Feeds:
Posts
Comments

Archive for the ‘Bio-Ethics’ Category


Personalized Medicine, Omics, and Health Disparities in Cancer:  Can Personalized Medicine Help Reduce the Disparity Problem?

Curator: Stephen J. Williams, PhD

In a Science Perspectives article by Timothy Rebbeck, health disparities, specifically cancer disparities existing in the sub-Saharan African (SSA) nations, highlighting the cancer incidence disparities which exist compared with cancer incidence in high income areas of the world [1].  The sub-Saharan African nations display a much higher incidence of prostate, breast, and cervix cancer and these cancers are predicted to double within the next twenty years, according to IARC[2].  Most importantly,

 the histopathologic and demographic features of these tumors differ from those in high-income countries

meaning that the differences seen in incidence may reflect a true health disparity as increases rates in these cancers are not seen in high income countries (HIC).

Most frequent male cancers in SSA include prostate, lung, liver, leukemia, non-Hodgkin’s lymphoma, and Kaposi’s sarcoma (a cancer frequently seen in HIV infected patients [3]).  In SSA women, breast and cervical cancer are the most common and these display higher rates than seen in high income countries.  In fact, liver cancer is seen in SSA females at twice the rate, and in SSA males almost three times the rate as in high income countries.

 

 

 

 

 

 

Reasons for cancer disparity in SSA

Patients with cancer are often diagnosed at a late stage in SSA countries.  This contrasts with patients from high income countries, which have their cancers usually diagnosed at an earlier stage, and with many cancers, like breast[4], ovarian[5, 6], and colon, detecting the tumor in the early stages is critical for a favorable outcome and prognosis[7-10].  In addition, late diagnosis also limits many therapeutic options for the cancer patient and diseases at later stages are much harder to manage, especially with respect to unresponsiveness and/or resistance of many therapies.  In addition, treatments have to be performed in low-resource settings in SSA, and availability of clinical lab work and imaging technologies may be limited.

Molecular differences in SSA versus HIC cancers which may account for disparities

Emerging evidence suggests that there are distinct molecular signatures with SSA tumors with respect to histotype and pathology.  For example Dr. Rebbeck mentions that Nigerian breast cancers were defined by increased mutational signatures associated with deficiency of the homologous recombination DNA repair pathway, pervasive mutations in the tumor suppressor gene TP53, mutations in GATA binding protein 3 (GATA3), and greater mutational burden, compared with breast tumors from African Americans or Caucasians[11].  However more research will be required to understand the etiology and causal factors related to this molecular distinction in mutational spectra.

It is believed that there is a higher rate of hereditary cancers in SSA. And many SSA cancers exhibit the more aggressive phenotype than in other parts of the world.  For example breast tumors in SSA black cases are twice as likely than SSA Caucasian cases to be of the triple negative phenotype, which is generally more aggressive and tougher to detect and treat, as triple negative cancers are HER2 negative and therefore are not a candidate for Herceptin.  Also BRCA1/2 mutations are more frequent in black SSA cases than in Caucasian SSA cases [12, 13].

Initiatives to Combat Health Disparities in SSA

Multiple initiatives are being proposed or in action to bring personalized medicine to the sub-Saharan African nations.  These include:

H3Africa empowers African researchers to be competitive in genomic sciences, establishes and nurtures effective collaborations among African researchers on the African continent, and generates unique data that could be used to improve both African and global health.

There is currently a global effort to apply genomic science and associated technologies to further the understanding of health and disease in diverse populations. These efforts work to identify individuals and populations who are at risk for developing specific diseases, and to better understand underlying genetic and environmental contributions to that risk. Given the large amount of genetic diversity on the African continent, there exists an enormous opportunity to utilize such approaches to benefit African populations and to inform global health.

The Human Heredity and Health in Africa (H3Africa) consortium facilitates fundamental research into diseases on the African continent while also developing infrastructure, resources, training, and ethical guidelines to support a sustainable African research enterprise – led by African scientists, for the African people. The initiative consists of 51 African projects that include population-based genomic studies of common, non-communicable disorders such as heart and renal disease, as well as communicable diseases such as tuberculosis. These studies are led by African scientists and use genetic, clinical, and epidemiologic methods to identify hereditary and environmental contributions to health and disease. To establish a foundation for African scientists to continue this essential work into the future work, the consortium also supports many crucial capacity building elements, such as: ethical, legal, and social implications research; training and capacity building for bioinformatics; capacity for biobanking; and coordination and networking.

The World Economic Forum’s Leapfrogging with Precision Medicine project 

This project is part of the World Economic Forum’s Shaping the Future of Health and Healthcare Platform

The Challenge

Advancing precision medicine in a way that is equitable and beneficial to society means ensuring that healthcare systems can adopt the most scientifically and technologically appropriate approaches to a more targeted and personalized way of diagnosing and treating disease. In certain instances, countries or institutions may be able to bypass, or “leapfrog”, legacy systems or approaches that prevail in developed country contexts.

The World Economic Forum’s Leapfrogging with Precision Medicine project will develop a set of tools and case studies demonstrating how a precision medicine approach in countries with greenfield policy spaces can potentially transform their healthcare delivery and outcomes. Policies and governance mechanisms that enable leapfrogging will be iterated and scaled up to other projects.

Successes in personalized genomic research in SSA

As Dr. Rebbeck states:

 Because of the underlying genetic and genomic relationships between Africans and members of the African diaspora (primarily in North America and Europe), knowledge gained from research in SSA can be used to address health disparities that are prevalent in members of the African diaspora.

For example members of the West African heritage and genomic ancestry has been reported to confer the highest genomic risk for prostate cancer in any worldwide population [14].

 

PERSPECTIVEGLOBAL HEALTH

Cancer in sub-Saharan Africa

  1. Timothy R. Rebbeck

See all authors and affiliations

Science  03 Jan 2020:
Vol. 367, Issue 6473, pp. 27-28
DOI: 10.1126/science.aay474

Summary/Abstract

Cancer is an increasing global public health burden. This is especially the case in sub-Saharan Africa (SSA); high rates of cancer—particularly of the prostate, breast, and cervix—characterize cancer in most countries in SSA. The number of these cancers in SSA is predicted to more than double in the next 20 years (1). Both the explanations for these increasing rates and the solutions to address this cancer epidemic require SSA-specific data and approaches. The histopathologic and demographic features of these tumors differ from those in high-income countries (HICs). Basic knowledge of the epidemiology, clinical features, and molecular characteristics of cancers in SSA is needed to build prevention and treatment tools that will address the future cancer burden. The distinct distribution and determinants of cancer in SSA provide an opportunity to generate knowledge about cancer risk factors, genomics, and opportunities for prevention and treatment globally, not only in Africa.

 

References

  1. Rebbeck TR: Cancer in sub-Saharan Africa. Science 2020, 367(6473):27-28.
  2. Parkin DM, Ferlay J, Jemal A, Borok M, Manraj S, N’Da G, Ogunbiyi F, Liu B, Bray F: Cancer in Sub-Saharan Africa: International Agency for Research on Cancer; 2018.
  3. Chinula L, Moses A, Gopal S: HIV-associated malignancies in sub-Saharan Africa: progress, challenges, and opportunities. Current opinion in HIV and AIDS 2017, 12(1):89-95.
  4. Colditz GA: Epidemiology of breast cancer. Findings from the nurses’ health study. Cancer 1993, 71(4 Suppl):1480-1489.
  5. Hamilton TC, Penault-Llorca F, Dauplat J: [Natural history of ovarian adenocarcinomas: from epidemiology to experimentation]. Contracept Fertil Sex 1998, 26(11):800-804.
  6. Garner EI: Advances in the early detection of ovarian carcinoma. J Reprod Med 2005, 50(6):447-453.
  7. Brockbank EC, Harry V, Kolomainen D, Mukhopadhyay D, Sohaib A, Bridges JE, Nobbenhuis MA, Shepherd JH, Ind TE, Barton DP: Laparoscopic staging for apparent early stage ovarian or fallopian tube cancer. First case series from a UK cancer centre and systematic literature review. European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology 2013, 39(8):912-917.
  8. Kolligs FT: Diagnostics and Epidemiology of Colorectal Cancer. Visceral medicine 2016, 32(3):158-164.
  9. Rocken C, Neumann U, Ebert MP: [New approaches to early detection, estimation of prognosis and therapy for malignant tumours of the gastrointestinal tract]. Zeitschrift fur Gastroenterologie 2008, 46(2):216-222.
  10. Srivastava S, Verma M, Henson DE: Biomarkers for early detection of colon cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 2001, 7(5):1118-1126.
  11. Pitt JJ, Riester M, Zheng Y, Yoshimatsu TF, Sanni A, Oluwasola O, Veloso A, Labrot E, Wang S, Odetunde A et al: Characterization of Nigerian breast cancer reveals prevalent homologous recombination deficiency and aggressive molecular features. Nature communications 2018, 9(1):4181.
  12. Zheng Y, Walsh T, Gulsuner S, Casadei S, Lee MK, Ogundiran TO, Ademola A, Falusi AG, Adebamowo CA, Oluwasola AO et al: Inherited Breast Cancer in Nigerian Women. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2018, 36(28):2820-2825.
  13. Rebbeck TR, Friebel TM, Friedman E, Hamann U, Huo D, Kwong A, Olah E, Olopade OI, Solano AR, Teo SH et al: Mutational spectrum in a worldwide study of 29,700 families with BRCA1 or BRCA2 mutations. Human mutation 2018, 39(5):593-620.
  14. Lachance J, Berens AJ, Hansen MEB, Teng AK, Tishkoff SA, Rebbeck TR: Genetic Hitchhiking and Population Bottlenecks Contribute to Prostate Cancer Disparities in Men of African Descent. Cancer research 2018, 78(9):2432-2443.

Other articles on Cancer Health Disparities and Genomics on this Online Open Access Journal Include:

Gender affects the prevalence of the cancer type
The Rutgers Global Health Institute, part of Rutgers Biomedical and Health Sciences, Rutgers University, New Brunswick, New Jersey – A New Venture Designed to Improve Health and Wellness Globally
Breast Cancer Disparities to be Sponsored by NIH: NIH Launches Largest-ever Study of Breast Cancer Genetics in Black Women
War on Cancer Needs to Refocus to Stay Ahead of Disease Says Cancer Expert
Ethical Concerns in Personalized Medicine: BRCA1/2 Testing in Minors and Communication of Breast Cancer Risk
Ethics Behind Genetic Testing in Breast Cancer: A Webinar by Laura Carfang of survivingbreastcancer.org
Live Notes from @HarvardMed Bioethics: Authors Jerome Groopman, MD & Pamela Hartzband, MD, discuss Your Medical Mind
Testing for Multiple Genetic Mutations via NGS for Patients: Very Strong Family History of Breast & Ovarian Cancer, Diagnosed at Young Ages, & Negative on BRCA Test
Study Finds that Both Women and their Primary Care Physicians Confusion over Ovarian Cancer Symptoms May Lead to Misdiagnosis

 

Read Full Post »


From @Harvardmed Center for Bioethics: The Medical Ethics of the Corona Virus Crisis

Reporter: Stephen J. Williams, Ph.D.

From Harvard Medical School Center for Bioethics

source: https://bioethics.hms.harvard.edu/news/medical-ethics-corona-virus-crisis

The Medical Ethics of the Corona Virus Crisis

Executive Director Christine Mitchell discusses the importance of institutions talking through the implications of their decisions with the New Yorker.

Center Executive Director Christine Mitchell spoke with the New Yorker’s Isaac Chotiner about the decisions that may need to be made on limiting movement and, potentially, rationing supplies and hospital space.

“So, in the debate about allocating resources in a pandemic, we have to work with our colleagues around what kind of space is going to be made available—which means that other people and other services have to be dislocated—what kind of supplies we’re going to have, whether we’re going to reuse them, how we will reallocate staff, whether we can have staff who are not specialists take care of patients because we have way more patients than the number of specialized staff,” says Mitchell.

Read the full Q&A in the New Yorker.

 

Note: The following is taken from the Interview in the New Yorker.

As the novel coronaviruscovid-19, spreads across the globe, governments have been taking increasingly severe measures to limit the virus’s infection rate. China, where it originated, has instituted quarantines in areas with a large number of cases, and Italy—which is now facing perhaps the most serious threat outside of China—is entirely under quarantine. In the United States, the National Guard has been deployed to manage a “containment area” in New Rochelle, New York, where one of the country’s largest clusters has emerged. As the number of cases rises, we will soon face decisions on limiting movement and, potentially, rationing supplies and hospital space. These issues will be decided at the highest level by politicians, but they are often influenced by medical ethicists, who advise governments and other institutions about the way to handle medical emergencies.

One of those ethicists, with whom I recently spoke by phone, is Christine Mitchell, the executive director at the Center for Bioethics at Harvard Medical School. Mitchell, who has master’s degrees in nursing and philosophical and religious ethics, has been a clinical ethicist for thirty years. She founded the ethics program at Boston Children’s Hospital, and has served on national and international medical-ethics commissions. During our conversation, which has been edited for length and clarity, we discussed what ethicists tend to focus on during a health crisis, how existing health-care access affects crisis response, and the importance of institutions talking through the ethical implications of their decisions.

What coronavirus-related issue has most occupied your mental space over the past weeks?

One of the things I think about but that we don’t often have an opportunity to talk about, when we are mostly focussing on what clinicians are doing and trying to prepare for, is the more general ways this affects our society. People get sick out there in the real world, and then they come to our hospitals, but, when they are sick, a whole bunch of them don’t have health insurance, or are afraid to come to a hospital, or they don’t have coverage for sick time or taking a day off when their child is sick, so they send their child to school. So these all have very significant influences on our ability to manage population health and community transmission that aren’t things that nurses and physicians and people who work in acute-care hospitals and clinics can really affect. They are elements of the way our society is structured and has failed to meet the needs of our general population, and they influence our ability to manage a crisis like this.

Is there anything specifically about a pandemic or something like coronavirus that makes these issues especially acute?

If a person doesn’t have health insurance and doesn’t come to be tested or treated, and if they don’t have sick-time coverage and can’t leave work, so they teach at a school, or they work at a restaurant, or do events that have large numbers of people, these are all ways in which the spread of a virus like this has to be managed—and yet can’t be managed effectively because of our social-welfare policies, not just our health-care resources.

Just to take a step back, and I want to get back to coronavirus stuff, but what got you interested in medical ethics?

What got me interested were the actual kinds of problems that came up when I was taking care of patients, starting as early as when I was in nursing school and was taking care of a patient who, as a teen-ager, had a terminal kind of cancer that his parents didn’t want him to know about, and which the health-care team had decided to defer to the parents. And yet I was spending every day taking care of him, and he was really puzzled about why he was so sick and whether he was going to get better, and so forth. And so of course I was faced with this question of, What do I do if he asks me? Which, of course, he did.

And this question about what you should tell an adolescent and whether the deference should be to his parents’ judgment about what’s best for him, which we would ordinarily respect, and the moral demands of the relationship that you have with a patient, was one of the cases that reminded me that there’s a lot more to being a nurse or a health-care provider than just knowing how to give cancer chemotherapy and change a bed, or change a dressing, or whatever. That a lot of it is in the relationship you have with a patient and the kinds of ethical choices they and their families are facing. They need your information, but also your help as they think things through. That’s the kind of thing that got me interested in it. There are a whole host of those kinds of cases, but they’re more individual cases.

As I began to work in a hospital as an ethicist, I began to worry about the broader organizational issues, like emergency preparedness. Some years ago, here in Boston, I had a joint appointment running the ethics program at Children’s Hospital and doing clinical ethics at Harvard Medical School. We pulled together a group, with the Department of Public Health and the emergency-preparedness clinicians in the Harvard-affiliated hospitals, to look at what the response within the state of Massachusetts should be to big, major disasters or rolling pandemics, and worked on some guidelines together.

When you looked at the response of our government, in a place like Washington State or in New York City, what things, from a medical-ethics perspective, are you noticing that are either good or maybe not so good?

To be candid and, probably, to use language that’s too sharp for publication, I’m appalled. We didn’t get ourselves ready. We’ve had outbreaks—sars in 2003, H1N1 in 2009, Ebola in 2013, Zika in 2016. We’ve known, and the general population in some ways has known. They even have movies like “Contagion” that did a great job of sharing publicly what this is like, although it is fictional, and that we were going to have these kinds of infectious diseases in a global community that we have to be prepared to handle. And we didn’t get ourselves as ready, in most cases, as we should have. There have been all these cuts to the C.D.C. budget, and the person who was the Ebola czar no longer exists in the new Administration.

And it’s not just this Administration. But the thing about this Administration that perhaps worries me the most is a fundamental lack of respect for science and the facts. Managing the crisis from a public-relations perspective and an economic, Dow Jones perspective are important, but they shouldn’t be fudging the facts. And that’s the piece that makes me feel most concerned—and not just as an ethicist. And then, of course, I want to see public education and information that’s forthright and helps people get the treatment that they need. But the disrespect for the public, and not providing honest information, is . . . yeah, that’s pretty disconcerting.

SOURCE

https://www.newyorker.com/news/q-and-a/the-medical-ethics-of-the-coronavirus-crisis

See more on this and #COVID19 on this Online Open Access Journal at our Coronavirus Portal at

https://pharmaceuticalintelligence.com/coronavirus-portal/

Read Full Post »


Live Notes from @HarvardMed Bioethics: Authors Jerome Groopman, MD & Pamela Hartzband, MD, discuss Your Medical Mind

Writer: Stephen J. Williams, Ph.D.

As part of the Harvard Medical School Series on Bioethics: author, clinician and professor Jerome Groopman, MD and Pamel Harzband, MD gave an online discussion of their book “Your Medical Mind”, a part of Harvard Medical School Center for Bioethics Program’s Critical Reading of Contemporary Books in Bioethics Series. The Contemporary Authors in Bioethics series brings together authors and the community to discuss books that explore new and developing topics in the field. This was held as an online Zoom meeting on March 26, 2020 at 5 pm EST and could be followed on Twitter using #HarvardBioethics.  A recording of the discussion will be made available at the Harvard Med School Center for Bioethics.

 

Available at Amazon: From the Amazon book description:

An entirely new way to make the best medical decisions.

Making the right medical decisions is harder than ever. We are overwhelmed by information from all sides—whether our doctors’ recommendations, dissenting experts, confusing statistics, or testimonials on the Internet. Now Doctors Groopman and Hartzband reveal that each of us has a “medical mind,” a highly individual approach to weighing the risks and benefits of treatments.  Are you a minimalist or a maximalist, a believer or a doubter, do you look for natural healing or the latest technology?  The authors weave vivid narratives of real patients with insights from recent research to demonstrate the power of the medical mind. After reading this groundbreaking book, you will know how to arrive at choices that serve you best.

 

Doctors Groopman and Hartzband began the discussion with a recapping medical research studies and medical panels, which had reported conflicting results or reversal of recommendations, respectively.  These included studies on the benefits of statin therapy in cholesterol management, studies on whether or not Vitamin D therapy is beneficial for postmenopausal women, the ongoing controversy on the frequency with which women should get mammograms, as well as the predictive value of Prostate Specific Antigen and prostate cancer screening.  The authors singled out the research reports and medical panels reviewing the data on PSA in which the same medical panel first came out in support of using PSA levels to screen for prostate cancer and then later, after reconvening, recommended that PSA was not useful for mass screenings for prostate cancer.

In fact, both authors were

completed surprised of the diametrically opposed views within or between panels given similar data presented to those medical professionals.

The authors then asked a question:  Why would the same medical panel come to a reversal of their decision and more, importantly,  why are there such disparate conclusions from the same medical data sets, leading to varied clinical decision-making.

In general, Drs. Groopman and Hartzband asked how do physicians and patients make their decisions?

To answer this they looked at studies that Daniel Bernouli had conducted to model the economic behaviors of risk aversion in the marketplace. Bernouli’s theorem correlated market expectation with probability and outcomes

expectation = probability x utility of outcome

However, in medicine, one can measure probability (or risk) but it is very hard to measure utility (which is the value or worth of the outcome).

For example, they gave an example if a person was born blind but offered a risky to regain sight, the individual values their quality of life from their own perspective and might feel that, as their life is worthwhile as it is, they would not undergo a risky procedure. However a person who had suddenly lost their sight might value sight more, and be willing to undergo a risky procedure.

Three methods are used to put a value on utility or outcome worth with regards to medical decisions

  1. linear scale (life or death; from 0 to 1)
  2. time trade off:  e.g. how much longer do I have to live
  3. standard gamble:  let’s try it

All of these methods however are flawed because one doesn’t know their future medical condition (e.g. new information on the disease) and people values and perceptions change over time.

An example of choice of methods the medical community uses to make decisions include:

  • In the United Kingdom, their system uses a time trade off method to determine value in order to determine appropriate course of action which may inadvertently, result in rationed care
  • in the United States, the medical community uses the time trade off to determine cost effectiveness

 

Therefore Drs. Groopman and Harztband, after conducing multiple interviews with patients and physicians were able to categorize medical decision making based on groups of mindsets

  1. Maximalist: Proactive behavior, wants to stay ahead of the curve
  2. Minimalist: less intervention is more; more hesitant to try any suggested therapy
  3. Naturalist:  more prone to choose natural based therapies or home remedies
  4. Tech Oriented: wants to try the latest therapies and more apt to trust in branded and FDA approved therapeutics
  5. Believer:  trust in suggestions by physician; physician trusts medical panels suggestions
  6. Doubter: naturally inquisitive and more prone to investigate risk benefits of any suggested therapy

The authors also identified many Cognitive Traps that both physicians and patients may fall into including:

  • Relative versus Absolute Numbers: for instance putting emphasis on one number or the other without regard to context; like looking at disease numbers without taking into consideration individual risk
  • Availability: availability or lack of available information; they noticed if you fall in this trap depends on whether you are a Minimalist or Maximalist
  • Framing:  for example  when people talk to others about their conditions and hear stories about others treatments, conditions .. mainly anecdotal evidence

Stories can be helpful but they sometimes increase our overestimation of risk or benefit so framing the information is very important for both the patient as well as the physician (even doctors as patients)

Both authors have noticed a big shift in US to minimalism probably because of the rising costs of healthcare.

How do these mindsets affect the patient-physician relationship?

A University of Michigan study revealed that patients who would be characterized as maximalists pushed their physicians to do more therapy and were more prone to seek outside advice.

Physicians need to understand and listen to their patients during the patients’s first visit and determine what medical mindset that this patient has.

About the authors:

Jerome Groopman, M.D. is the Dina and Raphael Recanati Professor of Medicine at Harvard Medical School, Chief of Experimental Medicine at Beth Israel Deaconess Medical Center, and one of the world’s leading researchers in cancer and AIDS. He is a staff writer for The New Yorker and has written for The New York TimesThe Wall Street Journal,The Washington Post and The New Republic. He is author of The Measure of Our Days (1997), Second Opinions (2000), Anatomy of Hope (2004), How Doctors Think (2007), and the recently released, Your Medical Mind.

Dr. Pamela Hartzband is an Assistant Professor at the Harvard Medical School and Attending Physician in the Division of Endocrinology at the Beth Israel Deaconess Medical Center in Boston. She specializes in disorders of the thyroid and pituitary glands. A magna cum laude graduate of Radcliffe College, Harvard University, she received her M.D. from Harvard Medical School. She served her internship and residency in internal medicine at the Massachusetts General Hospital, and her specialty fellowships in endocrinology and metabolism at UCLA.

More articles on BioEthics and Patient experiences in this Online Open Access Journal Include:

Ethics Behind Genetic Testing in Breast Cancer: A Webinar by Laura Carfang of survivingbreastcancer.org

Tweets and Re-Tweets by @Pharma_BI ‏and @AVIVA1950 at 2019 Petrie-Flom Center Annual Conference: Consuming Genetics: Ethical and Legal Considerations of New Technologies, Friday, May 17, 2019 from 8:00 AM to 5:00 PM EDT @Harvard_Law

Innovation + Technology = Good Patient Experience

Drivers of Patient Experience

Factors in Patient Experience

Patient Experience Survey

Please also see our offering on Amazon at https://www.amazon.com/dp/B076HGB6MZ

“The VOICES of Patients, Hospital CEOs, Health Care Providers, Caregivers and Families: Personal Experience with Critical Care and Invasive Medical Procedures,”

 

 

 

 

 

 

 

 

 

 

 

Read Full Post »


US Responses to Coronavirus Outbreak Expose Many Flaws in Our Medical System

Curator: Stephen J. Williams, Ph.D.

The  coronavirus pandemic has affected almost every country in every continent however, after months of the novel advent of novel COVID-19 cases, it has become apparent that the varied clinical responses in this epidemic (and outcomes) have laid bare some of the strong and weak aspects in, both our worldwide capabilities to respond to infectious outbreaks in a global coordinated response and in individual countries’ response to their localized epidemics.

 

Some nations, like Israel, have initiated a coordinated government-private-health system wide action plan and have shown success in limiting both new cases and COVID-19 related deaths.  After the initial Wuhan China outbreak, China closed borders and the government initiated health related procedures including the building of new hospitals. As of writing today, Wuhan has experienced no new cases of COVID-19 for two straight days.

 

However, the response in the US has been perplexing and has highlighted some glaring problems that have been augmented in this crisis, in the view of this writer.    In my view, which has been formulated after social discussion with members in the field ,these issues can be centered on three major areas of deficiencies in the United States that have hindered a rapid and successful response to this current crisis and potential future crises of this nature.

 

 

  1. The mistrust or misunderstanding of science in the United States
  2. Lack of communication and connection between patients and those involved in the healthcare industry
  3. Socio-geographical inequalities within the US healthcare system

 

1. The mistrust or misunderstanding of science in the United States

 

For the past decade, anyone involved in science, whether directly as active bench scientists, regulatory scientists, scientists involved in science and health policy, or environmental scientists can attest to the constant pressure to not only defend their profession but also to defend the entire scientific process and community from an onslaught of misinformation, mistrust and anxiety toward the field of science.  This can be seen in many of the editorials in scientific publications including the journal Science and Scientific American (as shown below)

 

Stepping Away from Microscopes, Thousands Protest War on Science

Boston rally coincides with annual American Association for the Advancement of Science (AAAS) conference and is a precursor to the March for Science in Washington, D.C.

byLauren McCauley, staff writer

Responding to the troubling suppression of science under the Trump administration, thousands of scientists, allies, and frontline communities are holding a rally in Boston’s Copley Square on Sunday.

#standupforscience Tweets

 

“Science serves the common good,” reads the call to action. “It protects the health of our communities, the safety of our families, the education of our children, the foundation of our economy and jobs, and the future we all want to live in and preserve for coming generations.”

It continues: 

But it’s under attack—both science itself, and the unalienable rights that scientists help uphold and protect. 

From the muzzling of scientists and government agencies, to the immigration ban, the deletion of scientific data, and the de-funding of public science, the erosion of our institutions of science is a dangerous direction for our country. Real people and communities bear the brunt of these actions.

The rally was planned to coincide with the annual American Association for the Advancement of Science (AAAS) conference, which draws thousands of science professionals, and is a precursor to the March for Science in Washington, D.C. and in cities around the world on April 22.

 

Source: https://www.commondreams.org/news/2017/02/19/stepping-away-microscopes-thousands-protest-war-science

https://images.app.goo.gl/UXizCsX4g5wZjVtz9

 

https://www.washingtonpost.com/video/c/embed/85438fbe-278d-11e7-928e-3624539060e8

 

 

The American Association for Cancer Research (AACR) also had marches for public awareness of science and meaningful science policy at their annual conference in Washington, D.C. in 2017 (see here for free recordings of some talks including Joe Biden’s announcement of the Cancer Moonshot program) and also sponsored events such as the Rally for Medical Research.  This patient advocacy effort is led by the cancer clinicians and scientific researchers to rally public support for cancer research for the benefit of those affected by the disease.

Source: https://leadingdiscoveries.aacr.org/cancer-patients-front-and-center/

 

 

     However, some feel that scientists are being too sensitive and that science policy and science-based decision making may not be under that much of a threat in this country. Yet even as some people think that there is no actual war on science and on scientists they realize that the public is not engaged in science and may not be sympathetic to the scientific process or trust scientists’ opinions. 

 

   

From Scientific American: Is There Really a War on Science? People who oppose vaccines, GMOs and climate change evidence may be more anxious than antagonistic

 

Certainly, opponents of genetically modified crops, vaccinations that are required for children and climate science have become louder and more organized in recent times. But opponents typically live in separate camps and protest single issues, not science as a whole, said science historian and philosopher Roberta Millstein of the University of California, Davis. She spoke at a standing-room only panel session at the American Association for the Advancement of Science’s annual meeting, held in Washington, D.C. All the speakers advocated for a scientifically informed citizenry and public policy, and most discouraged broadly applied battle-themed rhetoric.

 

Source: https://www.scientificamerican.com/article/is-there-really-a-war-on-science/

 

      In general, it appears to be a major misunderstanding by the public of the scientific process, and principles of scientific discovery, which may be the fault of miscommunication by scientists or agendas which have the goals of subverting or misdirecting public policy decisions from scientific discourse and investigation.

 

This can lead to an information vacuum, which, in this age of rapid social media communication,

can quickly perpetuate misinformation.

 

This perpetuation of misinformation was very evident in a Twitter feed discussion with Dr. Eric Topol, M.D. (cardiologist and Founder and Director of the Scripps Research Translational  Institute) on the US President’s tweet on the use of the antimalarial drug hydroxychloroquine based on President Trump referencing a single study in the International Journal of Antimicrobial Agents.  The Twitter thread became a sort of “scientific journal club” with input from international scientists discussing and critiquing the results in the paper.  

 

Please note that when we scientists CRITIQUE a paper it does not mean CRITICIZE it.  A critique is merely an in depth analysis of the results and conclusions with an open discussion on the paper.  This is part of the normal peer review process.

 

Below is the original Tweet by Dr. Eric Topol as well as the ensuing tweet thread

 

https://twitter.com/EricTopol/status/1241442247133900801?s=20

 

Within the tweet thread it was discussed some of the limitations or study design flaws of the referenced paper leading the scientists in this impromptu discussion that the study could not reasonably conclude that hydroxychloroquine was not a reliable therapeutic for this coronavirus strain.

 

The lesson: The public has to realize CRITIQUE does not mean CRITICISM.

 

Scientific discourse has to occur to allow for the proper critique of results.  When this is allowed science becomes better, more robust, and we protect ourselves from maybe heading down an incorrect path, which may have major impacts on a clinical outcome, in this case.

 

 

2.  Lack of communication and connection between patients and those involved in the healthcare industry

 

In normal times, it is imperative for the patient-physician relationship to be intact in order for the physician to be able to communicate proper information to their patient during and after therapy/care.  In these critical times, this relationship and good communication skills becomes even more important.

 

Recently, I have had multiple communications, either through Twitter, Facebook, and other social media outlets with cancer patients, cancer advocacy groups, and cancer survivorship forums concerning their risks of getting infected with the coronavirus and how they should handle various aspects of their therapy, whether they were currently undergoing therapy or just about to start chemotherapy.  This made me realize that there were a huge subset of patients who were not receiving all the information and support they needed; namely patients who are immunocompromised.

 

These are patients represent

  1. cancer patient undergoing/or about to start chemotherapy
  2. Patients taking immunosuppressive drugs: organ transplant recipients, patients with autoimmune diseases, multiple sclerosis patients
  3. Patients with immunodeficiency disorders

 

These concerns prompted me to write a posting curating the guidance from National Cancer Institute (NCI) designated cancer centers to cancer patients concerning their risk to COVID19 (which can be found here).

 

Surprisingly, there were only 14 of the 51 US NCI Cancer Centers which had posted guidance (either there own or from organizations like NCI or the National Cancer Coalition Network (NCCN).  Most of the guidance to patients had stemmed from a paper written by Dr. Markham of the Fred Hutchinson Cancer Center in Seattle Washington, the first major US city which was impacted by COVID19.

 

Also I was surprised at the reactions to this posting, with patients and oncologists enthusiastic to discuss concerns around the coronavirus problem.  This led to having additional contact with patients and oncologists who, as I was surprised, are not having these conversations with each other or are totally confused on courses of action during this pandemic.  There was a true need for each party, both patients/caregivers and physicians/oncologists to be able to communicate with each other and disseminate good information.

 

Last night there was a Tweet conversation on Twitter #OTChat sponsored by @OncologyTimes.  A few tweets are included below

https://twitter.com/OncologyTimes/status/1242611841613864960?s=20

https://twitter.com/OncologyTimes/status/1242616756658753538?s=20

https://twitter.com/OncologyTimes/status/1242615906846547978?s=20

 

The Lesson:  Rapid Communication of Vital Information in times of stress is crucial in maintaining a good patient/physician relationship and preventing Misinformation.

 

3.  Socio-geographical Inequalities in the US Healthcare System

It has become very clear that the US healthcare system is fractioned and multiple inequalities (based on race, sex, geography, socio-economic status, age) exist across the whole healthcare system.  These inequalities are exacerbated in times of stress, especially when access to care is limited.

 

An example:

 

On May 12, 2015, an Amtrak Northeast Regional train from Washington, D.C. bound for New York City derailed and wrecked on the Northeast Corridor in the Port Richmond neighborhood of Philadelphia, Pennsylvania. Of 238 passengers and 5 crew on board, 8 were killed and over 200 injured, 11 critically. The train was traveling at 102 mph (164 km/h) in a 50 mph (80 km/h) zone of curved tracks when it derailed.[3]

Some of the passengers had to be extricated from the wrecked cars. Many of the passengers and local residents helped first responders during the rescue operation. Five local hospitals treated the injured. The derailment disrupted train service for several days. 

(Source Wikipedia https://en.wikipedia.org/wiki/2015_Philadelphia_train_derailment)

What was not reported was the difficulties that first responders, namely paramedics had in finding an emergency room capable of taking on the massive load of patients.  In the years prior to this accident, several hospitals, due to monetary reasons, had to close their emergency rooms or reduce them in size. In addition only two in Philadelphia were capable of accepting gun shot victims (Temple University Hospital was the closest to the derailment but one of the emergency rooms which would accept gun shot victims. This was important as Temple University ER, being in North Philadelphia, is usually very busy on any given night.  The stress to the local health system revealed how one disaster could easily overburden many hospitals.

 

Over the past decade many hospitals, especially rural hospitals, have been shuttered or consolidated into bigger health systems.  The graphic below shows this

From Bloomberg: US Hospital Closings Leave Patients with Nowhere to go

 

 

https://images.app.goo.gl/JdZ6UtaG3Ra3EA3J8

 

Note the huge swath of hospital closures in the midwest, especially in rural areas.  This has become an ongoing problem as the health care system deals with rising costs.

 

Lesson:  Epidemic Stresses an already stressed out US healthcare system

 

Please see our Coronavirus Portal at

https://pharmaceuticalintelligence.com/coronavirus-portal/

 

for more up-to-date scientific, clinical information as well as persona stories, videos, interviews and economic impact analyses

and @pharma_BI

Read Full Post »


Ethics Behind Genetic Testing in Breast Cancer: A Webinar by Laura Carfang of survivingbreastcancer.org

Reporter: Stephen J. Williams, PhD

The following are Notes from a Webinar sponsored by survivingbreastcancer.org  on March 12,2020.

The webinar started with a brief introduction of attendees , most who are breast cancer survivors.  Survivingbreastcancer.org is an organization committed to supplying women affected with breast cancer up to date information, including podcasts, webinars, and information for treatment, care, and finding support and support groups.

Some of the comments of survivors:

  • being strong
  • making sure to not feel overwhelmed on initial diagnosis
  • get good information
  • sometimes patients have to know to ask for genetic testing as physicians may not offer it

Laura Carfang discussed her study results presented at  a bioethics conference in Clearwater, FL   on issues driving breast cancer patient’s  as well as at-risk women’s decision making process for genetic testing.  The study was a phenomenological study in order to determine, through personal lived experiences, what are pivotal choices to make genetic testing decisions in order to improve clinical practice.

The research involved in depth interviews with 6 breast cancer patients (all women) who had undergone breast cancer genetic testing.

Main themes coming from the interviews

  • information informing decisions before diagnosis:  they did not have an in depth knowledge of cancer or genetics or their inherent risk before the diagnosis.
  • these are my genes and I should own it: another common theme among women who were just diagnosed and contemplating whether or not to have genetic testing
  • information contributing to decision making after diagnosis: women wanted the option, and they wanted to know if they carry certain genetic mutations and how it would guide their own personal decision to choose the therapy they are most comfortable with and gives them the best chance to treat their cancer (the decision and choice is very personal)
  • communicating to family members and children was difficult for the individual affected;  women found that there were so many ramifications about talking with family members (how do I tell children, do family members really empathize with what I am going through).  Once women were tested they felt a great strain because they now were more concerned with who in their family (daughters) were at risk versus when they first get the diagnosis the bigger concern was obtaining information.
  • Decision making to undergo genetic testing not always linear but a nonlinear process where women went from wanting to get tested for the information to not wanting to get tested for reasons surrounding negative concerns surrounding knowing results (discrimination based on results, fear of telling family members)
  • Complex decision making involves a shift or alteration in emotion
  • The Mayo Clinic has come out with full support of genetic testing and offer to any patient.

Additional resources discussed was a book by Leslie Ferris Yerger “Probably Benign” which discusses misdiagnoses especially when a test comes back as “probably benign” and how she found it was not.

 

for more information on further Podcasts and to sign up for newsletters please go to https://www.survivingbreastcancer.org/

and @SBC_org

More articles on this Online Open Access Journal on Cancer and Bioethics Include:

Ethical Concerns in Personalized Medicine: BRCA1/2 Testing in Minors and Communication of Breast Cancer Risk

Tweets and Re-Tweets by @Pharma_BI ‏and @AVIVA1950 at 2019 Petrie-Flom Center Annual Conference: Consuming Genetics: Ethical and Legal Considerations of New Technologies, Friday, May 17, 2019 from 8:00 AM to 5:00 PM EDT @Harvard_Law

Genomics & Ethics: DNA Fragments are Products of Nature or Patentable Genes?

Study Finds that Both Women and their Primary Care Physicians Confusion over Ovarian Cancer Symptoms May Lead to Misdiagnosis

 

Read Full Post »


Diversity and Health Disparity Issues Need to be Addressed for GWAS and Precision Medicine Studies

Curator: Stephen J. Williams, PhD

 

 

From the POLICY FORUM ETHICS AND DIVERSITY Section of Science

Ethics of inclusion: Cultivate trust in precision medicine

 See all authors and affiliations

Science  07 Jun 2019:
Vol. 364, Issue 6444, pp. 941-942
DOI: 10.1126/science.aaw8299

Precision medicine is at a crossroads. Progress toward its central goal, to address persistent health inequities, will depend on enrolling populations in research that have been historically underrepresented, thus eliminating longstanding exclusions from such research (1). Yet the history of ethical violations related to protocols for inclusion in biomedical research, as well as the continued misuse of research results (such as white nationalists looking to genetic ancestry to support claims of racial superiority), continue to engender mistrust among these populations (2). For precision medicine research (PMR) to achieve its goal, all people must believe that there is value in providing information about themselves and their families, and that their participation will translate into equitable distribution of benefits. This requires an ethics of inclusion that considers what constitutes inclusive practices in PMR, what goals and values are being furthered through efforts to enhance diversity, and who participates in adjudicating these questions. The early stages of PMR offer a critical window in which to intervene before research practices and their consequences become locked in (3).

Initiatives such as the All of Us program have set out to collect and analyze health information and biological samples from millions of people (1). At the same time, questions of trust in biomedical research persist. For example, although the recent assertions of white nationalists were eventually denounced by the American Society of Human Genetics (4), the misuse of ancestry testing may have already undermined public trust in genetic research.

There are also infamous failures in research that included historically underrepresented groups, including practices of deceit, as in the Tuskegee Syphilis Study, or the misuse of samples, as with the Havasupai tribe (5). Many people who are being asked to give their data and samples for PMR must not only reconcile such past research abuses, but also weigh future risks of potential misuse of their data.

To help assuage these concerns, ongoing PMR studies should open themselves up to research, conducted by social scientists and ethicists, that examines how their approaches enhance diversity and inclusion. Empirical studies are needed to account for how diversity is conceptualized and how goals of inclusion are operationalized throughout the life course of PMR studies. This is not limited to selection and recruitment of populations but extends to efforts to engage participants and communities, through data collection and measurement, and interpretations and applications of study findings. A commitment to transparency is an important step toward cultivating public trust in PMR’s mission and practices.

From Inclusion to Inclusive

The lack of diverse representation in precision medicine and other biomedical research is a well-known problem. For example, rare genetic variants may be overlooked—or their association with common, complex diseases can be misinterpreted—as a result of sampling bias in genetics research (6). Concentrating research efforts on samples with largely European ancestry has limited the ability of scientists to make generalizable inferences about the relationships among genes, lifestyle, environmental exposures, and disease risks, and thereby threatens the equitable translation of PMR for broad public health benefit (7).

However, recruiting for diverse research participation alone is not enough. As with any push for “diversity,” related questions arise about how to describe, define, measure, compare, and explain inferred similarities and differences among individuals and groups (8). In the face of ambivalence about how to represent population variation, there is ample evidence that researchers resort to using definitions of diversity that are heterogeneous, inconsistent, and sometimes competing (9). Varying approaches are not inherently problematic; depending on the scientific question, some measures may be more theoretically justified than others and, in many cases, a combination of measures can be leveraged to offer greater insight (10). For example, studies have shown that American adults who do not self-identify as white report better mental and physical health if they think others perceive them as white (1112).

The benefit of using multiple measures of race and ancestry also extends to genetic studies. In a study of hypertension in Puerto Rico, not only did classifications based on skin color and socioeconomic status better predict blood pressure than genetic ancestry, the inclusion of these sociocultural measures also revealed an association between a genetic polymorphism and hypertension that was otherwise hidden (13). Thus, practices that allow for a diversity of measurement approaches, when accompanied by a commitment to transparency about the rationales for chosen approaches, are likely to benefit PMR research more than striving for a single gold standard that would apply across all studies. These definitional and measurement issues are not merely semantic. They also are socially consequential to broader perceptions of PMR research and the potential to achieve its goals of inclusion.

Study Practices, Improve Outcomes

Given the uncertainty and complexities of the current, early phase of PMR, the time is ripe for empirical studies that enable assessment and modulation of research practices and scientific priorities in light of their social and ethical implications. Studying ongoing scientific practices in real time can help to anticipate unintended consequences that would limit researchers’ ability to meet diversity recruitment goals, address both social and biological causes of health disparities, and distribute the benefits of PMR equitably. We suggest at least two areas for empirical attention and potential intervention.

First, we need to understand how “upstream” decisions about how to characterize study populations and exposures influence “downstream” research findings of what are deemed causal factors. For example, when precision medicine researchers rely on self-identification with U.S. Census categories to characterize race and ethnicity, this tends to circumscribe their investigation of potential gene-environment interactions that may affect health. The convenience and routine nature of Census categories seemed to lead scientists to infer that the reasons for differences among groups were self-evident and required no additional exploration (9). The ripple effects of initial study design decisions go beyond issues of recruitment to shape other facets of research across the life course of a project, from community engagement and the return of results to the interpretation of study findings for human health.

Second, PMR studies are situated within an ecosystem of funding agencies, regulatory bodies, disciplines, and other scholars. This partly explains the use of varied terminology, different conceptual understandings and interpretations of research questions, and heterogeneous goals for inclusion. It also makes it important to explore how expectations related to funding and regulation influence research definitions of diversity and benchmarks for inclusion.

For example, who defines a diverse study population, and how might those definitions vary across different institutional actors? Who determines the metrics that constitute successful inclusion, and why? Within a research consortium, how are expectations for data sharing and harmonization reconciled with individual studies’ goals for recruitment and analysis? In complex research fields that include multiple investigators, organizations, and agendas, how are heterogeneous, perhaps even competing, priorities negotiated? To date, no studies have addressed these questions or investigated how decisions facilitate, or compromise, goals of diversity and inclusion.

The life course of individual studies and the ecosystems in which they reside cannot be easily separated and therefore must be studied in parallel to understand how meanings of diversity are shaped and how goals of inclusion are pursued. Empirically “studying the studies” will also be instrumental in creating mechanisms for transparency about how PMR is conducted and how trade-offs among competing goals are resolved. Establishing open lines of inquiry that study upstream practices may allow researchers to anticipate and address downstream decisions about how results can be interpreted and should be communicated, with a particular eye toward the consequences for communities recruited to augment diversity. Understanding how scientists negotiate the challenges and barriers to achieving diversity that go beyond fulfilling recruitment numbers is a critical step toward promoting meaningful inclusion in PMR.

Transparent Reflection, Cultivation of Trust

Emerging research on public perceptions of PMR suggests that although there is general support, questions of trust loom large. What we learn from studies that examine on-the-ground approaches aimed at enhancing diversity and inclusion, and how the research community reflects and responds with improvements in practices as needed, will play a key role in building a culture of openness that is critical for cultivating public trust.

Cultivating long-term, trusting relationships with participants underrepresented in biomedical research has been linked to a broad range of research practices. Some of these include the willingness of researchers to (i) address the effect of history and experience on marginalized groups’ trust in researchers and clinicians; (ii) engage concerns about potential group harms and risks of stigmatization and discrimination; (iii) develop relationships with participants and communities that are characterized by transparency, clear communication, and mutual commitment; and (iv) integrate participants’ values and expectations of responsible oversight beyond initial informed consent (14). These findings underscore the importance of multidisciplinary teams that include social scientists, ethicists, and policy-makers, who can identify and help to implement practices that respect the histories and concerns of diverse publics.

A commitment to an ethics of inclusion begins with a recognition that risks from the misuse of genetic and biomedical research are unevenly distributed. History makes plain that a multitude of research practices ranging from unnecessarily limited study populations and taken-for-granted data collection procedures to analytic and interpretive missteps can unintentionally bolster claims of racial superiority or inferiority and provoke group harm (15). Sustained commitment to transparency about the goals, limits, and potential uses of research is key to further cultivating trust and building long-term research relationships with populations underrepresented in biomedical studies.

As calls for increasing diversity and inclusion in PMR grow, funding and organizational pathways must be developed that integrate empirical studies of scientific practices and their rationales to determine how goals of inclusion and equity are being addressed and to identify where reform is required. In-depth, multidisciplinary empirical investigations of how diversity is defined, operationalized, and implemented can provide important insights and lessons learned for guiding emerging science, and in so doing, meet our ethical obligations to ensure transparency and meaningful inclusion.

References and Notes

  1. C. P. Jones et al Ethn. Dis. 18496 (2008).
  2. C. C. GravleeA. L. NonC. J. Mulligan
  3. S. A. Kraft et al Am. J. Bioeth. 183 (2018).
  4. A. E. Shields et al Am. Psychol. 6077 (2005).

Read Full Post »


The 16th annual EmTech MIT – A Place of Inspiration, October 18-20, 2016, Cambridge, MA

MIT Media Lab
Building E14
75 Amherst Street

(Corner of Ames and Amherst)
Cambridge, MA 02139

Conference Location: Entire 6th floor of Building E14

EmTech MIT Brings The Award-Winning Journalism of MIT Technology Review To Life

The 16th annual EmTech MIT gathers preeminent thought leaders, researchers and business leaders to examine the most significant themes in emerging technologies, including:

– Rethinking Energy

– Virtual Reality, Augmented Life

– Artificial intelligence

– Global Connectivity

– Engineering a Healthy Planet

– Spotlight talks on the 10 Breakthrough Technologies

– Celebration of the 2016 Innovators Under 35

ANNOUNCEMENT

Leaders in Pharmaceutical Business Intelligence (LPBI) Group, Boston

pharma_bi-background0238

will cover in REAL TIME

The 16th annual EmTech MIT – A Place of Inspiration, October 18-20, 2016, Cambridge, MA

http://events.technologyreview.com/emtech/16/

In attendance, streaming LIVE using Social Media

Aviva Lev-Ari, PhD, RN

Editor-in-Chief

http://pharmaceuticalintelligence.com

@pharma_BI

@AVIVA1950

 All Speakers

SOURCE

http://events.technologyreview.com/emtech/16/#section-about

Featured Speakers

 

  • Nora
    Ayanian

    Gabilan Assistant Professor, University of Southern California

    2016 Innovator Under 35

  • Amir
    Banifatemi

    Prize Lead, X Prize

    Incentivizing Innovative Approaches & Collaboration in A.I.

  • Muyinatu
    Bell

    Assistant Professor, Johns Hopkins University

    2016 Innovator Under 35

  • Brian
    Bergstein

    Executive Editor, MIT Technology Review

  • Nessan
    Bermingham

    Chief Executive Officer, President and Founder, Intellia Therapeutics

    The Potential for Genome Editing Technology to Transform Medicine

  • Dinesh
    Bharadia

    Postdoctoral Associate, MIT CSAIL

    2016 Innovator Under 35

  • Heather
    Bowerman

    CEO & Founder, Dot Laboratories

    2016 Innovator Under 35

  • Elizabeth
    Bramson-Boudreau

    Chief Operating Officer, MIT Technology Review

  • Qing
    Cao

    Research Staff Member, IBM T.J. Watson Research Center

    2016 Innovator Under 35

  • Jagdish
    Chaturvedi

    Director, Clinical Innovations, InnAccel

    2016 Innovator Under 35

  • David
    Cox

    Assistant Professor of Molecular and Cellular Biology and of Computer Science, Harvard University

    Building Computer Vision Systems Inspired by the Brain

  • Tom
    Davenport

    President’s Distinguished Professor of Information Technology & Management, Babson College

    Presented by RAGE Frameworks

  • Stefano
    Domenicali

    CEO, Automobili Lamborghini

    Presented by the Italian Trade Agency

  • Kevin
    Esvelt

    Assistant Professor, MIT Media Lab

    The Technology Driving Gene Drives

  • Vivian
    Ferry

    Assistant Professor, University of Minnesota

    2016 Innovator Under 35

  • Wei
    Gao

    Postdoctoral Fellow, University of California, Berkeley

    2016 Innovator Under 35

  • Dileep
    George

    Cofounder, Vicarious

    Artificial Intelligence At Work

  • Shyam
    Gollakota

    Assistant Professor, University of Washington

    10 Breakthrough Technologies of 2016: Power from the Air

  • Meron
    Gribetz

    CEO, Meta

    2016 Innovator Under 35

  • Jiawei
    Gu

    Cofounder, Ling Robotics

    2016 Innovator Under 35

  • Rachel
    Haot

    Managing Director, 1776

    Incubating Technical Solutions with Global Impact

  • Alex
    Hegyi

    Member of Research Staff, PARC

    2016 Innovator Under 35

  • Katherine
    High

    Cofounder, President and Chief Scientific Officer, Spark Therapeutics

    Gene Therapy: A New Era of Medicine

  • Christine
    Ho

    CEO, Imprint Energy, Inc.

    2016 Innovator Under 35

  • Ehsan
    Hoque

    Assistant Professor, University of Rochester

    2016 Innovator Under 35

  • Solomon
    Hsiang

    Chancellor’s Associate Professor of Public Policy, University of California, Berkeley

    Addressing the Effects of Climate Change

  • Karl
    Iagnemma

    CEO and Cofounder, nuTonomy

    Intelligent Machines: Autonomous Cars

  • Sangbae
    Kim

    Associate Professor of Mechanical Engineering, MIT

    Robots at Work

  • Samay
    Kohli

    Chief Executive Officer, GreyOrange

    2016 Innovator Under 35

  • Kendra
    Kuhl

    CTO, Opus 12

    2016 Innovator Under 35

  • Maithilee
    Kunda

    Assistant Professor, Vanderbilt University

    2016 Innovator Under 35

  • Stephanie
    Lampkin

    Founder & CEO, Blendoor

    2016 Innovator Under 35

  • Desmond
    Loke

    Assistant Professor, Singapore University of Technology and Design

    2016 Innovator Under 35

  • Evan
    Macosko

    Instructor, Harvard Medical School

    2016 Innovator Under 35

  • Yael
    Maguire

    Engineering Director, Facebook Connectivity Lab

    Expanding the Global Impact of Internet Connectivity

  • Vikram
    Mahidhar

    SVP, Artificial Intelligence Solutions, RAGE Frameworks

    Presented by RAGE Frameworks

  • Marcela
    Maus

    Director of Cellular Immunotherapy, Massachusetts General Hospital Cancer Center

    The Promise of Cancer Immunotherapy

  • Pranav
    Mistry

    Global Vice President of Research, Samsung

    Envisioning What’s Next for Virtual Reality

  • Jason
    Pontin

    Editor in Chief and Publisher, MIT Technology Review

  • Ramesh
    Raskar

    Director, MIT Media Lab Camera Culture Group

    Presented by Lemelson-MIT

  • Alberto Maria
    Sacchi

    Board Member & Past President, Federmacchine

    Presented by the Italian Trade Agency

  • Don
    Sadoway

    Professor, Materials Science & Engineering, MIT

    Providing Power for a Growing Global Population

  • Ruslan
    Salakhutdinov

    Associate Professor, Carnegie Mellon University

    The Promise and Limitations of Machine Learning

  • Kelly
    Sanders

    Assistant Professor, University of Southern California

    2016 Innovator Under 35

  • Michele
    Scannavini

    President, Italian Trade Agency

    Presented by the Italian Trade Agency

  • Stefanie
    Tellex

    Assistant Professor, Computer Science, Brown University

    10 Breakthrough Technologies of 2016: Robots That Teach Each Other

  • Ronaldo
    Tenorio

    CEO, Hand Talk

    2016 Innovator Under 35

  • Sonia
    Vallabh

    PhD Student, Prion Scientist, Broad Institute

    2016 Innovator Under 35

  • Cyrus
    Vance Jr.

    Manhattan District Attorney, Manhattan District Attorney’s Office

    Security & Privacy in the Connected Era

  • Oriol
    Vinyals

    Research Scientist, Google DeepMind

    2016 Innovator Under 35

  • Aleksandra
    Vojvodic

    Assistant Professor, University of Pennsylvania

    2016 Innovator Under 35

  • Padmasree
    Warrior

    CEO, NextEV

    Imagining Clean, Connected Transportation

  • Jean
    Yang

    Assistant Professor, Carnegie Mellon University

    2016 Innovator Under 35

  • Yihui
    Zhang

    Associate Professor, Tsinghua University

    2016 Innovator Under 35

  • Jia
    Zhu

    Professor, Nanjing University

    2016 Innovator Under 35

 

Read Full Post »


Presidential Commission for the Study of Bioethical Issues, March 3, 2016 Teleconference

Reporter: Aviva Lev-Ari, PhD, RN

Agenda for Meeting 24: March 3, 2016 Teleconference

*DRAFT*   *DRAFT*   *DRAFT*

 

Teleconference
March 3, 2016

2:00 – 4:00 p.m. EST
Dial in number: 1-888-769-8756
Participant passcode: 8934813

 

Thursday, March 3

2:00 – 2:10 p.m. Welcome and Opening Remarks

Amy Gutmann, Ph.D.
Commission Chair

James Wagner, Ph.D.
Commission Vice Chair

2:10 – 2:55 p.m. Session 1: Bioethics Commission Educational Materials

Elizabeth Pike, J.D., LL.M.
Senior Policy and Research Analyst
Presidential Commission for the Study of Bioethical Issues

Maneesha Sakhuja, M.H.S.
Research Analyst
Presidential Commission for the Study of Bioethical Issues

Steven Kessler, M.S.
Instructor, Biological Sciences
City College of San Francisco

2:55 – 3:55 p.m. Session 2: Member Discussion

3:55 – 4:00 p.m. Concluding Remarks

Amy Gutmann, Ph.D.

James Wagner, Ph.D.

– See more at: http://bioethics.gov/node/5542#sthash.VQRt4jGB.dpuf

Read Full Post »