Feeds:
Posts
Comments

Archive for the ‘Transposon-encoded CRISPR–Cas systems direct RNA-guided DNA integration’ Category


Live Conference Coverage AACR 2020 in Real Time: Monday June 22, 2020 Mid Day Sessions

Reporter: Stephen J. Williams, PhD

This post will be UPDATED during the next two days with notes from recordings from other talks

Follow Live in Real Time using

#AACR20

@pharma_BI

@AACR

 

 

 

 

 

 

 

Register for FREE at https://www.aacr.org/

 

AACR VIRTUAL ANNUAL MEETING II

 

June 22-24: Free Registration for AACR Members, the Cancer Community, and the Public
This virtual meeting will feature more than 120 sessions and 4,000 e-posters, including sessions on cancer health disparities and the impact of COVID-19 on clinical trials

 

This Virtual Meeting is Part II of the AACR Annual Meeting.  Part I was held online in April and was centered only on clinical findings.  This Part II of the virtual meeting will contain all the Sessions and Abstracts pertaining to basic and translational cancer research as well as clinical trial findings.

 

REGISTER NOW

 

Pezcoller Foundation-AACR International Award for Extraordinary Achievement in Cancer Research

The prestigious Pezcoller Foundation-AACR International Award for Extraordinary Achievement in Cancer Research was established in 1997 to annually recognize a scientist of international renown who has made a major scientific discovery in basic cancer research OR who has made significant contributions to translational cancer research; who continues to be active in cancer research and has a record of recent, noteworthy publications; and whose ongoing work holds promise for continued substantive contributions to progress in the field of cancer. For more information regarding the 2020 award recipient go to aacr.org/awards.

John E. Dick, Enzo Galligioni, David A Tuveson

DETAILS

Awardee: John E. Dick
Princess Anne Margaret Cancer Center, Toronto, Ontario
For determining how stem cells contribute to normal and leukemic hematopoeisis
  • not every cancer cell equal in their Cancer Hallmarks
  • how do we monitor and measure clonal dynamics
  • Barnie Clarkson did pivotal work on this
  • most cancer cells are post mitotic but minor populations of cells were dormant and survive chemotherapy
  •  only one cell is 1 in a million can regenerate and transplantable in mice and experiments with flow cytometry resolved the question of potency and repopulation of only small percentage of cells and undergo long term clonal population
  • so instead of going to cell lines and using thousands of shRNA looked at clinical data and deconvoluted the genetic information (RNASeq data) to determine progenitor and mature populations (how much is stem and how much is mature populations)
  • in leukemic patients they have seen massive expansion of a single stem cell population so only need one cell in AML if the stem cells have the mutational hits early on in their development
  • finding the “seeds of relapse”: finding the small subpopulation of stem cells that will relapse
  • they looked in BALL;;  there are cells resistant to l-aspariginase, dexamethasone, and vincristine
  • a lot of OXPHOS related genes (in DRIs) that may be the genes involved in this resistance
  • it a wonderful note of acknowledgement he dedicated this award to all of his past and present trainees who were the ones, as he said, made this field into what it is and for taking it into directions none of them could forsee

Monday, June 22

1:30 PM – 3:30 PM EDT

Virtual Educational Session

Experimental and Molecular Therapeutics, Drug Development, Cancer Chemistry

Chemistry to the Clinic: Part 1: Lead Optimization Case Studies in Cancer Drug Discovery

How can one continue to deliver innovative medicines to patients when biological targets are becoming ever scarcer and less amenable to therapeutic intervention? Are there sound strategies in place that can clear the path to targets previously considered “undruggable”? Recent advances in lead finding methods and novel technologies such as covalent screening and targeted protein degradation have enriched the toolbox at the disposal of drug discovery scientists to expand the druggable ta

Stefan N Gradl, Elena S Koltun, Scott D Edmondson, Matthew A. Marx, Joachim Rudolph

DETAILS

Monday, June 22

1:30 PM – 3:30 PM EDT

Virtual Educational Session

Bioinformatics and Systems Biology, Molecular and Cellular Biology/Genetics

Informatics Technologies for Cancer Research

Cancer researchers are faced with a deluge of high-throughput data. Using these data to advance understanding of cancer biology and improve clinical outcomes increasingly requires effective use of computational and informatics tools. This session will introduce informatics resources that support the data management, analysis, visualization, and interpretation. The primary focus will be on high-throughput genomic data and imaging data. Participants will be introduced to fundamental concepts

Rachel Karchin, Daniel Marcus, Andriy Fedorov, Obi Lee Griffith

DETAILS

  • Variant analysis is the big bottleneck, especially interpretation of variants
  • CIVIC resource is a network for curation, interpretation of genetic variants
  • CIVIC curators go through multiple rounds of editors review
  • gene summaries, variant summaries
  • curation follows ACSME guidelines
  • evidences are accumulated, categories by various ontologies and is the heart of the reports
  • as this is a network of curators the knowledgebase expands
  • CIVIC is linked to multiple external informatic, clinical, and genetic databases
  • they have curated 7017 clinical interpretations, 2527 variants, using 2578 papers, and over 1000 curators
  • they are currently integrating with COSMIC ClinVar, and UniProt
  • they are partnering with ClinGen to expand network of curators and their curation effort
  • CIVIC uses a Python interface; available on website

https://civicdb.org/home

The Precision Medicine Revolution

Precision medicine refers to the use of prevention and treatment strategies that are tailored to the unique features of each individual and their disease. In the context of cancer this might involve the identification of specific mutations shown to predict response to a targeted therapy. The biomedical literature describing these associations is large and growing rapidly. Currently these interpretations exist largely in private or encumbered databases resulting in extensive repetition of effort.

CIViC’s Role in Precision Medicine

Realizing precision medicine will require this information to be centralized, debated and interpreted for application in the clinic. CIViC is an open access, open source, community-driven web resource for Clinical Interpretation of Variants in Cancer. Our goal is to enable precision medicine by providing an educational forum for dissemination of knowledge and active discussion of the clinical significance of cancer genome alterations. For more details refer to the 2017 CIViC publication in Nature Genetics.

U24 funding announced: We are excited to announce that the Informatics Technology for Cancer Research (ICTR) program of the National Cancer Institute (NCI) has awarded funding to the CIViC team! Starting this year, a five-year, $3.7 million U24 award (CA237719), will support CIViC to develop Standardized and Genome-Wide Clinical Interpretation of Complex Genotypes for Cancer Precision Medicine.

Informatics tools for high-throughput analysis of cancer mutations

Rachel Karchin
  • CRAVAT is a platform to determine, categorize, and curate cancer mutations and cancer related variants
  • adding new tools used to be hard but having an open architecture allows for modular growth and easy integration of other tools
  • so they are actively making an open network using social media

Towards FAIR data in cancer imaging research

Andriy Fedorov, PhD

Towards the FAIR principles

While LOD has had some uptake across the web, the number of databases using this protocol compared to the other technologies is still modest. But whether or not we use LOD, we do need to ensure that databases are designed specifically for the web and for reuse by humans and machines. To provide guidance for creating such databases independent of the technology used, the FAIR principles were issued through FORCE11: the Future of Research Communications and e-Scholarship. The FAIR principles put forth characteristics that contemporary data resources, tools, vocabularies and infrastructures should exhibit to assist discovery and reuse by third-parties through the web. Wilkinson et al.,2016. FAIR stands for: Findable, Accessible, Interoperable and Re-usable. The definition of FAIR is provided in Table 1:

Number Principle
F Findable
F1 (meta)data are assigned a globally unique and persistent identifier
F2 data are described with rich metadata
F3 metadata clearly and explicitly include the identifier of the data it describes
F4 (meta)data are registered or indexed in a searchable resource
A Accessible
A1 (meta)data are retrievable by their identifier using a standardized communications protocol
A1.1 the protocol is open, free, and universally implementable
A1.2 the protocol allows for an authentication and authorization procedure, where necessary
A2 metadata are accessible, even when the data are no longer available
I Interoperable
I1 (meta)data use a formal, accessible, shared, and broadly applicable language for knowledge representation.
I2 (meta)data use vocabularies that follow FAIR principles
I3 (meta)data include qualified references to other (meta)data
R Reusable
R1 meta(data) are richly described with a plurality of accurate and relevant attributes
R1.1 (meta)data are released with a clear and accessible data usage license
R1.2 (meta)data are associated with detailed provenance
R1.3 (meta)data meet domain-relevant community standards

A detailed explanation of each of these is included in the Wilkinson et al., 2016 article, and the Dutch Techcenter for Life Sciences has a set of excellent tutorials, so we won’t go into too much detail here.

  • for outside vendors to access their data, vendors would need a signed Material Transfer Agreement but NCI had formulated a framework to facilitate sharing of data using a DIACOM standard for imaging data

Monday, June 22

1:30 PM – 3:01 PM EDT

Virtual Educational Session

Experimental and Molecular Therapeutics, Cancer Chemistry, Drug Development, Immunology

Engineering and Physical Sciences Approaches in Cancer Research, Diagnosis, and Therapy

The engineering and physical science disciplines have been increasingly involved in the development of new approaches to investigate, diagnose, and treat cancer. This session will address many of these efforts, including therapeutic methods such as improvements in drug delivery/targeting, new drugs and devices to effect immunomodulation and to synergize with immunotherapies, and intraoperative probes to improve surgical interventions. Imaging technologies and probes, sensors, and bioma

Claudia Fischbach, Ronit Satchi-Fainaro, Daniel A Heller

DETAILS

Monday, June 22

1:30 PM – 3:30 PM EDT

Virtual Educational Session

Survivorship

Exceptional Responders and Long-Term Survivors

How should we think about exceptional and super responders to cancer therapy? What biologic insights might ensue from considering these cases? What are ways in which considering super responders may lead to misleading conclusions? What are the pros and cons of the quest to locate exceptional and super responders?

Alice P Chen, Vinay K Prasad, Celeste Leigh Pearce

DETAILS

Monday, June 22

1:30 PM – 3:30 PM EDT

Virtual Educational Session

Tumor Biology, Immunology

Exploiting Metabolic Vulnerabilities in Cancer

The reprogramming of cellular metabolism is a hallmark feature observed across cancers. Contemporary research in this area has led to the discovery of tumor-specific metabolic mechanisms and illustrated ways that these can serve as selective, exploitable vulnerabilities. In this session, four international experts in tumor metabolism will discuss new findings concerning the rewiring of metabolic programs in cancer that support metabolic fitness, biosynthesis, redox balance, and the reg

Costas Andreas Lyssiotis, Gina M DeNicola, Ayelet Erez, Oliver Maddocks

DETAILS

Monday, June 22

1:30 PM – 3:30 PM EDT

Virtual Educational Session

Other Articles on this Open Access  Online Journal on Cancer Conferences and Conference Coverage in Real Time Include

Press Coverage

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Symposium: New Drugs on the Horizon Part 3 12:30-1:25 PM

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on NCI Activities: COVID-19 and Cancer Research 5:20 PM

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on Evaluating Cancer Genomics from Normal Tissues Through Metastatic Disease 3:50 PM

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on Novel Targets and Therapies 2:35 PM

Read Full Post »


@BroadInstitute a shift from Permanently editing DNA to Temporarily revising RNA – An approach with promise for addressing the risk of developing Alzheimer’s by deactivating APOE4 – RESCUE: RNA Editing for Specific C to U Exchange, the platform builds on REPAIR: RNA Editing for Programmable A to I

Reporter: Aviva Lev-Ari, PhD, RN

 

  • The RNA editors converted “the nucleotide base adenine to inosine, or letters A to I. Zhang and colleagues took the REPAIR fusion and evolved it in the lab until it could change cytosine to uridine, or C to U.”
  • Using Cas13, Zhang’s team was able to take the APOE4 gene — believed to carry the added risk of spurring Alzheimer’s — and changed it to a benign APOE2.

RNA-guided DNA insertion with CRISPR-associated transposases

Science  05 Jul 2019:
Vol. 365, Issue 6448, pp. 48-53
DOI: 10.1126/science.aax9181
SOURCE

Other related articles on CRISPR derived Gene Editing for Gene Therapy published in this Open Access on Online Scientific Journal include the following:

 

Latest in Genomics Methodologies for Therapeutics: Gene Editing, NGS & BioInformatics, Simulations and the Genome Ontology

Forthcoming 12/2019, Volume Two

by

Prof. Marcus W. Feldman, PhD, Editor, Stanford University

Prof. Stephen J. Williams, PhD, Editor, Temple University

and Aviva Lev-Ari, PhD, RN, Editor, LPBI Group 

 

Part 2: CRISPR for Gene Editing and DNA Repair

2.1 The Science – 77 articles

2.2 Technologies and Methodologies – 27 articles

2.3 Clinical Aspects – 9 articles

2.4 Business and Legal – 18 articles

 

Series B: Frontiers in Genomics Research

 

  • VOLUME 1: Genomics Orientations for Personalized Medicine. On Amazon.com since 11/23/2015

http://www.amazon.com/dp/B018DHBUO6

Read Full Post »


Breakthrough in Gene Editing CRISPR–Cas systems: First example of a fully programmable, RNA-guided integrase and lays the foundation for genomic manipulations that obviate the requirements for double-strand breaks and homology-directed repair.

 

Reporter: Aviva Lev-Ari, PhD, RN

 

CRISPR alternatives for editing genes without cutting: CRISPR 12, 12a, 13, 14 – Alternative Techniques to CRISPR/Cas9

 

  • Alternative to CRISPR/Cas9 – CAST (CRISPR-associated transposase) – A New Gene-editing Approach for Insertion of Large DNA Sequences into a Genome developed @BroadInstitute @MIT @Harvard

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2019/06/11/alternative-to-crispr-cas9-cast-crispr-associated-transposase-a-new-gene-editing-approach-for-insertion-of-large-dna-sequences-into-a-genome-developed-broadinstitute-mit-harvard/

 

  • Vertex Pharmaceuticals agreed to pay $420 million to acquire Exonics and to expand its partnership with CRISPR Therapeutics. The deal sets in motion a planto use CRISPR to treat Duchenne muscular dystrophy and myotonic dystrophy type 1.

 

  • In May, a team at the Fred Hutchinson Cancer Research Center described a method developed there to use gold nanoparticles to carry CRISPR components into cells and to use the Cas12a enzyme to make cleaner cuts than Cas9 typically does.

 

  • A UC Berkeley spinoff, GenEdit, is also developing a gold-based CRISPR system.

 

  • Other recently proposed ideas for improving CRISPR include attaching a hairpin-like guide to RNA to improve the accuracy of DNA cuts and adding an on-off switch to Cas9 enzymes to ensure they can’t make edits anywhere other than the targeted sites.

 

  • The next step for Sternberg’s team at Columbia is to test the INTEGRATE technology in mammalian cells. They believe the technique could eventually be applied to a variety of products, such as gene therapies and engineered crops.

 

Transposon-encoded CRISPR–Cas systems direct RNA-guided DNA integration

Abstract

Conventional CRISPR–Cas systems maintain genomic integrity by leveraging guide RNAs for the nuclease-dependent degradation of mobile genetic elements, including plasmids and viruses. Here we describe a remarkable inversion of this paradigm, in which bacterial Tn7-like transposons have co-opted nuclease-deficient CRISPR–Cas systems to catalyze RNA-guided integration of mobile genetic elements into the genome. Programmable transposition of Vibrio cholerae Tn6677 in E. coli requires CRISPR- and transposon-associated molecular machineries, including a novel co-complex between Cascade and the transposition protein TniQ. Donor DNA integration occurs in one of two possible orientations at a fixed distance downstream of target DNA sequences, and can accommodate variable length genetic payloads. Deep sequencing experiments reveal highly specific, genome-wide DNA integration across dozens of unique target sites. This work provides the first example of a fully programmable, RNA-guided integrase and lays the foundation for genomic manipulations that obviate the requirements for double-strand breaks and homology-directed repair.

 SOURCE

A CRISPR alternative for editing genes without cutting

Scientists at Columbia University’s Vagelos College of Physicians and Surgeons are now proposing an alternative gene-editing system—one that sidesteps the need for DNA cutting altogether.

The researchers are using a “jumping gene,” or transposon, from a bacterium called Vibrio cholerae. The transposon is able to insert itself into different regions of the genome and can be programmed to carry any DNA sequence to any site. Therefore their technology, which they dubbed INTEGRATE, acts less like molecular scissors and more like molecular glue, they explained in the journal Nature.

“Rather than introduce DNA breaks and rely on the cell to repair the break, INTEGRATE directly inserts a user-defined DNA sequence at a precise location in the genome, a capability that molecular biologists have sought for decades,” said senior author Sam Sternberg, Ph.D., assistant professor of biochemistry and molecular biophysics at Columbia, in a statement. Sternberg recently joined Columbia after a stint working in the lab of CRISPR pioneer Jennifer Doudna at the University of California, Berkeley.

Read Full Post »