual to incorporate new assays.  Workshops have been developed to train scientists in these best practices.
NIH has been developing new programs to address these reproducability issues.  Developed a method called
Ring Testing Initiative” where multiple centers involved in sharing reagents as well as assays and allowing scientists to test at multiple facilities.
Dr.Tong: Reproduceability of Microarrays:  As microarrays were the only methodology to do high through put genomics in the early 2000s, and although much research had been performed to standardize and achieve best reproduceability of the microarray technology (determining best practices in spotting RNA on glass slides, hybridization protocols, image analysis) little had been done on evaluating the reproducibility of results obtained from microarray experiments involving biological samples.  The advent of Artificial Intelligence and Machine Learning though can be used to help validate microarray results.  This was done in a Nature Biotechnology paper (Nature Biotechnology volume28pages827–838 (2010)) by an international consortium, the International MAQC (Microarray Quality Control) Society and can be found here
However Dr. Tong feels there is much confusion in how we define reproduceability.  Dr. Tong identified a few key points of data reproduceability:
  1. Traceability: what are the practices and procedures from going from point A to point B (steps in a protocol or experimental design)
  2. Repeatability:  ability to repeat results within the same laboratory
  3. Replicatablilty:  ability to repeat results cross laboratory
  4. Transferability:  are the results validated across multiple platforms?

The panel then discussed the role of journals and funders to drive reproduceability in research.  They felt that editors have been doing as much as they can do as they receive an end product (the paper) but all agreed funders need to do more to promote data validity, especially in requiring that systematic evaluation and validation of each step in protocols are performed..  There could be more training of PIs with respect to protocol and data validation.

Other Articles on Industry/Academic Research Partnerships and Translational Research on this Open Access Online Journal Include

Envisage-Wistar Partnership and Immunacel LLC Presents at PCCI

BIO Partnering: Intersection of Academic and Industry: BIO INTERNATIONAL CONVENTION June 23-26, 2014 | San Diego, CA

R&D Alliances between Big Pharma and Academic Research Centers: Pharma’s Realization that Internal R&D Groups alone aren’t enough

Read Full Post »


Real Time Coverage @BIOConvention #BIO2019: What’s Next: The Landscape of Innovation in 2019 and Beyond. 3-4 PM June 3 Philadelphia PA

Reporter: Stephen J. Williams, PhD @StephenJWillia2

 

Results from Clarivate
In 2018 most of deals were in CART area but now we are seeing more series A rounds that are on novel mechanisms as well as rare diseases.  US is still highest in venture capital series A but next is China. 10 of top ex US VC are from China, a whole lot of money.
Preclinical is very strong for US VC but China VC is focused on clinical.  First time this year we see US series A break above 100.  But ex US the series A is going down.  Although preclinical deals in US is coming back not like as good as in 2006.  But alot of > 1 billion $ deals.  Most of money into mAbs and protein therapy;  antisense is big and cell therapy is big too; small molecule not as much
ClearView Healthcare
Which innovation classes attracted VC in 2018?
  • Oncology drives a disproportionate focus could be driven by pharma focus on oncology; however there is some focus on neuro and infectious disease
  • therapeutic classes: shift to differentiated technology…. companies want technologic platforms not just drugs.  Nucleic Acid tech and antibody tech is high need platforms.  Startups can win by developing a strong platform not just a drug
There are pros and cons of developing a platform company versus a focused company.  Many VCs have a portfolio and want something to fit in so look for a focused company and may not want a platform company.  Pfizer feels that when alot of money is available (like now) platform investing is fine but when money becomes limited they will focus on those are what will be needed to fill therapy gaps.  They believe buy the therapy and only rent the platform.
Merck does feel the way Pfizer does but they have separate ventures so they can look and license platforms.  they are active in looking at companies with new modalities but they are focused on the money so they feel best kept in hands of biotech not pharma.
At Celgene they were solely focused on approvals not platforms.  Alot of money is required to get these platforms to market.  Concentration for platform companies should be the VCs not partnering or getting bought out by pharma.  it seems from panel speakers from pharma that they are waiting for science to prove itself and waiting for favorable monetary environments (easy money).  However it seems they (big pharma) are indicating that money is drying up or at least expect it too.
At Axial and with VCs they feel it is important to paint a picture or a vision at the early stage.
At Ontogeny, they focus on evaluating assets especially and most important, ThE MANAGEMENT TEAM.  There are not that many great talented drug development management teams he feels out there even though great science out there.

Read Full Post »

Older Posts »