Feeds:
Posts
Comments

Archive for the ‘New Drug Approval’ Category

Despite heated discussion over whether it works, the FDA has approved Aduhelm, bringing a new ray of hope to the Alzheimer’s patients.

Curator and Reporter: Dr. Premalata Pati, Ph.D., Postdoc

On Monday, 7th June 2021, a controversial new Alzheimer’s Disease treatment was licensed in the United States for the first time in nearly 20 years, sparking calls for it to be made available worldwide despite conflicting evidence about its usefulness. The drug was designed for people with mild cognitive impairment, not severe dementia, and it was designed to delay the progression of Alzheimer’s disease rather than only alleviate symptoms.

Vhttps://youtu.be/atAhUI6OMnsII

The Controversies

The route to FDA clearance for Aducanumab has been bumpy – and contentious.

Though doctors, patients, and the organizations that assist them are in desperate need of therapies that can delay mental decline, scientists question the efficacy of the new medicine, Aducanumab or Aduhelm. In March 2019, two trials were halted because the medications looked to be ineffective. “The futility analysis revealed that the studies were most likely to fail,” said Isaacson of Weill Cornell Medicine and NewYork-Presbyterian. Biogen, the drug’s manufacturer revealed several months later that a fresh analysis with more participants found that individuals who got high doses of Aducanumab exhibited a reduction in clinical decline in one experiment. Patients treated with high-dose Aducanumab had 22% reduced clinical impairment in their cognitive health at 18 months, indicating that the advancement of their early Alzheimer’s disease was halted, according to FDA briefing documents from last year.

When the FDA’s members were split on the merits of the application in November, it was rejected. Three of its advisers went public, claiming that there was insufficient evidence that it worked in a scientific journal. They were concerned that if the medicine was approved, it might reduce the threshold for future approvals, owing to the scarcity of Alzheimer’s treatments.

Dr. Caleb Alexander, a drug safety and effectiveness expert at the Johns Hopkins Bloomberg School of Public Health, was one of the FDA advisers who was concerned that the data presented to the agency was a reanalysis after the experiment was stopped. It was “like the Texas sharpshooter fallacy,” he told the New York Times, “where the sharpshooter blows up a barn and then goes and paints a bullseye around the cluster of holes he loves.”

Some organizations, such as the non-profit Public Citizen’s Health Research Group, claimed that the FDA should not approve Aducanumab for the treatment of Alzheimer’s disease because there is insufficient proof of its efficacy.

The drug is a monoclonal antibody that inhibits the formation of amyloid protein plaques in the brain, which are thought to be the cause of Alzheimer’s disease. The majority of Alzheimer’s medications have attempted to erase these plaques.

Aducanumab appears to do this in some patients, but only when the disease is in its early stages. This means that people must be checked to see if they have the disease. Many persons with memory loss are hesitant to undergo testing because there is now no treatment available.

The few Alzheimer’s medications available appear to have limited effectiveness. When Aricept, also known as Donepezil, was approved more than 20 years ago, there was a major battle to get it. It was heralded as a breakthrough at the time – partly due to the lack of anything else. It has become obvious that it slows mental decline for a few months but makes little effect in the long run.

The findings of another trial for some patients backed up those conclusions.

Biogen submitted a Biologics License Application to the FDA in July 2020, requesting approval of the medicine.

The FDA’s decision has been awaited by Alzheimer’s disease researchers, clinicians, and patients since then.

Support for approval of the drug

Other groups, such as the Alzheimer’s Association, have supported the drug’s approval.

The Alzheimer’s Association‘s website stated on Friday, “This is a critical time, regardless of the FDA’s final judgment. We’ve never been this close to approving an Alzheimer’s drug that could affect the disease’s development rather than just the symptoms. We can keep working together to achieve our goal of a world free of Alzheimer’s disease and other dementias.”

The drug has gotten so much attention that the Knight Alzheimer Disease Research Center at Washington University in St. Louis issued a statement on Friday stating that even if it is approved, “it will still likely take several months for the medication to pass other regulatory steps and become available to patients.”

Biogen officials told KGO-TV on Monday that the medicine will be ready to ship in about two weeks and that they have identified more than 900 facilities across the United States that they feel will be medically and commercially suitable.

Officials stated the corporation will also provide financial support to qualifying patients so that their out-of-pocket payments are as low as possible. Biogen has also pledged not to raise the price for at least the next four years.

Most Medicare customers with supplemental plans, according to the firm, will have a limited or capped co-pay.

Case studies connected to the Drug Approval

Case 1

Ann Lange, one of several Chicago-area clinical trial volunteers who received the breakthrough Alzheimer’s treatment, said,

It really offers us so much hope for a long, healthy life.

Lange, 60, has Alzheimer’s disease, which she was diagnosed with five years ago. Her memory has improved as a result of the monthly infusions, she claims.

She said,

I’d forget what I’d done in the shower, so I’d scribble ‘shampoo, conditioner, face, body’ on the door. Otherwise, I’d lose track of what I’m doing “Lange remarked. “I’m not required to do that any longer.

Case 2

Jenny Knap, 69, has been receiving infusions of the Aducanumab medication for about a year as part of two six-month research trials. She told CNN that she had been receiving treatment for roughly six months before the trial was halted in 2019, and that she had recently resumed treatment.

Knap said,

I can’t say I noticed it on a daily basis, but I do think I’m doing a lot better in terms of checking for where my glasses are and stuff like that.

When Knap was diagnosed with mild cognitive impairment, a clinical precursor to Alzheimer’s disease, in 2015, the symptoms were slight but there.

Her glasses were frequently misplaced, and she would repeat herself, forgetting previous talks, according to her husband, Joe Knap.

Joe added,

We were aware that things were starting to fall between the cracks as these instances got more often

Jenny went to the Lou Ruvo Center for Brain Health at the Cleveland Clinic in Ohio for testing and obtained her diagnosis. Jenny found she was qualified to join in clinical trials for the Biogen medicine Aducanumab at the Cleveland Clinic a few years later, in early 2017. She volunteered and has been a part of the trial ever since.

It turns out that Jenny was in the placebo category for the first year and a half, Joe explained, meaning she didn’t get the treatment.

They didn’t realize she was in the placebo group until lately because the trial was blind. Joe stated she was given the medicine around August 2018 and continued until February 2019 as the trial progressed. The trial was halted by Biogen in March 2019, but it was restarted last October, when Jenny resumed getting infusions.

Jenny now receives Aducanumab infusions every four weeks at the Cleveland Clinic, which is roughly a half-hour drive from their house, with Joe by her side. Jenny added that, despite the fact that she has only recently begun therapy, she believes it is benefiting her, combined with a balanced diet and regular exercise (she runs four miles).

The hope of Aducanumab is to halt the progression of the disease rather than to improve cognition. We didn’t appreciate any significant reduction in her condition, Jenny’s doctor, Dr. Babak Tousi, who headed Aducanumab clinical studies at the Cleveland Clinic, wrote to CNN in an email.

This treatment is unlike anything we’ve ever received before. There has never been a drug that has slowed the growth of Alzheimer’s disease, he stated, Right now, existing medications like donepezil and memantine aid with symptoms but do not slow the disease’s progression.

Jenny claims that the medicine has had no significant negative effects on her.

There was signs of some very minor bleeding in the brain at one point, which was quite some time ago. It was at very low levels, in fact, Joe expressed concern about Jenny, but added that the physicians were unconcerned.

According to Tousi, with repeated therapy, “blood vessels may become leaky, allowing fluid and red blood cells to flow out to the surrounding area,” and “micro hemorrhages have been documented in 19.1% of trial participants who got” the maximal dose of therapy”.

Jenny and Joe’s attitude on the future has improved as a result of the infusions and keeping a healthy lifestyle, according to Joe. They were also delighted to take part in the trial, which they saw as an opportunity to make a positive influence in other people’s lives.

There was this apprehension of what was ahead before we went into the clinical trial, Joe recalled. “The medical aspect of the infusion gives us reason to be optimistic. However, doing the activity on a daily basis provides us with immediate benefits.”

The drug’s final commercialization announcement

Aducanumab, which will be marketed as Aduhelm, is a monthly intravenous infusion that is designed to halt cognitive decline in patients with mild memory and thinking issues. It is the first FDA-approved medication for Alzheimer’s disease that targets the disease process rather than just the symptoms.

The manufacturer, Biogen, stated Monday afternoon that the annual list price will be $56,000. In addition, diagnostic tests and brain imaging will very certainly cost tens of thousands of dollars.

The FDA approved approval for the medicine to be used but ordered Biogen to conduct a new clinical trial, recognizing that prior trials of the medicine had offered insufficient evidence to indicate effectiveness.

Biogen Inc said on Tuesday that it expects to start shipping Aduhelm, a newly licensed Alzheimer’s medicine, in approximately two weeks and that it has prepared over 900 healthcare facilities for the intravenous infusion treatment.

Other Relevant Articles

Gene Therapy could be a Boon to Alzheimer’s disease (AD): A first-in-human clinical trial proposed

Reporter: Dr. Premalata Pati, Ph.D., Postdoc

https://pharmaceuticalintelligence.com/2021/03/22/gene-therapy-could-be-a-boon-to-alzheimers-disease-ad-a-first-in-human-clinical-trial-proposed/

Alzheimer’s Disease – tau art thou, or amyloid

Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2016/02/15/alzheimers-disease-tau-art-thou-or-amyloid/

Connecting the Immune Response to Amyloid-β Aggregation in Alzheimer’s Disease via IFITM3

Reporter : Irina Robu, PhD

https://pharmaceuticalintelligence.com/2020/10/13/connecting-the-immune-response-to-amyloid-%ce%b2-aggregation-in-alzheimers-disease-via-ifitm3/

Ustekinumab New Drug Therapy for Cognitive Decline resulting from Neuroinflammatory Cytokine Signaling and Alzheimer’s Disease

Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2013/02/27/ustekinumab-new-drug-therapy-for-cognitive-decline-resulting-from-neuroinflammatory-cytokine-signaling-and-alzheimers-disease/

Alnylam Announces First-Ever FDA Approval of an RNAi Therapeutic, ONPATTRO™ (patisiran) for the Treatment of the Polyneuropathy of Hereditary Transthyretin-Mediated Amyloidosis in Adults

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2018/08/13/alnylam-announces-first-ever-fda-approval-of-an-rnai-therapeutic-onpattro-patisiran-for-the-treatment-of-the-polyneuropathy-of-hereditary-transthyretin-mediated-amyloidosis-in-adults/

Recent progress in neurodegenerative diseases and gliomas

Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2016/05/28/recent-progress-in-neurodegenerative-diseases-and-gliomas/

Read Full Post »

Thriving Vaccines and Research: Weizmann Institute Coronavirus Research Development

Reporter: Amandeep Kaur, B.Sc., M.Sc.

In early February, Prof. Eran Segal updated in one of his tweets and mentioned that “We say with caution, the magic has started.”

The article reported that this statement by Prof. Segal was due to decreasing cases of COVID-19, severe infection cases and hospitalization of patients by rapid vaccination process throughout Israel. Prof. Segal emphasizes in another tweet to remain cautious over the country and informed that there is a long way to cover and searching for scientific solutions.

A daylong webinar entitled “COVID-19: The epidemic that rattles the world” was a great initiative by Weizmann Institute to share their scientific knowledge about the infection among the Israeli institutions and scientists. Prof. Gideon Schreiber and Dr. Ron Diskin organized the event with the support of the Weizmann Coronavirus Response Fund and Israel Society for Biochemistry and Molecular Biology. The speakers were invited from the Hebrew University of Jerusalem, Tel-Aviv University, the Israel Institute for Biological Research (IIBR), and Kaplan Medical Center who addressed the molecular structure and infection biology of the virus, treatments and medications for COVID-19, and the positive and negative effect of the pandemic.

The article reported that with the emergence of pandemic, the scientists at Weizmann started more than 60 projects to explore the virus from different range of perspectives. With the help of funds raised by communities worldwide for the Weizmann Coronavirus Response Fund supported scientists and investigators to elucidate the chemistry, physics and biology behind SARS-CoV-2 infection.

Prof. Avi Levy, the coordinator of the Weizmann Institute’s coronavirus research efforts, mentioned “The vaccines are here, and they will drastically reduce infection rates. But the coronavirus can mutate, and there are many similar infectious diseases out there to be dealt with. All of this research is critical to understanding all sorts of viruses and to preempting any future pandemics.”

The following are few important projects with recent updates reported in the article.

Mapping a hijacker’s methods

Dr. Noam Stern-Ginossar studied the virus invading strategies into the healthy cells and hijack the cell’s systems to divide and reproduce. The article reported that viruses take over the genetic translation system and mainly the ribosomes to produce viral proteins. Dr. Noam used a novel approach known as ‘ribosome profiling’ as her research objective and create a map to locate the translational events taking place inside the viral genome, which further maps the full repertoire of viral proteins produced inside the host.

She and her team members grouped together with the Weizmann’s de Botton Institute and researchers at IIBR for Protein Profiling and understanding the hijacking instructions of coronavirus and developing tools for treatment and therapies. Scientists generated a high-resolution map of the coding regions in the SARS-CoV-2 genome using ribosome-profiling techniques, which allowed researchers to quantify the expression of vital zones along the virus genome that regulates the translation of viral proteins. The study published in Nature in January, explains the hijacking process and reported that virus produces more instruction in the form of viral mRNA than the host and thus dominates the translation process of the host cell. Researchers also clarified that it is the misconception that virus forced the host cell to translate its viral mRNA more efficiently than the host’s own translation, rather high level of viral translation instructions causes hijacking. This study provides valuable insights for the development of effective vaccines and drugs against the COVID-19 infection.

Like chutzpah, some things don’t translate

Prof. Igor Ulitsky and his team worked on untranslated region of viral genome. The article reported that “Not all the parts of viral transcript is translated into protein- rather play some important role in protein production and infection which is unknown.” This region may affect the molecular environment of the translated zones. The Ulitsky group researched to characterize that how the genetic sequence of regions that do not translate into proteins directly or indirectly affect the stability and efficiency of the translating sequences.

Initially, scientists created the library of about 6,000 regions of untranslated sequences to further study their functions. In collaboration with Dr. Noam Stern-Ginossar’s lab, the researchers of Ulitsky’s team worked on Nsp1 protein and focused on the mechanism that how such regions affect the Nsp1 protein production which in turn enhances the virulence. The researchers generated a new alternative and more authentic protocol after solving some technical difficulties which included infecting cells with variants from initial library. Within few months, the researchers are expecting to obtain a more detailed map of how the stability of Nsp1 protein production is getting affected by specific sequences of the untranslated regions.

The landscape of elimination

The article reported that the body’s immune system consists of two main factors- HLA (Human Leukocyte antigen) molecules and T cells for identifying and fighting infections. HLA molecules are protein molecules present on the cell surface and bring fragments of peptide to the surface from inside the infected cell. These peptide fragments are recognized and destroyed by the T cells of the immune system. Samuels’ group tried to find out the answer to the question that how does the body’s surveillance system recognizes the appropriate peptide derived from virus and destroy it. They isolated and analyzed the ‘HLA peptidome’- the complete set of peptides bound to the HLA proteins from inside the SARS-CoV-2 infected cells.

After the analysis of infected cells, they found 26 class-I and 36 class-II HLA peptides, which are present in 99% of the population around the world. Two peptides from HLA class-I were commonly present on the cell surface and two other peptides were derived from coronavirus rare proteins- which mean that these specific coronavirus peptides were marked for easy detection. Among the identified peptides, two peptides were novel discoveries and seven others were shown to induce an immune response earlier. These results from the study will help to develop new vaccines against new coronavirus mutation variants.

Gearing up ‘chain terminators’ to battle the coronavirus

Prof. Rotem Sorek and his lab discovered a family of enzymes within bacteria that produce novel antiviral molecules. These small molecules manufactured by bacteria act as ‘chain terminators’ to fight against the virus invading the bacteria. The study published in Nature in January which reported that these molecules cause a chemical reaction that halts the virus’s replication ability. These new molecules are modified derivates of nucleotide which integrates at the molecular level in the virus and obstruct the works.

Prof. Sorek and his group hypothesize that these new particles could serve as a potential antiviral drug based on the mechanism of chain termination utilized in antiviral drugs used recently in the clinical treatments. Yeda Research and Development has certified these small novel molecules to a company for testing its antiviral mechanism against SARS-CoV-2 infection. Such novel discoveries provide evidences that bacterial immune system is a potential repository of many natural antiviral particles.

Resolving borderline diagnoses

Currently, Real-time Polymerase chain reaction (RT-PCR) is the only choice and extensively used for diagnosis of COVID-19 patients around the globe. Beside its benefits, there are problems associated with RT-PCR, false negative and false positive results and its limitation in detecting new mutations in the virus and emerging variants in the population worldwide. Prof. Eran Elinavs’ lab and Prof. Ido Amits’ lab are working collaboratively to develop a massively parallel, next-generation sequencing technique that tests more effectively and precisely as compared to RT-PCR. This technique can characterize the emerging mutations in SARS-CoV-2, co-occurring viral, bacterial and fungal infections and response patterns in human.

The scientists identified viral variants and distinctive host signatures that help to differentiate infected individuals from non-infected individuals and patients with mild symptoms and severe symptoms.

In Hadassah-Hebrew University Medical Center, Profs. Elinav and Amit are performing trails of the pipeline to test the accuracy in borderline cases, where RT-PCR shows ambiguous or incorrect results. For proper diagnosis and patient stratification, researchers calibrated their severity-prediction matrix. Collectively, scientists are putting efforts to develop a reliable system that resolves borderline cases of RT-PCR and identify new virus variants with known and new mutations, and uses data from human host to classify patients who are needed of close observation and extensive treatment from those who have mild complications and can be managed conservatively.

Moon shot consortium refining drug options

The ‘Moon shot’ consortium was launched almost a year ago with an initiative to develop a novel antiviral drug against SARS-CoV-2 and was led by Dr. Nir London of the Department of Chemical and Structural Biology at Weizmann, Prof. Frank von Delft of Oxford University and the UK’s Diamond Light Source synchroton facility.

To advance the series of novel molecules from conception to evidence of antiviral activity, the scientists have gathered support, guidance, expertise and resources from researchers around the world within a year. The article reported that researchers have built an alternative template for drug-discovery, full transparency process, which avoids the hindrance of intellectual property and red tape.

The new molecules discovered by scientists inhibit a protease, a SARS-CoV-2 protein playing important role in virus replication. The team collaborated with the Israel Institute of Biological Research and other several labs across the globe to demonstrate the efficacy of molecules not only in-vitro as well as in analysis against live virus.

Further research is performed including assaying of safety and efficacy of these potential drugs in living models. The first trial on mice has been started in March. Beside this, additional drugs are optimized and nominated for preclinical testing as candidate drug.

Source: https://www.weizmann.ac.il/WeizmannCompass/sections/features/the-vaccines-are-here-and-research-abounds

Other related articles were published in this Open Access Online Scientific Journal, including the following:

Identification of Novel genes in human that fight COVID-19 infection

Reporter: Amandeep Kaur, B.Sc., M.Sc. (ept. 5/2021)

https://pharmaceuticalintelligence.com/2021/04/19/identification-of-novel-genes-in-human-that-fight-covid-19-infection/

Fighting Chaos with Care, community trust, engagement must be cornerstones of pandemic response

Reporter: Amandeep Kaur, B.Sc., M.Sc. (ept. 5/2021)

https://pharmaceuticalintelligence.com/2021/04/13/fighting-chaos-with-care/

T cells recognize recent SARS-CoV-2 variants

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2021/03/30/t-cells-recognize-recent-sars-cov-2-variants/

Need for Global Response to SARS-CoV-2 Viral Variants

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2021/02/12/need-for-global-response-to-sars-cov-2-viral-variants/

Mechanistic link between SARS-CoV-2 infection and increased risk of stroke using 3D printed models and human endothelial cells

Reporter: Adina Hazan, PhD

https://pharmaceuticalintelligence.com/2020/12/28/mechanistic-link-between-sars-cov-2-infection-and-increased-risk-of-stroke-using-3d-printed-models-and-human-endothelial-cells/

Read Full Post »

19 of the 49 New Therapeutic Molecular Entities FDA approved in 2020 — as well as a new Cell-based therapy — are Personalized Medicines

Reporter: Aviva Lev-Ari, PhD, RN

 

2020 DRUG APPROVALS

19 of the 49 new therapeutic molecular entities FDA approved in 2020 — as well as a new cell-based therapy — are personalized medicines.

Newly Approved Therapeutic Molecular Entities

1. Ayvakit (avapritinib) — for the treatment of metastatic gastrointestinal stromal tumor (GIST). The decision to use this product is informed by the PDGFRA exon 18 biomarker status in the tumors of patients.

2. Nexletol (bempedoic acid) — for the treatment of adults with familial hypercholesterolemia who require additional lowering of LDL-C. The use of this product can be informed by the FH biomarker (LOLR, APOB, PCSK9) status in patients.

3. Tukysa (tucatinib) — for the treatment of metastatic breast cancer. The decision to use this product is informed by the HER2 biomarker status in the tumors of patients.

4. Pemazyre (pemigatinib) — for the treatment of cholangiocarcinoma. The decision to use this product is informed by the FGFR2 biomarker status in the tumors of patients.

5. Trodelvy (sacituzumab govitecan-hziy) — for the treatment of metastatic triple-negative breast cancer. The decision to use this product is informed by the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) biomarker statuses in the tumors of patients. Personalized Medicine at FDA 7

6. Tabrecta (capmatinib) — for the treatment of non-small cell lung cancer (NSCLC). The decision to use this product is informed by the MET exon 14 biomarker status in the tumors of patients.

7. Retevmo (selpercatinib) — for the treatment of lung and thyroid cancers. The decision to use this product is informed by the RET fusion biomarker status in the tumors of patients.

8. Uplizna (inebilizumab-cdon) — for the treatment of neuromyelitis optica spectrum disorder. The decision to use this product is informed by the AQP4 biomarker status in patients.

9. Rukobia (fostemsavir) — for the treatment of human immunodeficiency virus (HIV) infection in adults with multidrug-resistant HIV-1 infection. The use of this product can be informed by the HIV-1 expression levels in patients.

10. Evrysdi (risdiplam) — for the treatment of spinal muscular atrophy. This product selectively targets the SMN2 biomarker in patients.

11. Olinvyk (oliceridine) — for the management of acute pain. The use of this product can be informed by the CYP2D6 biomarker status in patients.

12. Viltepso (viltolarsen) — for the treatment of Duchenne muscular dystrophy. This product selectively targets, and its use is informed by, the DMD gene exon 53 biomarker in patients.

13. Enspryng (satralizumab-mwge) — for the treatment of neuromyelitis optica spectrum disorder. The decision to use this product is informed by the AQP4 biomarker status in patients.

14. Gavreto (pralsetinib) — for the treatment of non-small cell lung cancer (NSCLC). The decision to use this product is informed by the RET fusion biomarker status in the tumors of patients.

15. Zokinvy (lonafarnib) — for the treatment of progeroid laminopathies. The decision to use this product is informed by the LMN4 and/or ZMPSTE24 biomarker statuses in patients. 8 Personalized Medicine at FDA Methodology: When evaluating new molecular entities, PMC defined personalized medicines as those therapeutic products for which the label includes reference to specific biological markers, often identified by diagnostic tools, that help guide decisions and/or procedures for their use in individual patients.

16. Oxlumo (lumasiran) — for the treatment of hyperoxaluria type 1. This product selectively targets the hydroxy acid oxidase 1 (HAO1) biomarker in patients.

17. Imcivree (setmelanotide) — for the treatment of obesity due to pro-opiomelanocortin (POMC) deficiency. The decision to use this product is informed by the POMC, PCSK1, or LEPR biomarker statuses in patients.

18. Orladeyo (berotralstat) — for the treatment of hereditary angioedema types I and II. The use of this product can be informed by the C1-INH biomarker status in patients.

19. Margenza (margetuximab-cmkb) — for the treatment of breast cancer. The decision to use this product is informed by the human epidermal growth factor receptor 2 (HER2) biomarker status in the tumors of patients. Newly Approved Cell-Based Therapy

20. Tecartus (brexucabtagene autoleucel) — for the treatment of mantle cell lymphoma (MCL). The treatment is a fully integrated CD19-directed genetically modified autologous T-cell immunotherapy indicated for the treatment of adult patients with refractory MCL.

 

SOURCE

https://mma.prnewswire.com/media/1436855/PM_at_FDA_The_Scope_Significance_of_Progress_in_2020.pdf?p=pdf

Read Full Post »