Archive for the ‘Biological Networks’ Category

Lesson 5 Cell Signaling And Motility: Cytoskeleton & Actin: Curations and Articles of reference as supplemental information: #TUBiol3373

Curator: Stephen J. Williams, Ph.D.

Cell motility or migration is an essential cellular process for a variety of biological events. In embryonic development, cells migrate to appropriate locations for the morphogenesis of tissues and organs. Cells need to migrate to heal the wound in repairing damaged tissue. Vascular endothelial cells (ECs) migrate to form new capillaries during angiogenesis. White blood cells migrate to the sites of inflammation to kill bacteria. Cancer cell metastasis involves their migration through the blood vessel wall to invade surrounding tissues.

Please Click on the Following Powerpoint Presentation for Lesson 4 on the Cytoskeleton, Actin, and Filaments


cell signaling 5 lesson

This post will be updated with further information when we get into Lesson 6 and complete our discussion on the Cytoskeleton

Please see the following articles on Actin and the Cytoskeleton in Cellular Signaling

Role of Calcium, the Actin Skeleton, and Lipid Structures in Signaling and Cell Motility

This article, constitutes a broad, but not complete review of the emerging discoveries of the critical role of calcium signaling on cell motility and, by extension, embryonic development, cancer metastasis, changes in vascular compliance at the junction between the endothelium and the underlying interstitial layer.  The effect of calcium signaling on the heart in arrhtmogenesis and heart failure will be a third in this series, while the binding of calcium to troponin C in the synchronous contraction of the myocardium had been discussed by Dr. Lev-Ari in Part I.

Universal MOTIFs essential to skeletal muscle, smooth muscle, cardiac syncytial muscle, endothelium, neovascularization, atherosclerosis and hypertension, cell division, embryogenesis, and cancer metastasis. The discussion will be presented in several parts:
1.  Biochemical and signaling cascades in cell motility
2.  Extracellular matrix and cell-ECM adhesions
3.  Actin dynamics in cell-cell adhesion
4.  Effect of intracellular Ca++ action on cell motility
5.  Regulation of the cytoskeleton
6.  Role of thymosin in actin-sequestration
7.  T-lymphocyte signaling and the actin cytoskeleton


Identification of Biomarkers that are Related to the Actin Cytoskeleton

In this article the Dr. Larry Bernstein covers two types of biomarker on the function of actin in cytoskeleton mobility in situ.

  • First, is an application in developing the actin or other component, for a biotarget and then, to be able to follow it as

(a) a biomarker either for diagnosis, or

(b) for the potential treatment prediction of disease free survival.

  • Second, is mostly in the context of MI, for which there is an abundance of work to reference, and a substantial body of knowledge about

(a) treatment and long term effects of diet, exercise, and

(b) underlying effects of therapeutic drugs.

Microtubule-Associated Protein Assembled on Polymerized Microtubules

(This article has a great 3D visualization of a microtuble structure as well as description of genetic diseases which result from mutations in tubulin and effects on intracellular trafficking of proteins.

A latticework of tiny tubes called microtubules gives your cells their shape and also acts like a railroad track that essential proteins travel on. But if there is a glitch in the connection between train and track, diseases can occur. In the November 24, 2015 issue of PNAS, Tatyana Polenova, Ph.D., Professor of Chemistry and Biochemistry, and her team at the University of Delaware (UD), together with John C. Williams, Ph.D., Associate Professor at the Beckman Research Institute of City of Hope in Duarte, California, reveal for the first time — atom by atom — the structure of a protein bound to a microtubule. The protein of focus, CAP-Gly, short for “cytoskeleton-associated protein-glycine-rich domains,” is a component of dynactin, which binds with the motor protein dynein to move cargoes of essential proteins along the microtubule tracks. Mutations in CAP-Gly have been linked to such neurological diseases and disorders as Perry syndrome and distal spinal bulbar muscular dystrophy.



Read Full Post »

Lesson 4 Cell Signaling And Motility: G Proteins, Signal Transduction: Curations and Articles of reference as supplemental information: #TUBiol3373

Curator: Stephen J. Williams, Ph.D.

Below please find the link to the Powerpoint presentation for lesson #4 for #TUBiol3373.  The lesson first competes the discussion on G Protein Coupled Receptors, including how cells terminate cell signals.  Included are mechanisms of receptor desensitization.  Please NOTE that desensitization mechanisms like B arrestin decoupling of G proteins and receptor endocytosis occur after REPEATED and HIGH exposures to agonist.  Hydrolysis of GTP of the alpha subunit of G proteins, removal of agonist, and the action of phosphodiesterase on the second messenger (cAMP or cGMP) is what results in the downslope of the effect curve, the termination of the signal after agonist-receptor interaction.


Click below for PowerPoint of lesson 4

Powerpoint for lesson 4


Please Click below for the papers for your Group presentations

paper 1: Membrane interactions of G proteins and other related proteins

paper 2: Macaluso_et_al-2002-Journal_of_Cellular_Physiology

paper 3: Interactions of Ras proteins with the plasma membrane

paper 4: Futosi_et_al-2016-Immunological_Reviews


Please find related article on G proteins and Receptor Tyrosine Kinases on this Open Access Online Journal

G Protein–Coupled Receptor and S-Nitrosylation in Cardiac Ischemia and Acute Coronary Syndrome

Action of Hormones on the Circulation

Newer Treatments for Depression: Monoamine, Neurotrophic Factor & Pharmacokinetic Hypotheses

VEGF activation and signaling, lysine methylation, and activation of receptor tyrosine kinase


Read Full Post »

Lesson 1 & 2 Cell Signaling & Motility: Lessons, Curations and Articles of reference as supplemental information: #TUBiol3373

Curator: Stephen J. Williams, Ph.D.

UPDATED 2/05/2019

Syllabus for Cell Signaling & Motility for 2019




Monday 5:00 PM – 8:00 PM

Biology Life Sciences, Room 342


Antonio Giordano, M.D., Ph.D.

Office hours: Biology Life Sciences Building, Room 431.

Friday: 12:00 noon – 2:00 PM. By appointment

(Phone: 215-2049520, or email:


BIO 3096, Cell Structure and Function (Minimum Grade of C- | May not be taken concurrently). 


The communication among cells is essential for the regulation of the development of an organism and for the control of its physiology and homeostasis. Aberrant cellular signaling events are often associated with human pathological conditions, such as cancer, neurological disorders, cardiovascular diseases and so on. The full characterization of cell signaling systems may provide useful insights into the pathogenesis of several human maladies.


Molecular Biology of the Cell 6th Edition, Alberts et al. Garland Science. This textbook is available at the Temple Bookstore.


The final grade will be based on the score of four examinations that include both group and individuals assignment. Each exam accounts for 25% of the final grade. There will be no make-up tests during the course. If you have a documented medical excuse and you contact me as soon as possible after the emergency, I will arrange a make-up exam. Complaints regarding the grading will not be considered later than two weeks after the test is returned.


Announcements will be readily posted on Blackboard. It is your responsibility to check Blackboard periodically.

Attendance: Lecture attendance is mandatory. In addition, punctuality is expected.

Disabilities: Students with documented disabilities who need particular accommodation should contact me privately as soon as possible.

Honesty and Civility:

Students must follow the Temple’s Code of Conduct (see This Code of Conduct prohibits: 1. Academic dishonesty and impropriety, including plagiarism and cheating. 2. Interfering or attempting to interfere with or disrupting the conduct of classes or any other activity of the University.”

Academic Rights and Responsibilities:

The policy of the University that regulates Student and Faculty Academic Rights and Responsibilities (Policy # 03.70.02) is available at the following web link:

This policy sets the parameters for freedom to learn and freedom to teach, which constitute the pillars of academia.



This schedule is a general outline, which may be eventually modified. Changes will be announced in advance. Please, always check Blackboard and your email.

Date Topic
Jan 14 Introduction (course overview  and discussion of syllabus). General concepts: Eukaryotic and prokaryotic cell; DNA, RNA  and proteins: Protein synthesis
Jan 21 Martin Luther King, Jr. Day (no classes held)
Jan 28 DNA analysis, RNA analysis; Proteins analysis; Microscopy.
Feb 4 Signaling: general concepts; Introduction to G-proteins; signaling via G-proteins (1)
Feb 11 Exam 1: In class presentation (group assignment)
Feb 18 Signaling via G-proteins (2); tyrosine kinase receptors signaling; Ras-MAPK pathway.
Feb 25 Exam 2: In class presentation (group assignment)
March 4- 10 Spring break
Mar 11


Cytoskeleton:  Intermediate filaments; actin
Mar 18 Cytoskeleton: actin binding proteins; microtubules
Mar 25


Cytoskeleton: microtubules
April 1


Exam 3: in class Multiple choice questions (individual assignment)
Apr 8 Extracellular matrix; cell adhesion; coordinated polarization.
Apr  15 Cell motility and Wnt Signal Signaling. 
Apr  22 Medical consequences of aberrant signaling pathways; production of small molecules for protein kinases In cancer therapy.
Study days
May 6 Exam 4: In class presentation (group assignment)


Below is Powerpoint presentations for Lesson 1 and Lesson 2.  Please check for UPDATES on this page for additional supplemental information for these Lessons including articles from this Online Access Journal


cell signaling and motility 1 lesson


cell signaling and motility 2 lesson

The following articles and curations discuss about the new paradigm how we now envision DNA, in particular how we now understand that the important parts of the genome are not just the exons which code for proteins but also the intronic DNA, which contains all the regulatory elements such as promoters, lnDNA, miRNA sequences etc.  These are good reads for your presentations.

The Search for the Genetic Code

Junk DNA codes for valuable miRNAs


And on How the Cell Creates Diversity post the Genetic Code by Use of Post Translational Modifications to Bring Diversity to Protein Structure/Function

Expanding the Genetic Alphabet and Linking the Genome to the Metabolome

Synthetic Biology: On Advanced Genome Interpretation for Gene Variants and Pathways: What is the Genetic Base of Atherosclerosis and Loss of Arterial Elasticity with Aging

Also there is a link to a Blood article using FISH to detect gene amplifications after Gleevec resistance onset here

Novel Mechanisms of Resistance to Novel Agents

Other Articles related to the #TUBiol3373 course include:

Lesson 9 Cell Signaling: Curations and Articles of reference as supplemental information for lecture section on WNTs: #TUBioll3373

Curation of selected topics and articles on Role of G-Protein Coupled Receptors in Chronic Disease as supplemental information for #TUBiol3373


Read Full Post »

Reporter and Curator: Dr. Sudipta Saha, Ph.D.


Clostridium difficile-associated disease, a significant problem in healthcare facilities, causes an estimated 15,000 deaths in the United States each year. Clostridium difficile, commonly referred to as C. diff, is a bacterium that infects the colon and can cause diarrhea, fever, and abdominal pain. Clostridium difficile-associated disease (CDAD) most commonly occurs in hospitalized older adults who have recently taken antibiotics. However, cases of CDAD can occur outside of healthcare settings as well.


Although antibiotics often cure the infection, C. diff can cause potentially life-threatening colon inflammation. People with CDAD usually are treated with a course of antibiotics, such as oral vancomycin or fidaxomicin. However, CDAD returns in approximately 20 percent of people who receive such treatment, according to the Centers for Disease Control and Prevention (CDC).


Multiple research studies have indicated that fecal microbiota transplantation (FMT) is an effective method for curing patients with repeat C. diff infections. However, the long-term safety of FMT has not been established. Although more research is needed to determine precisely how FMT effectively cures recurrent CDAD, the treatment appears to rapidly restore a healthy and diverse gut microbiome in recipients. Physicians perform FMT using various routes of administration, including oral pills, upper gastrointestinal endoscopy, colonoscopy, and enema.


A research consortium recently began enrolling patients in a clinical trial examining whether FMT by enema (putting stool from a healthy donor in the colon of a recipient) is safe and can prevent recurrent CDAD, a potentially life-threatening diarrheal illness. Investigators aim to enroll 162 volunteer participants 18 years or older who have had two or more episodes of CDAD within the previous six months.


Trial sites include Emory University in Atlanta, Duke University Medical Center in Durham, North Carolina, and Vanderbilt University Medical Center in Nashville, Tennessee. Each location is a Vaccine and Treatment Evaluation Unit (VTEU), clinical research sites joined in a network funded by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health. This randomized, controlled trial aims to provide critical data on the efficacy and long-term safety of using FMT by enema to cure C. diff infections.


Volunteers will be enrolled in the trial after completing a standard course of antibiotics for a recurrent CDAD episode, presuming their diarrhea symptoms cease on treatment. They will be randomly assigned to one of two groups. The first group (108 people) will take an anti-diarrheal medication and receive a stool transplant (FMT) delivered by retention enema. The second group (54 people) will take an anti-diarrheal medication and receive a placebo solution delivered by retention enema.


Participants in either group who have diarrhea with stools that test positive for C. diff shortly after the enema will be given an active stool transplant for a maximum of two FMTs. If participants in either group have another C. diff infection after receiving two FMTs, then they will be referred to other locally available treatment options. Investigators will evaluate the stool specimens for changes in gut microbial diversity and infectious pathogens and will examine the blood samples for metabolic syndrome markers.


To learn more about the long-term outcomes of FMT, the researchers will monitor all participants for adverse side effects for three years after completing treatment for recurrent CDAD. Investigators will also collect information on any new onset of CDAD, related chronic medical conditions or any other serious health issues they may have.




Read Full Post »

Reporter and Curator: Dr. Sudipta Saha, Ph.D.


Long interspersed nuclear elements 1 (LINE1) is repeated half a million times in the human genome, making up nearly a fifth of the DNA in every cell. But nobody cared to study it and may be the reason to call it junk DNA. LINE1, like other transposons (or “jumping genes”), has the unusual ability to copy and insert itself in random places in the genome. Many other research groups uncovered possible roles in early mouse embryos and in brain cells. But nobody quite established a proper report about the functions of LINE1.


Geneticists gave attention to LINE1 when it was found to cause cancer or genetic disorders like hemophilia. But researchers at University of California at San Francisco suspected there was more characteristics of LINE1. They suspected that if it can be most harmless then it can be worst harmful also.


Many reports showed that LINE1 is especially active inside developing embryos, which suggests that the segment actually plays a key role in coordinating the development of cells in an embryo. Researchers at University of California at San Francisco figured out how to turn LINE1 off in mouse embryos by blocking LINE1 RNA. As a result the embryos got stuck in the two-cell stage, right after a fertilized egg has first split. Without LINE1, embryos essentially stopped developing.


The researchers thought that LINE1 RNA particles act as molecular “glue,” bringing together a suite of molecules that switch off the two-cell stage and kick it into the next phase of development. In particular, it turns off a gene called Dux, which is active in the two-cell stage.


LINE1’s ability to copy itself, however, seems to have nothing to do with its role in embryonic development. When LINE1 was blocked from inserting itself into the genome, the embryonic stem cells remained unaffected. It’s possible that cells in embryos have a way of making LINE1 RNA while also preventing its potentially harmful “jumping” around in the genome. But it’s unlikely that every one of the thousands of copies of LINE1 is actually being used to regulate embryonic development.


LINE1 is abundant in the genomes of almost all mammals. Other transposons, also once considered junk DNA, have turned out to have critical roles in development in human cells too. There are differences between mice and humans, so, the next obvious step is to study LINE1 in human cells, where it makes up 17 percent of the genome.




Read Full Post »

Curation of selected topics and articles on Role of G-Protein Coupled Receptors in Chronic Disease as supplemental information for #TUBiol3373

Curator: Stephen J. Williams, PhD 

Below is a series of posts and articles related to the role of G protein coupled receptors (GPCR) in various chronic diseases.  This is only a cursory collection and by no means represents the complete extensive literature on pathogenesis related to G protein function or alteration thereof.  However it is important to note that, although we think of G protein signaling as rather short lived, quick, their chronic activation may lead to progression of various disease. As to whether disease onset, via GPCR, is a result of sustained signal, loss of desensitization mechanisms, or alterations of transduction systems is an area to be investigated.


Molecular Pathogenesis of Progressive Lung Diseases

Author: Larry H. Bernstein, MD, FCAP


Chronic Obstructive Lung Disease (COPD)

Inflammatory and infectious factors are present in diseased airways that interact with G-protein coupled receptors (GPCRs), such as purinergic receptors and bradykinin (BK) receptors, to stimulate phospholipase C [PLC]. This is followed by the activation of inositol 1,4,5-trisphosphate (IP3)-dependent activation of IP3 channel receptors in the ER, which results in channel opening and release of stored Ca2+ into the cytoplasm. When ER Ca2+ stores are depleted a pathway for Ca2+ influx across the plasma membrane is activated. This has been referred to as “capacitative Ca2+ entry”, and “store-operated calcium entry” (3). In the next step PLC mediated Ca2+ i is mobilized as a result of GPCR activation by inflammatory mediators, which triggers cytokine production by Ca2+ i-dependent activation of the transcription factor nuclear factor kB (NF-kB) in airway epithelia.




In Alzheimer’s Disease

Important Lead in Alzheimer’s Disease Model

Larry H. Bernstein, MD, FCAP, Curator discusses findings from a research team at University of California at San Diego (UCSD) which the neuropeptide hormone corticotropin-releasing factor (CRF) as having an important role in the etiology of Alzheimer’s Disease (AD). CRF activates the CRF receptor (a G stimulatory receptor).  It was found inhibition of the CRF receptor prevented cognitive impairment in a mouse model of AD.  Furthermore researchers at the Flanders Interuniversity Institute for Biotechnology found the loss of a protein called G protein-coupled receptor 3 (GPR3) may lower the amyloid plaque aggregation, resulting in improved cognitive function.  Additionally inhibition of several G-protein coupled receptors alter amyloid precursor processing, providing a further mechanism of the role of GPCR in AD (see references in The role of G protein-coupled receptors in the pathology of Alzheimer’s disease by Amantha Thathiah and Bart De Strooper Nature Reviews Feb 2011; 12: 73-87 and read post).


In Cardiovascular and Thrombotic Disease


Adenosine Receptor Agonist Increases Plasma Homocysteine


and read related articles in curation on effects of hormones on the cardiovascular system at

Action of Hormones on the Circulation


In Cancer

A Curated History of the Science Behind the Ovarian Cancer β-Blocker Trial


Further curations and references of G proteins and chronic disease can be found at the Open Access journal using the search terms “GCPR” and “disease” in the Search box in the upper right of the home page.







Read Full Post »

Lesson 9 Cell Signaling:  Curations and Articles of reference as supplemental information for lecture section on WNTs: #TUBiol3373

Stephen J. Wiilliams, Ph.D: Curator

The following contain curations of scientific articles from the site  intended as additional reference material  to supplement material presented in the lecture.

Wnts are a family of lipid-modified secreted glycoproteins which are involved in:

Normal physiological processes including

A. Development:

– Osteogenesis and adipogenesis (Loss of wnt/β‐catenin signaling causes cell fate shift of preosteoblasts from osteoblasts to adipocytes)

  – embryogenesis including body axis patterning, cell fate specification, cell proliferation and cell migration

B. tissue regeneration in adult tissue

read: Wnt signaling in the intestinal epithelium: from endoderm to cancer

And in pathologic processes such as oncogenesis (refer to Wnt/β-catenin Signaling [7.10]) and to your Powerpoint presentation


The curation Wnt/β-catenin Signaling is a comprehensive review of canonical and noncanonical Wnt signaling pathways


To review:












Activating the canonical Wnt pathway frees B-catenin from the degradation complex, resulting in B-catenin translocating to the nucleus and resultant transcription of B-catenin/TCF/LEF target genes.

Fig. 1 Canonical Wnt/FZD signaling pathway. (A) In the absence of Wnt signaling, soluble β-catenin is phosphorylated by a degradation complex consisting of the kinases GSK3β and CK1α and the scaffolding proteins APC and Axin1. Phosphorylated β-catenin is targeted for proteasomal degradation after ubiquitination by the SCF protein complex. In the nucleus and in the absence of β-catenin, TCF/LEF transcription factor activity is repressed by TLE-1; (B) activation of the canonical Wnt/FZD signaling leads to phosphorylation of Dvl/Dsh, which in turn recruits Axin1 and GSK3β adjacent to the plasma membrane, thus preventing the formation of the degradation complex. As a result, β-catenin accumulates in the cytoplasm and translocates into the nucleus, where it promotes the expression of target genes via interaction with TCF/LEF transcription factors and other proteins such as CBP, Bcl9, and Pygo.

NOTE: In the canonical signaling, the Wnt signal is transmitted via the Frizzled/LRP5/6 activated receptor to INACTIVATE the degradation complex thus allowing free B-catenin to act as the ultimate transducer of the signal.

Remember, as we discussed, the most frequent cancer-related mutations of WNT pathway constituents is in APC.

This shows how important the degradation complex is in controlling canonical WNT signaling.

Other cell signaling systems are controlled by protein degradation:

A.  The Forkhead family of transcription factors

Read: Regulation of FoxO protein stability via ubiquitination and proteasome degradation

B. Tumor necrosis factor α/NF κB signaling

Read: NF-κB, the first quarter-century: remarkable progress and outstanding questions

1.            Question: In cell involving G-proteins, the signal can be terminated by desensitization mechanisms.  How is both the canonical and noncanonical Wnt signal eventually terminated/desensitized?

We also discussed the noncanonical Wnt signaling pathway (independent of B-catenin induced transcriptional activity).  Note that the canonical and noncanonical involve different transducers of the signal.

Noncanonical WNT Signaling

Note: In noncanonical signaling the transducer is a G-protein and second messenger system is IP3/DAG/Ca++ and/or kinases such as MAPK, JNK.

Depending on the different combinations of WNT ligands and the receptors, WNT signaling activates several different intracellular pathways  (i.e. canonical versus noncanonical)


In addition different Wnt ligands are expressed at different times (temporally) and different cell types in development and in the process of oncogenesis. 

The following paper on Wnt signaling in ovarian oncogenesis shows how certain Wnt ligands are expressed in normal epithelial cells but the Wnt expression pattern changes upon transformation and ovarian oncogenesis. In addition, differential expression of canonical versus noncanonical WNT ligands occur during the process of oncogenesis (for example below the authors describe the noncanonical WNT5a is expressed in normal ovarian  epithelia yet WNT5a expression in ovarian cancer is lower than the underlying normal epithelium. However the canonical WNT10a, overexpressed in ovarian cancer cells, serves as an oncogene, promoting oncogenesis and tumor growth.

Wnt5a Suppresses Epithelial Ovarian Cancer by Promoting Cellular Senescence

Benjamin G. Bitler,1 Jasmine P. Nicodemus,1 Hua Li,1 Qi Cai,2 Hong Wu,3 Xiang Hua,4 Tianyu Li,5 Michael J. Birrer,6Andrew K. Godwin,7 Paul Cairns,8 and Rugang Zhang1,*

A.           Abstract

Epithelial ovarian cancer (EOC) remains the most lethal gynecological malignancy in the US. Thus, there is an urgent need to develop novel therapeutics for this disease. Cellular senescence is an important tumor suppression mechanism that has recently been suggested as a novel mechanism to target for developing cancer therapeutics. Wnt5a is a non-canonical Wnt ligand that plays a context-dependent role in human cancers. Here, we investigate the role of Wnt5a in regulating senescence of EOC cells. We demonstrate that Wnt5a is expressed at significantly lower levels in human EOC cell lines and in primary human EOCs (n = 130) compared with either normal ovarian surface epithelium (n = 31; p = 0.039) or fallopian tube epithelium (n = 28; p < 0.001). Notably, a lower level of Wnt5a expression correlates with tumor stage (p = 0.003) and predicts shorter overall survival in EOC patients (p = 0.003). Significantly, restoration of Wnt5a expression inhibits the proliferation of human EOC cells both in vitro and in vivo in an orthotopic EOC mouse model. Mechanistically, Wnt5a antagonizes canonical Wnt/β-catenin signaling and induces cellular senescence by activating the histone repressor A (HIRA)/promyelocytic leukemia (PML) senescence pathway. In summary, we show that loss of Wnt5a predicts poor outcome in EOC patients and Wnt5a suppresses the growth of EOC cells by triggering cellular senescence. We suggest that strategies to drive senescence in EOC cells by reconstituting Wnt5a signaling may offer an effective new strategy for EOC therapy.

Oncol Lett. 2017 Dec;14(6):6611-6617. doi: 10.3892/ol.2017.7062. Epub 2017 Sep 26.

Clinical significance and biological role of Wnt10a in ovarian cancer. 

Li P1Liu W1Xu Q1Wang C1.

Ovarian cancer is one of the five most malignant types of cancer in females, and the only currently effective therapy is surgical resection combined with chemotherapy. Wnt family member 10A (Wnt10a) has previously been identified to serve an oncogenic function in several tumor types, and was revealed to have clinical significance in renal cell carcinoma; however, there is still only limited information regarding the function of Wnt10a in the carcinogenesis of ovarian cancer. The present study identified increased expression levels of Wnt10a in two cell lines, SKOV3 and A2780, using reverse transcription-polymerase chain reaction. Functional analysis indicated that the viability rate and migratory ability of SKOV3 cells was significantly inhibited following Wnt10a knockdown using short interfering RNA (siRNA) technology. The viability rate of SKOV3 cells decreased by ~60% compared with the control and the migratory ability was only ~30% of that in the control. Furthermore, the expression levels of β-catenin, transcription factor 4, lymphoid enhancer binding factor 1 and cyclin D1 were significantly downregulated in SKOV3 cells treated with Wnt10a-siRNA3 or LGK-974, a specific inhibitor of the canonical Wnt signaling pathway. However, there were no synergistic effects observed between Wnt10a siRNA3 and LGK-974, which indicated that Wnt10a activated the Wnt/β-catenin signaling pathway in SKOV3 cells. In addition, using quantitative PCR, Wnt10a was overexpressed in the tumor tissue samples obtained from 86 patients with ovarian cancer when compared with matching paratumoral tissues. Clinicopathological association analysis revealed that Wnt10a was significantly associated with high-grade (grade III, P=0.031) and late-stage (T4, P=0.008) ovarian cancer. Furthermore, the estimated 5-year survival rate was 18.4% for patients with low Wnt10a expression levels (n=38), whereas for patients with high Wnt10a expression (n=48) the rate was 6.3%. The results of the present study suggested that Wnt10a serves an oncogenic role during the carcinogenesis and progression of ovarian cancer via the Wnt/β-catenin signaling pathway.

Targeting the Wnt Pathway includes curations of articles related to the clinical development of Wnt signaling inhibitors as a therapeutic target in various cancers including hepatocellular carcinoma, colon, breast and potentially ovarian cancer.


2.         Question: Given that different Wnt ligands and receptors activate different signaling pathways, AND  WNT ligands  can be deferentially and temporally expressed  in various tumor types and the process of oncogenesis, how would you approach a personalized therapy targeting the WNT signaling pathway?

3.         Question: What are the potential mechanisms of either intrinsic or acquired resistance to Wnt ligand antagonists being developed?


Other related articles published in this Open Access Online Scientific Journal include the following:

Targeting the Wnt Pathway [7.11]

Wnt/β-catenin Signaling [7.10]

Cancer Signaling Pathways and Tumor Progression: Images of Biological Processes in the Voice of a Pathologist Cancer Expert

e-Scientific Publishing: The Competitive Advantage of a Powerhouse for Curation of Scientific Findings and Methodology Development for e-Scientific Publishing – LPBI Group, A Case in Point 

Electronic Scientific AGORA: Comment Exchanges by Global Scientists on Articles published in the Open Access Journal – Four Case Studies


Read Full Post »

Older Posts »