Feeds:
Posts
Comments

Posts Tagged ‘coronavirus’


From Cell Press:  New Insights on the D614G Strain of COVID: Will a New Mutated Strain Delay Vaccine Development?

Reporter: Stephen J. Williams, PhD

Two recent articles in Cell Press, both peer reviewed, discuss the emergence and potential dominance of a new mutated strain of COVID-19, in which the spike protein harbors a D614G mutation.

In the first article “Making Sense of Mutation: What D614G means for the COVID-19 pandemic Remains Unclear”[1] , authors Drs. Nathan Grubaugh, William Hanage, and Angela Rasmussen discuss the recent findings by Korber et al. 2020 [2] which describe the potential increases in infectivity and mortality of this new mutant compared to the parent strain of SARS-CoV2.  For completeness sake I will post this article as to not defer from their interpretations of this important paper by Korber and to offer some counter opinion to some articles which have surfaced this morning in the news.

Making sense of mutation: what D614G means for the COVID-19 pandemic remains unclear

 

Nathan D. Grubaugh1 *, William P. Hanage2 *, Angela L. Rasmussen3 * 1Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA 2Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA 3Center for Infection and Immunity, Columbia Mailman School of Public Health, New York, NY 10032, USA Correspondence: grubaughlab@gmail.com

 

Abstract: Korber et al. (2020) found that a SARS-CoV-2 variant in the spike protein, D614G, rapidly became dominant around the world. While clinical and in vitro data suggest that D614G changes the virus phenotype, the impact of the mutation on transmission, disease, and vaccine and therapeutic development are largely unknown.

Introduction: Following the emergence of SARS-CoV-2 in China in late 2019, and the rapid expansion of the COVID19 pandemic in 2020, questions about viral evolution have come tumbling after. Did SARS-CoV-2 evolve to become better adapted to humans? More infectious or transmissible? More deadly? Virus mutations can rise in frequency due to natural selection, random genetic drift, or features of recent epidemiology. As these forces can work in tandem, it’s often hard to differentiate when a virus mutation becomes common through fitness or by chance. It is even harder to determine if a single mutation will change the outcome of an infection, or a pandemic. The new study by Korber et al. (2020) sits at the heart of this debate. They present compelling data that an amino acid change in the virus’ spike protein, D614G, emerged early during the pandemic, and viruses containing G614 are now dominant in many places around the world. The crucial questions are whether this is the result of natural selection, and what it means for the COVID-19 pandemic. For viruses like SARS-CoV-2 transmission really is everything – if they don’t get into another host their lineage ends. Korber et al. (2020) hypothesized that the rapid spread of G614 was because it is more infectious than D614. In support of their hypothesis, the authors provided evidence that clinical samples from G614 infections have a higher levels of viral RNA, and produced higher titers in pseudoviruses from in vitro experiments; results that now seem to be corroborated by others [e.g. (Hu et al., 2020; Wagner et al., 2020)]. Still, these data do not prove that G614 is more infectious or transmissible than viruses containing D614. And because of that, many questions remain on the potential impacts, if any, that D614G has on the COVID-19 pandemic.

The authors note that this new G614 variant has become the predominant form over the whole world however in China the predominant form is still the D614 form.  As they state

“over the period that G614 became the global majority variant, the number of introductions from China where D614 was still dominant were declining, while those from Europe climbed. This alone might explain the apparent success of G614.”

Grubaugh et al. feel there is not enough evidence that infection with this new variant will lead to higher mortality.  Both Korber et al. and the Seattle study (Wagner et al) did not find that the higher viral load of this variant led to a difference in hospitalizations so apparently each variant might be equally as morbid.

In addition, Grubaugh et al. believe this variant would not have much affect on vaccine development as, even though the mutation lies within the spike protein, D614G is not in the receptor binding domain of the spike protein.  Korber suggest that there may be changes in glycosylation however these experiments will need to be performed.  In addition, antibodies from either D614 or G614 variant infected patients could cross neutralize.

 

Conclusions: While there has already been much breathless commentary on what this mutation means for the COVID19 pandemic, the global expansion of G614 whether through natural selection or chance means that this variant now is the pandemic. As a result its properties matter. It is clear from the in vitro and clinical data that G614 has a distinct phenotype, but whether this is the result of bonafide adaptation to human ACE2, whether it increases transmissibility, or will have a notable effect, is not clear. The work by Korber et al. (2020) provides an early base for more extensive epidemiological, in vivo experimental, and diverse clinical investigations to fill in the many critical gaps in how D614G impacts the pandemic.

The link to the Korber Cell paper is here: https://www.cell.com/cell/fulltext/S0092-8674(20)30820-5

Tracking changes in SARS-CoV-2 Spike: evidence that D614G increases infectivity of the COVID-19 virus

DOI: https://doi.org/10.1016/j.cell.2020.06.043

Keypoints

  • The consistent increase of G614 at regional levels may indicate a fitness advantage

 

  • G614 is associated with lower RT PCR Ct’s, suggestive of higher viral loads in patients

 

  • The G614 variant grows to higher titers as pseudotyped virions

Summary

A SARS-CoV-2 variant carrying the Spike protein amino acid change D614G has become the most prevalent form in the global pandemic. Dynamic tracking of variant frequencies revealed a recurrent pattern of G614 increase at multiple geographic levels: national, regional and municipal. The shift occurred even in local epidemics where the original D614 form was well established prior to the introduction of the G614 variant. The consistency of this pattern was highly statistically significant, suggesting that the G614 variant may have a fitness advantage. We found that the G614 variant grows to higher titer as pseudotyped virions. In infected individuals G614 is associated with lower RT-PCR cycle thresholds, suggestive of higher upper respiratory tract viral loads, although not with increased disease severity. These findings illuminate changes important for a mechanistic understanding of the virus, and support continuing surveillance of Spike mutations to aid in the development of immunological interventions.

 

References

  1. Grubaugh, N.D., Hanage, W.P., Rasmussen, A.L., Making sense of mutation: what D614G means for the COVID-19 pandemic remains unclear, Cell (2020), doi: https:// doi.org/10.1016/j.cell.2020.06.040.
  2. Korber, B., Fischer, W.M., Gnanakaran, S., Yoon, H., Theiler, J., Abfalterer, W., Hengartner, N., Giorgi, E.E., Bhattacharya, T., Foley, B., et al. (2020). Tracking changes in SARS-CoV-2 Spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell 182.
  3. Endo, A., Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working Group, Abbott, S., Kucharski, A.J., and Funk, S. (2020). Estimating the overdispersion in COVID-19 transmission using outbreak sizes outside China. Wellcome Open Res 5, 67.
  4. Hu, J., He, C.-L., Gao, Q.-Z., Zhang, G.-J., Cao, X.-X., Long, Q.-X., Deng, H.-J., Huang, L.-Y., Chen, J., Wang, K., et al. (2020). The D614G mutation of SARS-CoV-2 spike protein enhances viral infectivity and decreases neutralization sensitivity to individual convalescent sera. bioRxiv 2020.06.20.161323.
  5. Wagner, C., Roychoudhury, P., Hadfield, J., Hodcroft, E.B., Lee, J., Moncla, L.H., Müller, N.F., Behrens, C., Huang, M.-L., Mathias, P., et al. (2020). Comparing viral load and clinical outcomes in Washington State across D614G mutation in spike protein of SARS-CoV-2. Https://github.com/blab/ncov-D614G.

Read Full Post »


6/30/2020

Chasing change: Innovation and patent
activity during COVID-19

A report on the pandemic’s impact on the global
R&D community and innovation lifecycle

Reporters: Aviva Lev-Ari, Ph.D., RN & Gail S. Thornton, M.A.

Published by Clarivate Derwent

In just a few short months, COVID-19 swept through the world. While many aspects of everyday life have altered as the pandemic has gripped the globe, society at large has been and remains remarkably resilient.

To understand the impact of COVID-19 on the world’s innovators, we asked organizations from a cross-section of industries globally about how the pandemic has affected their organizations’ innovation strategies.

We are pleased to share the results with you in the report, “Chasing change: Innovation and patent activity during COVID-19.”

SOURCE:

https://clarivate.com/derwent/wp-content/uploads/sites/3/dlm_uploads/2020/06/DW507408683-COVID-19-Report_FINAL.pdf?utm_campaign=EM1_Report_Derwent_COVID_19_Survey_Apr_IPS_Global_2020_ClientsProspects

Other related article published in this Open Access Online Scientific Journal include the following:

Corticosteroid, Dexamethasone Improves Survival in COVID-19: Deaths reduction by 1/3 in ventilated patients and by 1/5 in other patients receiving oxygen only

Reporter: Aviva Lev-Ari, PhD, RN https://pharmaceuticalintelligence.com/2020/06/27/corticosteroid-dexamethasone-improves-survival-in-covid-19-deaths-reduction-by-1-3-in-ventilated-patients-and-by-1-5-in-other-patients-receiving-oxygen-only/

###

Read Full Post »


National Cancer Institute Director Neil Sharpless says mortality from delays in cancer screenings due to COVID19 pandemic could result in tens of thousands of extra deaths in next decade

Reporter: Stephen J Williams, PhD

Source: https://cancerletter.com/articles/20200619_1/

NCI Director’s Report

Sharpless: COVID-19 expected to increase mortality by at least 10,000 deaths from breast and colorectal cancers over 10 years

By Matthew Bin Han Ong

This story is part of The Cancer Letter’s ongoing coverage of COVID-19’s impact on oncology. A full list of our coverage, as well as the latest meeting cancellations, is available here.

The COVID-19 pandemic will likely cause at least 10,000 excess deaths from breast cancer and colorectal cancer over the next 10 years in the United States.

Scenarios run by NCI and affiliated modeling groups predict that delays in screening for and diagnosis of breast and colorectal cancers will lead to a 1% increase in deaths through 2030. This translates into 10,000 additional deaths, on top of the expected one million deaths resulting from these two cancers.

“For both these cancer types, we believe the pandemic will influence cancer deaths for at least a decade,” NCI Director Ned Sharpless said in a virtual joint meeting of the Board of Scientific Advisors and the National Cancer Advisory Board June 15. “I find this worrisome as cancer mortality is common. Even a 1% increase every decade is a lot of cancer suffering.

“And this analysis, frankly, is pretty conservative. We do not consider cancers other than those of breast and colon, but there is every reason to believe the pandemic will affect other types of cancer, too. We did not account for the additional non-lethal morbidity from upstaging, but this could also be significant and burdensome.”

An editorial by Sharpless on this subject appears in the journal Science.

The early analyses, conducted by the institute’s Cancer Intervention and Surveillance Modeling Network, focused on breast and colorectal cancers, because these are common, with relatively high screening rates.

CISNET modelers created four scenarios to assess long-term increases in cancer mortality rates for these two diseases:

  1. The pandemic has no effect on cancer mortality

 

  1. Delayed screening—with 75% reduction in mammography and, colorectal screening and adenoma surveillance for six months

 

  1. Delayed diagnosis—with one-third of people delaying follow-up after a positive screening or diagnostic mammogram, positive FIT or clinical symptoms for six months during a six-month period

 

  1. Combination of scenarios two and three

 

Treatment scenarios after diagnosis were not included in the model. These would be: delays in treatment, cancellation of treatment, or modified treatment.

“What we did is show the impact of the number of excess deaths per year for 10 years for each year starting in 2020 for scenario four versus scenario one,” Eric “Rocky” Feuer, chief of the NCI’s Statistical Research and Applications Branch in the Surveillance Research Program, said to The Cancer Letter.

Feuer is the overall project scientist for CISNET, a collaborative group of investigators who use simulation modeling to guide public health research and priorities.

“The results for breast cancer were somewhat larger than for colorectal,” Feuer said. “And that’s because breast cancer has a longer preclinical natural history relative to colorectal cancer.”

Modelers in oncology are creating a global modeling consortium, COVID-19 and Cancer Taskforce, to “support decision-making in cancer control both during and after the crisis.” The consortium is supported by the Union for International Cancer Control, The International Agency for Research on Cancer, The International Cancer Screening Network, the Canadian Partnership Against Cancer, and Cancer Council NSW, Australia.

A spike in cancer mortality rates threatens to reverse or slow down—at least in the medium term—the steady trend of reduction of cancer deaths. On Jan. 8, the American Cancer Society published its annual estimates of new cancer cases and deaths, declaring that the latest data—from 2016 to 2017—show the “largest ever single-year drop in overall cancer mortality of 2.2%.” Experts say that innovation in lung cancer treatment and the success of smoking cessation programs are driving the sharp decrease (The Cancer LetterFeb. 7, 2020).

The pandemic is expected to have broader impact, including increases in mortality rates for other cancer types. Also, variations in severity of COVID-19 in different regions in the U.S. will influence mortality metrics.

“There’s some other cancers that might have delays in screening—for example cervical, prostate, and lung cancer, although lung cancer screening rates are still quite low and prostate cancer screening should only be conducted on those who determine that the benefits outweigh the harms,” Feuer said. “So, those are the major screening cancers, but impacts of delays in treatment, canceling treatment or alternative treatments—could impact a larger range of cancer sites.

“This model assumes a moderate disruption which resolves after six months, and doesn’t consider non-lethal morbidities associated with the delay. One thing I think probably is occurring is regional variation in these impacts,” Feuer said. “If you’re living in New York City where things were ground zero for some of the worst impact early on, probably delays were larger than other areas of the country. But now, as we’re seeing upticks in other areas of the country, there may be in impact in these areas as well”

How can health care providers mitigate some of these harms? For example, for people who delayed screening and diagnosis, are providers able to perform triage, so that those at highest risk are prioritized?

“From a strictly cancer control point of view, let’s get those people who delayed screening, or followup to a positive test, or treatment back on schedule as soon as possible,” Feuer said. “But it’s not a simple calculus, because in every situation, we have to weigh the harms and benefits. As we come out of the pandemic, it tips more and more to, ‘Let’s get back to business with respect to cancer control.’

“Telemedicine doesn’t completely substitute for seeing patients in person, but at least people could get the advice they need, and then are triaged through their health care providers to indicate if they really should prioritize coming in. That helps the individual and the health care provider  weigh the harms and benefits, and try to strategize about what’s best for any individual.”

If the pandemic continues to disrupt routine care, cancer-related mortality rates would rise beyond the predictions in this model.

“I think this analysis begins to help us understand the costs with regard to cancer outcomes of the pandemic,” Sharpless said. “Let’s all agree we will do everything in our power to minimize these adverse effects, to protect our patients from cancer suffering.”

 

For more Articles on COVID-19 please see our Coronavirus Portal at

https://pharmaceuticalintelligence.com/coronavirus-portal/

 

Read Full Post »


Swiss scientists develop methods to sniff out coronavirus in the air

Reporter: Irina Robu, PhD

Scientists at Switzerland’s National Institute for Applied Materials Science and ETH Zurich work on a sensor that can detect the novel coronavirus as it floats through the air. The device would operate in the same way as industrial sensor for pollutants and detectors for airborne viruses and bacteria. However, the sensor would not replace laboratory tests or diagnostics, but it can be used to monitor airborne concentrations in high-traffic areas such hospitals or public transit stations.

Using a technology called localized surface plasmon resonance, the device comprises molecular binding sites intended for the coronavirus’s unique RNA sequence, mounted on nanostructures made of gold. Yet, when the virus’s genetic material lines up and attaches, the nanostructures on the devices begin to modulate the light around them, which can be read using an optical sensor. In addition, it also encompasses a second detection method that fires a laser at the nanostructures and confirms the presence of the virus by changes in the amount of heat produced.

To validate the proof of concept and its accuracy, scientists tested their device against the SARS-CoV-2 which contains slightly different RNA. The device is able to differentiate between the two, but more development work requires to be done to create a system capable of monitoring a wide area for the pathogen. This contains building a system for drawing in air, concentrating its aerosols and releasing the RNA from the virus.

SOURCE

https://www.fiercebiotech.com/medtech/swiss-researchers-develop-methods-to-sniff-out-coronavirus-air?mkt_tok=eyJpIjoiTW1JMU5UWmtPVE14WVdRMyIsInQiOiJYVFAzRFhyM3l6ZTFcL0FqYXRORkxCRVBNM1cwejQ5aEJlV2FNSGRyd3JqRTZ0VDhWNWtnOWFQVGUrR25qQVwvNFpuNklxMkswMzU0b0l5RjA5dG1ERkZlRXNsSzZGa2VSRXlTVnFGUVNHN2FMaG5oZHdtNytPNzdPcURcL0J2VXVmUCJ9

Read Full Post »


 

SARS-CoV-2 Testing and Outcomes in the First 30 Days After the First Case of COVID-19 at an Australian Children’s Hospital

Reporter: Gail S. Thornton, M.A.

2020

Objective: International studies describing COVID-19 in children have shown low proportions of paediatric cases and generally a mild clinical course. We aimed to present early data on children tested for SARS-CoV-2 at a large Australian tertiary children’s hospital according to the state health department guidelines, which varied over time.

Methods: We conducted a retrospective cohort study at The Royal Children’s Hospital, Melbourne, Australia. It included all paediatric patients (aged 0-18 years) who presented to the Emergency Department (ED) or the Respiratory Infection Clinic (RIC) and were tested for SARS-CoV-2. The 30-day study period commenced after the first confirmed positive case was detected at the hospital on 21st March 2020, until 19th April 2020. We recorded epidemiological and clinical data.

Results: There were 433 patients in whom SARS-CoV-2 testing was performed in ED (331 (76%)) or RIC (102 (24%)). There were 4 (0.9%) who had positive SARS-CoV-2 detected, none of whom were admitted to hospital or developed severe disease. Of these SARS-CoV-2 positive patients, 1/4 (25%) had a comorbidity, which was asthma. Of the SARS-CoV-2 negative patients, 196/429 (46%) had comorbidities. Risk factors for COVID-19 were identified in 4/4 SARS-CoV-2 positive patients and 47/429 (11%) SARS-CoV-2 negative patients.

Conclusions: Our study identified a very low rate of SARS-CoV-2 positive cases in children presenting to a tertiary ED or RIC, none of whom were admitted to hospital. A high proportion of patients who were SARS-CoV-2 negative had comorbidities.

Keywords: Australia; COVID-19; SARS-CoV-2; children; novel coronavirus.

SOURCE:

https://pubmed.ncbi.nlm.nih.gov/32390285/

 

Read Full Post »


A Series of Recently Published Papers Report the Development of SARS-CoV2 Neutralizing Antibodies and Passive Immunity toward COVID19

Curator: Stephen J. Williams, Ph.D.

 

Passive Immunity and Treatment of Infectious Diseases

The ability of one person to pass on immunity to another person (passive immunity) is one of the chief methods we develop immunity to many antigens.  For instance, maternal antibodies are passed to the offspring in the neonatal setting as well as in a mother’s milk during breast feeding.  In the clinical setting this is achieved by transferring antibodies from one patient who has been exposed to an antigen (like a virus) to the another individual.   However, the process of purifying the most efficacious antibody as well as its mass production is limiting due to its complexity and cost and can be prohibitively long delay during a pandemic outbreak, when therapies are few and needed immediately.  Regardless, the benefits of developing neutralizing antibodies to confer passive immunity versus development of a vaccine are evident, as the former takes considerable less time than development of a safe and effective vaccine.  For a good review on the development and use of neutralizing antibodies and the use of passive immunity to treat infectious diseases please read the following review:

Margaret A. Keller1,* and E. Richard Stiehm. Passive Immunity in Prevention and Treatment of Infectious Diseases. Clin Microbiol Rev. 2000 Oct; 13(4): 602–614. doi: 10.1128/cmr.13.4.602-614.2000

ABSTRACT

Antibodies have been used for over a century in the prevention and treatment of infectious disease. They are used most commonly for the prevention of measles, hepatitis A, hepatitis B, tetanus, varicella, rabies, and vaccinia. Although their use in the treatment of bacterial infection has largely been supplanted by antibiotics, antibodies remain a critical component of the treatment of diptheria, tetanus, and botulism. High-dose intravenous immunoglobulin can be used to treat certain viral infections in immunocompromised patients (e.g., cytomegalovirus, parvovirus B19, and enterovirus infections). Antibodies may also be of value in toxic shock syndrome, Ebola virus, and refractory staphylococcal infections. Palivizumab, the first monoclonal antibody licensed (in 1998) for an infectious disease, can prevent respiratory syncytial virus infection in high-risk infants. The development and use of additional monoclonal antibodies to key epitopes of microbial pathogens may further define protective humoral responses and lead to new approaches for the prevention and treatment of infectious diseases.

TABLE 1

Summary of the efficacy of antibody in the prevention and treatment of infectious diseases

Infection
Bacterial infections
 Respiratory infections (streptococcus, Streptococcus pneumoniaeNeisseria meningitisHaemophilus influenzae)
 Diphtheria
 Pertussis
 Tetanus
 Other clostridial infections
  C. botulinum
  C. difficile
 Staphylococcal infections
  Toxic shock syndrome
  Antibiotic resistance
  S. epidermidis in newborns
 Invasive streptococcal disease (toxic shock syndrome)
 High-risk newborns
 Shock, intensive care, and trauma
Pseudomonas infection
  Cystic Fibrosis
  Burns
Viral diseases
 Hepatitis A
 Hepatitis B
 Hepatitis C
 HIV infection
 RSV infection
 Herpesvirus infections
  CMV
  EBV
  HSV
  VZV
 Parvovirus infection
 Enterovirus infection
  In newborns
 Ebola
 Rabies
 Measles
 Rubella
 Mumps
 Tick-borne encephalitis
 Vaccinia

Go to:

A Great Explanation of Active versus Passive Immunity by Dr. John Campbell, one of the pioneers in the field of immunology:Antibodies have been used for over a century in the prevention and treatment of infectious disease. They are used most commonly for the prevention of measles, hepatitis A, hepatitis B, tetanus, varicella, rabies, and vaccinia. Although their use in the treatment of bacterial infection has largely been supplanted by antibiotics, antibodies remain a critical component of the treatment of diptheria, tetanus, and botulism. High-dose intravenous immunoglobulin can be used to treat certain viral infections in immunocompromised patients (e.g., cytomegalovirus, parvovirus B19, and enterovirus infections). Antibodies may also be of value in toxic shock syndrome, Ebola virus, and refractory staphylococcal infections. Palivizumab, the first monoclonal antibody licensed (in 1998) for an infectious disease, can prevent respiratory syncytial virus infection in high-risk infants. The development and use of additional monoclonal antibodies to key epitopes of microbial pathogens may further define protective humoral responses and lead to new approaches for the prevention and treatment of infectious diseases.

 

However, developing successful neutralizing antibodies can still be difficult but with the latest monoclonal antibody technology, as highlighted by the following papers, this process has made much more efficient.  In addition, it is not feasable to isolate antibodies from the plasma of covalescent patients in a scale that is needed for a worldwide outbreak.

A good explanation of the need can be found is Dr. Irina Robu’s post Race to develop antibody drugs for COVID-19 where:

When fighting off foreign invaders, our bodies make antibodies precisely produced for the task. The reason vaccines offer such long-lasting protection is they train the immune system to identify a pathogen, so immune cells remember and are ready to attack the virus when it appears. Monoclonal antibodies for coronavirus would take the place of the ones our bodies might produce to fight the disease. The manufactured antibodies would be infused into the body to either tamp down an existing infection, or to protect someone who has been exposed to the virus. However, these drugs are synthetic versions of the convalescent plasma treatments that rely on antibodies from people who have recovered from infection. But the engineered versions are easier to scale because they’re manufactured in rats, rather than from plasma donors.

The following papers represent the latest published work on development of therapeutic and prophylactic neutralizing antibodies to the coronavirus SARS-CoV2

1.  Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody.

Pinto, D., Park, Y., Beltramello, M. et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature (2020).                                                                            https://doi.org/10.1038/s41586-020-2349-y

Abstract

SARS-CoV-2 is a newly emerged coronavirus responsible for the current COVID-19 pandemic that has resulted in more than 3.7 million infections and 260,000 deaths as of 6 May 20201,2. Vaccine and therapeutic discovery efforts are paramount to curb the pandemic spread of this zoonotic virus. The SARS-CoV-2 spike (S) glycoprotein promotes entry into host cells and is the main target of neutralizing antibodies. Here we describe multiple monoclonal antibodies targeting SARS-CoV-2 S identified from memory B cells of an individual who was infected with SARS-CoV in 2003. One antibody, named S309, potently neutralizes SARS-CoV-2 and SARS-CoV pseudoviruses as well as authentic SARS-CoV-2 by engaging the S receptor-binding domain. Using cryo-electron microscopy and binding assays, we show that S309 recognizes a glycan-containing epitope that is conserved within the sarbecovirus subgenus, without competing with receptor attachment. Antibody cocktails including S309 along with other antibodies identified here further enhanced SARS-CoV-2 neutralization and may limit the emergence of neutralization-escape mutants. These results pave the way for using S309- and S309-containing antibody cocktails for prophylaxis in individuals at high risk of exposure or as a post-exposure therapy to limit or treat severe disease.

 

2.  Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients’ B cells

Yunlong Cao et al.  Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients’ B cells. Cell (2020).

https://doi.org/10.1016/j.cell.2020.05.025

Summary

The COVID-19 pandemic urgently needs therapeutic and prophylactic interventions. Here we report the rapid identification of SARS-CoV-2 neutralizing antibodies by high-throughput single-cell RNA and VDJ sequencing of antigen-enriched B cells from 60 convalescent patients. From 8,558 antigen-binding IgG1+ clonotypes, 14 potent neutralizing antibodies were identified with the most potent one, BD-368-2, exhibiting an IC50 of 1.2 ng/mL and 15 ng/mL against pseudotyped and authentic SARS-CoV-2, respectively. BD-368-2 also displayed strong therapeutic and prophylactic efficacy in SARS-CoV-2-infected hACE2-transgenic mice. Additionally, the 3.8Å Cryo-EM structure of a neutralizing antibody in complex with the spike-ectodomain trimer revealed the antibody’s epitope overlaps with the ACE2 binding site. Moreover, we demonstrated that SARS-CoV-2 neutralizing antibodies could be directly selected based on similarities of their predicted CDR3H structures to those of SARS-CoV neutralizing antibodies. Altogether, we showed that human neutralizing antibodies could be efficiently discovered by high-throughput single B-cell sequencing in response to pandemic infectious diseases.

3. A human monoclonal antibody blocking SARS-CoV-2 infection

Wang, C., Li, W., Drabek, D. et al. A human monoclonal antibody blocking SARS-CoV-2 infection. Nat Commun 11, 2251 (2020). https://doi.org/10.1038/s41467-020-16256-y

Abstract

The emergence of the novel human coronavirus SARS-CoV-2 in Wuhan, China has caused a worldwide epidemic of respiratory disease (COVID-19). Vaccines and targeted therapeutics for treatment of this disease are currently lacking. Here we report a human monoclonal antibody that neutralizes SARS-CoV-2 (and SARS-CoV) in cell culture. This cross-neutralizing antibody targets a communal epitope on these viruses and may offer potential for prevention and treatment of COVID-19.

Extra References on Development of Neutralizing antibodies for COVID19 {Sars-CoV2} published this year (2020)  [1-4]

  1. Fan P, Chi X, Liu G, Zhang G, Chen Z, Liu Y, Fang T, Li J, Banadyga L, He S et al: Potent neutralizing monoclonal antibodies against Ebola virus isolated from vaccinated donors. mAbs 2020, 12(1):1742457.
  2. Dussupt V, Sankhala RS, Gromowski GD, Donofrio G, De La Barrera RA, Larocca RA, Zaky W, Mendez-Rivera L, Choe M, Davidson E et al: Potent Zika and dengue cross-neutralizing antibodies induced by Zika vaccination in a dengue-experienced donor. Nature medicine 2020, 26(2):228-235.
  3. Young CL, Lyons AC, Hsu WW, Vanlandingham DL, Park SL, Bilyeu AN, Ayers VB, Hettenbach SM, Zelenka AM, Cool KR et al: Protection of swine by potent neutralizing anti-Japanese encephalitis virus monoclonal antibodies derived from vaccination. Antiviral research 2020, 174:104675.
  4. Sautto GA, Kirchenbaum GA, Abreu RB, Ecker JW, Pierce SR, Kleanthous H, Ross TM: A Computationally Optimized Broadly Reactive Antigen Subtype-Specific Influenza Vaccine Strategy Elicits Unique Potent Broadly Neutralizing Antibodies against Hemagglutinin. J Immunol 2020, 204(2):375-385.

 

For More Articles on COVID-19 Please see Our Coronavirus Portal on this Open Access Scientific Journal at:

https://pharmaceuticalintelligence.com/coronavirus-portal/

and the following Articles on  Immunity at

Race to develop antibody drugs for COVID-19
Bispecific and Trispecific Engagers: NK-T Cells and Cancer Therapy
Issues Need to be Resolved With ImmunoModulatory Therapies: NK cells, mAbs, and adoptive T cells
Antibody-bound Viral Antigens

Read Full Post »


Crowdsourcing Difficult-to-Collect Epidemiological Data in Pandemics: Lessons from Ebola to the current COVID-19 Pandemic

 

Curator: Stephen J. Williams, Ph.D.

 

At the onset of the COVID-19 pandemic, epidemiological data from the origin of the Sars-Cov2 outbreak, notably from the Wuhan region in China, was sparse.  In fact, official individual patient data rarely become available early on in an outbreak, when that data is needed most. Epidemiological data was just emerging from China as countries like Italy, Spain, and the United States started to experience a rapid emergence of the outbreak in their respective countries.  China, made of 31 geographical provinces, is a vast and complex country, with both large urban and rural areas.

 

 

 

As a result of this geographical diversity and differences in healthcare coverage across the country, epidemiological data can be challenging.  For instance, cancer incidence data for regions and whole country is difficult to calculate as there are not many regional cancer data collection efforts, contrasted with the cancer statistics collected in the United States, which is meticulously collected by cancer registries in each region, state and municipality.  Therefore, countries like China must depend on hospital record data and autopsy reports in order to back-extrapolate cancer incidence data.  This is the case in some developed countries like Italy where cancer registry is administered by a local government and may not be as extensive (for example in the Napoli region of Italy).

 

 

 

 

 

 

Population density China by province. Source https://www.unicef.cn/en/figure-13-population-density-province-2017

 

 

 

Epidemiologists, in areas in which data collection may be challenging, are relying on alternate means of data collection such as using devices connected to the internet-of-things such as mobile devices, or in some cases, social media is becoming useful to obtain health related data.  Such as effort to acquire pharmacovigilance data, patient engagement, and oral chemotherapeutic adherence using the social media site Twitter has been discussed in earlier posts: (see below)

Twitter is Becoming a Powerful Tool in Science and Medicine at https://pharmaceuticalintelligence.com/2014/11/06/twitter-is-becoming-a-powerful-tool-in-science-and-medicine/

 

 

 

 

 

Now epidemiologists are finding crowd-sourced data from social media and social networks becoming useful in collecting COVID-19 related data in those countries where health data collection efforts may be sub-optimal.  In a recent paper in The Lancet Digital Health [1], authors Kaiyuan Sun, Jenny Chen, and Cecile Viboud present data from the COVID-19 outbreak in China using information collected over social network sites as well as public news outlets and find strong correlations with later-released government statistics, showing the usefulness in such social and crowd-sourcing strategies to collect pertinent time-sensitive data.  In particular, the authors aim was to investigate this strategy of data collection to reduce the time delays between infection and detection, isolation and reporting of cases.

The paper is summarized below:

Kaiyuan Sun, PhD Jenny Chen, BScn Cécile Viboud, PhD . (2020).  Early epidemiological analysis of the coronavirus disease 2019 outbreak based on crowdsourced data: a population-level observational study.  The Lancet: Digital Health; Volume 2, Issue 4, E201-E208.

Summary

Background

As the outbreak of coronavirus disease 2019 (COVID-19) progresses, epidemiological data are needed to guide situational awareness and intervention strategies. Here we describe efforts to compile and disseminate epidemiological information on COVID-19 from news media and social networks.

Methods

In this population-level observational study, we searched DXY.cn, a health-care-oriented social network that is currently streaming news reports on COVID-19 from local and national Chinese health agencies. We compiled a list of individual patients with COVID-19 and daily province-level case counts between Jan 13 and Jan 31, 2020, in China. We also compiled a list of internationally exported cases of COVID-19 from global news media sources (Kyodo News, The Straits Times, and CNN), national governments, and health authorities. We assessed trends in the epidemiology of COVID-19 and studied the outbreak progression across China, assessing delays between symptom onset, seeking care at a hospital or clinic, and reporting, before and after Jan 18, 2020, as awareness of the outbreak increased. All data were made publicly available in real time.

Findings

We collected data for 507 patients with COVID-19 reported between Jan 13 and Jan 31, 2020, including 364 from mainland China and 143 from outside of China. 281 (55%) patients were male and the median age was 46 years (IQR 35–60). Few patients (13 [3%]) were younger than 15 years and the age profile of Chinese patients adjusted for baseline demographics confirmed a deficit of infections among children. Across the analysed period, delays between symptom onset and seeking care at a hospital or clinic were longer in Hubei province than in other provinces in mainland China and internationally. In mainland China, these delays decreased from 5 days before Jan 18, 2020, to 2 days thereafter until Jan 31, 2020 (p=0·0009). Although our sample captures only 507 (5·2%) of 9826 patients with COVID-19 reported by official sources during the analysed period, our data align with an official report published by Chinese authorities on Jan 28, 2020.

Interpretation

News reports and social media can help reconstruct the progression of an outbreak and provide detailed patient-level data in the context of a health emergency. The availability of a central physician-oriented social network facilitated the compilation of publicly available COVID-19 data in China. As the outbreak progresses, social media and news reports will probably capture a diminishing fraction of COVID-19 cases globally due to reporting fatigue and overwhelmed health-care systems. In the early stages of an outbreak, availability of public datasets is important to encourage analytical efforts by independent teams and provide robust evidence to guide interventions.

A Few notes on Methodology:

  • The authors used crowd-sourced reports from DXY.cn, a social network for Chinese physicians, health-care professionals, pharmacies and health-care facilities. This online platform provides real time coverage of the COVID-19 outbreak in China
  • More data was curated from news media, television and includes time-stamped information on COVID-19 cases
  • These reports are publicly available, de-identified patient data
  • No patient consent was needed and no ethics approval was required
  • Data was collected between January 20, 2020 and January 31,2020
  • Sex, age, province of identification, travel history, dates of symptom development was collected
  • Additional data was collected for other international sites of the pandemic including Cambodia, Canada, France, Germany, Hong Kong, India, Italy, Japan, Malaysia, Nepal, Russia, Singapore, UK, and USA
  • All patients in database had laboratory confirmation of infection

 

Results

  • 507 patient data was collected with 153 visited and 152 resident of Wuhan
  • Reported cases were skewed toward males however the overall population curve is skewed toward males in China
  • Most cases (26%) were from Beijing (urban area) while an equal amount were from rural areas combined (Shaanzi and Yunnan)
  • Age distribution of COVID cases were skewed toward older age groups with median age of 45 HOWEVER there were surprisingly a statistically high amount of cases less than 5 years of age
  • Outbreak progression based on the crowd-sourced patient line was consistent with the data published by the China Center for Disease Control
  • Median reporting delay in the authors crowd-sourcing data was 5 days
  • Crowd-sourced data was able to detect apparent rapid growth of newly reported cases during the collection period in several provinces outside of Hubei province, which is consistent with local government data

The following graphs show age distribution for China in 2017 and predicted for 2050.

projected age distribution China 2050. Source https://chinapower.csis.org/aging-problem/

 

 

 

 

 

 

 

 

 

 

 

 

The authors have previously used this curation of news methodology to analyze the Ebola outbreak[2].

A further use of the crowd-sourced database was availability of travel histories for patients returning from Wuhan and onset of symptoms, allowing for estimation of incubation periods.

The following published literature has also used these datasets:

Backer JA, Klinkenberg D, Wallinga J: Incubation period of 2019 novel coronavirus (2019-nCoV) infections among travellers from Wuhan, China, 20-28 January 2020. Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin 2020, 25(5).

Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, Azman AS, Reich NG, Lessler J: The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Annals of internal medicine 2020, 172(9):577-582.

Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KSM, Lau EHY, Wong JY et al: Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. The New England journal of medicine 2020, 382(13):1199-1207.

Dataset is available on the Laboratory for the Modeling of Biological and Socio-technical systems website of Northeastern University at https://www.mobs-lab.org/.

References

  1. Sun K, Chen J, Viboud C: Early epidemiological analysis of the coronavirus disease 2019 outbreak based on crowdsourced data: a population-level observational study. The Lancet Digital health 2020, 2(4):e201-e208.
  2. Cleaton JM, Viboud C, Simonsen L, Hurtado AM, Chowell G: Characterizing Ebola Transmission Patterns Based on Internet News Reports. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 2016, 62(1):24-31.

Read Full Post »


via Special COVID-19 Christopher Magazine

Special COVID-19 Christopher Magazine

Christopher-coverAntonio Giordano, MD, PhD. explains what COVID is and how to contain the infection, pointing also to what will require attention next.

Please see this special release at http://online.fliphtml5.com/qlnw/zgau/#p=1

 

Read Full Post »


Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on NCI Activities: COVID-19 and Cancer Research 5:20 PM

Reporter: Stephen J. Williams, PhD

NCI Activities: COVID-19 and Cancer Research

Dinah S. Singer. NCI-DCB, Bethesda, MD @theNCI

  • at the NCI they are pivoting some of their clinical trials to address COVID related issues like trials on tocilizumab and producing longitudinal cohorts of cancer patients and COVID for further analysis and studies
  • vaccine and antibody efforts at NCI and they are asking all their cancer centers (Cancer COVID Consortium) collecting data
  • Moonshot is collecting metadata but now COVID data from cellular therapy patients
  • they are about to publish new grants related to COVID and adding option to investigators to use current funds to do COVID related options
  • she says if at home take the time to think, write manuscripts, analyze data BE A REVIEWER FOR JOURNALS,
  • SSMMART project from Moonshot is still active
  • so far NCI and NIH grant process is ongoing although the peer review process is slower
  • they have extended deadlines with NO justification required (extend 90 days)
  • also allowing flexibility on use of grant money and allowing more early investigator rules and lax on those rules
  • non competitive renewals (type 5) will allow restructuring of project; contact program administrator
  • she and NCI heard rumors of institutions shutting down cancer research she is stressing to them not to do that
  • non refundable travel costs may be charged to the grant
  • NCI contemplating on extending the early investigator time
  • for more information go to NIH and NCI COVID-19 pages which have more guidances updated regularly

Follow on Twitter at:

@pharma_BI

@AACR

@CureCancerNow

@pharmanews

@BiotechWorld

@theNCI

#AACR20

Read Full Post »


Updated listing of COVID-19 vaccine and therapeutic trials from NIH Clinical Trials.gov

Curator: Stephen J. Williams, PhD

 

The following file contains an updated list (search on 4/15/2020) of COVID-19 related clinical trials from https://clinicaltrials.gov/

 

The Excel file can be uploaded here: Current Covid-19 Trials

 

Each sheet in the workbook is separated by current COVID-19 vaccine trials, currents COVID-19 trials with the IL6R (interleukin 6 receptor) antagonist tocilizumab, and all COVID related trials.  The Excel spreadsheet also contains links to more information about the trials.

 

As of April 15, 2020 the number of listed trials are as follows:

 

clinicaltrials.gov search terms Number of results Number of completed  trials Number of trials currently recruiting
COVID-19 or SARS-CoV-2 410 5 completed

5 withdrawn  

192
1st row terms + vaccine 28 0 15
1st row terms + tocilizumab 16 0 10
1st row terms + hydroxychloroquine 61 1 22

 

A few highlights of the COVID related trials on clinicaltrials.gov

 

Withdrawn trials

 

Recombinant Human Angiotensin-converting Enzyme 2 (rhACE2) as a Treatment for Patients With COVID-19 (NCT04287686)

Study Description

Go to 

Brief Summary:

This is an open label, randomized, controlled, pilot clinical study in patients with COVID-19, to obtain preliminary biologic, physiologic, and clinical data in patients with COVID-19 treated with rhACE2 or control patients, to help determine whether a subsequent Phase 2B trial is warranted.

 

Condition or disease  Intervention/treatment  Phase 
COVID-19 Drug: Recombinant human angiotensin-converting enzyme 2 (rhACE2) Not Applicable

 

Detailed Description:

This is a small pilot study investigating whether there is any efficacy signal that warrants a larger Phase 2B trial, or any harm that suggests that such a trial should not be done. It is not expected to produce statistically significant results in the major endpoints. The investigators will examine all of the biologic, physiological, and clinical data to determine whether a Phase 2B trial is warranted.

Primary efficacy analysis will be carried only on patients receiving at least 4 doses of active drug. Safety analysis will be carried out on all patients receiving at least one dose of active drug.

It is planned to enroll more than or equal to 24 subjects with COVID-19. It is expected to have at least 12 evaluable patients in each group.

Experimental group: 0.4 mg/kg rhACE2 IV BID and standard of care Control group: standard of care

Intervention duration: up to 7 days of therapy

No planned interim analysis.

Study was withdrawn before participants were enrolled.

Washed Microbiota Transplantation for Patients With 2019-nCoV Infection (NCT04251767)

Study Description

Go to 

Brief Summary:

Gut dysbiosis co-exists in patients with coronavirus pneumonia. Some of these patients would develop secondary bacterial infections and antibiotic-associated diarrhea (AAD). The recent study on using washed microbiota transplantation (WMT) as rescue therapy in critically ill patients with AAD demonstrated the important clinical benefits and safety of WMT. This clinical trial aims to evaluate the outcome of WMT combining with standard therapy for patients with 2019-novel coronavirus pneumonia, especially for those patients with dysbiosis-related conditions.

 

Detailed Description:

An ongoing outbreak of 2019 novel coronavirus was reported in Wuhan, China. 2019-nCoV has caused a cluster of pneumonia cases, and posed continuing epidemic threat to China and even global health. Unfortunately, there is currently no specific effective treatment for the viral infection and the related serious complications. It is in urgent need to find a new specific effective treatment for the 2019-nCoV infection. According to Declaration of Helsinki and International Ethical Guidelines for Health-related Research Involving Humans, the desperately ill patients with 2019-nCov infection during disease outbreaks have a moral right to try unvalidated medical interventions (UMIs) and that it is therefore unethical to restrict access to UMIs to the clinical trial context.

There is a vital link between the intestinal tract and respiratory tract, which was exemplified by intestinal complications during respiratory disease and vice versa. Some of these patients can develop secondary bacterial infections and antibiotic-associated diarrhea (AAD). The recent study on using washed microbiota transplantation (WMT) as rescue therapy in critically ill patients with AAD demonstrated the important clinical benefits and safety of WMT. Additionally, the recent animal study provided direct evidence supporting that antibiotics could decrease gut microbiota and the lung stromal interferon signature and facilitate early influenza virus replication in lung epithelia. Importantly, the above antibiotics caused negative effects can be reversed by fecal microbiota transplantation (FMT) which suggested that FMT might be able to induce a significant improvement in the respiratory virus infection. Another evidence is that the microbiota could confer protection against certain virus infection such as influenza virus and respiratory syncytial virus by priming the immune response to viral evasion. The above results suggested that FMT might be a new therapeutic option for the treatment of virus-related pneumonia. The methodology of FMT recently was coined as WMT, which is dependent on the automatic facilities and washing process in a laboratory room. Patients underwent WMT with the decreased rate of adverse events and unchanged clinical efficacy in ulcerative colitis and Crohn’s disease. This clinical trial aims to evaluate the outcome of WMT combining with standard therapy for patients with novel coronavirus pneumonia, especially for those patients with dysbiosis-related conditions.

 

Responsible Party: Faming Zhang, Director of Medical Center for Digestive Diseases, The Second Hospital of Nanjing Medical University
Identifier NCT04251767     History of Changes

Study was withdrawn before participants were enrolled.

 

Therapy for Pneumonia Patients iInfected by 2019 Novel Coronavirus (NCT04293692)

Study Description

Go to 

Brief Summary:

The 2019 novel coronavirus pneumonia outbroken in Wuhan, China, which spread quickly to 26 countries worldwide and presented a serious threat to public health. It is mainly characterized by fever, dry cough, shortness of breath and breathing difficulties. Some patients may develop into rapid and deadly respiratory system injury with overwhelming inflammation in the lung. Currently, there is no effective treatment in clinical practice. The present clinical trial is to explore the safety and efficacy of Human Umbilical Cord Mesenchymal Stem Cells (UC-MSCs) therapy for novel coronavirus pneumonia patients.

Detailed Description:

Since late December 2019, human pneumonia cases infected by a novel coronavirus (2019-nCoV) were firstly identified in Wuhan, China. As the virus is contagious and of great epidemic, more and more cases have found in other areas of China and abroad. Up to February 24, a total of 77, 779 confirmed cases were reported in China. At present, there is no effective treatment for patients identified with novel coronavirus pneumonia. Therefore, it’s urgent to explore more active therapeutic methods to cure the patients.

Recently, some clinical researches about the 2019 novel coronavirus pneumonia published in The Lancet and The New England Journal of Medicine suggested that massive inflammatory cell infiltration and inflammatory cytokines secretion were found in patients’ lungs, alveolar epithelial cells and capillary endothelial cells were damaged, causing acute lung injury. It seems that the key to cure the pneumonia is to inhibit the inflammatory response, resulting to reduce the damage of alveolar epithelial cells and endothelial cells and repair the function of the lung.

Mesenchymal stem cells (MSCs) are widely used in basic research and clinical application. They are proved to migrate to damaged tissues, exert anti-inflammatory and immunoregulatory functions, promote the regeneration of damaged tissues and inhibit tissue fibrosis. Studies have shown that MSCs can significantly reduce acute lung injury in mice caused by H9N2 and H5N1 viruses by reducing the levels of proinflammatory cytokines and the recruitment of inflammatory cells into the lungs. Compared with MSCs from other sources, human umbilical cord-derived MSCs (UC-MSCs) have been widely applied to various diseases due to their convenient collection, no ethical controversy, low immunogenicity, and rapid proliferation rate. In our recent research, we confirmed that UC-MSCs can significantly reduce inflammatory cell infiltration and inflammatory factors expression in lung tissue, and significantly protect lung tissue from endotoxin (LPS) -induced acute lung injury in mice.

The purpose of this clinical study is to investigate safety and efficiency of UC-MSCs in treating pneumonia patients infected by 2019-nCoV. The investigators planned to recruit 48 patients aged from 18 to 75 years old and had no severe underlying diseases. In the cell treatment group, 24 patients received 0.5*10E6 UC-MSCs /kg body weight intravenously treatment 4 times every other day besides conventional treatment. In the control group, other 24 patients received conventional treatment plus 4 times of placebo intravenously. The lung CT, blood biochemical examination, lymphocyte subsets, inflammatory factors, 28-days mortality, etc will be evaluated within 24h and 1, 2, 4, 8 weeks after UC-MSCs treatment.

Sponsor:

Puren Hospital Affiliated to Wuhan University of Science and Technology

Collaborator:

Wuhan Hamilton Bio-technology Co., Ltd

Study was withdrawn before participants were enrolled.

 

Prognositc Factors in COVID-19 Patients Complicated With Hypertension (NCT04272710)

Study Description

Brief Summary:

There are currently no clinical studies reporting clinical characteristics difference between the hypertension patients with and without ACEI treatment when suffered with novel coronavirus infection in China

Detailed Description:

At present, the outbreak of the new coronavirus (2019-nCoV) infection in Wuhan and Hubei provinces has attracted great attention from the medical community across the country. Both 2019-nCoV and SARS viruses are coronaviruses, and they have a large homology.

Published laboratory studies have suggested that SARS virus infection and its lung injury are related to angiotensin-converting enzyme 2 (ACE2) in lung tissue. And ACE and ACE2 in the renin-angiotensin system (RAS) are vital central links to maintain hemodynamic stability and normal heart and kidney function in vivo.

A large amount of evidence-based medical evidence shows that ACE inhibitors are the basic therapeutic drugs for maintaining hypertension, reducing the risk of cardiovascular, cerebrovascular, and renal adverse events, improving quality of life, and prolonging life in patients with hypertension. Recent experimental studies suggest that treatment with ACE inhibitors can significantly reduce pulmonary inflammation and cytokine release caused by coronavirus infection.

 

ACEI treatment

hypertension patients with ACEI treatment when suffered with novel coronavirus infection in China

Control

hypertension patients without ACEI treatment when suffered with novel coronavirus infection in China

 

Locations

China
The First Affiliated Hospital of Chongqing Medical University Chongqing, China

Sponsors and Collaborators Chongqing Medical University

 

Responsible PI: Dongying Zhang, Associate Professor, Chongqing Medical University

Withdrawn (Similar projects have been registered, and it needs to be withdrawn.)

Read Full Post »

Older Posts »