Feeds:
Posts
Comments

Archive for the ‘RNA Biology, Cancer and Therapeutics’ Category

Yet another Success Story: Machine Learning to predict immunotherapy response

Curator and Reporter: Dr. Premalata Pati, Ph.D., Postdoc

Immune-checkpoint blockers (ICBs) immunotherapy appears promising for various cancer types, offering a durable therapeutic advantage. Only a number of cases with cancer respond to this therapy. Biomarkers are required to adequately predict the responses of patients. This article evaluates this issue utilizing a system method to characterize the immune response of the anti-tumor based on the entire tumor environment. Researchers build mechanical biomarkers and cancer-specific response models using interpretable machine learning that predict the response of patients to ICB.

The lymphatic and immunological systems help the body defend itself by combating. The immune system functions as the body’s own personal police force, hunting down and eliminating pathogenic baddies.

According to Federica Eduati, Department of Biomedical Engineering at TU/e, “The immune system of the body is quite adept at detecting abnormally behaving cells. Cells that potentially grow into tumors or cancer in the future are included in this category. Once identified, the immune system attacks and destroys the cells.”

Immunotherapy and machine learning are combining to assist the immune system solve one of its most vexing problems: detecting hidden tumorous cells in the human body.

It is the fundamental responsibility of our immune system to identify and remove alien invaders like bacteria or viruses, but also to identify risks within the body, such as cancer. However, cancer cells have sophisticated ways of escaping death by shutting off immune cells. Immunotherapy can reverse the process, but not for all patients and types of cancer. To unravel the mystery, Eindhoven University of Technology researchers used machine learning. They developed a model to predict whether immunotherapy will be effective for a patient using a simple trick. Even better, the model outperforms conventional clinical approaches.

The outcomes of this research are published on 30th June, 2021 in the journal Patterns in an article entitled “Interpretable systems biomarkers predict response to immune-checkpoint inhibitors”.

The Study

  • Characterization of the tumor microenvironment from RNAseq and prior knowledge
  • Multi-task machine-learning models for predicting antitumor immune responses
  • Identification of cancer-type-specific, interpretable biomarkers of immune responses
  • EaSIeR is a tool to predict biomarker-based immunotherapy response from RNA-seq

“Tumor also contains multiple types of immune and fibroblast cells which can play a role in favor of or anti-tumor, and communicates among themselves,” said Oscar Lapuente-Santana, a researcher doctoral student in the computational biology group. “We had to learn how complicated regulatory mechanisms in the micro-environment of the tumor affect the ICB response. We have used RNA sequencing datasets to depict numerous components of the Tumor Microenvironment (TME) in a high-level illustration.”

Using computational algorithms and datasets from previous clinical patient care, the researchers investigated the TME.

Eduati explained

While RNA-sequencing databases are publically available, information on which patients responded to ICB therapy is only available for a limited group of patients and cancer types. So, to tackle the data problem, we used a trick.

All 100 models learned in the randomized cross-validation were included in the EaSIeR tool. For each validation dataset, we used the corresponding cancer-type-specific model: SKCM for the melanoma Gide, Auslander, Riaz, and Liu cohorts; STAD for the gastric cancer Kim cohort; BLCA for the bladder cancer Mariathasan cohort; and GBM for the glioblastoma Cloughesy cohort. To make predictions for each job, the average of the 100 cancer-type-specific models was employed. The predictions of each dataset’s cancer-type-specific models were also compared to models generated for the remaining 17 cancer types.

From the same datasets, the researchers selected several surrogate immunological responses to be used as a measure of ICB effectiveness.

Lapuente-Santana stated

One of the most difficult aspects of our job was properly training the machine learning models. We were able to fix this by looking at alternative immune responses during the training process.

Some of the researchers employed the machine learning approach given in the paper to participate in the “Anti-PD1 Response Prediction DREAM Challenge.”

DREAM is an organization that carries out crowd-based tasks with biomedical algorithms. “We were the first to compete in one of the sub-challenges under the name cSysImmunoOnco team,” Eduati remarks.

The researchers noted,

We applied machine learning to seek for connections between the obtained system-based attributes and the immune response, estimated using 14 predictors (proxies) derived from previous publications. We treated these proxies as individual tasks to be predicted by our machine learning models, and we employed multi-task learning algorithms to jointly learn all tasks.

The researchers discovered that their machine learning model surpasses biomarkers that are already utilized in clinical settings to evaluate ICB therapies.

But why are Eduati, Lapuente-Santana, and their colleagues using mathematical models to tackle a medical treatment problem? Is this going to take the place of the doctor?

Eduati explains

Mathematical models can provide an overview of the interconnection between individual molecules and cells and at the same time predicting a particular patient’s tumor behavior. This implies that immunotherapy with ICB can be personalized in a patient’s clinical setting. The models can aid physicians with their decisions about optimum therapy, it is vital to note that they will not replace them.

Furthermore, the model aids in determining which biological mechanisms are relevant for the biological response.

The researchers noted

Another advantage of our concept is that it does not need a dataset with known patient responses to immunotherapy for model training.

Further testing is required before these findings may be implemented in clinical settings.

Main Source:

Lapuente-Santana, Ó., van Genderen, M., Hilbers, P. A., Finotello, F., & Eduati, F. (2021). Interpretable systems biomarkers predict response to immune-checkpoint inhibitorsPatterns, 100293. https://www.cell.com/patterns/pdfExtended/S2666-3899(21)00126-4

Other Related Articles published in this Open Access Online Scientific Journal include the following:

Inhibitory CD161 receptor recognized as a potential immunotherapy target in glioma-infiltrating T cells by single-cell analysis

Reporter: Dr. Premalata Pati, Ph.D., Postdoc

https://pharmaceuticalintelligence.com/2021/02/20/inhibitory-cd161-receptor-identified-in-glioma-infiltrating-t-cells-by-single-cell-analysis-2/

Immunotherapy may help in glioblastoma survival

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

https://pharmaceuticalintelligence.com/2019/03/16/immunotherapy-may-help-in-glioblastoma-survival/

Deep Learning for In-silico Drug Discovery and Drug Repurposing: Artificial Intelligence to search for molecules boosting response rates in Cancer Immunotherapy: Insilico Medicine @John Hopkins University

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/07/17/deep-learning-for-in-silico-drug-discovery-and-drug-repurposing-artificial-intelligence-to-search-for-molecules-boosting-response-rates-in-cancer-immunotherapy-insilico-medicine-john-hopkins-univer/

Machine Learning (ML) in cancer prognosis prediction helps the researcher to identify multiple known as well as candidate cancer diver genes

Curator and Reporter: Dr. Premalata Pati, Ph.D., Postdoc

https://pharmaceuticalintelligence.com/2021/05/04/machine-learning-ml-in-cancer-prognosis-prediction-helps-the-researcher-to-identify-multiple-known-as-well-as-candidate-cancer-diver-genes/

AI System Used to Detect Lung Cancer

Reporter: Irina Robu, PhD

https://pharmaceuticalintelligence.com/2019/06/28/ai-system-used-to-detect-lung-cancer/

Cancer detection and therapeutics

Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2016/05/02/cancer-detection-and-therapeutics/

Read Full Post »

Renal tumor macrophages linked to recurrence are identified using single-cell protein activity analysis

Curator and Reporter: Dr. Premalata Pati, Ph.D., Postdoc

When malignancy returns after a period of remission, it is called a cancer recurrence. After the initial or primary cancer has been treated, this can happen weeks, months, or even years later. The possibility of recurrence is determined by the type of primary cancer. Because small patches of cancer cells might stay in the body after treatment, cancer might reoccur. These cells may multiply and develop large enough to cause symptoms or cause cancer over time. The type of cancer determines when and where cancer recurs. Some malignancies have a predictable recurrence pattern.

Even if primary cancer recurs in a different place of the body, recurrent cancer is designated for the area where it first appeared. If breast cancer recurs distantly in the liver, for example, it is still referred to as breast cancer rather than liver cancer. It’s referred to as metastatic breast cancer by doctors. Despite treatment, many people with kidney cancer eventually develop cancer recurrence and incurable metastatic illness.

The most frequent type of kidney cancer is Renal Cell Carcinoma (RCC). RCC is responsible for over 90% of all kidney malignancies. The appearance of cancer cells when viewed under a microscope helps to recognize the various forms of RCC. Knowing the RCC subtype can help the doctor assess if the cancer is caused by an inherited genetic condition and help to choose the best treatment option. The three most prevalent RCC subtypes are as follows:

  • Clear cell RCC
  • Papillary RCC
  • Chromophobe RCC

Clear Cell RCC (ccRCC) is the most prevalent subtype of RCC. The cells are clear or pale in appearance and are referred to as the clear cell or conventional RCC. Around 70% of people with renal cell cancer have ccRCC. The rate of growth of these cells might be sluggish or rapid. According to the American Society of Clinical Oncology (ASCO), clear cell RCC responds favorably to treatments like immunotherapy and treatments that target specific proteins or genes.

Researchers at Columbia University’s Vagelos College of Physicians and Surgeons have developed a novel method for identifying which patients are most likely to have cancer relapse following surgery.

The study

Their findings are detailed in a study published in the journal Cell entitled, “Single-Cell Protein Activity Analysis Identifies Recurrence-Associated Renal Tumor Macrophages.” The researchers show that the presence of a previously unknown type of immune cell in kidney tumors can predict who will have cancer recurrence.

According to co-senior author Charles Drake, MD, PhD, adjunct professor of medicine at Columbia University Vagelos College of Physicians and Surgeons and the Herbert Irving Comprehensive Cancer Center,

the findings imply that the existence of these cells could be used to identify individuals at high risk of disease recurrence following surgery who may be candidates for more aggressive therapy.

As Aleksandar Obradovic, an MD/PhD student at Columbia University Vagelos College of Physicians and Surgeons and the study’s co-first author, put it,

it’s like looking down over Manhattan and seeing that enormous numbers of people from all over travel into the city every morning. We need deeper details to understand how these different commuters engage with Manhattan residents: who are they, what do they enjoy, where do they go, and what are they doing?

To learn more about the immune cells that invade kidney cancers, the researchers employed single-cell RNA sequencing. Obradovic remarked,

In many investigations, single-cell RNA sequencing misses up to 90% of gene activity, a phenomenon known as gene dropout.

The researchers next tackled gene dropout by designing a prediction algorithm that can identify which genes are active based on the expression of other genes in the same family. “Even when a lot of data is absent owing to dropout, we have enough evidence to estimate the activity of the upstream regulator gene,” Obradovic explained. “It’s like when playing ‘Wheel of Fortune,’ because I can generally figure out what’s on the board even if most of the letters are missing.”

The meta-VIPER algorithm is based on the VIPER algorithm, which was developed in Andrea Califano’s group. Califano is the head of Herbert Irving Comprehensive Cancer Center’s JP Sulzberger Columbia Genome Center and the Clyde and Helen Wu professor of chemistry and systems biology. The researchers believe that by including meta-VIPER, they will be able to reliably detect the activity of 70% to 80% of all regulatory genes in each cell, eliminating cell-to-cell dropout.

Using these two methods, the researchers were able to examine 200,000 tumor cells and normal cells in surrounding tissues from eleven patients with ccRCC who underwent surgery at Columbia’s urology department.

The researchers discovered a unique subpopulation of immune cells that can only be found in tumors and is linked to disease relapse after initial treatment. The top genes that control the activity of these immune cells were discovered through the VIPER analysis. This “signature” was validated in the second set of patient data obtained through a collaboration with Vanderbilt University researchers; in this second set of over 150 patients, the signature strongly predicted recurrence.

These findings raise the intriguing possibility that these macrophages are not only markers of more risky disease, but may also be responsible for the disease’s recurrence and progression,” Obradovic said, adding that targeting these cells could improve clinical outcomes

Drake said,

Our research shows that when the two techniques are combined, they are extremely effective at characterizing cells within a tumor and in surrounding tissues, and they should have a wide range of applications, even beyond cancer research.

Main Source

Single-cell protein activity analysis identifies recurrence-associated renal tumor macrophages

https://www.cell.com/cell/fulltext/S0092-8674(21)00573-0

Other Related Articles published in this Open Access Online Scientific Journal include the following:

Machine Learning (ML) in cancer prognosis prediction helps the researcher to identify multiple known as well as candidate cancer diver genes

Curator and Reporter: Dr. Premalata Pati, Ph.D., Postdoc

https://pharmaceuticalintelligence.com/2021/05/04/machine-learning-ml-in-cancer-prognosis-prediction-helps-the-researcher-to-identify-multiple-known-as-well-as-candidate-cancer-diver-genes/

Renal (Kidney) Cancer: Connections in Metabolism at Krebs cycle  and Histone Modulation

Curator: Demet Sag, PhD, CRA, GCP

https://pharmaceuticalintelligence.com/2015/10/14/renal-kidney-cancer-connections-in-metabolism-at-krebs-cycle-through-histone-modulation/

Artificial Intelligence: Genomics & Cancer

https://pharmaceuticalintelligence.com/ai-in-genomics-cancer/

Bioinformatic Tools for Cancer Mutational Analysis: COSMIC and Beyond

Curator: Stephen J. Williams, Ph.D.

https://pharmaceuticalintelligence.com/2015/12/02/bioinformatic-tools-for-cancer-mutational-analysis-cosmic-and-beyond-2/

Deep-learning AI algorithm shines new light on mutations in once obscure areas of the genome

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2014/12/24/deep-learning-ai-algorithm-shines-new-light-on-mutations-in-once-obscure-areas-of-the-genome/

Premalata Pati, PhD, PostDoc in Biological Sciences, Medical Text Analysis with Machine Learning

https://pharmaceuticalintelligence.com/2021-medical-text-analysis-nlp/premalata-pati-phd-postdoc-in-pharmaceutical-sciences-medical-text-analysis-with-machine-learning/

Read Full Post »

2021 Virtual World Medical Innovation Forum, Mass General Brigham, Gene and Cell Therapy, VIRTUAL May 19–21, 2021

The 2021 Virtual World Medical Innovation Forum will focus on the growing impact of gene and cell therapy. Senior healthcare leaders from all over look to shape and debate the area of gene and cell therapy. Our shared belief: no matter the magnitude of change, responsible healthcare is centered on a shared commitment to collaborative innovation–industry, academia, and practitioners working together to improve patients’ lives.

About the World Medical Innovation Forum

Mass General Brigham is pleased to present the World Medical Innovation Forum (WMIF) virtual event Wednesday, May 19 – Friday, May 21. This interactive web event features expert discussions of gene and cell therapy (GCT) and its potential to change the future of medicine through its disease-treating and potentially curative properties. The agenda features 150+ executive speakers from the healthcare industry, venture, startups, life sciences manufacturing, consumer health and the front lines of care, including many Harvard Medical School-affiliated researchers and clinicians. The annual in-person Forum will resume live in Boston in 2022. The World Medical Innovation Forum is presented by Mass General Brigham Innovation, the global business development unit supporting the research requirements of 7,200 Harvard Medical School faculty and research hospitals including Massachusetts General, Brigham and Women’s, Massachusetts Eye and Ear, Spaulding Rehab and McLean Hospital. Follow us on Twitter: twitter.com/@MGBInnovation

Accelerating the Future of Medicine with Gene and Cell Therapy What Comes Next

https://worldmedicalinnovation.org/agenda/

Virtual | May 19–21, 2021

#WMIF2021

@MGBInnovation

Leaders in Pharmaceutical Business Intelligence (LPBI) Group

will cover the event in Real Time

Aviva Lev-Ari, PhD, RN

Founder LPBI 1.0 & LPBI 2.0

member_60221522 copy

will be in virtual attendance producing the e-Proceedings

and the Tweet Collection of this Global event expecting +15,000 attendees

@pharma_BI

@AVIVA1950

LPBI’s Eighteen Books in Medicine

https://lnkd.in/ekWGNqA

Among them, books on Gene and Cell Therapy include the following:

Topics for May 19 – 21 include:

Impact on Patient Care – Therapeutic and Potentially Curative GCT Developments

GCT Delivery, Manufacturing – What’s Next

GCT Platform Development

Oncolytic Viruses – Cancer applications, start-ups

Regenerative Medicine/Stem Cells

Future of CAR-T

M&A Shaping GCT’s Future

Market Priorities

Venture Investing in GCT

China’s GCT Juggernaut

Disease and Patient Focus: Benign blood disorders, diabetes, neurodegenerative diseases

Click here for the current WMIF agenda  

Plus:

Fireside Chats: 1:1 interviews with industry CEOs/C-Suite leaders including Novartis Gene Therapies, ThermoFisher, Bayer AG, FDA

First Look: 18 briefings on emerging GCT research from Mass General Brigham scientists

Virtual Poster Session: 40 research posters and presenters on potential GCT discoveries from Mass General Brigham

Announcement of the Disruptive Dozen, 12 GCT technologies likely to break through in the next few years

AGENDA

Wednesday, May 19, 2021

8:00 AM – 8:10 AM

Opening Remarks

Welcome and the vision for Gene and Cell Therapy and why it is a top Mass General Brigham priority. Introducer: Scott Sperling

  • Co-President, Thomas H. Lee Partners
  • Chairman of the Board of Directors, PHS

Presenter: Anne Klibanski, MD

  • CEO, Mass General Brigham

3,000 people joined 5/19 morning

30 sessions: Lab to Clinic,  academia, industry, investment community

May 22,23,24, 2022 – in Boston, in-person 2022 WMIF on CGT 8:10 AM – 8:30 AM

The Grand Challenge of Widespread GCT Patient Benefits

Co-Chairs identify the key themes of the Forum –  set the stage for top GCT opportunities, challenges, and where the field might take medicine in the future. Moderator: Susan Hockfield, PhD

  • President Emerita and Professor of Neuroscience, MIT

GCT – poised to deliver therapies

Inflection point as Panel will present

Doctors and Patients – Promise for some patients 

Barriers for Cell & Gene

Access for patients to therapies like CGT Speakers: Nino Chiocca, MD, PhD

  • Neurosurgeon-in-Chief and Chairman, Neurosurgery, BWH
  • Harvey W. Cushing Professor of Neurosurgery, HMS

Oncolytic virus triple threat: Toxic, immunological, combine with anti cancer therapies

Polygenic therapy – multiple genes involved, plug-play, Susan Slaugenhaupt, PhD

  • Scientific Director and Elizabeth G. Riley and Daniel E. Smith Jr., Endowed Chair, Mass General Research Institute
  • Professor, Neurology, HMS

Ravi Thadhani, MD

  • CAO, Mass General Brigham
  • Professor, Medicine and Faculty Dean, HMS

Role of academia special to spear head the Polygenic therapy – multiple genes involved, plug-play, 

Access critical, relations with IndustryLuk Vandenberghe, PhD

  • Grousbeck Family Chair, Gene Therapy, MEE
  • Associate Professor, Ophthalmology, HMS

Pharmacology Gene-Drug, Interface academic centers and industry

many CGT drugs emerged in Academic center 8:35 AM – 8:50 AM FIRESIDE

Gene and Cell Therapy 2.0 – What’s Next as We Realize their Potential for Patients

Dave Lennon, PhD

  • President, Novartis Gene Therapies

Hope that CGT emerging, how the therapies work, neuro, muscular, ocular, genetic diseases of liver and of heart revolution for the industry 900 IND application 25 approvals Economic driver Skilled works, VC disease. Modality one time intervention, long duration of impart, reimbursement, ecosystem to be built around CGT

FDA works by indications and risks involved, Standards and expectations for streamlining manufacturing, understanding of process and products 

payments over time payers and Innovators relations Moderator: Julian Harris, MD

  • Partner, Deerfield

Promise of CGT realized, what part?

FDA role and interaction in CGT

Manufacturing aspects which is critical Speaker: Dave Lennon, PhD

  • President, Novartis Gene Therapies

Hope that CGT emerging, how the therapies work, neuro, muscular, ocular, genetic diseases of liver and of heart revolution for the industry 900 IND application 25 approvals Economic driver Skilled works, VC disease. Modality one time intervention, long duration of impart, reimbursement, ecosystem to be built around CGT

FDA works by indications and risks involved, Standards and expectations for streamlining manufacturing, understanding of process and products 

payments over time payers and Innovators relations

  • Q&A 8:55 AM – 9:10 AM  

8:55 AM – 9:20 AM

The Patient and GCT

GCT development for rare diseases is driven by patient and patient-advocate communities. Understanding their needs and perspectives enables biomarker research, the development of value-driving clinical trial endpoints and successful clinical trials. Industry works with patient communities that help identify unmet needs and collaborate with researchers to conduct disease natural history studies that inform the development of biomarkers and trial endpoints. This panel includes patients who have received cutting-edge GCT therapy as well as caregivers and patient advocates. Moderator: Patricia Musolino, MD, PhD

  • Co-Director Pediatric Stroke and Cerebrovascular Program, MGH
  • Assistant Professor of Neurology, HMS

What is the Power of One – the impact that a patient can have on their own destiny by participating in Clinical Trials Contacting other participants in same trial can be beneficial Speakers: Jack Hogan

  • Patient, MEE

Jeanette Hogan

  • Parent of Patient, MEE

Jim Holland

  • CEO, Backcountry.com

Parkinson patient Constraints by regulatory on participation in clinical trial advance stage is approved participation Patients to determine the level of risk they wish to take Information dissemination is critical Barbara Lavery

  • Chief Program Officer, ACGT Foundation

Advocacy agency beginning of work Global Genes educational content and out reach to access the information 

Patient has the knowledge of the symptoms and recording all input needed for diagnosis by multiple clinicians Early application for CGTDan Tesler

  • Clinical Trial Patient, BWH/DFCC

Experimental Drug clinical trial patient participation in clinical trial is very important to advance the state of scienceSarah Beth Thomas, RN

  • Professional Development Manager, BWH

Outcome is unknown, hope for good, support with resources all advocacy groups, 

  • Q&A 9:25 AM – 9:40 AM  

9:25 AM – 9:45 AM FIRESIDE

GCT Regulatory Framework | Why Different?

  Moderator: Vicki Sato, PhD

  • Chairman of the Board, Vir Biotechnology

Diversity of approaches

Process at FDA generalize from 1st entry to rules more generalizable  Speaker: Peter Marks, MD, PhD

  • Director, Center for Biologics Evaluation and Research, FDA

Last Spring it became clear that something will work a vaccine by June 2020 belief that enough candidates the challenge manufacture enough and scaling up FDA did not predicted the efficacy of mRNA vaccine vs other approaches expected to work

Recover Work load for the pandemic will wean & clear, Gene Therapies IND application remained flat in the face of the pandemic Rare diseases urgency remains Consensus with industry advisory to get input gene therapy Guidance  T-Cell therapy vs Regulation best thinking CGT evolve speedily flexible gained by Guidance

Immune modulators, Immunotherapy Genome editing can make use of viral vectors future technologies nanoparticles and liposome encapsulation 

  • Q&A 9:50 AM – 10:05 AM  

9:50 AM – 10:15 AM

Building a GCT Platform for Mainstream Success

This panel of GCT executives, innovators and investors explore how to best shape a successful GCT strategy. Among the questions to be addressed:

  • How are GCT approaches set around defining and building a platform?
  • Is AAV the leading modality and what are the remaining challenges?
  • What are the alternatives?
  • Is it just a matter of matching modalities to the right indications?

Moderator: Jean-François Formela, MD

  • Partner, Atlas Venture

Established core components of the Platform Speakers: Katherine High, MD

  • President, Therapeutics, AskBio

Three drugs approved in Europe in the Gene therapy space

Regulatory Infrastructure exists for CGT drug approval – as new class of therapeutics

Participants investigators, regulators, patients i. e., MDM 

Hemophilia in male most challenging

Human are natural hosts for AV safety signals Dave Lennon, PhD

  • President, Novartis Gene Therapies

big pharma has portfolios of therapeutics not one drug across Tx areas: cell, gene iodine therapy 

collective learning infrastructure features manufacturing at scale early in development Acquisitions strategy for growth # applications for scaling Rick Modi

  • CEO, Affinia Therapeutics

Copy, paste EDIT from product A to B novel vectors leverage knowledge varient of vector, coder optimization choice of indication is critical exploration on larger populations Speed to R&D and Speed to better gene construct get to clinic with better design vs ASAP 

Data sharing clinical experience with vectors strategies patients selection, vector selection, mitigation, patient type specific Louise Rodino-Klapac, PhD

  • EVP, Chief Scientific Officer, Sarepta Therapeutics

AAV based platform 15 years in development same disease indication vs more than one indication stereotype, analytics as hurdle 1st was 10 years 2nd was 3 years

Safety to clinic vs speed to clinic, difference of vectors to trust

  • Q&A 10:20 AM – 10:35 AM  

10:20 AM – 10:45 AM

AAV Success Studies | Retinal Dystrophy | Spinal Muscular Atrophy

Recent AAV gene therapy product approvals have catalyzed the field. This new class of therapies has shown the potential to bring transformative benefit to patients. With dozens of AAV treatments in clinical studies, all eyes are on the field to gauge its disruptive impact.

The panel assesses the largest challenges of the first two products, the lessons learned for the broader CGT field, and the extent to which they serve as a precedent to broaden the AAV modality.

  • Is AAV gene therapy restricted to genetically defined disorders, or will it be able to address common diseases in the near term?
  • Lessons learned from these first-in-class approvals.
  • Challenges to broaden this modality to similar indications.
  • Reflections on safety signals in the clinical studies?

Moderator: Joan Miller, MD

  • Chief, Ophthalmology, MEE
  • Cogan Professor & Chair of Ophthalmology, HMS

Retina specialist, Luxturna success FMA condition cell therapy as solution

Lessons learned

Safety Speakers: Ken Mills

  • CEO, RegenXBio

Tissue types additional administrations, tech and science, address additional diseases, more science for photoreceptors a different tissue type underlying pathology novelties in last 10 years 

Cell therapy vs transplant therapy no immunosuppressionEric Pierce, MD, PhD

  • Director, Ocular Genomics Institute, MEE
  • Professor of Ophthalmology, HMS

Laxterna success to be replicated platform, paradigms measurement visual improved

More science is needed to continue develop vectors reduce toxicity,

AAV can deliver different cargos reduce adverse events improve vectorsRon Philip

  • Chief Operating Officer, Spark Therapeutics

The first retinal gene therapy, voretigene neparvovec-rzyl (Luxturna, Spark Therapeutics), was approved by the FDA in 2017.Meredith Schultz, MD

  • Executive Medical Director, Lead TME, Novartis Gene Therapies

Impact of cell therapy beyond muscular dystrophy, translational medicine, each indication, each disease, each group of patients build platform unlock the promise

Monitoring for Safety signals real world evidence remote markers, home visits, clinical trial made safer, better communication of information

  • Q&A 10:50 AM – 11:05 AM  

10:45 AM – 10:55 AM

Break

  10:55 AM – 11:05 AM FIRST LOOK

Control of AAV pharmacology by Rational Capsid Design

Luk Vandenberghe, PhD

  • Grousbeck Family Chair, Gene Therapy, MEE
  • Associate Professor, Ophthalmology, HMS

AAV a complex driver in Pharmacology durable, vector of choice, administer in vitro, gene editing tissue specificity, pharmacokinetics side effects and adverse events manufacturability site variation diversify portfolios,

Pathway for rational AAV rational design, curated smart variant libraries, AAV  sequence screen multiparametric , data enable liver (de-) targeting unlock therapeutics areas: cochlea 

  • Q&A 11:05 AM – 11:25 AM  

11:05 AM – 11:15 AM FIRST LOOK

Enhanced gene delivery and immunoevasion of AAV vectors without capsid modification

Casey Maguire, PhD

  • Associate Professor of Neurology, MGH & HMS

Virus Biology: Enveloped (e) or not 

enveloped for gene therapy eAAV platform technology: tissue targets and Indications commercialization of eAAV 

  • Q&A 11:15 AM – 11:35 AM  

11:20 AM – 11:45 AM HOT TOPICS

AAV Delivery

This panel will address the advances in the area of AAV gene therapy delivery looking out the next five years. Questions that loom large are: How can biodistribution of AAV be improved? What solutions are in the wings to address immunogenicity of AAV? Will patients be able to receive systemic redosing of AAV-based gene therapies in the future? What technical advances are there for payload size? Will the cost of manufacturing ever become affordable for ultra-rare conditions? Will non-viral delivery completely supplant viral delivery within the next five years?What are the safety concerns and how will they be addressed? Moderators: Xandra Breakefield, PhD

  • Geneticist, MGH, MGH
  • Professor, Neurology, HMS

Florian Eichler, MD

  • Director, Center for Rare Neurological Diseases, MGH
  • Associate Professor, Neurology, HMS

Speakers: Jennifer Farmer

  • CEO, Friedreich’s Ataxia Research Alliance

Ataxia requires therapy targeting multiple organ with one therapy, brain, spinal cord, heart several IND, clinical trials in 2022Mathew Pletcher, PhD

  • SVP, Head of Gene Therapy Research and Technical Operations, Astellas

Work with diseases poorly understood, collaborations needs example of existing: DMD is a great example explain dystrophin share placedo data 

Continue to explore large animal guinea pig not the mice, not primates (ethical issues) for understanding immunogenicity and immune response Manny Simons, PhD

  • CEO, Akouos

AAV Therapy for the fluid of the inner ear, CGT for the ear vector accessible to surgeons translational work on the inner ear for gene therapy right animal model 

Biology across species nerve ending in the cochlea

engineer out of the caspid, lowest dose possible, get desired effect by vector use, 2022 new milestones

  • Q&A 11:50 AM – 12:05 PM  

11:50 AM – 12:15 PM

M&A | Shaping GCT Innovation

The GCT M&A market is booming – many large pharmas have made at least one significant acquisition. How should we view the current GCT M&A market? What is its impact of the current M&A market on technology development? Are these M&A trends new are just another cycle? Has pharma strategy shifted and, if so, what does it mean for GCT companies? What does it mean for patients? What are the long-term prospects – can valuations hold up? Moderator: Adam Koppel, MD, PhD

  • Managing Director, Bain Capital Life Sciences

What acquirers are looking for??

What is the next generation vs what is real where is the industry going? Speakers:

Debby Baron,

  • Worldwide Business Development, Pfizer 

CGT is an important area Pfizer is active looking for innovators, advancing forward programs of innovation with the experience Pfizer has internally 

Scalability and manufacturing  regulatory conversations, clinical programs safety in parallel to planning getting drug to patients

Kenneth Custer, PhD

  • Vice President, Business Development and Lilly New Ventures, Eli Lilly and Company

Marianne De Backer, PhD

Head of Strategy, Business Development & Licensing, and Member of the Executive Committee, Bayer

Absolute Leadership in Gene editing, gene therapy, via acquisition and strategic alliance 

Operating model of the acquired company discussed , company continue independence

Sean Nolan

  • Board Chairman, Encoded Therapeutics & Affinia

Executive Chairman, Jaguar Gene Therapy & Istari Oncology

As acquiree multiple M&A: How the acquirer looks at integration and cultures of the two companies 

Traditional integration vs jump start by external acquisition 

AAV – epilepsy, next generation of vectors 

  • Q&A 12:20 PM – 12:35 PM  

12:15 PM – 12:25 PM FIRST LOOK

Gene Therapies for Neurological Disorders: Insights from Motor Neuron Disorders

Merit Cudkowicz, MD

  • Chief of Neurology, MGH

ALS – Man 1in 300, Women 1 in 400, next decade increase 7% 

10% ALS is heredity 160 pharma in ALS space, diagnosis is late 1/3 of people are not diagnosed, active community for clinical trials Challenges: disease heterogeneity cases of 10 years late in diagnosis. Clinical Trials for ALS in Gene Therapy targeting ASO1 protein therapies FUS gene struck youngsters 

Q&A

  • 12:25 PM – 12:45 PM  

12:25 PM – 12:35 PM FIRST LOOK

Gene Therapy for Neurologic Diseases

Patricia Musolino, MD, PhD

  • Co-Director Pediatric Stroke and Cerebrovascular Program, MGH
  • Assistant Professor of Neurology, HMS

Cerebral Vascular disease – ACTA2 179H gene smooth muscle cell proliferation disorder

no surgery or drug exist –

Cell therapy for ACTA2 Vasculopathy  in the brain and control the BP and stroke – smooth muscle intima proliferation. Viral vector deliver aiming to change platform to non-viral delivery rare disease , gene editing, other mutations of ACTA2 gene target other pathway for atherosclerosis 

  • Q&A 12:35 PM – 12:55 PM  

12:35 PM – 1:15 PM

Lunch

  1:15 PM – 1:40 PM

Oncolytic Viruses in Cancer | Curing Melanoma and Beyond

Oncolytic viruses represent a powerful new technology, but so far an FDA-approved oncolytic (Imlygic) has only occurred in one area – melanoma and that what is in 2015. This panel involves some of the protagonists of this early success story.  They will explore why and how Imlygic became approved and its path to commercialization.  Yet, no other cancer indications exist for Imlygic, unlike the expansion of FDA-approved indication for immune checkpoint inhibitors to multiple cancers.  Why? Is there a limitation to what and which cancers can target?  Is the mode of administration a problem?

No other oncolytic virus therapy has been approved since 2015. Where will the next success story come from and why?  Will these therapies only be beneficial for skin cancers or other easily accessible cancers based on intratumoral delivery?

The panel will examine whether the preclinical models that have been developed for other cancer treatment modalities will be useful for oncolytic viruses.  It will also assess the extent pre-clinical development challenges have slowed the development of OVs. Moderator: Nino Chiocca, MD, PhD

  • Neurosurgeon-in-Chief and Chairman, Neurosurgery, BWH
  • Harvey W. Cushing Professor of Neurosurgery, HMS

Challenges of manufacturing at Amgen what are they? Speakers: Robert Coffin, PhD

  • Chief Research & Development Officer, Replimune

2002 in UK promise in oncolytic therapy GNCSF

Phase III melanoma 2015 M&A with Amgen

oncolytic therapy remains non effecting on immune response 

data is key for commercialization 

do not belief in systemic therapy achieve maximum immune response possible from a tumor by localized injection Roger Perlmutter, MD, PhD

  • Chairman, Merck & Co.

response rates systemic therapy like PD1, Keytruda, OPTIVA well tolerated combination of Oncolytic with systemic 

GMP critical for manufacturing David Reese, MD

  • Executive Vice President, Research and Development, Amgen

Inter lesion injection of agent vs systemic therapeutics 

cold tumors immune resistant render them immune susceptible 

Oncolytic virus is a Mono therapy

addressing the unknown Ann Silk, MD

  • Physician, Dana Farber-Brigham and Women’s Cancer Center
  • Assistant Professor of Medicine, HMS

Which person gets oncolytics virus if patient has immune suppression due to other indications

Safety of oncolytic virus greater than Systemic treatment

series biopsies for injected and non injected tissue and compare Suspect of hot tumor and cold tumors likely to have sme response to agent unknown all potential 

  • Q&A 1:45 PM – 2:00 PM  

1:45 PM – 2:10 PM

Market Interest in Oncolytic Viruses | Calibrating

There are currently two oncolytic virus products on the market, one in the USA and one in China.  As of late 2020, there were 86 clinical trials 60 of which were in phase I with just 2 in Phase III the rest in Phase I/II or Phase II.   Although global sales of OVs are still in the ramp-up phase, some projections forecast OVs will be a $700 million market by 2026. This panel will address some of the major questions in this area:

What regulatory challenges will keep OVs from realizing their potential? Despite the promise of OVs for treating cancer only one has been approved in the US. Why has this been the case? Reasons such have viral tropism, viral species selection and delivery challenges have all been cited. However, these are also true of other modalities. Why then have oncolytic virus approaches not advanced faster and what are the primary challenges to be overcome?

  • Will these need to be combined with other agents to realize their full efficacy and how will that impact the market?
  • Why are these companies pursuing OVs while several others are taking a pass?

Moderators: Martine Lamfers, PhD

  • Visiting Scientist, BWH

Challenged in development of strategies 

Demonstrate efficacyRobert Martuza, MD

  • Consultant in Neurosurgery, MGH
  • William and Elizabeth Sweet Distinguished Professor of Neurosurgery, HMS

Modulation mechanism Speakers: Anlong Li, MD, PhD

  • Clinical Director, Oncology Clinical Development, Merck Research Laboratories

IV delivery preferred – delivery alternative are less aggereable Jeffrey Infante, MD

  • Early development Oncolytic viruses, Oncology, Janssen Research & Development

oncologic virus if it will generate systemic effects the adoption will accelerate

What areas are the best efficacious 

Direct effect with intra-tumor single injection with right payload 

Platform approach  Prime with 1 and Boost with 2 – not yet experimented with 

Do not have the data at trial design for stratification of patients 

Turn off strategy not existing yetLoic Vincent, PhD

  • Head of Oncology Drug Discovery Unit, Takeda

R&D in collaboration with Academic

Vaccine platform to explore different payload

IV administration may not bring sufficient concentration to the tumor is administer  in the blood stream

Classification of Patients by prospective response type id UNKNOWN yet, population of patients require stratification

  • Q&A 2:15 PM – 2:30 PM  

2:10 PM – 2:20 PM FIRST LOOK

Oncolytic viruses: turning pathogens into anticancer agents

Nino Chiocca, MD, PhD

  • Neurosurgeon-in-Chief and Chairman, Neurosurgery, BWH
  • Harvey W. Cushing Professor of Neurosurgery, HMS

Oncolytic therapy DID NOT WORK Pancreatic Cancer and Glioblastoma 

Intra- tumoral heterogeniety hinders success 

Solution: Oncolytic VIRUSES – Immunological “coldness”

GADD-34 20,000 GBM 40,000 pancreatic cancer

  • Q&A 2:25 PM – 2:40 PM  

2:20 PM – 2:45 PM

Entrepreneurial Growth | Oncolytic Virus

In 2020 there were a total of 60 phase I trials for Oncolytic Viruses. There are now dozens of companies pursuing some aspect of OV technology. This panel will address:

  •  How are small companies equipped to address the challenges of developing OV therapies better than large pharma or biotech?
  • Will the success of COVID vaccines based on Adenovirus help the regulatory environment for small companies developing OV products in Europe and the USA?
  • Is there a place for non-viral delivery and other immunotherapy companies to engage in the OV space?  Would they bring any real advantages?

Moderator: Reid Huber, PhD

  • Partner, Third Rock Ventures

Critical milestones to observe Speakers: Caroline Breitbach, PhD

  • VP, R&D Programs and Strategy, Turnstone Biologics

Trying Intra-tumor delivery and IV infusion delivery oncolytic vaccine pushing dose 

translation biomarkers program 

transformation tumor microenvironment Brett Ewald, PhD

  • SVP, Development & Corporate Strategy, DNAtrix

Studies gets larger, kicking off Phase III multiple tumors Paul Hallenbeck, PhD

  • President and Chief Scientific Officer, Seneca Therapeutics

Translation: Stephen Russell, MD, PhD

  • CEO, Vyriad

Systemic delivery Oncolytic Virus IV delivery woman in remission

Collaboration with Regeneron

Data collection: Imageable reporter secretable reporter, gene expression

Field is intense systemic oncolytic delivery is exciting in mice and in human, response rates are encouraging combination immune stimulant, check inhibitors 

  • Q&A 2:50 PM – 3:05 PM  

2:45 PM – 3:00 PM

Break

  3:00 PM – 3:25 PM

CAR-T | Lessons Learned | What’s Next

Few areas of potential cancer therapy have had the attention and excitement of CAR-T. This panel of leading executives, developers, and clinician-scientists will explore the current state of CAR-T and its future prospects. Among the questions to be addressed are:

  • Is CAR-T still an industry priority – i.e. are new investments being made by large companies? Are new companies being financed? What are the trends?
  • What have we learned from first-generation products, what can we expect from CAR-T going forward in novel targets, combinations, armored CAR’s and allogeneic treatment adoption?
  • Early trials showed remarkable overall survival and progression-free survival. What has been observed regarding how enduring these responses are?
  • Most of the approvals to date have targeted CD19, and most recently BCMA. What are the most common forms of relapses that have been observed?
  • Is there a consensus about what comes after these CD19 and BCMA trials as to additional targets in liquid tumors? How have dual-targeted approaches fared?
  • Moderator:
  • Marcela Maus, MD, PhD
    • Director, Cellular Immunotherapy Program, Cancer Center, MGH
    • Associate Professor, Medicine, HMSIs CAR-T Industry priority
  • Speakers:
  • Head of R&D, Atara BioTherapeutics
  • Phyno-type of the cells for hematologic cancers 
  • solid tumor 
  • inventory of Therapeutics for treating patients in the future 
  • Progressive MS program
  • EBBT platform B-Cells and T-Cells
    • Stefan Hendriks
      • Gobal Head, Cell & Gene, Novartis
      • yes, CGT is a strategy in the present and future
      • Journey started years ago 
      • Confirmation the effectiveness of CAR-T therapies, 1 year response prolonged to 5 years 26 months
      • Patient not responding – a lot to learn
      • Patient after 8 months of chemo can be helped by CAR-T
    • Christi Shaw
      • CEO, Kite
      • CAR-T is priority 120 companies in the space
      • Manufacturing consistency 
      • Patients respond with better quality of life
      • Blood cancer – more work to be done

Q&A

  • 3:30 PM – 3:45 PM  

3:30 PM – 3:55 PM HOT TOPICS

CAR-T | Solid Tumors Success | When?

The potential application of CAR-T in solid tumors will be a game-changer if it occurs. The panel explores the prospects of solid tumor success and what the barriers have been. Questions include:

  •  How would industry and investor strategy for CAR-T and solid tumors be characterized? Has it changed in the last couple of years?
  •  Does the lack of tumor antigen specificity in solid tumors mean that lessons from liquid tumor CAR-T constructs will not translate well and we have to start over?
  •  Whether due to antigen heterogeneity, a hostile tumor micro-environment, or other factors are some specific solid tumors more attractive opportunities than others for CAR-T therapy development?
  •  Given the many challenges that CAR-T faces in solid tumors, does the use of combination therapies from the start, for example, to mitigate TME effects, offer a more compelling opportunity.

Moderator: Oladapo Yeku, MD, PhD

  • Clinical Assistant in Medicine, MGH

window of opportunities studies  Speakers: Jennifer Brogdon

  • Executive Director, Head of Cell Therapy Research, Exploratory Immuno-Oncology, NIBR

2017 CAR-T first approval

M&A and research collaborations

TCR tumor specific antigens avoid tissue toxicity Knut Niss, PhD

  • CTO, Mustang Bio

tumor hot start in 12 month clinical trial solid tumors , theraties not ready yet. Combination therapy will be an experimental treatment long journey checkpoint inhibitors to be used in combination maintenance Lipid tumor Barbra Sasu, PhD

  • CSO, Allogene

T cell response at prostate cancer 

tumor specific 

cytokine tumor specific signals move from solid to metastatic cell type for easier infiltration

Where we might go: safety autologous and allogeneic Jay Short, PhD

  • Chairman, CEO, Cofounder, BioAlta, Inc.

Tumor type is not enough for development of therapeutics other organs are involved in the periphery

difficult to penetrate solid tumors biologics activated in the tumor only, positive changes surrounding all charges, water molecules inside the tissue acidic environment target the cells inside the tumor and not outside 

Combination staggered key is try combination

  • Q&A 4:00 PM – 4:15 PM  

4:00 PM – 4:25 PM

GCT Manufacturing | Vector Production | Autologous and Allogeneic | Stem Cells | Supply Chain | Scalability & Management

The modes of GCT manufacturing have the potential of fundamentally reordering long-established roles and pathways. While complexity goes up the distance from discovery to deployment shrinks. With the likelihood of a total market for cell therapies to be over $48 billion by 2027,  groups of products are emerging.  Stem cell therapies are projected to be $28 billion by 2027 and non-stem cell therapies such as CAR-T are projected be $20 billion by 2027. The manufacturing challenges for these two large buckets are very different. Within the CAR-T realm there are diverging trends of autologous and allogeneic therapies and the demands on manufacturing infrastructure are very different. Questions for the panelists are:

  • Help us all understand the different manufacturing challenges for cell therapies. What are the trade-offs among storage cost, batch size, line changes in terms of production cost and what is the current state of scaling naïve and stem cell therapy treatment vs engineered cell therapies?
  • For cell and gene therapy what is the cost of Quality Assurance/Quality Control vs. production and how do you think this will trend over time based on your perspective on learning curves today?
  • Will point of care production become a reality? How will that change product development strategy for pharma and venture investors? What would be the regulatory implications for such products?
  • How close are allogeneic CAR-T cell therapies? If successful what are the market implications of allogenic CAR-T? What are the cost implications and rewards for developing allogeneic cell therapy treatments?

Moderator: Michael Paglia

  • VP, ElevateBio

Speakers:

  • Dannielle Appelhans
    • SVP TechOps and Chief Technical Officer, Novartis Gene Therapies
  • Thomas Page, PhD
    • VP, Engineering and Asset Development, FUJIFILM Diosynth Biotechnologies
  • Rahul Singhvi, ScD
    • CEO and Co-Founder, National Resilience, Inc.
  • Thomas VanCott, PhD
    • Global Head of Product Development, Gene & Cell Therapy, Catalent
    • 2/3 autologous 1/3 allogeneic  CAR-T high doses and high populations scale up is not done today quality maintain required the timing logistics issues centralized vs decentralized  allogeneic are health donors innovations in cell types in use improvements in manufacturing

Ropa Pike, Director,  Enterprise Science & Partnerships, Thermo Fisher Scientific 

Centralized biopharma industry is moving  to decentralized models site specific license 

  • Q&A 4:30 PM – 4:45 PM  

4:30 PM – 4:40 PM FIRST LOOK

CAR-T

Marcela Maus, MD, PhD

  • Director, Cellular Immunotherapy Program, Cancer Center, MGH
  • Assistant Professor, Medicine, HMS 

Fit-to-purpose CAR-T cells: 3 lead programs

Tr-fill 

CAR-T induce response myeloma and multiple myeloma GBM

27 patents on CAR-T

+400 patients treaded 40 Clinical Trials 

  • Q&A 4:40 PM – 5:00 PM  

4:40 PM – 4:50 PM FIRST LOOK

Repurposed Tumor Cells as Killers and Immunomodulators for Cancer Therapy

Khalid Shah, PhD

  • Vice Chair, Neurosurgery Research, BWH
  • Director, Center for Stem Cell Therapeutics and Imaging, HMS

Solid tumors are the hardest to treat because: immunosuppressive, hypoxic, Acidic Use of autologous tumor cells self homing ThTC self targeting therapeutic cells Therapeutic tumor cells efficacy pre-clinical models GBM 95% metastesis ThTC translation to patient settings

  • Q&A 4:50 PM – 5:10 PM  

4:50 PM – 5:00 PM FIRST LOOK

Other Cell Therapies for Cancer

David Scadden, MD

  • Director, Center for Regenerative Medicine; Co-Director, Harvard Stem Cell Institute, Director, Hematologic Malignancies & Experimental Hematology, MGH
  • Jordan Professor of Medicine, HMS

T-cell are made in bone marrow create cryogel  can be an off-the-shelf product repertoire on T Receptor CCL19+ mesenchymal cells mimic Tymus cells –

inter-tymic injection. Non human primate validation

Q&A

 

5:00 PM – 5:20 PM   5:00 PM – 5:20 PM FIRESIDE

Fireside with Mikael Dolsten, MD, PhD

  Introducer: Jonathan Kraft Moderator: Daniel Haber, MD, PhD

  • Chair, Cancer Center, MGH
  • Isselbacher Professor of Oncology, HMS

Vaccine Status Mikael Dolsten, MD, PhD

  • Chief Scientific Officer and President, Worldwide Research, Development and Medical, Pfizer

Deliver vaccine around the Globe, Israel, US, Europe.

3BIL vaccine in 2022 for all Global vaccination 

Bio Ntech in Germany

Experience with Biologics immuneoncology & allogeneic antibody cells – new field for drug discovery 

mRNA curative effort and cancer vaccine 

Access to drugs developed by Pfizer to underdeveloped countries 

  • Q&A 5:25 PM – 5:40 AM  

5:20 PM – 5:30 PM

Closing Remarks

Thursday, May 20, 2021

8:00 AM – 8:25 AM

GCT | The China Juggernaut

China embraced gene and cell therapies early. The first China gene therapy clinical trial was in 1991. China approved the world’s first gene therapy product in 2003—Gendicine—an oncolytic adenovirus for the treatment of advanced head and neck cancer.  Driven by broad national strategy, China has become a hotbed of GCT development, ranking second in the world with more than 1,000 clinical trials either conducted or underway and thousands of related patents.  It has a booming GCT biotech sector, led by more than 45 local companies with growing IND pipelines.

In late 1990, a T cell-based immunotherapy, cytokine-induced killer (CIK) therapy became a popular modality in the clinic in China for tumor treatment.  In early 2010, Chinese researchers started to carry out domestic CAR T trials inspired by several important reports suggested the great antitumor function of CAR T cells. Now, China became the country with the most registered CAR T trials, CAR T therapy is flourishing in China.

The Chinese GCT ecosystem has increasingly rich local innovation and growing complement of development and investment partnerships – and also many subtleties.

This panel, consisting of leaders from the China GCT corporate, investor, research and entrepreneurial communities, will consider strategic questions on the growth of the gene and cell therapy industry in China, areas of greatest strength, evolving regulatory framework, early successes and products expected to reach the US and world market. Moderator: Min Wu, PhD

  • Managing Director, Fosun Health Fund

What are the area of CGT in China, regulatory similar to the US Speakers: Alvin Luk, PhD

  • CEO, Neuropath Therapeutics

Monogenic rare disease with clear genomic target

Increase of 30% in patient enrollment 

Regulatory reform approval is 60 days no delayPin Wang, PhD

  • CSO, Jiangsu Simcere Pharmaceutical Co., Ltd.

Similar starting point in CGT as the rest of the World unlike a later starting point in other biologicalRichard Wang, PhD

  • CEO, Fosun Kite Biotechnology Co., Ltd

Possibilities to be creative and capitalize the new technologies for innovating drug

Support of the ecosystem by funding new companie allowing the industry to be developed in China

Autologous in patients differences cost challengeTian Xu, PhD

  • Vice President, Westlake University

ICH committee and Chinese FDA -r regulation similar to the US

Difference is the population recruitment, in China patients are active participants in skin disease 

Active in development of transposome 

Development of non-viral methods, CRISPR still in D and transposome

In China price of drugs regulatory are sensitive Shunfei Yan, PhD

  • Investment Manager, InnoStar Capital

Indication driven: Hymophilia, 

Allogogenic efficiency therapies

Licensing opportunities 

  • Q&A 8:30 AM – 8:45 AM  

8:30 AM – 8:55 AM

Impact of mRNA Vaccines | Global Success Lessons

The COVID vaccine race has propelled mRNA to the forefront of biomedicine. Long considered as a compelling modality for therapeutic gene transfer, the technology may have found its most impactful application as a vaccine platform. Given the transformative industrialization, the massive human experience, and the fast development that has taken place in this industry, where is the horizon? Does the success of the vaccine application, benefit or limit its use as a therapeutic for CGT?

  • How will the COVID success impact the rest of the industry both in therapeutic and prophylactic vaccines and broader mRNA lessons?
  • How will the COVID success impact the rest of the industry both on therapeutic and prophylactic vaccines and broader mRNA lessons?
  • Beyond from speed of development, what aspects make mRNA so well suited as a vaccine platform?
  • Will cost-of-goods be reduced as the industry matures?
  • How does mRNA technology seek to compete with AAV and other gene therapy approaches?

Moderator: Lindsey Baden, MD

  • Director, Clinical Research, Division of Infectious Diseases, BWH
  • Associate Professor, HMS

In vivo delivery process regulatory cooperation new opportunities for same platform for new indication Speakers:

Many years of mRNA pivoting for new diseases, DARPA, nucleic Acids global deployment of a manufacturing unit on site where the need arise Elan Musk funds new directions at Moderna

How many mRNA can be put in one vaccine: Dose and tolerance to achieve efficacy 

45 days for Personalized cancer vaccine one per patient

1.6 Billion doses produced rare disease monogenic correct mRNA like CF multiple mutation infection disease and oncology applications

Platform allowing to swap cargo reusing same nanoparticles address disease beyond Big Pharma options for biotech

WHat strain of Flu vaccine will come back in the future when people do not use masks 

  • Kate Bingham, UK Vaccine Taskforce

July 2020, AAV vs mRNA delivery across UK local centers administered both types supply and delivery uplift 

  • Q&A 9:00 AM – 9:15 AM  

9:00 AM – 9:25 AM HOT TOPICS

Benign Blood Disorders

Hemophilia has been and remains a hallmark indication for the CGT. Given its well-defined biology, larger market, and limited need for gene transfer to provide therapeutic benefit, it has been at the forefront of clinical development for years, however, product approval remains elusive. What are the main hurdles to this success? Contrary to many indications that CGT pursues no therapeutic options are available to patients, hemophiliacs have an increasing number of highly efficacious treatment options. How does the competitive landscape impact this field differently than other CGT fields? With many different players pursuing a gene therapy option for hemophilia, what are the main differentiators? Gene therapy for hemophilia seems compelling for low and middle-income countries, given the cost of currently available treatments; does your company see opportunities in this market? Moderator: Nancy Berliner, MD

  • Chief, Division of Hematology, BWH
  • H. Franklin Bunn Professor of Medicine, HMS

Speakers: Theresa Heggie

  • CEO, Freeline Therapeutics

Safety concerns, high burden of treatment CGT has record of safety and risk/benefit adoption of Tx functional cure CGT is potent Tx relative small quantity of protein needs be delivered 

Potency and quality less quantity drug and greater potency

risk of delivery unwanted DNA, capsules are critical 

analytics is critical regulator involvement in potency definition

Close of collaboration is excitingGallia Levy, MD, PhD

  • Chief Medical Officer, Spark Therapeutics

Hemophilia CGT is the highest potential for Global access logistics in underdeveloped countries working with NGOs practicality of the Tx

Roche reached 120 Counties great to be part of the Roche GroupAmir Nashat, PhD

  • Managing Partner, Polaris Ventures

Suneet Varma

  • Global President of Rare Disease, Pfizer

Gene therapy at Pfizer small molecule, large molecule and CGT – spectrum of choice allowing Hemophilia patients to marry 

1/3 internal 1/3 partnership 1/3 acquisitions 

Learning from COVID-19 is applied for other vaccine development

review of protocols and CGT for Hemophelia

You can’t buy Time

With MIT Pfizer is developing a model for Hemopilia CGT treatment

  • Q&A 9:30 AM – 9:45 AM  

9:25 AM – 9:35 AM FIRST LOOK

Treating Rett Syndrome through X-reactivation

Jeannie Lee, MD, PhD

  • Molecular Biologist, MGH
  • Professor of Genetics, HMS

200 disease X chromosome unlock for neurological genetic diseases: Rett Syndromeand other autism spectrum disorders female model vs male mice model

deliver protein to the brain 

restore own missing or dysfunctional protein

Epigenetic not CGT – no exogent intervention Xist ASO drug

Female model

  • Q&A 9:35 AM – 9:55 AM  

9:35 AM – 9:45 AM FIRST LOOK

Rare but mighty: scaling up success in single gene disorders

Florian Eichler, MD

  • Director, Center for Rare Neurological Diseases, MGH
  • Associate Professor, Neurology, HMS

Single gene disorder NGS enable diagnosis, DIagnosis to Treatment How to know whar cell to target, make it available and scale up Address gap: missing components Biomarkers to cell types lipid chemistry cell animal biology 

crosswalk from bone marrow matter 

New gene discovered that causes neurodevelopment of stagnant genes Examining new Biology cell type specific biomarkers 

  • Q&A 9:45 AM – 10:05 AM  

9:50 AM – 10:15 AM HOT TOPICS

Diabetes | Grand Challenge

The American Diabetes Association estimates 30 million Americans have diabetes and 1.5 million are diagnosed annually. GCT offers the prospect of long-sought treatment for this enormous cohort and their chronic requirements. The complexity of the disease and its management constitute a grand challenge and highlight both the potential of GCT and its current limitations.

  •  Islet transplantation for type 1 diabetes has been attempted for decades. Problems like loss of transplanted islet cells due to autoimmunity and graft site factors have been difficult to address. Is there anything different on the horizon for gene and cell therapies to help this be successful?
  • How is the durability of response for gene or cell therapies for diabetes being addressed? For example, what would the profile of an acceptable (vs. optimal) cell therapy look like?

Moderator: Marie McDonnell, MD

  • Chief, Diabetes Section and Director, Diabetes Program, BWH
  • Lecturer on Medicine, HMS

Type 1 Diabetes cost of insulin for continuous delivery of drug

alternative treatments: 

The Future: neuropotent stem cells 

What keeps you up at night  Speakers: Tom Bollenbach, PhD

  • Chief Technology Officer, Advanced Regenerative Manufacturing Institute

Data managment sterility sensors, cell survival after implantation, stem cells manufacturing, process development in manufacturing of complex cells

Data and instrumentation the Process is the Product

Manufacturing tight schedules Manasi Jaiman, MD

  • Vice President, Clinical Development, ViaCyte
  • Pediatric Endocrinologist

continous glucose monitoring Bastiano Sanna, PhD

  • EVP, Chief of Cell & Gene Therapies and VCGT Site Head, Vertex Pharmaceuticals

100 years from discovering Insulin, Insulin is not a cure in 2021 – asking patients to partner more 

Produce large quantities of the Islet cells encapsulation technology been developed 

Scaling up is a challengeRogerio Vivaldi, MD

  • CEO, Sigilon Therapeutics

Advanced made, Patient of Type 1 Outer and Inner compartments of spheres (not capsule) no immune suppression continuous secretion of enzyme Insulin independence without immune suppression 

Volume to have of-the-shelf inventory oxegenation in location lymphatic and vascularization conrol the whole process modular platform learning from others

  • Q&A 10:20 AM – 10:35 AM  

10:20 AM – 10:40 AM FIRESIDE

Building A Unified GCT Strategy

  Introducer: John Fish

  • CEO, Suffolk
  • Chairman of Board Trustees, Brigham Health

Moderator: Meg Tirrell

  • Senior Health and Science Reporter, CNBC

Last year, what was it at Novartis Speaker: Jay Bradner, MD

  • President, NIBR

Keep eyes open, waiting the Pandemic to end and enable working back on all the indications 

Portfolio of MET, Mimi Emerging Therapies 

Learning from the Pandemic – operationalize the practice science, R&D leaders, new collaboratives at NIH, FDA, Novartis

Pursue programs that will yield growth, tropic diseases with Gates Foundation, Rising Tide pods for access CGT within Novartis Partnership with UPenn in Cell Therapy 

Cost to access to IP from Academia to a Biotech CRISPR accessing few translations to Clinic

Protein degradation organization constraint valuation by parties in a partnership 

Novartis: nuclear protein lipid nuclear particles, tamplate for Biotech to collaborate

Game changing: 10% of the Portfolio, New frontiers human genetics in Ophthalmology, CAR-T, CRISPR, Gene Therapy Neurological and payloads of different matter

  • Q&A 10:45 AM – 11:00 AM  

10:40 AM – 10:50 AM

Break

  10:50 AM – 11:00 AM FIRST LOOK

Getting to the Heart of the Matter: Curing Genetic Cardiomyopathy

Christine Seidman, MD

  • Director, Cardiovascular Genetics Center, BWH
  • Smith Professor of Medicine & Genetics, HMS

The Voice of Dr. Seidman – Her abstract is cited below

The ultimate opportunity presented by discovering the genetic basis of human disease is accurate prediction and disease prevention. To enable this achievement, genetic insights must enable the identification of at-risk

individuals prior to end-stage disease manifestations and strategies that delay or prevent clinical expression. Genetic cardiomyopathies provide a paradigm for fulfilling these opportunities. Hypertrophic cardiomyopathy (HCM) is characterized by left ventricular hypertrophy, diastolic dysfunction with normal or enhanced systolic performance and a unique histopathology: myocyte hypertrophy, disarray and fibrosis. Dilated cardiomyopathy (DCM) exhibits enlarged ventricular volumes with depressed systolic performance and nonspecific histopathology. Both HCM and DCM are prevalent clinical conditions that increase risk for arrhythmias, sudden death, and heart failure. Today treatments for HCM and DCM focus on symptoms, but none prevent disease progression. Human molecular genetic studies demonstrated that these pathologies often result from dominant mutations in genes that encode protein components of the sarcomere, the contractile unit in striated muscles. These data combined with the emergence of molecular strategies to specifically modulate gene expression provide unparalleled opportunities to silence or correct mutant genes and to boost healthy gene expression in patients with genetic HCM and DCM. Many challenges remain, but the active and vital efforts of physicians, researchers, and patients are poised to ensure success.

Hypertrophic and Dilated Cardiomyopaies ‘

10% receive heart transplant 12 years survival 

Mutation puterb function

TTN: contribute 20% of dilated cardiomyopaty

Silence gene 

pleuripotential cells deliver therapies 

  • Q&A 11:00 AM – 11:20 AM  

11:00 AM – 11:10 AM FIRST LOOK

Unlocking the secret lives of proteins in health and disease

Anna Greka, MD, PhD

  • Medicine, BWH
  • Associate Professor, Medicine, HMS

Cyprus Island, kidney disease by mutation causing MUC1 accumulation and death BRD4780 molecule that will clear the misfolding proteins from the kidney organoids: pleuripotent stem cells small molecule developed for applications in the other cell types in brain, eye, gene mutation build mechnism for therapy clinical models transition from Academia to biotech 

Q&A

  • 11:10 AM – 11:30 AM  

11:10 AM – 11:35 AM

Rare and Ultra Rare Diseases | GCT Breaks Through

One of the most innovative segments in all of healthcare is the development of GCT driven therapies for rare and ultra-rare diseases. Driven by a series of insights and tools and funded in part by disease focused foundations, philanthropists and abundant venture funding disease after disease is yielding to new GCT technology. These often become platforms to address more prevalent diseases. The goal of making these breakthroughs routine and affordable is challenged by a range of issues including clinical trial design and pricing.

  • What is driving the interest in rare diseases?
  • What are the biggest barriers to making breakthroughs ‘routine and affordable?’
  • What is the role of retrospective and prospective natural history studies in rare disease?  When does the expected value of retrospective disease history studies justify the cost?
  • Related to the first question, what is the FDA expecting as far as controls in clinical trials for rare diseases?  How does this impact the collection of natural history data?

Moderator: Susan Slaugenhaupt, PhD

  • Scientific Director and Elizabeth G. Riley and Daniel E. Smith Jr., Endowed Chair, Mass General Research Institute
  • Professor, Neurology, HMS

Speakers: Leah Bloom, PhD

  • SVP, External Innovation and Strategic Alliances, Novartis Gene Therapies

Ultra rare (less than 100) vs rare difficulty to recruit patients and to follow up after treatment Bobby Gaspar, MD, PhD

  • CEO, Orchard Therapeutics

Study of rare condition have transfer to other larger diseases – delivery of therapeutics genes, like immune disorders 

Patient testimonials just to hear what a treatment can make Emil Kakkis, MD, PhD

  • CEO, Ultragenyx

Do 100 patient study then have information on natural history to develop a clinical trial Stuart Peltz, PhD

  • CEO, PTC Therapeutics

Rare disease, challenge for FDA approval and after market commercialization follow ups

Justification of cost for Rare disease – demonstration of Change is IP in value patients advocacy is helpful

  • Q&A 11:40 AM – 11:55 AM  

11:40 AM – 12:00 PM FIRESIDE

Partnering Across the GCT Spectrum

  Moderator: Erin Harris

  • Chief Editor, Cell & Gene

Perspective & professional tenure

Partnership in manufacturing what are the recommendations?

Hospital systems: Partnership Challenges  Speaker: Marc Casper

  • CEO, ThermoFisher

25 years in Diagnostics last 20 years at ThermoFisher 

products used in the Lab for CAR-T research and manufacture 

CGT Innovations: FDA will have a high level of approval each year

How move from research to clinical trials to manufacturing Quicker process

Best practices in Partnerships: the root cause if acceleration to market service providers to deliver highest standards

Building capacity by acquisition to avoid the waiting time

Accelerate new products been manufactured 

Collaborations with Academic Medical center i.e., UCSF in CGT joint funding to accelerate CGT to clinics’

Customers are extremely knowledgable, scale the capital investment made investment

150MIL a year to improve the Workflow 

  • Q&A 12:05 PM – 12:20 PM  

12:05 PM – 12:30 PM

  • 12:05 PM – 12:20 PM  

12:05 PM – 12:30 PM

CEO Panel | Anticipating Disruption | Planning for Widespread GCT

The power of GCT to cure disease has the prospect of profoundly improving the lives of patients who respond. Planning for a disruption of this magnitude is complex and challenging as it will change care across the spectrum. Leading chief executives shares perspectives on how the industry will change and how this change should be anticipated. Moderator: Meg Tirrell

  • Senior Health and Science Reporter, CNBC

CGT becoming staple therapy what are the disruptors emerging Speakers: Lisa Dechamps

  • SVP & Chief Business Officer, Novartis Gene Therapies

Reimagine medicine with collaboration at MGH, MDM condition in children 

The Science is there, sustainable processes and systems impact is transformational

Value based pricing, risk sharing Payers and Pharma for one time therapy with life span effect

Collaboration with FDAKieran Murphy

  • CEO, GE Healthcare

Diagnosis of disease to be used in CGT

2021 investment in CAR-T platform 

Investment in several CGT frontier

Investment in AI, ML in system design new technologies 

GE: Scale and Global distributions, sponsor companies in software 

Waste in Industry – Healthcare % of GDP, work with MGH to smooth the workflow faster entry into hospital and out of Hospital

Telemedicine during is Pandemic: Radiologist needs to read remotely 

Supply chain disruptions slow down all ecosystem 

Production of ventilators by collaboration with GM – ingenuity 

Scan patients outside of hospital a scanner in a Box Christian Rommel, PhD

  • Head, Pharmaceuticals Research & Development, Bayer AG

CGT – 2016 and in 2020 new leadership and capability 

Disease Biology and therapeutics

Regenerative Medicine: CGT vs repair building pipeline in ophthalmology and cardiovascular 

During Pandemic: Deliver Medicines like Moderna, Pfizer – collaborations between competitors with Government Bayer entered into Vaccines in 5 days, all processes had to change access innovations developed over decades for medical solutions 

  • Q&A 12:35 PM – 12:50 PM  

12:35 PM – 12:55 PM FIRESIDE

Building a GCT Portfolio

GCT represents a large and growing market for novel therapeutics that has several segments. These include Cardiovascular Disease, Cancer, Neurological Diseases, Infectious Disease, Ophthalmology, Benign Blood Disorders, and many others; Manufacturing and Supply Chain including CDMO’s and CMO’s; Stem Cells and Regenerative Medicine; Tools and Platforms (viral vectors, nano delivery, gene editing, etc.). Bayer’s pharma business participates in virtually all of these segments. How does a Company like Bayer approach the development of a portfolio in a space as large and as diverse as this one? How does Bayer approach the support of the production infrastructure with unique demands and significant differences from its historical requirements? Moderator:

Shinichiro Fuse, PhD

  • Managing Partner, MPM Capital

Speaker: Wolfram Carius, PhD

  • EVP, Pharmaceuticals, Head of Cell & Gene Therapy, Bayer AG

CGT will bring treatment to cure, delivery of therapies 

Be a Leader repair, regenerate, cure

Technology and Science for CGT – building a portfolio vs single asset decision criteria development of IP market access patients access acceleration of new products

Bayer strategy: build platform for use by four domains  

Gener augmentation

Autologeneic therapy, analytics

Gene editing

Oncology Cell therapy tumor treatment: What kind of cells – the jury is out

Of 23 product launch at Bayer no prediction is possible some high some lows 

  • Q&A 1:00 PM – 1:15 PM  

12:55 PM – 1:35 PM

Lunch

  1:40 PM – 2:05 PM

GCT Delivery | Perfecting the Technology

Gene delivery uses physical, chemical, or viral means to introduce genetic material into cells. As more genetically modified therapies move closer to the market, challenges involving safety, efficacy, and manufacturing have emerged. Optimizing lipidic and polymer nanoparticles and exosomal delivery is a short-term priority. This panel will examine how the short-term and long-term challenges are being tackled particularly for non-viral delivery modalities. Moderator: Natalie Artzi, PhD

  • Assistant Professor, BWH

Speakers: Geoff McDonough, MD

  • CEO, Generation Bio

Sonya Montgomery

  • CMO, Evox Therapeutics

Laura Sepp-Lorenzino, PhD

  • Chief Scientific Officer, Executive Vice President, Intellia Therapeutics

Doug Williams, PhD

  • CEO, Codiak BioSciences
  • Q&A 2:10 PM – 2:25 PM  

2:05 PM – 2:10 PM

Invention Discovery Grant Announcement

  2:10 PM – 2:20 PM FIRST LOOK

Enhancing vesicles for therapeutic delivery of bioproducts

Xandra Breakefield, PhD

  • Geneticist, MGH, MGH
  • Professor, Neurology, HMS
  • Q&A 2:20 PM – 2:35 PM  

2:20 PM – 2:30 PM FIRST LOOK

Versatile polymer-based nanocarriers for targeted therapy and immunomodulation

Natalie Artzi, PhD

  • Assistant Professor, BWH
  • Q&A 2:30 PM – 2:45 PM  

2:55 PM – 3:20 PM HOT TOPICS

Gene Editing | Achieving Therapeutic Mainstream

Gene editing was recognized by the Nobel Committee as “one of gene technology’s sharpest tools, having a revolutionary impact on life sciences.” Introduced in 2011, gene editing is used to modify DNA. It has applications across almost all categories of disease and is also being used in agriculture and public health.

Today’s panel is made up of pioneers who represent foundational aspects of gene editing.  They will discuss the movement of the technology into the therapeutic mainstream.

  • Successes in gene editing – lessons learned from late-stage assets (sickle cell, ophthalmology)
  • When to use what editing tool – pros and cons of traditional gene-editing v. base editing.  Is prime editing the future? Specific use cases for epigenetic editing.
  • When we reach widespread clinical use – role of off-target editing – is the risk real?  How will we mitigate? How practical is patient-specific off-target evaluation?

Moderator: J. Keith Joung, MD, PhD

  • Robert B. Colvin, M.D. Endowed Chair in Pathology & Pathologist, MGH
  • Professor of Pathology, HMS

Speakers: John Evans

  • CEO, Beam Therapeutics

Lisa Michaels

  • EVP & CMO, Editas Medicine
  • Q&A 3:25 PM – 3:50 PM  

3:25 PM – 3:50 PM HOT TOPICS

Common Blood Disorders | Gene Therapy

There are several dozen companies working to develop gene or cell therapies for Sickle Cell Disease, Beta Thalassemia, and  Fanconi Anemia. In some cases, there are enzyme replacement therapies that are deemed effective and safe. In other cases, the disease is only managed at best. This panel will address a number of questions that are particular to this class of genetic diseases:

  • What are the pros and cons of various strategies for treatment? There are AAV-based editing, non-viral delivery even oligonucleotide recruitment of endogenous editing/repair mechanisms. Which approaches are most appropriate for which disease?
  • How can companies increase the speed of recruitment for clinical trials when other treatments are available? What is the best approach to educate patients on a novel therapeutic?
  • How do we best address ethnic and socio-economic diversity to be more representative of the target patient population?
  • How long do we have to follow up with the patients from the scientific, patient’s community, and payer points of view? What are the current FDA and EMA guidelines for long-term follow-up?
  • Where are we with regards to surrogate endpoints and their application to clinically meaningful endpoints?
  • What are the emerging ethical dilemmas in pediatric gene therapy research? Are there challenges with informed consent and pediatric assent for trial participation?
  • Are there differences in reimbursement policies for these different blood disorders? Clearly durability of response is a big factor. Are there other considerations?

Moderator: David Scadden, MD

  • Director, Center for Regenerative Medicine; Co-Director, Harvard Stem Cell Institute, Director, Hematologic Malignancies & Experimental Hematology, MGH
  • Jordan Professor of Medicine, HMS

Speakers: Samarth Kukarni, PhDNick Leschly

  • Chief Bluebird, Bluebird Bio

Mike McCune, MD, PhD

  • Head, HIV Frontiers, Global Health Innovative Technology Solutions, Bill & Melinda Gates Foundation
  • Q&A 3:55 PM – 4:15 PM  

3:50 PM – 4:00 PM FIRST LOOK

Gene Editing

J. Keith Joung, MD, PhD

  • Robert B. Colvin, M.D. Endowed Chair in Pathology & Pathologist, MGH
  • Professor of Pathology, HMS
  • Q&A 4:00 PM – 4:20 PM  

4:20 PM – 4:45 PM HOT TOPICS

Gene Expression | Modulating with Oligonucleotide-Based Therapies

Oligonucleotide drugs have recently come into their own with approvals from companies such as Biogen, Alnylam, Novartis and others. This panel will address several questions:

How important is the delivery challenge for oligonucleotides? Are technological advancements emerging that will improve the delivery of oligonucleotides to the CNS or skeletal muscle after systemic administration?

  • Will oligonucleotides improve as a class that will make them even more effective?   Are further advancements in backbone chemistry anticipated, for example.
  • Will oligonucleotide based therapies blaze trails for follow-on gene therapy products?
  • Are small molecules a threat to oligonucleotide-based therapies?
  • Beyond exon skipping and knock-down mechanisms, what other roles will oligonucleotide-based therapies take mechanistically — can genes be activating oligonucleotides?  Is there a place for multiple mechanism oligonucleotide medicines?
  • Are there any advantages of RNAi-based oligonucleotides over ASOs, and if so for what use?

Moderator: Jeannie Lee, MD, PhD

  • Molecular Biologist, MGH
  • Professor of Genetics, HMS

Speakers: Bob Brown, PhD

  • CSO, EVP of R&D, Dicerna

Brett Monia, PhD

  • CEO, Ionis

Alfred Sandrock, MD, PhD

  • EVP, R&D and CMO, Biogen
  • Q&A 4:50 PM – 5:05 PM  

4:45 PM – 4:55 PM FIRST LOOK

RNA therapy for brain cancer

Pierpaolo Peruzzi, MD, PhD

  • Nuerosurgery, BWH
  • Assistant Professor of Neurosurgery, HMS
  • Q&A 4:55 PM – 5:15 PM  

Friday, May 21, 2021

8:30 AM – 8:55 AM

Venture Investing | Shaping GCT Translation

What is occurring in the GCT venture capital segment? Which elements are seeing the most activity? Which areas have cooled? How is the investment market segmented between gene therapy, cell therapy and gene editing? What makes a hot GCT company? How long will the market stay frothy? Some review of demographics — # of investments, sizes, etc. Why is the market hot and how long do we expect it to stay that way? Rank the top 5 geographic markets for GCT company creation and investing? Are there academic centers that have been especially adept at accelerating GCT outcomes? Do the business models for the rapid development of coronavirus vaccine have any lessons for how GCT technology can be brought to market more quickly? Moderator: Meredith Fisher, PhD

  • Partner, Mass General Brigham Innovation Fund

Speakers: David Berry, MD, PhD

  • CEO, Valo Health
  • General Partner, Flagship Pioneering

Robert Nelsen

  • Managing Director, Co-founder, ARCH Venture Partners

Kush Parmar, MD, PhD

  • Managing Partner, 5AM Ventures
  • Q&A 9:00 AM – 9:15 AM  

9:00 AM – 9:25 AM

Regenerative Medicine | Stem Cells

The promise of stem cells has been a highlight in the realm of regenerative medicine. Unfortunately, that promise remains largely in the future. Recent breakthroughs have accelerated these potential interventions in particular for treating neurological disease. Among the topics the panel will consider are:

  • Stem cell sourcing
  • Therapeutic indication growth
  • Genetic and other modification in cell production
  • Cell production to final product optimization and challenges
  • How to optimize the final product

Moderator: Ole Isacson, MD, PhD

  • Director, Neuroregeneration Research Institute, McLean
  • Professor, Neurology and Neuroscience, HMS

Speakers: Kapil Bharti, PhD

  • Senior Investigator, Ocular and Stem Cell Translational Research Section, NIH

Joe Burns, PhD

  • VP, Head of Biology, Decibel Therapeutics

Erin Kimbrel, PhD

  • Executive Director, Regenerative Medicine, Astellas

Nabiha Saklayen, PhD

  • CEO and Co-Founder, Cellino
  • Q&A 9:30 AM – 9:45 AM  

9:25 AM – 9:35 AM FIRST LOOK

Stem Cells

Bob Carter, MD, PhD

  • Chairman, Department of Neurosurgery, MGH
  • William and Elizabeth Sweet, Professor of Neurosurgery, HMS
  • Q&A 9:35 AM – 9:55 AM  

9:35 AM – 10:00 AM

Capital Formation ’21-30 | Investing Modes Driving GCT Technology and Timing

The dynamics of venture/PE investing and IPOs are fast evolving. What are the drivers – will the number of investors grow will the size of early rounds continue to grow? How is this reflected in GCT target areas, company design, and biotech overall? Do patients benefit from these trends? Is crossover investing a distinct class or a little of both? Why did it emerge and what are the characteristics of the players?  Will SPACs play a role in the growth of the gene and cell therapy industry. What is the role of corporate investment arms eg NVS, Bayer, GV, etc. – has a category killer emerged?  Are we nearing the limit of what the GCT market can absorb or will investment capital continue to grow unabated? Moderator: Roger Kitterman

  • VP, Venture, Mass General Brigham

Speakers: Ellen Hukkelhoven, PhD

  • Managing Director, Perceptive Advisors

Peter Kolchinsky, PhD

  • Founder and Managing Partner, RA Capital Management

Deep Nishar

  • Senior Managing Partner, SoftBank Investment Advisors

Oleg Nodelman

  • Founder & Managing Partner, EcoR1 Capital
  • Q&A 10:05 AM – 10:20 AM  

10:00 AM – 10:10 AM FIRST LOOK

New scientific and clinical developments for autologous stem cell therapy for Parkinson’s disease patients

Penelope Hallett, PhD

  • NRL, McLean
  • Assistant Professor Psychiatry, HMS
  • Q&A 10:10 AM – 10:30 AM  

10:10 AM – 10:35 AM HOT TOPICS

Neurodegenerative Clinical Outcomes | Achieving GCT Success

Can stem cell-based platforms become successful treatments for neurodegenerative diseases?

  •  What are the commonalities driving GCT success in neurodegenerative disease and non-neurologic disease, what are the key differences?
  • Overcoming treatment administration challenges
  • GCT impact on degenerative stage of disease
  • How difficult will it be to titrate the size of the cell therapy effect in different neurological disorders and for different patients?
  • Demonstrating clinical value to patients and payers
  • Revised clinical trial models to address issues and concerns specific to GCT

Moderator: Bob Carter, MD, PhD

  • Chairman, Department of Neurosurgery, MGH
  • William and Elizabeth Sweet, Professor of Neurosurgery, HMS

Speakers: Erwan Bezard, PhD

  • INSERM Research Director, Institute of Neurodegenerative Diseases

Nikola Kojic, PhD

  • CEO and Co-Founder, Oryon Cell Therapies

Geoff MacKay

  • President & CEO, AVROBIO

Viviane Tabar, MD

  • Founding Investigator, BlueRock Therapeutics
  • Chair of Neurosurgery, Memorial Sloan Kettering
  • Q&A 10:40 AM – 10:55 AM  

10:35 AM – 11:35 AM

Disruptive Dozen: 12 Technologies that Will Reinvent GCT

Nearly one hundred senior Mass General Brigham Harvard faculty contributed to the creation of this group of twelve GCT technologies that they believe will breakthrough in the next two years. The Disruptive Dozen identifies and ranks the GCT technologies that will be available on at least an experimental basis to have the chance of significantly improving health care. 11:35 AM – 11:45 AM

Concluding Remarks

Friday, May 21, 2021

Computer connection to the iCloud of WordPress.com FROZE completely at 10:30AM EST and no file update was possible. COVERAGE OF MAY 21, 2021 IS RECORDED BELOW FOLLOWING THE AGENDA BY COPY AN DPASTE OF ALL THE TWEETS I PRODUCED ON MAY 21, 2021 8:30 AM – 8:55 AM

Venture Investing | Shaping GCT Translation

What is occurring in the GCT venture capital segment? Which elements are seeing the most activity? Which areas have cooled? How is the investment market segmented between gene therapy, cell therapy and gene editing? What makes a hot GCT company? How long will the market stay frothy? Some review of demographics — # of investments, sizes, etc. Why is the market hot and how long do we expect it to stay that way? Rank the top 5 geographic markets for GCT company creation and investing? Are there academic centers that have been especially adept at accelerating GCT outcomes? Do the business models for the rapid development of coronavirus vaccine have any lessons for how GCT technology can be brought to market more quickly? Moderator: Meredith Fisher, PhD

  • Partner, Mass General Brigham Innovation Fund

Speakers: David Berry, MD, PhD

  • CEO, Valo Health
  • General Partner, Flagship Pioneering

Robert Nelsen

  • Managing Director, Co-founder, ARCH Venture Partners

Kush Parmar, MD, PhD

  • Managing Partner, 5AM Ventures
  • Q&A 9:00 AM – 9:15 AM  

9:00 AM – 9:25 AM

Regenerative Medicine | Stem Cells

The promise of stem cells has been a highlight in the realm of regenerative medicine. Unfortunately, that promise remains largely in the future. Recent breakthroughs have accelerated these potential interventions in particular for treating neurological disease. Among the topics the panel will consider are:

  • Stem cell sourcing
  • Therapeutic indication growth
  • Genetic and other modification in cell production
  • Cell production to final product optimization and challenges
  • How to optimize the final product

Moderator: Ole Isacson, MD, PhD

  • Director, Neuroregeneration Research Institute, McLean
  • Professor, Neurology and Neuroscience, HMS

Speakers: Kapil Bharti, PhD

  • Senior Investigator, Ocular and Stem Cell Translational Research Section, NIH

Joe Burns, PhD

  • VP, Head of Biology, Decibel Therapeutics

Erin Kimbrel, PhD

  • Executive Director, Regenerative Medicine, Astellas

Nabiha Saklayen, PhD

  • CEO and Co-Founder, Cellino
  • Q&A 9:30 AM – 9:45 AM  

9:25 AM – 9:35 AM FIRST LOOK

Stem Cells

Bob Carter, MD, PhD

  • Chairman, Department of Neurosurgery, MGH
  • William and Elizabeth Sweet, Professor of Neurosurgery, HMS
  • Q&A 9:35 AM – 9:55 AM  

9:35 AM – 10:00 AM

Capital Formation ’21-30 | Investing Modes Driving GCT Technology and Timing

The dynamics of venture/PE investing and IPOs are fast evolving. What are the drivers – will the number of investors grow will the size of early rounds continue to grow? How is this reflected in GCT target areas, company design, and biotech overall? Do patients benefit from these trends? Is crossover investing a distinct class or a little of both? Why did it emerge and what are the characteristics of the players?  Will SPACs play a role in the growth of the gene and cell therapy industry. What is the role of corporate investment arms eg NVS, Bayer, GV, etc. – has a category killer emerged?  Are we nearing the limit of what the GCT market can absorb or will investment capital continue to grow unabated? Moderator: Roger Kitterman

  • VP, Venture, Mass General Brigham

Speakers: Ellen Hukkelhoven, PhD

  • Managing Director, Perceptive Advisors

Peter Kolchinsky, PhD

  • Founder and Managing Partner, RA Capital Management

Deep Nishar

  • Senior Managing Partner, SoftBank Investment Advisors

Oleg Nodelman

  • Founder & Managing Partner, EcoR1 Capital
  • Q&A 10:05 AM – 10:20 AM  

10:00 AM – 10:10 AM FIRST LOOK

New scientific and clinical developments for autologous stem cell therapy for Parkinson’s disease patients

Penelope Hallett, PhD

  • NRL, McLean
  • Assistant Professor Psychiatry, HMS
  • Q&A 10:10 AM – 10:30 AM  

10:10 AM – 10:35 AM HOT TOPICS

Neurodegenerative Clinical Outcomes | Achieving GCT Success

Can stem cell-based platforms become successful treatments for neurodegenerative diseases?

  •  What are the commonalities driving GCT success in neurodegenerative disease and non-neurologic disease, what are the key differences?
  • Overcoming treatment administration challenges
  • GCT impact on degenerative stage of disease
  • How difficult will it be to titrate the size of the cell therapy effect in different neurological disorders and for different patients?
  • Demonstrating clinical value to patients and payers
  • Revised clinical trial models to address issues and concerns specific to GCT

Moderator: Bob Carter, MD, PhD

  • Chairman, Department of Neurosurgery, MGH
  • William and Elizabeth Sweet, Professor of Neurosurgery, HMS

Speakers: Erwan Bezard, PhD

  • INSERM Research Director, Institute of Neurodegenerative Diseases

Nikola Kojic, PhD

  • CEO and Co-Founder, Oryon Cell Therapies

Geoff MacKay

  • President & CEO, AVROBIO

Viviane Tabar, MD

  • Founding Investigator, BlueRock Therapeutics
  • Chair of Neurosurgery, Memorial Sloan Kettering
  • Q&A 10:40 AM – 10:55 AM  

10:35 AM – 11:35 AM

Disruptive Dozen: 12 Technologies that Will Reinvent GCT

Nearly one hundred senior Mass General Brigham Harvard faculty contributed to the creation of this group of twelve GCT technologies that they believe will breakthrough in the next two years. The Disruptive Dozen identifies and ranks the GCT technologies that will be available on at least an experimental basis to have the chance of significantly improving health care. 11:35 AM – 11:45 AM

Concluding Remarks

The co-chairs convene to reflect on the insights shared over the three days. They will discuss what to expect at the in-person GCT focused May 2-4, 2022 World Medical Innovation Forum.

 

The co-chairs convene to reflect on the insights shared over the three days. They will discuss what to expect at the in-person GCT focused May 2-4, 2022 World Medical Innovation Forum.Christine Seidman, MD

Hypertrophic and Dilated Cardiomyopaies ‘

10% receive heart transplant 12 years survival 

Mutation puterb function

TTN: contribute 20% of dilated cardiomyopaty

Silence gene 

pleuripotential cells deliver therapies 

  • Q&A 11:00 AM – 11:20 AM  

11:00 AM – 11:10 AM FIRST LOOK

Unlocking the secret lives of proteins in health and disease

Anna Greka, MD, PhD

  • Medicine, BWH
  • Associate Professor, Medicine, HMS

Cyprus Island, kidney disease by mutation causing MUC1 accumulation and death BRD4780 molecule that will clear the misfolding proteins from the kidney organoids: pleuripotent stem cells small molecule developed for applications in the other cell types in brain, eye, gene mutation build mechnism for therapy clinical models transition from Academia to biotech 

Q&A

  • 11:10 AM – 11:30 AM  

11:10 AM – 11:35 AM

Rare and Ultra Rare Diseases | GCT Breaks Through

One of the most innovative segments in all of healthcare is the development of GCT driven therapies for rare and ultra-rare diseases. Driven by a series of insights and tools and funded in part by disease focused foundations, philanthropists and abundant venture funding disease after disease is yielding to new GCT technology. These often become platforms to address more prevalent diseases. The goal of making these breakthroughs routine and affordable is challenged by a range of issues including clinical trial design and pricing.

  • What is driving the interest in rare diseases?
  • What are the biggest barriers to making breakthroughs ‘routine and affordable?’
  • What is the role of retrospective and prospective natural history studies in rare disease?  When does the expected value of retrospective disease history studies justify the cost?
  • Related to the first question, what is the FDA expecting as far as controls in clinical trials for rare diseases?  How does this impact the collection of natural history data?

Moderator: Susan Slaugenhaupt, PhD

  • Scientific Director and Elizabeth G. Riley and Daniel E. Smith Jr., Endowed Chair, Mass General Research Institute
  • Professor, Neurology, HMS

Speakers: Leah Bloom, PhD

  • SVP, External Innovation and Strategic Alliances, Novartis Gene Therapies

Ultra rare (less than 100) vs rare difficulty to recruit patients and to follow up after treatment Bobby Gaspar, MD, PhD

  • CEO, Orchard Therapeutics

Study of rare condition have transfer to other larger diseases – delivery of therapeutics genes, like immune disorders 

Patient testimonials just to hear what a treatment can make Emil Kakkis, MD, PhD

  • CEO, Ultragenyx

Do 100 patient study then have information on natural history to develop a clinical trial Stuart Peltz, PhD

  • CEO, PTC Therapeutics

Rare disease, challenge for FDA approval and after market commercialization follow ups

Justification of cost for Rare disease – demonstration of Change is IP in value patients advocacy is helpful

  • Q&A 11:40 AM – 11:55 AM  

11:40 AM – 12:00 PM FIRESIDE

Partnering Across the GCT Spectrum

  Moderator: Erin Harris

  • Chief Editor, Cell & Gene

Perspective & professional tenure

Partnership in manufacturing what are the recommendations?

Hospital systems: Partnership Challenges  Speaker: Marc Casper

  • CEO, ThermoFisher

25 years in Diagnostics last 20 years at ThermoFisher 

products used in the Lab for CAR-T research and manufacture 

CGT Innovations: FDA will have a high level of approval each year

How move from research to clinical trials to manufacturing Quicker process

Best practices in Partnerships: the root cause if acceleration to market service providers to deliver highest standards

Building capacity by acquisition to avoid the waiting time

Accelerate new products been manufactured 

Collaborations with Academic Medical center i.e., UCSF in CGT joint funding to accelerate CGT to clinics’

Customers are extremely knowledgable, scale the capital investment made investment

150MIL a year to improve the Workflow 

  • Q&A 12:05 PM – 12:20 PM  

12:05 PM – 12:30 PM

CEO Panel | Anticipating Disruption | Planning for Widespread GCT

The power of GCT to cure disease has the prospect of profoundly improving the lives of patients who respond. Planning for a disruption of this magnitude is complex and challenging as it will change care across the spectrum. Leading chief executives shares perspectives on how the industry will change and how this change should be anticipated. Moderator: Meg Tirrell

  • Senior Health and Science Reporter, CNBC

CGT becoming staple therapy what are the disruptors emerging Speakers: Lisa Dechamps

  • SVP & Chief Business Officer, Novartis Gene Therapies

Reimagine medicine with collaboration at MGH, MDM condition in children 

The Science is there, sustainable processes and systems impact is transformational

Value based pricing, risk sharing Payers and Pharma for one time therapy with life span effect

Collaboration with FDAKieran Murphy

  • CEO, GE Healthcare

Diagnosis of disease to be used in CGT

2021 investment in CAR-T platform 

Investment in several CGT frontier

Investment in AI, ML in system design new technologies 

GE: Scale and Global distributions, sponsor companies in software 

Waste in Industry – Healthcare % of GDP, work with MGH to smooth the workflow faster entry into hospital and out of Hospital

Telemedicine during is Pandemic: Radiologist needs to read remotely 

Supply chain disruptions slow down all ecosystem 

Production of ventilators by collaboration with GM – ingenuity 

Scan patients outside of hospital a scanner in a Box Christian Rommel, PhD

  • Head, Pharmaceuticals Research & Development, Bayer AG

CGT – 2016 and in 2020 new leadership and capability 

Disease Biology and therapeutics

Regenerative Medicine: CGT vs repair building pipeline in ophthalmology and cardiovascular 

During Pandemic: Deliver Medicines like Moderna, Pfizer – collaborations between competitors with Government Bayer entered into Vaccines in 5 days, all processes had to change access innovations developed over decades for medical solutions 

  • Q&A 12:35 PM – 12:50 PM  

12:35 PM – 12:55 PM FIRESIDE

Building a GCT Portfolio

GCT represents a large and growing market for novel therapeutics that has several segments. These include Cardiovascular Disease, Cancer, Neurological Diseases, Infectious Disease, Ophthalmology, Benign Blood Disorders, and many others; Manufacturing and Supply Chain including CDMO’s and CMO’s; Stem Cells and Regenerative Medicine; Tools and Platforms (viral vectors, nano delivery, gene editing, etc.). Bayer’s pharma business participates in virtually all of these segments. How does a Company like Bayer approach the development of a portfolio in a space as large and as diverse as this one? How does Bayer approach the support of the production infrastructure with unique demands and significant differences from its historical requirements? Moderator:

Shinichiro Fuse, PhD

  • Managing Partner, MPM Capital

Speaker: Wolfram Carius, PhD

  • EVP, Pharmaceuticals, Head of Cell & Gene Therapy, Bayer AG

CGT will bring treatment to cure, delivery of therapies 

Be a Leader repair, regenerate, cure

Technology and Science for CGT – building a portfolio vs single asset decision criteria development of IP market access patients access acceleration of new products

Bayer strategy: build platform for use by four domains  

Gener augmentation

Autologeneic therapy, analytics

Gene editing

Oncology Cell therapy tumor treatment: What kind of cells – the jury is out

Of 23 product launch at Bayer no prediction is possible some high some lows 

  • Q&A 1:00 PM – 1:15 PM  

12:55 PM – 1:35 PM

Lunch

  1:40 PM – 2:05 PM

GCT Delivery | Perfecting the Technology

Gene delivery uses physical, chemical, or viral means to introduce genetic material into cells. As more genetically modified therapies move closer to the market, challenges involving safety, efficacy, and manufacturing have emerged. Optimizing lipidic and polymer nanoparticles and exosomal delivery is a short-term priority. This panel will examine how the short-term and long-term challenges are being tackled particularly for non-viral delivery modalities. Moderator: Natalie Artzi, PhD

  • Assistant Professor, BWH

Speakers: Geoff McDonough, MD

  • CEO, Generation Bio

Sonya Montgomery

  • CMO, Evox Therapeutics

Laura Sepp-Lorenzino, PhD

  • Chief Scientific Officer, Executive Vice President, Intellia Therapeutics

Doug Williams, PhD

  • CEO, Codiak BioSciences
  • Q&A 2:10 PM – 2:25 PM  

2:05 PM – 2:10 PM

Invention Discovery Grant Announcement

  2:10 PM – 2:20 PM FIRST LOOK

Enhancing vesicles for therapeutic delivery of bioproducts

Xandra Breakefield, PhD

  • Geneticist, MGH, MGH
  • Professor, Neurology, HMS
  • Q&A 2:20 PM – 2:35 PM  

2:20 PM – 2:30 PM FIRST LOOK

Versatile polymer-based nanocarriers for targeted therapy and immunomodulation

Natalie Artzi, PhD

  • Assistant Professor, BWH
  • Q&A 2:30 PM – 2:45 PM  

2:55 PM – 3:20 PM HOT TOPICS

Gene Editing | Achieving Therapeutic Mainstream

Gene editing was recognized by the Nobel Committee as “one of gene technology’s sharpest tools, having a revolutionary impact on life sciences.” Introduced in 2011, gene editing is used to modify DNA. It has applications across almost all categories of disease and is also being used in agriculture and public health.

Today’s panel is made up of pioneers who represent foundational aspects of gene editing.  They will discuss the movement of the technology into the therapeutic mainstream.

  • Successes in gene editing – lessons learned from late-stage assets (sickle cell, ophthalmology)
  • When to use what editing tool – pros and cons of traditional gene-editing v. base editing.  Is prime editing the future? Specific use cases for epigenetic editing.
  • When we reach widespread clinical use – role of off-target editing – is the risk real?  How will we mitigate? How practical is patient-specific off-target evaluation?

Moderator: J. Keith Joung, MD, PhD

  • Robert B. Colvin, M.D. Endowed Chair in Pathology & Pathologist, MGH
  • Professor of Pathology, HMS

Speakers: John Evans

  • CEO, Beam Therapeutics

Lisa Michaels

  • EVP & CMO, Editas Medicine
  • Q&A 3:25 PM – 3:50 PM  

3:25 PM – 3:50 PM HOT TOPICS

Common Blood Disorders | Gene Therapy

There are several dozen companies working to develop gene or cell therapies for Sickle Cell Disease, Beta Thalassemia, and  Fanconi Anemia. In some cases, there are enzyme replacement therapies that are deemed effective and safe. In other cases, the disease is only managed at best. This panel will address a number of questions that are particular to this class of genetic diseases:

  • What are the pros and cons of various strategies for treatment? There are AAV-based editing, non-viral delivery even oligonucleotide recruitment of endogenous editing/repair mechanisms. Which approaches are most appropriate for which disease?
  • How can companies increase the speed of recruitment for clinical trials when other treatments are available? What is the best approach to educate patients on a novel therapeutic?
  • How do we best address ethnic and socio-economic diversity to be more representative of the target patient population?
  • How long do we have to follow up with the patients from the scientific, patient’s community, and payer points of view? What are the current FDA and EMA guidelines for long-term follow-up?
  • Where are we with regards to surrogate endpoints and their application to clinically meaningful endpoints?
  • What are the emerging ethical dilemmas in pediatric gene therapy research? Are there challenges with informed consent and pediatric assent for trial participation?
  • Are there differences in reimbursement policies for these different blood disorders? Clearly durability of response is a big factor. Are there other considerations?

Moderator: David Scadden, MD

  • Director, Center for Regenerative Medicine; Co-Director, Harvard Stem Cell Institute, Director, Hematologic Malignancies & Experimental Hematology, MGH
  • Jordan Professor of Medicine, HMS

Speakers: Samarth Kukarni, PhDNick Leschly

  • Chief Bluebird, Bluebird Bio

Mike McCune, MD, PhD

  • Head, HIV Frontiers, Global Health Innovative Technology Solutions, Bill & Melinda Gates Foundation
  • Q&A 3:55 PM – 4:15 PM  

3:50 PM – 4:00 PM FIRST LOOK

Gene Editing

J. Keith Joung, MD, PhD

  • Robert B. Colvin, M.D. Endowed Chair in Pathology & Pathologist, MGH
  • Professor of Pathology, HMS
  • Q&A 4:00 PM – 4:20 PM  

4:20 PM – 4:45 PM HOT TOPICS

Gene Expression | Modulating with Oligonucleotide-Based Therapies

Oligonucleotide drugs have recently come into their own with approvals from companies such as Biogen, Alnylam, Novartis and others. This panel will address several questions:

How important is the delivery challenge for oligonucleotides? Are technological advancements emerging that will improve the delivery of oligonucleotides to the CNS or skeletal muscle after systemic administration?

  • Will oligonucleotides improve as a class that will make them even more effective?   Are further advancements in backbone chemistry anticipated, for example.
  • Will oligonucleotide based therapies blaze trails for follow-on gene therapy products?
  • Are small molecules a threat to oligonucleotide-based therapies?
  • Beyond exon skipping and knock-down mechanisms, what other roles will oligonucleotide-based therapies take mechanistically — can genes be activating oligonucleotides?  Is there a place for multiple mechanism oligonucleotide medicines?
  • Are there any advantages of RNAi-based oligonucleotides over ASOs, and if so for what use?

Moderator: Jeannie Lee, MD, PhD

  • Molecular Biologist, MGH
  • Professor of Genetics, HMS

Speakers: Bob Brown, PhD

  • CSO, EVP of R&D, Dicerna

Brett Monia, PhD

  • CEO, Ionis

Alfred Sandrock, MD, PhD

  • EVP, R&D and CMO, Biogen
  • Q&A 4:50 PM – 5:05 PM  

4:45 PM – 4:55 PM FIRST LOOK

RNA therapy for brain cancer

Pierpaolo Peruzzi, MD, PhD

  • Nuerosurgery, BWH
  • Assistant Professor of Neurosurgery, HMS
  • Q&A 4:55 PM – 5:15 PM  

Friday, May 21, 2021

Computer connection to the iCloud of WordPress.com FROZE completely at 10:30AM EST and no file update was possible. COVERAGE OF MAY 21, 2021 IS RECORDED BELOW FOLLOWING THE AGENDA BY COPY AN DPASTE OF ALL THE TWEETS I PRODUCED ON MAY 21, 2021

8:30 AM – 8:55 AM

Venture Investing | Shaping GCT Translation

What is occurring in the GCT venture capital segment? Which elements are seeing the most activity? Which areas have cooled? How is the investment market segmented between gene therapy, cell therapy and gene editing? What makes a hot GCT company? How long will the market stay frothy? Some review of demographics — # of investments, sizes, etc. Why is the market hot and how long do we expect it to stay that way? Rank the top 5 geographic markets for GCT company creation and investing? Are there academic centers that have been especially adept at accelerating GCT outcomes? Do the business models for the rapid development of coronavirus vaccine have any lessons for how GCT technology can be brought to market more quickly? Moderator:   Meredith Fisher, PhD

  • Partner, Mass General Brigham Innovation Fund

Strategies, success what changes are needed in the drug discovery process   Speakers:  

Bring disruptive frontier as a platform with reliable delivery CGT double knock out disease cure all change efficiency and scope human centric vs mice centered right scale of data converted into therapeutics acceleratetion 

Innovation in drugs 60% fails in trial because of Toxicology system of the future deal with big diseases

Moderna is an example in unlocking what is inside us Microbiome and beyond discover new drugs epigenetics  

  • Robert Nelsen
    • Managing Director, Co-founder, ARCH Venture Partners

Manufacturing change is not a new clinical trial FDA need to be presented with new rethinking for big innovations Drug pricing cheaper requires systematization How to systematically scaling up systematize the discovery and the production regulatory innovations

Responsibility mismatch should be and what is “are”

Long term diseases Stack holders and modalities risk benefir for populations 

  • Q&A 9:00 AM – 9:15 AM  

9:00 AM – 9:25 AM

Regenerative Medicine | Stem Cells

The promise of stem cells has been a highlight in the realm of regenerative medicine. Unfortunately, that promise remains largely in the future. Recent breakthroughs have accelerated these potential interventions in particular for treating neurological disease. Among the topics the panel will consider are:

  • Stem cell sourcing
  • Therapeutic indication growth
  • Genetic and other modification in cell production
  • Cell production to final product optimization and challenges
  • How to optimize the final product
  • Moderator:
    • Ole Isacson, MD, PhD
      • Director, Neuroregeneration Research Institute, McLean
      • Professor, Neurology and Neuroscience, MGH, HMS

Opportunities in the next generation of the tactical level Welcome the oprimism and energy level of all Translational medicine funding stem cells enormous opportunities 

  • Speakers:
  • Kapil Bharti, PhD
    • Senior Investigator, Ocular and Stem Cell Translational Research Section, NIH
    • first drug required to establish the process for that innovations design of animal studies not done before
    • Off-th-shelf one time treatment becoming cure 
    •  Intact tissue in a dish is fragile to maintain metabolism
    Joe Burns, PhD
    • VP, Head of Biology, Decibel Therapeutics
    • Ear inside the scall compartments and receptors responsible for hearing highly differentiated tall ask to identify cell for anticipated differentiation
    • multiple cell types and tissue to follow
    Erin Kimbrel, PhD
    • Executive Director, Regenerative Medicine, Astellas
    • In the ocular space immunogenecity
    • regulatory communication
    • use gene editing for immunogenecity Cas1 and Cas2 autologous cells
    • gene editing and programming big opportunities 
    Nabiha Saklayen, PhD
    • CEO and Co-Founder, Cellino
    • scale production of autologous cells foundry using semiconductor process in building cassettes
    • solution for autologous cells
  • Q&A 9:30 AM – 9:45 AM  

9:25 AM – 9:35 AM FIRST LOOK

Stem Cells

Bob Carter, MD, PhD

  • Chairman, Department of Neurosurgery, MGH
  • William and Elizabeth Sweet, Professor of Neurosurgery, HMS
  • Cell therapy for Parkinson to replace dopamine producing cells lost ability to produce dopamin
  • skin cell to become autologous cells reprograms to become cells producing dopamine
  • transplantation fibroblast cells metabolic driven process lower mutation burden 
  • Quercetin inhibition elimination undifferentiated cells graft survival oxygenation increased 
  • Q&A 9:35 AM – 9:55 AM  

9:35 AM – 10:00 AM

Capital Formation ’21-30 | Investing Modes Driving GCT Technology and Timing

The dynamics of venture/PE investing and IPOs are fast evolving. What are the drivers – will the number of investors grow will the size of early rounds continue to grow? How is this reflected in GCT target areas, company design, and biotech overall? Do patients benefit from these trends? Is crossover investing a distinct class or a little of both? Why did it emerge and what are the characteristics of the players?  Will SPACs play a role in the growth of the gene and cell therapy industry. What is the role of corporate investment arms eg NVS, Bayer, GV, etc. – has a category killer emerged?  Are we nearing the limit of what the GCT market can absorb or will investment capital continue to grow unabated? Moderator: Roger Kitterman

  • VP, Venture, Mass General Brigham
  • Saturation reached or more investment is coming in CGT 

Speakers: Ellen Hukkelhoven, PhD

  • Managing Director, Perceptive Advisors
  • Cardiac area transduct cells
  • matching tools
  • 10% success of phase 1 in drug development next phase matters more 

Peter Kolchinsky, PhD

  • Founder and Managing Partner, RA Capital Management
  • Future proof for new comers disruptors 
  • Ex Vivo gene therapy to improve funding products what tool kit belongs to 
  • company insulation from next instability vs comapny stabilizing themselves along few years
  • Company interested in SPAC 
  • cross over investment vs SPAC
  • Multi Omics in cancer early screening metastatic diseas will be wiped out 

Deep Nishar

  • Senior Managing Partner, SoftBank Investment Advisors
  • Young field vs CGT started in the 80s 
  • high payloads is a challenge
  • cost effective fast delivery to large populations
  • Mission oriented by the team and management  
  • Multi Omics disease modality 

Oleg Nodelman

  • Founder & Managing Partner, EcoR1 Capital
  • Invest in company next round of investment will be IPO
  • Help company raise money cross over investment vs SPAC
  • Innovating ideas from academia in need for funding 
  • Q&A 10:05 AM – 10:20 AM  

10:00 AM – 10:10 AM FIRST LOOK

New scientific and clinical developments for autologous stem cell therapy for Parkinson’s disease patients

Penelope Hallett, PhD

  • NRL, McLean
  • Assistant Professor Psychiatry, HMS
  • Pharmacologic agent in existing cause another disorders locomo-movement related 
  • efficacy Autologous cell therapy transplantation approach program T cells into dopamine generating neurons greater than Allogeneic cell transplantation 
  • Q&A 10:10 AM – 10:30 AM  

10:10 AM – 10:35 AM HOT TOPICS

Neurodegenerative Clinical Outcomes | Achieving GCT Success

Can stem cell-based platforms become successful treatments for neurodegenerative diseases?

  •  What are the commonalities driving GCT success in neurodegenerative disease and non-neurologic disease, what are the key differences?
  • Overcoming treatment administration challenges
  • GCT impact on degenerative stage of disease
  • How difficult will it be to titrate the size of the cell therapy effect in different neurological disorders and for different patients?
  • Demonstrating clinical value to patients and payers
  • Revised clinical trial models to address issues and concerns specific to GCT

Moderator: Bob Carter, MD, PhD

  • Chairman, Department of Neurosurgery, MGH
  • William and Elizabeth Sweet, Professor of Neurosurgery, HMS
  • Neurogeneration REVERSAL or slowing down 

Speakers: Erwan Bezard, PhD

  • INSERM Research Director, Institute of Neurodegenerative Diseases
  • Cautious on reversal 
  • Early intervantion versus late

Nikola Kojic, PhD

  • CEO and Co-Founder, Oryon Cell Therapies
  • Autologus cell therapy placed focal replacing missing synapses reestablishment of neural circuitary

Geoff MacKay

  • President & CEO, AVROBIO
  • Prevent condition to be manifested in the first place 
  • clinical effect durable single infusion preventions of symptoms to manifest 
  • Cerebral edema – stabilization
  • Gene therapy know which is the abnormal gene grafting the corrected one 
  • More than biomarker as end point functional benefit not yet established  

Viviane Tabar, MD

  • Founding Investigator, BlueRock Therapeutics
  • Chair of Neurosurgery, Memorial Sloan Kettering
  • Current market does not have delivery mechanism that a drug-delivery is the solution Trials would fail on DELIVERY
  • Immune suppressed patients during one year to avoid graft rejection Autologous approach of Parkinson patient genetically mutated reprogramed as dopamine generating neuron – unknowns are present
  • Circuitry restoration
  • Microenvironment disease ameliorate symptoms – education of patients on the treatment 
  • Q&A 10:40 AM – 10:55 AM  

10:35 AM – 11:35 AM

Disruptive Dozen: 12 Technologies that Will Reinvent GCT

Nearly one hundred senior Mass General Brigham Harvard faculty contributed to the creation of this group of twelve GCT technologies that they believe will breakthrough in the next two years. The Disruptive Dozen identifies and ranks the GCT technologies that will be available on at least an experimental basis to have the chance of significantly improving health care. 11:35 AM – 11:45 AM

Concluding Remarks

The co-chairs convene to reflect on the insights shared over the three days. They will discuss what to expect at the in-person GCT focused May 2-4, 2022 World Medical Innovation Forum.

ALL THE TWEETS PRODUCED ON MAY 21, 2021 INCLUDE THE FOLLOWING:

Aviva Lev-Ari

@AVIVA1950

  • @AVIVA1950_PIcs

4h

#WMIF2021

@MGBInnovation

Erwan Bezard, PhD INSERM Research Director, Institute of Neurodegenerative Diseases Cautious on reversal

@pharma_BI

@AVIVA1950

Aviva Lev-Ari

@AVIVA1950

  • @AVIVA1950_PIcs

4h

#WMIF2021

@MGBInnovation

Nikola Kojic, PhD CEO and Co-Founder, Oryon Cell Therapies Autologus cell therapy placed focal replacing missing synapses reestablishment of neural circutary

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

4h

#WMIF2021

@MGBInnovation

Bob Carter, MD, PhD Chairman, Department of Neurosurgery, MGH William and Elizabeth Sweet, Professor of Neurosurgery, HMS Neurogeneration REVERSAL or slowing down? 

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

4h

#WMIF2021

@MGBInnovation

Penelope Hallett, PhD NRL, McLean Assistant Professor Psychiatry, HMS efficacy Autologous cell therapy transplantation approach program T cells into dopamine genetating cells greater than Allogeneic cell transplantation 

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

4h

#WMIF2021

@MGBInnovation

Penelope Hallett, PhD NRL, McLean Assistant Professor Psychiatry, HMS Pharmacologic agent in existing cause another disorders locomo-movement related 

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

@AVIVA1950_PIcs

4h

#WMIF2021

@MGBInnovation

Roger Kitterman VP, Venture, Mass General Brigham Saturation reached or more investment is coming in CGT Multi OMICS and academia originated innovations are the most attractive areas

@pharma_BI

@AVIVA1950

1

3

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

@AVIVA1950_PIcs

4h

#WMIF2021

@MGBInnovation

Roger Kitterman VP, Venture, Mass General Brigham Saturation reached or more investment is coming in CGT 

@pharma_BI

@AVIVA1950

1

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

4h

#WMIF2021

@MGBInnovation

Oleg Nodelman Founder & Managing Partner, EcoR1 Capital Invest in company next round of investment will be IPO 20% discount

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

@AVIVA1950_PIcs

4h

#WMIF2021

@MGBInnovation

Peter Kolchinsky, PhD Founder and Managing Partner, RA Capital Management Future proof for new comers disruptors  Ex Vivo gene therapy to improve funding products what tool kit belongs to 

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

4h

#WMIF2021

@MGBInnovation

Deep Nishar Senior Managing Partner, SoftBank Investment Advisors Young field vs CGT started in the 80s  high payloads is a challenge 

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

5h

#WMIF2021

@MGBInnovation

Bob Carter, MD, PhD MGH, HMS cells producing dopamine transplantation fibroblast cells metabolic driven process lower mutation burden  Quercetin inhibition elimination undifferentiated cells graft survival oxygenation increased 

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

5h

#WMIF2021

@MGBInnovation

Chairman, Department of Neurosurgery, MGH, Professor of Neurosurgery, HMS Cell therapy for Parkinson to replace dopamine producing cells lost ability to produce dopamine skin cell to become autologous cells reprogramed  

@pharma_BI

@AVIVA1950

#WMIF2021

@MGBInnovation

Kapil Bharti, PhD Senior Investigator, Ocular and Stem Cell Translational Research Section, NIH Off-th-shelf one time treatment becoming cure  Intact tissue in a dish is fragile to maintain metabolism to become like semiconductors

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

@AVIVA1950_PIcs

5h

#WMIF2021

@MGBInnovation

Ole Isacson, MD, PhD Director, Neuroregeneration Research Institute, McLean Professor, Neurology and Neuroscience, MGH, HMS Opportunities in the next generation of the tactical level Welcome the oprimism and energy level of all

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

5h

#WMIF2021

@MGBInnovation

Erin Kimbrel, PhD Executive Director, Regenerative Medicine, Astellas In the ocular space immunogenecity regulatory communication use gene editing for immunogenecity Cas1 and Cas2 autologous cells

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

5h

#WMIF2021

@MGBInnovation

Nabiha Saklayen, PhD CEO and Co-Founder, Cellino scale production of autologous cells foundry using semiconductor process in building cassettes by optic physicists

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

5h

#WMIF2021

@MGBInnovation

Joe Burns, PhD VP, Head of Biology, Decibel Therapeutics Ear inside the scall compartments and receptors responsible for hearing highly differentiated tall ask to identify cell for anticipated differentiation control by genomics

@pharma_BI

@AVIVA1950

Aviva Lev-Ari

@AVIVA1950

5h

#WMIF2021

@MGBInnovation

Kapil Bharti, PhD Senior Investigator, Ocular and Stem Cell Translational Research Section, NIH first drug required to establish the process for that innovations design of animal studies not done before 

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

5h

#WMIF2021

@MGBInnovation

Meredith Fisher, PhD Partner, Mass General Brigham Innovation Fund Strategies, success what changes are needed in the drug discovery process@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

5h

#WMIF2021

@MGBInnovation

Robert Nelsen Managing Director, Co-founder, ARCH Venture Partners Manufacturing change is not a new clinical trial FDA need to be presented with new rethinking for big innovations Drug pricing cheaper requires systematization

@pharma_BI

@AVIVA1950

1

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

5h

#WMIF2021

@MGBInnovation

Kush Parmar, MD, PhD Managing Partner, 5AM Ventures Responsibility mismatch should be and what is “are”

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

5h

#WMIF2021

@MGBInnovation

David Berry, MD, PhD CEO, Valo Health GP, Flagship Pioneering Bring disruptive frontier platform reliable delivery CGT double knockout disease cure all change efficiency scope human centric vs mice centered right scale acceleration

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

6h

#WMIF2021

@MGBInnovation

Kush Parmar, MD, PhD Managing Partner, 5AM Ventures build it yourself, benefit for patients FIrst Look at MGB shows MEE innovation on inner ear worthy investment  

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

6h

#WMIF2021

@MGBInnovation

Robert Nelsen Managing Director, Co-founder, ARCH Venture Partners Frustration with supply chain during the Pandemic, GMC anticipation in advance CGT rapidly prototype rethink and invest proactive investor .edu and Pharma

@pharma_BI

@AVIVA1950

Read Full Post »

Recombinant Coronavirus Vaccines Delivered via Microneedle Array

Curator: Irina Robu, PhD

Coronavirus is an evolving pathogen with exponentially increasing significance due to the high case fatality rate, the large distribution of reservoir, and the lack of medical countermeasures. The public health emergencies triggered by coronaviruses, including SARS-CoV and SARS-CoV-2, obviously validate the urgency to assess candidate vaccines to fight these outbreaks. Continuous research contributes to the efforts of scientists to quickly progress safe vaccines against these developing infections. The recent COVID-19 pandemic indicates a vital need for the rapid design, production, testing, and clinical translation of candidate vaccines.

Coronavirus virus particles contain four main structural proteins. These are the spike, membrane, envelope, and nucleocapsid proteins, all of which are encoded within the 3′ end of the viral genome. Coronaviruses contain a non-segmented, positive-sense RNA genome, which contains a 5′ cap structure along with a 3′ poly (A) tail, allowing it to act as a mRNA for translation of the replicase polyproteins. The replicase gene encoding the nonstructural proteins inhabits two-thirds of the genome, which make up only about 10 kb of the viral genome. The 5′ end of the genome contains a leader sequence and untranslated region that encompasses multiple stem loop structures required for RNA replication and transcription. Furthermore, at the start of each structural gene are the transcriptional regulatory sequences that are essential for expression of each of these genes.

Researchers at U of Pittsburg generated codon optimized MERS-S1 subunit vaccines fused with a foldon trimerization domain to mimic the native viral structure. They engineered immune stimulants (RS09 or flagellin, as TLR4 or TLR5 agonists) into this trimeric design and tested the pre-clinical immunogenicity of MERS-CoV vaccines in mice, distributed subcutaneously by needle injection or intracutaneously by dissolving microneedle arrays by assessing virus specific IgG antibodies in the serum of vaccinated mice by ELISA and using virus neutralization assays.

Microneedle array mediated immunization has several mechanistic differences from traditional intramuscular needle injections, which could clarify the variations in the magnitude and kinetics of the ensuing responses. Due to the urgent need for COVID-19 vaccines, they used this approach to quickly advance MNA SARS-CoV-2 subunit vaccines and tested their pre-clinical immunogenicity in-vivo by manipulating the previous research on MNA MERS-CoV vaccines.

Even though it is still premature to predict whether humans immunized with these vaccine candidates will have similar responses and be protected from SARS-CoV-2 infections, their previous research show that development, production, and initial animal testing of clinically translatable MNA vaccine candidates against SARS-CoV-2. Incidentally it will be vital to determine whether antibodies from MNA-SARS-CoV-2 immunized animals will neutralize virus infectivity.

Finally, we note that the immunogenicity differences between MNA coronavirus vaccines and coronavirus vaccines delivered by traditional needle injection that we observe will need to be evaluated in clinical trials to establish the clinical advantages of MNA delivery.

SOURCE

E. Kim et al., Microneedle array delivered recombinant coronavirus vaccines: Immunogenicity and rapid translational development, EBioMedicine (2020).

Fehr, Anthony R, and Stanley Perlman. Coronaviruses: an overview of their replication and pathogenesis. Methods in molecular biology, vol. 1282 (2015): 1-23.

Susan R. Weiss, Sonia Navas-Martin. Coronavirus Pathogenesis and the Emerging Pathogen Severe Acute Respiratory Syndrome Coronavirus. Microbiology and Molecular Biology Reviews Dec 2005, 69 (4) 635-664.

Read Full Post »

Bioinformatic Tools for RNASeq: A Curation

Curator: Stephen J. Williams, Ph.D. 

 

 

Note:  This will be an ongoing curation as new information and tools become available.

RNASeq is a powerful tool for the analysis of the transcriptome profile and has been used to determine the transcriptional changes occurring upon stimuli such as drug treatment or detecting transcript differences between biological sample cohorts such as tumor versus normal tissue.  Unlike its genomic companion, whole genome and whole exome sequencing, which analyzes the primary sequence of the genomic DNA, RNASeq analyzes the mRNA transcripts, thereby more closely resembling the ultimate translated proteome. In addition, RNASeq and transcriptome profiling can determine if splicing variants occur as well as determining the nonexomic sequences, such as miRNA and lncRNA species, all of which have shown pertinence in the etiology of many diseases, including cancer.

However, RNASeq, like other omic technologies, generates enormous big data sets, which requires multiple types of bioinformatic tools in order to correctly analyze the sequence reads, and to visualize and interpret the output data.  This post represents a curation by the RNA-Seq blog of such tools useful for RNASeq studies and lists and reviews published literature using these curated tools.

 

From the RNA-Seq Blog

List of RNA-Seq bioinformatics tools

Posted by: RNA-Seq Blog in Data Analysis, Web Tools September 16, 2015 6,251 Views

from: https://en.wiki2.org/wiki/List_of_RNA-Seq_bioinformatics_tools

A review of some of the literature using some of the aforementioned curated tools are discussed below:

 

A.   Tools Useful for Single Cell RNA-Seq Analysis

 

B.  Tools for RNA-Seq Analysis of the Sliceasome

 

C.  Tools Useful for RNA-Seq read assembly visualization

 

Other articles on RNA and Transcriptomics in this Open Access Journal Include:

NIH to Award Up to $12M to Fund DNA, RNA Sequencing Research: single-cell genomics, sample preparation, transcriptomics and epigenomics, and genome-wide functional analysis.

Single-cell Genomics: Directions in Computational and Systems Biology – Contributions of Prof. Aviv Regev @Broad Institute of MIT and Harvard, Cochair, the Human Cell Atlas Organizing Committee with Sarah Teichmann of the Wellcome Trust Sanger Institute

Complex rearrangements and oncogene amplification revealed by long-read DNA and RNA sequencing of a breast cancer cell line

Single-cell RNA-seq helps in finding intra-tumoral heterogeneity in pancreatic cancer

First challenge to make use of the new NCI Cloud Pilots – Somatic Mutation Challenge – RNA: Best algorithms for detecting all of the abnormal RNA molecules in a cancer cell

Evolution of the Human Cell Genome Biology Field of Gene Expression, Gene Regulation, Gene Regulatory Networks and Application of Machine Learning Algorithms in Large-Scale Biological Data Analysis

 

Read Full Post »

An Intelligent DNA Nanorobot to Fight Cancer by Targeting HER2 Expression

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

3.2.9

3.2.9   An Intelligent DNA Nanorobot to Fight Cancer by Targeting HER2 Expression, Volume 2 (Volume Two: Latest in Genomics Methodologies for Therapeutics: Gene Editing, NGS and BioInformatics, Simulations and the Genome Ontology), Part 2: CRISPR for Gene Editing and DNA Repair

HER2 is an important prognostic biomarker for 20–30% of breast cancers, which is the most common cancer in women. Overexpression of the HER2 receptor stimulates breast cells to proliferate and differentiate uncontrollably, thereby enhancing the malignancy of breast cancer and resulting in a poor prognosis for affected individuals. Current therapies to suppress the overexpression of HER2 in breast cancer mainly involve treatment with HER2-specific monoclonal antibodies. However, these monoclonal anti-HER2 antibodies have severe side effects in clinical trials, such as diarrhea, abnormal liver function, and drug resistance. Removing HER2 from the plasma membrane or inhibiting the gene expression of HER2 is a promising alternative that could limit the malignancy of HER2-positive cancer cells.

DNA origami is an emerging field of DNA-based nanotechnology and intelligent DNA nanorobots show great promise in working as a drug delivery system in healthcare. Different DNA-based nanorobots have been developed as affordable and facile therapeutic drugs. In particular, many studies reported that a tetrahedral framework nucleic acid (tFNA) could serve as a promising DNA nanocarrier for many antitumor drugs, owing to its high biocompatibility and biosecurity. For example, tFNA was reported to effectively deliver paclitaxel or doxorubicin to cancer cells for reversing drug resistance, small interfering RNAs (siRNAs) have been modified into tFNA for targeted drug delivery. Moreover, the production and storage of tFNA are not complicated, and they can be quickly degraded in lysosomes by cells. Since both free HApt and tFNA can be diverted into lysosomes, so,  combining the HApt and tFNA as a novel DNA nanorobot (namely, HApt-tFNA) can be an effective strategy to improve its delivery and therapeutic efficacy in treating HER2-positive breast cancer.

Researchers reported that a DNA framework-based intelligent DNA nanorobot for selective lysosomal degradation of tumor-specific proteins on cancer cells. An anti-HER2 aptamer (HApt) was site-specifically anchored on a tetrahedral framework nucleic acid (tFNA). This DNA nanorobot (HApt-tFNA) could target HER2-positive breast cancer cells and specifically induce the lysosomal degradation of the membrane protein HER2. An injection of the DNA nanorobot into a mouse model revealed that the presence of tFNA enhanced the stability and prolonged the blood circulation time of HApt, and HApt-tFNA could therefore drive HER2 into lysosomal degradation with a higher efficiency. The formation of the HER2-HApt-tFNA complexes resulted in the HER2-mediated endocytosis and digestion in lysosomes, which effectively reduced the amount of HER2 on the cell surfaces. An increased HER2 digestion through HApt-tFNA further induced cell apoptosis and arrested cell growth. Hence, this novel DNA nanorobot sheds new light on targeted protein degradation for precision breast cancer therapy.

It was previously reported that tFNA was degraded by lysosomes and could enhance cell autophagy. Results indicated that free Cy5-HApt and Cy5-HApt-tFNA could enter the lysosomes; thus, tFNA can be regarded as an efficient nanocarrier to transmit HApt into the target organelle. The DNA nanorobot composed of HApt and tFNA showed a higher stability and a more effective performance than free HApt against HER2-positive breast cancer cells. The PI3K/AKT pathway was inhibited when membrane-bound HER2 decreased in SK-BR-3 cells under the action of HApt-tFNA. The research findings suggest that tFNA can enhance the anticancer effects of HApt on SK-BR-3 cells; while HApt-tFNA can bind to HER2 specifically, the compounded HER2-HApt-tFNA complexes can then be transferred and degraded in lysosomes. After these processes, the accumulation of HER2 in the plasma membrane would decrease, which could also influence the downstream PI3K/AKT signaling pathway that is associated with cell growth and death.

However, some limitations need to be noted when interpreting the findings: (i) the cytotoxicity of the nanorobot on HER2-positive cancer cells was weak, and the anticancer effects between conventional monoclonal antibodies and HApt-tFNA was not compared; (ii) the differences in delivery efficiency between tFNA and other nanocarriers need to be confirmed; and (iii) the confirmation of anticancer effects of HApt-tFNA on tumors within animals remains challenging. Despite these limitations, the present study provided novel evidence of the biological effects of tFNA when combined with HApt. Although the stability and the anticancer effects of HApt-tFNA may require further improvement before clinical application, this study initiates a promising step toward the development of nanomedicines with novel and intelligent DNA nanorobots for tumor treatment.

References:

https://pubs.acs.org/doi/10.1021/acs.nanolett.9b01320

https://www.ncbi.nlm.nih.gov/pubmed/27939064

https://www.ncbi.nlm.nih.gov/pubmed/11694782

https://www.ncbi.nlm.nih.gov/pubmed/27082923

https://www.ncbi.nlm.nih.gov/pubmed/25365825

https://www.ncbi.nlm.nih.gov/pubmed/26840503

https://www.ncbi.nlm.nih.gov/pubmed/29802035

Read Full Post »

Single-cell RNA-seq helps in finding intra-tumoral heterogeneity in pancreatic cancer

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

4.3.6

4.3.6  Single-cell RNA-seq helps in finding intra-tumoral heterogeneity in pancreatic cancer, Volume 2 (Volume Two: Latest in Genomics Methodologies for Therapeutics: Gene Editing, NGS and BioInformatics, Simulations and the Genome Ontology), Part 4: Single Cell Genomics

Pancreatic cancer is a significant cause of cancer mortality; therefore, the development of early diagnostic strategies and effective treatment is essential. Improvements in imaging technology, as well as use of biomarkers are changing the way that pancreas cancer is diagnosed and staged. Although progress in treatment for pancreas cancer has been incremental, development of combination therapies involving both chemotherapeutic and biologic agents is ongoing.

Cancer is an evolutionary disease, containing the hallmarks of an asexually reproducing unicellular organism subject to evolutionary paradigms. Pancreatic ductal adenocarcinoma (PDAC) is a particularly robust example of this phenomenon. Genomic features indicate that pancreatic cancer cells are selected for fitness advantages when encountering the geographic and resource-depleted constraints of the microenvironment. Phenotypic adaptations to these pressures help disseminated cells to survive in secondary sites, a major clinical problem for patients with this disease.

The immune system varies in cell types, states, and locations. The complex networks, interactions, and responses of immune cells produce diverse cellular ecosystems composed of multiple cell types, accompanied by genetic diversity in antigen receptors. Within this ecosystem, innate and adaptive immune cells maintain and protect tissue function, integrity, and homeostasis upon changes in functional demands and diverse insults. Characterizing this inherent complexity requires studies at single-cell resolution. Recent advances such as massively parallel single-cell RNA sequencing and sophisticated computational methods are catalyzing a revolution in our understanding of immunology.

PDAC is the most common type of pancreatic cancer featured with high intra-tumoral heterogeneity and poor prognosis. In the present study to comprehensively delineate the PDAC intra-tumoral heterogeneity and the underlying mechanism for PDAC progression, single-cell RNA-seq (scRNA-seq) was employed to acquire the transcriptomic atlas of 57,530 individual pancreatic cells from primary PDAC tumors and control pancreases. The diverse malignant and stromal cell types, including two ductal subtypes with abnormal and malignant gene expression profiles respectively, were identified in PDAC.

The researchers found that the heterogenous malignant subtype was composed of several subpopulations with differential proliferative and migratory potentials. Cell trajectory analysis revealed that components of multiple tumor-related pathways and transcription factors (TFs) were differentially expressed along PDAC progression. Furthermore, it was found a subset of ductal cells with unique proliferative features were associated with an inactivation state in tumor-infiltrating T cells, providing novel markers for the prediction of antitumor immune response. Together, the findings provided a valuable resource for deciphering the intra-tumoral heterogeneity in PDAC and uncover a connection between tumor intrinsic transcriptional state and T cell activation, suggesting potential biomarkers for anticancer treatment such as targeted therapy and immunotherapy.

References:

https://www.ncbi.nlm.nih.gov/pubmed/31273297

https://www.ncbi.nlm.nih.gov/pubmed/21491194

https://www.ncbi.nlm.nih.gov/pubmed/27444064

https://www.ncbi.nlm.nih.gov/pubmed/28983043

https://www.ncbi.nlm.nih.gov/pubmed/24976721

https://www.ncbi.nlm.nih.gov/pubmed/27693023

Read Full Post »

scPopCorn: A New Computational Method for Subpopulation Detection and their Comparative Analysis Across Single-Cell Experiments

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

4.2.5

4.2.5   scPopCorn: A New Computational Method for Subpopulation Detection and their Comparative Analysis Across Single-Cell Experiments, Volume 2 (Volume Two: Latest in Genomics Methodologies for Therapeutics: Gene Editing, NGS and BioInformatics, Simulations and the Genome Ontology), Part 4: Single Cell Genomics

Present day technological advances have facilitated unprecedented opportunities for studying biological systems at single-cell level resolution. For example, single-cell RNA sequencing (scRNA-seq) enables the measurement of transcriptomic information of thousands of individual cells in one experiment. Analyses of such data provide information that was not accessible using bulk sequencing, which can only assess average properties of cell populations. Single-cell measurements, however, can capture the heterogeneity of a population of cells. In particular, single-cell studies allow for the identification of novel cell types, states, and dynamics.

One of the most prominent uses of the scRNA-seq technology is the identification of subpopulations of cells present in a sample and comparing such subpopulations across samples. Such information is crucial for understanding the heterogeneity of cells in a sample and for comparative analysis of samples from different conditions, tissues, and species. A frequently used approach is to cluster every dataset separately, inspect marker genes for each cluster, and compare these clusters in an attempt to determine which cell types were shared between samples. This approach, however, relies on the existence of predefined or clearly identifiable marker genes and their consistent measurement across subpopulations.

Although the aligned data can then be clustered to reveal subpopulations and their correspondence, solving the subpopulation-mapping problem by performing global alignment first and clustering second overlooks the original information about subpopulations existing in each experiment. In contrast, an approach addressing this problem directly might represent a more suitable solution. So, keeping this in mind the researchers developed a computational method, single-cell subpopulations comparison (scPopCorn), that allows for comparative analysis of two or more single-cell populations.

The performance of scPopCorn was tested in three distinct settings. First, its potential was demonstrated in identifying and aligning subpopulations from single-cell data from human and mouse pancreatic single-cell data. Next, scPopCorn was applied to the task of aligning biological replicates of mouse kidney single-cell data. scPopCorn achieved the best performance over the previously published tools. Finally, it was applied to compare populations of cells from cancer and healthy brain tissues, revealing the relation of neoplastic cells to neural cells and astrocytes. Consequently, as a result of this integrative approach, scPopCorn provides a powerful tool for comparative analysis of single-cell populations.

This scPopCorn is basically a computational method for the identification of subpopulations of cells present within individual single-cell experiments and mapping of these subpopulations across these experiments. Different from other approaches, scPopCorn performs the tasks of population identification and mapping simultaneously by optimizing a function that combines both objectives. When applied to complex biological data, scPopCorn outperforms previous methods. However, it should be kept in mind that scPopCorn assumes the input single-cell data to consist of separable subpopulations and it is not designed to perform a comparative analysis of single cell trajectories datasets that do not fulfill this constraint.

Several innovations developed in this work contributed to the performance of scPopCorn. First, unifying the above-mentioned tasks into a single problem statement allowed for integrating the signal from different experiments while identifying subpopulations within each experiment. Such an incorporation aids the reduction of biological and experimental noise. The researchers believe that the ideas introduced in scPopCorn not only enabled the design of a highly accurate identification of subpopulations and mapping approach, but can also provide a stepping stone for other tools to interrogate the relationships between single cell experiments.

References:

https://www.sciencedirect.com/science/article/pii/S2405471219301887

https://www.tandfonline.com/doi/abs/10.1080/23307706.2017.1397554

https://ieeexplore.ieee.org/abstract/document/4031383

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0927-y

https://www.sciencedirect.com/science/article/pii/S2405471216302666

Read Full Post »

Extracellular RNA and their carriers in disease diagnosis and therapy, Volume 2 (Volume Two: Latest in Genomics Methodologies for Therapeutics: Gene Editing, NGS and BioInformatics, Simulations and the Genome Ontology), Part 1: Next Generation Sequencing (NGS)

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

RNA plays various roles in determining how the information in our genes drives cell behavior. One of its roles is to carry information encoded by our genes from the cell nucleus to the rest of the cell where it can be acted on by other cell components. Rresearchers have now defined how RNA also participates in transmitting information outside cells, known as extracellular RNA or exRNA. This new role of RNA in cell-to-cell communication has led to new discoveries of potential disease biomarkers and therapeutic targets. Cells using RNA to talk to each other is a significant shift in the general thought process about RNA biology.

 

Researchers explored basic exRNA biology, including how exRNA molecules and their transport packages (or carriers) were made, how they were expelled by producer cells and taken up by target cells, and what the exRNA molecules did when they got to their destination. They encountered surprising complexity both in the types of carriers that transport exRNA molecules between cells and in the different types of exRNA molecules associated with the carriers. The researchers had to be exceptionally creative in developing molecular and data-centric tools to begin making sense of the complexity, and found that the type of carrier affected how exRNA messages were sent and received.

 

As couriers of information between cells, exRNA molecules and their carriers give researchers an opportunity to intercept exRNA messages to see if they are associated with disease. If scientists could change or engineer designer exRNA messages, it may be a new way to treat disease. The researchers identified potential exRNA biomarkers for nearly 30 diseases including cardiovascular disease, diseases of the brain and central nervous system, pregnancy complications, glaucoma, diabetes, autoimmune diseases and multiple types of cancer.

 

As for example some researchers found that exRNA in urine showed promise as a biomarker of muscular dystrophy where current studies rely on markers obtained through painful muscle biopsies. Some other researchers laid the groundwork for exRNA as therapeutics with preliminary studies demonstrating how researchers might load exRNA molecules into suitable carriers and target carriers to intended recipient cells, and determining whether engineered carriers could have adverse side effects. Scientists engineered carriers with designer RNA messages to target lab-grown breast cancer cells displaying a certain protein on their surface. In an animal model of breast cancer with the cell surface protein, the researchers showed a reduction in tumor growth after engineered carriers deposited their RNA cargo.

 

Other than the above research work the scientists also created a catalog of exRNA molecules found in human biofluids like plasma, saliva and urine. They analyzed over 50,000 samples from over 2000 donors, generating exRNA profiles for 13 biofluids. This included over 1000 exRNA profiles from healthy volunteers. The researchers found that exRNA profiles varied greatly among healthy individuals depending on characteristics like age and environmental factors like exercise. This means that exRNA profiles can give important and detailed information about health and disease, but careful comparisons need to be made with exRNA data generated from people with similar characteristics.

 

Next the researchers will develop tools to efficiently and reproducibly isolate, identify and analyze different carrier types and their exRNA cargos and allow analysis of one carrier and its cargo at a time. These tools will be shared with the research community to fill gaps in knowledge generated till now and to continue to move this field forward.

 

References:

 

https://www.nih.gov/news-events/news-releases/scientists-explore-new-roles-rna

 

https://www.cell.com/consortium/exRNA

 

https://www.sciencedaily.com/releases/2016/06/160606120230.htm

 

https://www.pasteur.fr/en/multiple-roles-rnas

 

https://www.nature.com/scitable/topicpage/rna-functions-352

 

https://www.umassmed.edu/rti/biology/role-of-rna-in-biology/

 

Read Full Post »

Gender affects the prevalence of the cancer type, Volume 2 (Volume Two: Latest in Genomics Methodologies for Therapeutics: Gene Editing, NGS and BioInformatics, Simulations and the Genome Ontology), Part 1: Next Generation Sequencing (NGS)

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Gender of a person can affect the kinds of cancer-causing mutations they develop, according to a genomic analysis spanning nearly 2,000 tumours and 28 types of cancer. The results show striking differences in the cancer-causing mutations found in people who are biologically male versus those who are biologically female — not only in the number of mutations lurking in their tumours, but also in the kinds of mutations found there.

 

Liver tumours from women were more likely to carry mutations caused by a faulty system of DNA mending called mismatch repair, for instance. And men with any type of cancer were more likely to exhibit DNA changes thought to be linked to a process that the body uses to repair DNA with two broken strands. These biases could point researchers to key biological differences in how tumours develop and evolve across sexes.

 

The data add to a growing realization that sex is important in cancer, and not only because of lifestyle differences. Lung and liver cancer, for example, are more common in men than in women — even after researchers control for disparities in smoking or alcohol consumption. The source of that bias, however, has remained unclear.

In 2014, the US National Institutes of Health began encouraging researchers to consider sex differences in preclinical research by, for example, including female animals and cell lines from women in their studies. And some studies have since found sex-linked biases in the frequency of mutations in protein-coding genes in certain cancer types, including some brain cancers and advanced melanoma.

 

But the present study is the most comprehensive study of sex differences in tumour genomes so far. It looks at mutations not only in genes that code for proteins, but also in the vast expanses of DNA that have other functions, such as controlling when genes are turned on or off. The study also compares male and female genomes across many different cancers, which can allow researchers to pick up on additional patterns of DNA mutations, in part by increasing the sample sizes.

 

Researchers analysed full genome sequences gathered by the International Cancer Genome Consortium. They looked at differences in the frequency of 174 mutations known to drive cancer, and found that some of these mutations occurred more frequently in men than in women, and vice versa. When they looked more broadly at the loss or duplication of DNA segments in the genome, they found 4,285 sex-biased genes spread across 15 chromosomes.

 

There were also differences found when some mutations seemed to arise during tumour development, suggesting that some cancers follow different evolutionary paths in men and women. Researchers also looked at particular patterns of DNA changes. Such patterns can, in some cases, reflect the source of the mutation. Tobacco smoke, for example, leaves behind a particular signature in the DNA.

 

Taken together, the results highlight the importance of accounting for sex, not only in clinical trials but also in preclinical studies. This could eventually allow researchers to pin down the sources of many of the differences found in this study. Liver cancer is roughly three times as common in men as in women in some populations, and its incidence is increasing in some countries. A better understanding of its aetiology may turn out to be really important for prevention strategies and treatments.

 

References:

 

https://www.nature.com/articles/d41586-019-00562-7?utm_source=Nature+Briefing

 

https://www.nature.com/news/policy-nih-to-balance-sex-in-cell-and-animal-studies-1.15195

 

https://www.ncbi.nlm.nih.gov/pubmed/26296643

 

https://www.biorxiv.org/content/10.1101/507939v1

 

https://www.ncbi.nlm.nih.gov/pubmed/25985759

 

Read Full Post »

Older Posts »

%d bloggers like this: