Feeds:
Posts
Comments

Archive for the ‘Interviews with Scientific Leaders’ Category

The Nobel Prize in Chemistry 2021

Reporter: Aviva Lev-Ari, PhD, RN

6 October 2021

The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Chemistry 2021

to

Benjamin List
Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany

David W.C. MacMillan
Princeton University, USA

“for the development of asymmetric organocatalysis”

Meet UC’s 2021 Nobelists

Three UC-affiliated scientists have won Nobel Prizes this year: UCSF professor David Julius, UCLA alum Ardem Patapoutian and UC Irvine alum David W.C. MacMillan.

SOURCE

UC’s new Nobelists
UC San Francisco, UCLA and UC Irvine
Three UC-affiliated scientists were awarded Nobel Prizes this week. UC San Francisco professor David Julius shared the Nobel Prize in physiology or medicine with UCLA alum Ardem Patapoutian. UC Irvine alum David W.C. MacMillan won in chemistry. 

From: University of California <webeditor@ucop.edu>
Reply-To: University of California <webeditor@ucop.edu>
Date: Friday, October 8, 2021 at 1:02 PM
To: Aviva Lev-Ari <avivalev-ari@alum.berkeley.edu>
Subject: 3 UC Nobel Prize winners!

IMAGE SOURCE:
Chemistry Nobel Prize Honors Technique for Building Molecules. Benjamin List and David MacMillan received the 2021 Nobel Prize in Chemistry for their development of asymmetrical organocatalysis. https://www.quantamagazine.org/chemistry-nobel-prize-honors-technique-for-building-molecules-20211006/

An ingenious tool for building molecules

Building molecules is a difficult art. Benjamin List and David MacMillan are awarded the Nobel Prize in Chemistry 2021 for their development of a precise new tool for molecular construction: organocatalysis. This has had a great impact on pharmaceutical research, and has made chemistry greener.

Many research areas and industries are dependent on chemists’ ability to construct molecules that can form elastic and durable materials, store energy in batteries or inhibit the progression of diseases. This work requires catalysts, which are substances that control and accelerate chemical reactions, without becoming part of the final product. For example, catalysts in cars transform toxic substances in exhaust fumes to harmless molecules. Our bodies also contain thousands of catalysts in the form of enzymes, which chisel out the molecules necessary for life.

Catalysts are thus fundamental tools for chemists, but researchers long believed that there were, in principle, just two types of catalysts available: metals and enzymes. Benjamin List and David MacMillan are awarded the Nobel Prize in Chemistry 2021 because in 2000 they, independent of each other, developed a third type of catalysis. It is called asymmetric organocatalysis and builds upon small organic molecules.

“This concept for catalysis is as simple as it is ingenious, and the fact is that many people have wondered why we didn’t think of it earlier,” says Johan Åqvist, who is chair of the Nobel Committee for Chemistry.

Organic catalysts have a stable framework of carbon atoms, to which more active chemical groups can attach. These often contain common elements such as oxygen, nitrogen, sulphur or phosphorus. This means that these catalysts are both environmentally friendly and cheap to produce.

The rapid expansion in the use of organic catalysts is primarily due to their ability to drive asymmetric catalysis. When molecules are being built, situations often occur where two different molecules can form, which – just like our hands – are each other’s mirror image. Chemists will often only want one of these, particularly when producing pharmaceuticals.

Organocatalysis has developed at an astounding speed since 2000. Benjamin List and David MacMillan remain leaders in the field, and have shown that organic catalysts can be used to drive multitudes of chemical reactions. Using these reactions, researchers can now more efficiently construct anything from new pharmaceuticals to molecules that can capture light in solar cells. In this way, organocatalysts are bringing the greatest benefit to humankind.

Benjamin List, born 1968 in Frankfurt, Germany. Ph.D. 1997 from Goethe University Frankfurt, Germany. Director of the Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany.

David W.C. MacMillan, born 1968 in Bellshill, UK. Ph.D. 1996 from University of California, Irvine, USA. Professor at Princeton University, USA.

Prize amount: 10 million Swedish kronor, to be shared equally between the Laureates.
Further information: http://www.kva.se and http://www.nobelprize.org

SOURCE

https://www.nobelprize.org/prizes/chemistry/2021/press-release/

Scientific Background: Enamine and iminium ion-mediated organocatalysis (pdf)

Chemistry Nobel Prize Honors Technique for Building Molecules

by Jordana Cepelewicz

https://www.quantamagazine.org/chemistry-nobel-prize-honors-technique-for-building-molecules-20211006/

Read Full Post »

The Nobel Prize in Physiology or Medicine 2021 was awarded jointly to David Julius and Ardem Patapoutian “for their discoveries of receptors for temperature and touch.”

Reporter: Aviva Lev-Ari, PhD, RN

UPDATED on 10/14/2021

49th (2019) – Lewis S. Rosenstiel Award for Distinguished Work in Basic Medical Research

for their remarkable contributions to our understanding of the sensations of temperature, pain and touch

David Julius – 49th (2019) – Lewis S. Rosenstiel Award for Distinguished Work in Basic Medical Research

for their remarkable contributions to our understanding of the sensations of temperature, pain and touch


(2021 Nobel Prize)
Morris Herzstein Chair in Molecular Biology and Medicine
Professor and Chair, Department of Physiology
School of Medicine
The University of California, San Francisco
San Francisco, CA USA

Ardem Patapoutian – 49th (2019) – Lewis S. Rosenstiel Award for Distinguished Work in Basic Medical Research for their remarkable contributions to our understanding of the sensations of temperature, pain and touch


(2021 Nobel Prize)

Investigator, Howard Hughes Medical Institute
Professor, Department of Neuroscience
The Scripps Research Institute
La Jolla, CA USA

Press release: The Nobel Prize in Physiology or Medicine 2021. NobelPrize.org. Nobel Prize Outreach AB 2021. Mon. 4 Oct 2021. <https://www.nobelprize.org/prizes/medicine/2021/press-release/>

David Julius was born in 1955 in New York, USA. He received a Ph.D. in 1984 from University of California, Berkeley and was a postdoctoral fellow at Columbia University, in New York. David Julius was recruited to the University of California, San Francisco in 1989 where he is now Professor.

Ardem Patapoutian was born in 1967 in Beirut, Lebanon. In his youth, he moved from a war-torn Beirut to Los Angeles, USA and received a Ph.D. in 1996 from California Institute of Technology, Pasadena, USA. He was a postdoctoral fellow at the University of California, San Francisco. Since 2000, he is a scientist at Scripps Research, La Jolla, California where he is now Professor. He is a Howard Hughes Medical Institute Investigator since 2014.

Meet UC’s 2021 Nobelists

Three UC-affiliated scientists have won Nobel Prizes this year: UCSF professor David Julius, UCLA alum Ardem Patapoutian and UC Irvine alum David W.C. MacMillan.

SOURCE

UC’s new Nobelists
UC San Francisco, UCLA and UC Irvine
Three UC-affiliated scientists were awarded Nobel Prizes this week. UC San Francisco professor David Julius shared the Nobel Prize in physiology or medicine with UCLA alum Ardem Patapoutian. UC Irvine alum David W.C. MacMillan won in chemistry. 

From: University of California <webeditor@ucop.edu>
Reply-To: University of California <webeditor@ucop.edu>
Date: Friday, October 8, 2021 at 1:02 PM
To: Aviva Lev-Ari <avivalev-ari@alum.berkeley.edu>
Subject: 3 UC Nobel Prize winners!

Key publications

Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 1997:389:816-824.

Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 1998:21:531-543.

Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI, Julius D. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 2000:288:306-313

McKemy DD, Neuhausser WM, Julius D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 2002:416:52-58

Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, Dragoni I, McIntyre P, Bevan S, Patapoutian A. A TRP channel that senses cold stimuli and menthol. Cell 2002:108:705-715

Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ, Dubin AE, Patapoutian A. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 2010:330: 55-60

Ranade SS, Woo SH, Dubin AE, Moshourab RA, Wetzel C, Petrus M, Mathur J, Bégay V, Coste B, Mainquist J, Wilson AJ, Francisco AG, Reddy K, Qiu Z, Wood JN, Lewin GR, Patapoutian A. Piezo2 is the major transducer of mechanical forces for touch sensation in mice. Nature 2014:516:121-125

Discoveries by this year's Nobel Prize laureates
Figure 4 The seminal discoveries by this year’s Nobel Prize laureates have explained how heat, cold and touch can initiate signals in our nervous system. The identified ion channels are important for many physiological processes and disease conditions.

IMAGE SOURCE: https://www.nobelprize.org/prizes/medicine/2021/press-release/


The science heats up!

In the latter part of the 1990’s, David Julius at the University of California, San Francisco, USA, saw the possibility for major advances by analyzing how the chemical compound capsaicin causes the burning sensation we feel when we come into contact with chili peppers. Capsaicin was already known to activate nerve cells causing pain sensations, but how this chemical actually exerted this function was an unsolved riddle. Julius and his co-workers created a library of millions of DNA fragments corresponding to genes that are expressed in the sensory neurons which can react to pain, heat, and touch. Julius and colleagues hypothesized that the library would include a DNA fragment encoding the protein capable of reacting to capsaicin. They expressed individual genes from this collection in cultured cells that normally do not react to capsaicin. After a laborious search, a single gene was identified that was able to make cells capsaicin sensitive (Figure 2). The gene for capsaicin sensing had been found! Further experiments revealed that the identified gene encoded a novel ion channel protein and this newly discovered capsaicin receptor was later named TRPV1. When Julius investigated the protein’s ability to respond to heat, he realized that he had discovered a heat-sensing receptor that is activated at temperatures perceived as painful (Figure 2).

David Julius' work
Figure 2 David Julius used capsaicin from chili peppers to identify TRPV1, an ion channel activated by painful heat. Additional related ion channels were identified and we now understand how different temperatures can induce electrical signals in the nervous system.

The discovery of TRPV1 was a major breakthrough leading the way to the unravelling of additional temperature-sensing receptors. Independently of one another, both David Julius and Ardem Patapoutian used the chemical substance menthol to identify TRPM8, a receptor that was shown to be activated by cold. Additional ion channels related to TRPV1 and TRPM8 were identified and found to be activated by a range of different temperatures. Many laboratories pursued research programs to investigate the roles of these channels in thermal sensation by using genetically manipulated mice that lacked these newly discovered genes. David Julius’ discovery of TRPV1 was the breakthrough that allowed us to understand how differences in temperature can induce electrical signals in the nervous system.

SOURCE

https://www.nobelprize.org/prizes/medicine/2021/press-release/

Read Full Post »

The NIH-funded adjuvant improves the efficacy of India’s COVID-19 vaccine.

Curator and Reporter: Dr. Premalata Pati, Ph.D., Postdoc

Anthony S. Fauci, Director of the National Institute of Allergy and Infectious Diseases (NIAID), Part of National Institute of Health (NIH) said,

Ending a global pandemic demands a global response. I am thrilled that a novel vaccine adjuvant developed in the United States with NIAID support is now included in an effective COVID-19 vaccine that is available to individuals in India.”

Adjuvants are components that are created as part of a vaccine to improve immune responses and increase the efficiency of the vaccine. COVAXIN was developed and is manufactured in India, which is currently experiencing a terrible health catastrophe as a result of COVID-19. An adjuvant designed with NIH funding has contributed to the success of the extremely effective COVAXIN-COVID-19 vaccine, which has been administered to about 25 million individuals in India and internationally.

Alhydroxiquim-II is the adjuvant utilized in COVAXIN, was discovered and validated in the laboratory by the biotech company ViroVax LLC of Lawrence, Kansas, with funding provided solely by the NIAID Adjuvant Development Program. The adjuvant is formed of a small molecule that is uniquely bonded to Alhydrogel, often known as alum and the most regularly used adjuvant in human vaccines. Alhydroxiquim-II enters lymph nodes, where it detaches from alum and triggers two cellular receptors. TLR7 and TLR8 receptors are essential in the immunological response to viruses. Alhydroxiquim-II is the first adjuvant to activate TLR7 and TLR8 in an approved vaccine against an infectious disease. Additionally, the alum in Alhydroxiquim-II activates the immune system to look for an infiltrating pathogen.

Although molecules that activate TLR receptors strongly stimulate the immune system, the adverse effects of Alhydroxiquim-II are modest. This is due to the fact that after COVAXIN is injected, the adjuvant travels directly to adjacent lymph nodes, which contain white blood cells that are crucial in recognizing pathogens and combating infections. As a result, just a minimal amount of Alhydroxiquim-II is required in each vaccination dosage, and the adjuvant does not circulate throughout the body, avoiding more widespread inflammation and unwanted side effects.

This scanning electron microscope image shows SARS-CoV-2 (round gold particles) emerging from the surface of a cell cultured in the lab. SARS-CoV-2, also known as 2019-nCoV, is the virus that causes COVID-19. Image Source: NIAID

COVAXIN is made up of a crippled version of SARS-CoV-2 that cannot replicate but yet encourages the immune system to produce antibodies against the virus. The NIH stated that COVAXIN is “safe and well tolerated,” citing the results of a phase 2 clinical investigation. COVAXIN safety results from a Phase 3 trial with 25,800 participants in India will be released later this year. Meanwhile, unpublished interim data from the Phase 3 trial show that the vaccine is 78% effective against symptomatic sickness, 100% effective against severe COVID-19, including hospitalization, and 70% effective against asymptomatic infection with SARS-CoV-2, the virus that causes COVID-19. Two tests of blood serum from persons who had received COVAXIN suggest that the vaccine creates antibodies that efficiently neutralize the SARS-CoV-2 B.1.1.7 (Alpha) and B.1.617 (Delta) variants (1) and (2), which were originally identified in the United Kingdom and India, respectively.

Since 2009, the NIAID Adjuvant Program has supported the research of ViroVax’s founder and CEO, Sunil David, M.D., Ph.D. His research has focused on the emergence of new compounds that activate innate immune receptors and their application as vaccination adjuvants.

Dr. David’s engagement with Bharat Biotech International Ltd. of Hyderabad, which manufactures COVAXIN, began during a 2019 meeting in India organized by the NIAID Office of Global Research under the auspices of the NIAID’s Indo-US Vaccine Action Program. Five NIAID-funded adjuvant investigators, including Dr. David, two representatives of the NIAID Division of Allergy, Immunology, and Transplantation, and the NIAID India representative, visited 4 top biotechnology companies to learn about their work and discuss future collaborations. The delegation also attended a consultation in New Delhi, which was co-organized by the NIAID and India’s Department of Biotechnology and hosted by the National Institute of Immunology.

Among the scientific collaborations spawned by these endeavors was a licensing deal between Bharat Biotech and Dr. David to use Alhydroxiquim-II in their candidate vaccines. During the COVID-19 outbreak, this license was expanded to cover COVAXIN, which has Emergency Use Authorization in India and more than a dozen additional countries. COVAXIN was developed by Bharat Biotech in partnership with the Indian Council of Medical Research’s National Institute of Virology. The company conducted thorough safety research on Alhydroxiquim-II and undertook the arduous process of scaling up production of the adjuvant in accordance with Good Manufacturing Practice standards. Bharat Biotech aims to generate 700 million doses of COVAXIN by the end of 2021.

NIAID conducts and supports research at the National Institutes of Health, across the United States, and across the world to better understand the causes of infectious and immune-mediated diseases and to develop better methods of preventing, detecting, and treating these illnesses. The NIAID website contains news releases, info sheets, and other NIAID-related materials.

Main Source:

https://www.miragenews.com/adjuvant-developed-with-nih-funding-enhances-587090/

References

  1. https://academic.oup.com/cid/advance-article-abstract/doi/10.1093/cid/ciab411/6271524?redirectedFrom=fulltext
  2. https://academic.oup.com/jtm/article/28/4/taab051/6193609

Other Related Articles published in this Open Access Online Scientific Journal include the following:

Comparing COVID-19 Vaccine Schedule Combinations, or “Com-COV” – First-of-its-Kind Study will explore the Impact of using eight different Combinations of Doses and Dosing Intervals for Different COVID-19 Vaccines

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2021/02/08/comparing-covid-19-vaccine-schedule-combinations-or-com-cov-first-of-its-kind-study-will-explore-the-impact-of-using-eight-different-combinations-of-doses-and-dosing-intervals-for-diffe/

Thriving Vaccines and Research: Weizmann Institute Coronavirus Research Development

Reporter:Amandeep Kaur, B.Sc., M.Sc.

https://pharmaceuticalintelligence.com/2021/05/04/thriving-vaccines-and-research-weizmann-coronavirus-research-development/

National Public Radio interview with Dr. Anthony Fauci on his optimism on a COVID-19 vaccine by early 2021

Reporter: Stephen J. Williams, PhD

https://pharmaceuticalintelligence.com/2020/07/19/national-public-radio-interview-with-dr-anthony-fauci-on-his-optimism-on-a-covid-19-vaccine-by-early-2021/

Cryo-EM disclosed how the D614G mutation changes SARS-CoV-2 spike protein structure

Reporter: Dr. Premalata Pati, Ph.D., Postdoc

https://pharmaceuticalintelligence.com/2021/04/10/cryo-em-disclosed-how-the-d614g-mutation-changes-sars-cov-2-spike-protein-structure/

Updates on the Oxford, AstraZeneca COVID-19 Vaccine

Reporter: Stephen J. Williams, PhD

https://pharmaceuticalintelligence.com/2020/06/16/updates-on-the-oxford-astrazeneca-covid-19-vaccine/

Read Full Post »

LIVE – 50th Annual Lewis S. Rosenstiel Award to Katalin Karikó and Drew Weissman for work on messenger RNA, modification of Nucleic Acids applied in the development of COVID-19 Vaccines

Reporter & Real Time Coverage on 2/8/2021

 

50th Annual Lewis S. Rosenstiel Award to Katalin Karikó and Drew Weissman for work on messenger RNA, modification of Nucleic Acids applied in the development of COVID-19 Vaccines

Rosenstiel Award given to pioneering scientists behind COVID-19 vaccines

This year’s prize for distinguished work in basic medical research was awarded to Katalin Karikó and Drew Weissman for work on messenger RNA.

Katalin Karikó and Drew WeissmanCourtesy Karikó/University of Pennsylvania Katalin Karikó and Drew Weissman

Brandeis University and the Rosenstiel Foundation are pleased to award the 50th annual Lewis S. Rosenstiel Award for Distinguished Work in Basic Medical Research to Katalin Karikó and Drew Weissman ’81, MA ’81, P’15, for their groundbreaking work in the modification of nucleic acids to develop RNA therapeutics and vaccines.

Karikó, senior vice president at BioNTech RNA Pharmaceuticals, and Weissman, a professor of medicine at the Perelman School of Medicine at the University of Pennsylvania, pioneered much of the science underlying two of the COVID-19 vaccines now being given to tens of millions of people across the globe.

Rosenstiel Medal

For those of you who would like to share the recording of this event with others, or those of you who were not able to attend the web event, the recording of the program can be found here: 

https://ensemble.brandeis.edu/Watch/Aj7x3G8L

SOURCE

From: Ron Liebowitz <president@brandeis.edu>

Date: Thursday, February 11, 2021 at 5:48 PM

The Rosenstiel Award

By engineering a modified version of the messenger RNA (mRNA) inside human cells and then developing a system to deliver it to its target, the two researchers laid the groundwork for the vaccines brought to fruition by Pfizer/BioNTech and Moderna.

“This award celebrates how basic research in molecular biology can be the foundation for applications that can affect the lives of us all,” said James Haber, the Abraham and Etta Goodman Professor of Biology and director of the Rosenstiel Basic Medical Sciences Research Center.

“Through their painstaking research into mRNA – and persistence despite setbacks – Weissman and Karikó laid the groundwork for vaccines that will save countless lives.”

Peter Gruber Endowed Chair in Neuroscience and 2017 winner of the Nobel Prize in Physiology or Medicine Michael Rosbash said:

“Among the few positive consequences of the current pandemic are the successful efforts made worldwide to generate effective vaccines. The most creative of these rely on the new messenger RNA technology pioneered by Kariko and Weissman. This is a great story where individual initiative in basic science has ended up having a remarkable real-world impact.”

The Rosenstiel Award has had a distinguished record of identifying and honoring scientists who subsequently have been honored with the Lasker and Nobel Prizes. Thirty-six of 93 Rosenstiel Award winners have subsequently been awarded the Nobel Prize in Medicine or Physiology or in Chemistry.

A full list of awardees can be found on the award’s website.

The award will be presented on February 8 at 12 p.m. via webinar.

Anthony Fauci, director of the National Institute of Allergy and Infectious Diseases, and Derrick Rossi, co-founder of Moderna, will present congratulatory remarks.

Karikó and Weissman began working together over 20 years ago when both were at U Penn.

At the time, many scientists didn’t believe mRNA, which transport instructions from DNA to the ribosomes for the production of proteins, could be the basis for a vaccine. In experiments, injecting mRNA into mice caused deadly inflammation.

But Karikó and Weissman pressed on, discovering a method of altering mRNA that enabled it to enter cells without triggering the body’s immune system. They did this by tweaking one of the four nucleosides that are the building blocks of mRNA.

Several years later, Karikó and Weissman devised a method of packaging mRNA inside a lipid nanoparticle — a small bubble of oil — so that the molecule didn’t fall apart as it traveled through the body.

“We basically tested every possible delivery system and found this was the best,” Weissman recently told BrandeisNOW.

The COVID-19 mRNA vaccines work by spurring human cells to produce the spike-shaped protein found on SARS-CoV-2, the virus that causes the illness, and triggering the immune system to produce protective antibodies.

In general, mRNA vaccines have the advantage of being cheaper to produce than traditional vaccines for chickenpox, polio, flu or rabies. It’s also hoped they can be adapted to treat other infectious diseases such as genital herpes (which is caused by the herpes simplex virus), influenza, Zika and HIV.

“The COVID-19 vaccine breakthrough is a great example of how basic science innovations, such as the RNA technology pioneered by Weissman and Karikó, can have an enormous impact on advances in the biomedical sciences,” said biochemist Carol Fierke, the university’s new provost and executive vice president.

In addition to her post at BioNTech, Karikó is an adjunct associate professor at the Perelman School of Medicine at the University of Pennsylvania. Weissman is also director of vaccine research at the Perelman school’s division of infectious diseases.

LAST PAST 5 Years Recipients

Past Winners

49th (2019)

for their remarkable contributions to our understanding of the sensations of temperature, pain and touch

David Julius
Morris Herzstein Chair in Molecular Biology and Medicine
Professor and Chair, Department of Physiology
School of Medicine
The University of California, San Francisco
San Francisco, CA USA

Ardem Patapoutian
Investigator, Howard Hughes Medical Institute
Professor, Department of Neuroscience
The Scripps Research Institute
La Jolla, CA USA

48th (2018)

for his fundamental and far-reaching studies of protein structure using X-ray crystallography

Steven C. Harrison
Investigator, Howard Hughes Medical Institute
Giovanni Armenise-Harvard Professor of Basic Medical Sciences
Harvard Medical School
Chief, Division of Molecular Medicine
Boston Children’s Hospital
Boston, MA USA

VIDEO: 48TH AWARD LECTURE

47th (2017)

for her elucidation of the protection of telomeres and the maintenance of genome stability

Titia de Lange
Leon Hess Professor
American Cancer Society Research Professor
Head, Laboratory of Cell Biology and Genetics
Director, Anderson Center for Cancer Research
The Rockefeller University
New York, NY USA

VIDEO: 47TH AWARD LECTURE

46th (2016)

in recognition of her pioneering work on the mechanisms of protein folding and the severe consequences of protein misfolding that are manifest in disease

Susan Lindquist (1949-2016)
Professor
 of Biology
Investigator, Howard Hughes Medical Institute
Member, Whitehead Institute
Massachusetts Institute of Technology
Cambridge, MA USA

VIDEO: 46TH AWARD LECTURES

45th (2015)

in recognition of his pioneering discoveries of molecular pathways and biological functions of protein degradation by autophagy

Yoshinori Ohsumi
(2016 Nobel Prize)
Professor
Frontier Research Center
Tokyo Institute of Technology
Tokyo, Japan

SOURCE

https://www.brandeis.edu/now/2021/january/rosenstiel-covid-vaccine.html

https://www.brandeis.edu/rosenstiel/rosenstiel-award/past.html

From: Brandeis Special Events <specialevents@brandeis.edu>

Reply-To: <specialevents@brandeis.edu>

Date: Friday, January 22, 2021 at 2:18 PM

To: “Aviva Lev-Ari, PhD, RN” <AvivaLev-Ari@alum.berkeley.edu>

Subject: Brandeis University: 50th Annual Lewis S. Rosenstiel Award Ceremony

LIVE

Prof. James Haber

  • synthetic modified mRNA to produce the Spike protein
  • bypassing messenger RNA to curtail the efficacy of the infective power of the messenger

Dr. Derrick Rossi

  • 2010 Founded Moderna
  • He is the CEO of Convelo Therapeutics.
  • DNA instructions of life are initiated
  • instructions for protein made in cytoplasm
  • intermediary mRNA (single structured) from DNA (double structured) transmitted to RNA
  • Why mRNA are not used in most labs? vs DNA and proteins
  • Gene therapy is DNA therapy
  • mRNA – is neglected = cellular reprogramming – therapeutic potential 2012 Nobel Prize by Japanese
  • mRNA immediately degrades
  • mRNA  is intrinsically immunogenic
  • mRNA reside in nucleosides, paper in 2005, mRNA therapeutics potential discovery
  • UPenn licensed the discovery to a company
  • Most future vaccines will be mRNA
  • DNA and Recombinant DNA for therapeutics
  • Katalin Karikó and Drew Weissman – Lead contributors

Katalin Karikó, 1989 joined UPenn – Development of mRNA for Therapy

Sr. VP BioNtech Therapeutics

  • mRNA get the message to Ribosome translate to protein
  • plasmid DNA – SP6 PNA polymerase 1984 – transcription/capping
  • Human interferon IFN CDS
  • injecting mRNA to mice 1990 – cap analog va enzymatic cap
  • mRNA work in vivo – 1990 – Gene Therapy and gene delivery
  • mRNA for therapeutic – synthesis of mRNA and evaluating in mammalian cells
  • DNA isolate cDNA synthesis amplifying DNA then DNA Seq
  • 1989 Taq DNA polymerase
  • Transfection – Lipofectin – 1987
  • IVT – evaluating gag mRNA in human dendritic cells – immune response detected
  • immunogenecity – mRNA
  • Dendritic – RNA transfection monocyte-derived human DCs ..inflammation response
  • tRNA – is enriched
  • modifying enzymes were unknown
  • incorporation of modified nucleotides into RNA by in vitro transcription
  • measuring inflammatory response
  • modified URIDINE-containing mRNA in Non-immunogenic
  • it Dimerize TLR7 & TLR*
  • Superior translation of lipofectin-derived pseudouridine-modified mRNA
  • Pseudouridine-containing mEPO mRNA delivery –
  • modified mRNA – HCT increases due to EPO –
  • Optimizing IVT mRNA
  • highly translatable mRNA – All
  • mRNA – new class of medicine – highly translatable
  • mRNA-loaded nanoparticle – human heart
  • cytokine response inflammatory
  • mRNA monoclonal antibodies

Dr. Faucci

  • mRNA based vaccine BioNtech in Germany and Moderna in Cambridge, MA
  • Basic research led to development of the Vaccine for the Pandemic

Dr. Drew Weissman

  • Nucleoside-modified mRNA SAR-COV-2
  • Viral Vectored RNA platform
  1. Inactivated or live virus
  2. viral vector
  3. DNA
  4. mRNA
  5. protein subunits
  • CORONAVIRUS: Respiratory, GI in human and animals
  • 2002 – SARS Bat -> civets ->human
  • Human to Human was not effective but 10% mortality
  • MERS-COv: Camel ->> Human
  • PAN coronavirus vaccine;
  • Discovery of mRNA: DNA transcription RNA translation protein
  • Nucleoside-modified
  • Benefits of RNA-based vaccines: can’t change DNA RNA is NON replication vector- short-lived controllable
  • Pfizer/BioNTech and Moderna vaccine works:
  1. Inject vaccine – induce potent immune response – Uptake spike protein produced immune response trigered antibody T and B cell mount response
  2. Vaccine efficacy 27 days after 2nd dose 94.8%
  • 5 in a million – anafilactic response
  • NO CHANGE to DNA by the mRNA vaccine

Read Full Post »

Allon Klein, Harvard Medical School, and Aviv Regev, Genentech, Recipients of National Academy of Sciences James Prize in Science and Technology Integration 2021 Award

Reporter: Aviva Lev-Ari, PhD, RN

 

The National Academy of Sciences will award the inaugural James Prize in Science and Technology Integration to Allon Klein, Harvard Medical School, and Aviv Regev, Genentech Research and Early Development, the Broad Institute of MIT and Harvard, and Howard Hughes Medical Institute. They are receiving the $50,000 prize for “their concurrent development of now widely adopted massively parallel single-cell genomics to interrogate the gene expression profiles that define, at the level of individual cells, the distinct cell types in metazoan tissues, their developmental trajectories, and disease states, which integrated tools from molecular biology, engineering, statistics, and computer science.” The James Prize honors outstanding contributions made by researchers who are able to adopt or adapt information or techniques from outside their fields, integrating knowledge from two or more disciplines (e.g., engineering, mathematics, physics, chemistry, biology, biomedicine, geosciences, astronomy, or computational sciences) to solve a major contemporary challenge not addressable from a single disciplinary perspective.

 

Klein is recognized for innovating high-throughput experimental and mathematical approaches to analyze single-cell transcriptomes at an unprecedented level of detail and discover how cell fate is decided in metazoan tissues. His work combines statistics and physics with molecular biology. He has mapped differentiation hierarchies, identified transitional developmental states to predict features of fate control, and discovered new cell types and regenerative programs.

Regev is credited with forging new ways to unite the disciplines of biology, computational science, and engineering as a pioneer in the field of single-cell biology, including developing some of its core experimental and analysis tools, and their application to discover cell types, states, programs,  environmental responses, development, tissue locations, and regulatory circuits, and deploying these to assemble cellular atlases of the human body that illuminate mechanisms of disease with remarkable fidelity.

The prize, made possible through a generous donation from Robert “Bob” James, will be presented to Klein and Regev virtually during the National Academy of Sciences’ 158th annual meeting.

 
Awards News

 

» Stay tuned! The 2021 NAS Awards recipients will be announced on January 21 with the NAS Public Welfare Medal announced on January 25.
» In a recent episode of the podcast Clear+Vivid, hosted by 2016 Public Welfare Medalist Alan Alda, Marcia McNutt discusses her framework for delivering science in a crisis and how the National Academies are advising the nation during the COVID-19 pandemic. Click here to listen.

SOURCE

From: NAS Awards Program <awards@nas.edu>

Reply-To: NAS Awards Program <awards@nas.edu>

Date: Tuesday, January 19, 2021 at 11:04 AM

To: “Aviva Lev-Ari, PhD, RN” <AvivaLev-Ari@alum.berkeley.edu>

Subject: Inaugural James Prize in Science and Technology Integration Recipients Announced

Read Full Post »

Reporter: Stephen J. Williams, PhD

In an announcement televised on C-Span, President Elect Joseph Biden announced his new Science Team to advise on science policy matters, as part of the White House Advisory Committee on Science and Technology. Below is a video clip and the transcript, also available at

https://www.c-span.org/video/?508044-1/president-elect-biden-introduces-white-house-science-team

 

 

COMING UP TONIGHT ON C-SPAN, NEXT, PRESIDENT-ELECT JOE BIDEN AND VICE PRESIDENT-ELECT KAMALA HARRIS ANNOUNCE SEVERAL MEMBERS OF THEIR WHITE HOUSE SCIENCE TEAM. AND THEN SENATE MINORITY LEADER CHUCK SCHUMER TALKS ABOUT THE IMPEACHMENT OF PRESIDENT TRUMP IN THE WEEKLY DEMOCRATIC ADDRESS. AND AFTER THAT, TODAY’S SPEECH BY VICE PRESIDENT MIKE PENCE TO SAILORS AT NAVAL AIR STATION LAMORE IN CALIFORNIA. NEXT, PRESIDENT-ELECT JOE BIDEN AND VICE PRESIDENT-ELECT KAMALA HARRIS ANNOUNCE SEVERAL MEMBERS OF THEIR WHITE HOUSE SCIENCE TEAM. FROM WILMINGTON, DELAWARE, THIS IS ABOUT 40 MINUTES. PRESIDENT-ELECT BIDEN: GOOD AFTERNOON, FOLKS. I WAS TELLING THESE FOUR BRILLIANT SCIENTISTS AS I STOOD IN THE BACK, IN A WAY, THEY — THIS IS THE MOST EXCITING ANNOUNCEMENT THAT I’VE GOTTEN TO MAKE IN THE ENTIRE CABINET RAISED TO A CABINET LEVEL POSITION IN ONE CASE. THESE ARE AMONG THE BRIGHTEST MOST DEDICATED PEOPLE NOT ONLY IN THE COUNTRY BUT THE WORLD. THEY’RE COMPOSED OF SOME OF THE MOST SCIENTIFIC BRILLIANT MINDS IN THE WORLD. WHEN I WAS VICE PRESIDENT AS — I I HAD INTENSE INTEREST IN EVERYTHING THEY WERE DOING AND I PAID ENORMOUS ATTENTION. AND I WOULD — LIKE A KID GOING BACK TO SCHOOL. SIT DOWN AND CAN YOU EXPLAIN TO ME AND THEY WERE — VERY PATIENT WITH ME. AND — BUT AS PRESIDENT, I WANTED YOU TO KNOW I’M GOING TO PAY A GREAT DEAL OF ATTENTION. WHEN I TRAVEL THE WORLD AS VICE PRESIDENT, I WAS OFTEN ASKED TO EXPLAIN TO WORLD LEADERS, THEY ASKED ME THINGS LIKE DEFINE AMERICA. TELL ME HOW CAN YOU DEFINE AMERICA? WHAT’S AMERICA? AND I WAS ON A TIBETAN PLATEAU WITH AT THE TIME WITH XI ZIN PING AND WE HAD AN INTERPRETER CAN I DEFINE AMERICA FOR HIM? I SAID YES, I CAN. IN ONE WORD. POSSIBILITIES. POSSIBILITIES. I THINK IT’S ONE OF THE REASONS WHY WE’VE OCCASIONALLY BEEN REFERRED TO AS UGLY AMERICANS. WE THINK ANYTHING’S POSSIBLE GIVEN THE CHANCE, WE CAN DO ANYTHING. AND THAT’S PART OF I THINK THE AMERICAN SPIRIT. AND WHAT THE PEOPLE ON THIS STAGE AND THE DEPARTMENTS THEY WILL LEAD REPRESENT ENORMOUS POSSIBILITIES. THEY’RE THE ONES ASKING THE MOST AMERICAN OF QUESTIONS, WHAT NEXT? WHAT NEXT? NEVER SATISFIED, WHAT’S NEXT? AND WHAT’S NEXT IS BIG AND BREATHTAKING. HOW CAN — HOW CAN WE MAKE THE IMPOSSIBLE POSSIBLE? AND THEY WERE JUST ASKING QUESTIONS FOR THE SAKE OF QUESTIONS, THEY’RE ASKING THESE QUESTIONS AS CALL TO ACTION. , TO INSPIRE, TO HELP US IMAGINE THE FUTURE AND FIGURE OUT HOW TO MAKE IT REAL AND IMPROVE THE LIVES OF THE AMERICAN PEOPLE AND PEOPLE AROUND THE WORLD. THIS IS A TEAM THAT ASKED US TO IMAGINE EVERY HOME IN AMERICA BEING POWERED BY RENEWABLE ENERGY WITHIN THE NEXT 10 YEARS. OR 3-D IMAGE PRINTERS RESTORING TISSUE AFTER TRAUMATIC INJURIES AND HOSPITALS PRINTING ORGANS FOR ORGAN TRANSPLANTS. IMAGINE, IMAGINE. AND THEY REALLY — AND, YOU KNOW, THEN RALLY, THE SCIENTIFIC COMMUNITY TO GO ABOUT DOING WHAT WE’RE IMAGINING. YOU NEED SCIENCE, DATA AND DISCOVERY WAS A GOVERNING PHILOSOPHY IN THE OBAMA-BIDEN ADMINISTRATION. AND EVERYTHING FROM THE ECONOMY TO THE ENVIRONMENT TO CRIMINAL JUSTICE REFORM AND TO NATIONAL SECURITY. AND ON HEALTH CARE. FOR EXAMPLE, A BELIEF IN SCIENCE LED OUR EFFORTS TO MAP THE HUMAN BRAIN AND TO DEVELOP MORE PRECISE INDIVIDUALIZED MEDICINES. IT LED TO OUR ONGOING MISSION TO END CANCER AS WE KNOW IT, SOMETHING THAT IS DEEPLY PERSONAL TO BOTH MY FAMILY AND KAMALA’S FAMILY AND COUNTLESS FAMILIES IN AMERICA. WHEN PRESIDENT OBAMA ASKED ME TO LEAD THE CANCER MOON SHOT, I KNEW WE HAD TO INJECT A SENSE OF URGENCY INTO THE FIGHT. WE BELIEVED WE COULD DOUBLE THE RATE OF PROGRESS AND DO IN FIVE YEARS WHAT OTHERWISE WOULD TAKE 10. MY WIFE, JILL, AND I TRAVELED AROUND THE COUNTRY AND THE WORLD MEETING WITH THOUSANDS OF CANCER PATIENTS AND THEIR FAMILIES, PHYSICIANS, RESEARCHERS, PHILANTHROPISTS, TECHNOLOGY LEADERS AND HEADS OF STATE. WE SOUGHT TO BETTER UNDERSTAND AND BREAK DOWN THE SILOS AND STOVE PIPES THAT PREVENT THE SHARING OF INFORMATION AND IMPEDE ADVANCES IN CANCER RESEARCH AND TREATMENT WHILE BUILDING A FOCUSED AND COORDINATED EFFORT HERE AT HOME AND ABROAD. WE MADE PROGRESS. BUT THERE’S SO MUCH MORE THAT WE CAN DO. WHEN I ANNOUNCED THAT I WOULD NOT RUN IN 2015 AT THE TIME, I SAID I ONLY HAD ONE REGRET IN THE ROSE GARDEN AND IF I HAD ANY REGRETS THAT I HAD WON, THAT I WOULDN’T GET TO BE THE PRESIDENT TO PRESIDE OVER CANCER AS WE KNOW IT. WELL, AS GOD WILLING, AND ON THE 20TH OF THIS MONTH IN A COUPLE OF DAYS AS PRESIDENT I’M GOING TO DO EVERYTHING I CAN TO GET THAT DONE. I’M GOING TO — GOING TO BE A PRIORITY FOR ME AND FOR KAMALA AND IT’S A SIGNATURE ISSUE FOR JILL AS FIRST LADY. WE KNOW THE SCIENCE IS DISCOVERY AND NOT FICTION. AND IT’S ALSO ABOUT HOPE. AND THAT’S AMERICA. IT’S IN THE D.N.A. OF THIS COUNTRY, HOPE. WE’RE ON THE CUSP OF SOME OF THE MOST REMARKABLE BREAKTHROUGHS THAT WILL FUNDAMENTALLY CHANGE THE WAY OF LIFE FOR ALL LIFE ON THIS PLANET. WE CAN MAKE MORE PROGRESS IN THE NEXT 10 YEARS, I PREDICT, THAN WE’VE MADE IN THE LAST 50 YEARS. AND EXPONENTIAL MOVEMENT. WE CAN ALSO FACE SOME OF THE MOST DIRE CRISES IN A GENERATION WHERE SCIENCE IS CRITICAL TO WHETHER OR NOT WE MEET THE MOMENT OF PERIL AND PROMISE THAT WE KNOW IS WITHIN OUR REACH. IN 1944, FRANKLIN ROOSEVELT ASKED HIS SCIENCE ADVISOR HOW COULD THE UNITED STATES FURTHER ADVANCE SCIENTIFIC RESEARCH IN THE CRITICAL YEARS FOLLOWING THE SECOND WORLD WAR? THE RESPONSE LED TO SOME OF THE MOST GROUND BREAKING DISCOVERIES IN THE LAST 75 YEARS. AND WE CAN DO THAT AGAIN. AND WE CAN DO MORE. SO TODAY, I’M PROUD TO ANNOUNCE A TEAM OF SOME OF THE COUNTRY’S MOST BRILLIANT AND ACCOMPLISHED SCIENTISTS TO LEAD THE WAY. AND I’M ASKING THEM TO FOCUS ON FIVE KEY AREAS. FIRST THE PANDEMIC AND WHAT WE CAN LEARN ABOUT WHAT IS POSSIBLE OR WHAT SHOULD BE POSSIBLE TO ADDRESS THE WIDEST RANGE OF PUBLIC HEALTH NEEDS. SECONDLY, THE ECONOMY, HOW CAN WE BUILD BACK BETTER TO ENSURE PROSPERITY IS FULLY SHARED ALL ACROSS AMERICA? AMONG ALL AMERICANS? AND THIRDLY, HOW SCIENCE HELPS US CONFRONT THIS CLIMATE CRISIS WE FACE IN AMERICA AND THE WORLD BUT IN AMERICA HOW IT HELPS US CONFRONT THE CLIMATE CRISIS WITH AMERICAN JOBS AND INGENUITY. AND FOURTH, HOW CAN WE ENSURE THE UNITED STATES LEADS THE WORLD IN TECHNOLOGIES AND THE INDUSTRIES THAT THE FUTURE THAT WILL BE CRITICAL FOR OUR ECONOMIC PROSPERITY AND NATIONAL SECURITY? ESPECIALLY WITH THE INTENSE INCREASED COMPETITION AROUND THE WORLD FROM CHINA ON? AND FIFTH, HOW CAN WE ASSURE THE LONG-TERM HEALTH AND TRUST IN SCIENCE AND TECHNOLOGY IN OUR NATION? YOU KNOW, THESE ARE EACH QUESTIONS THAT CALL FOR ACTION. AND I’M HONORED TO ANNOUNCE A TEAM THAT IS ANSWERING THE CALL TO SERVE. AS THE PRESIDENTIAL SCIENCE ADVISOR AND DIRECTOR OF THE OFFICE OF SCIENCE AND TECHNOLOGY POLICY, I NOMINATE ONE OF THE MOST BRILLIANT GUYS I KNOW, PERSONS I KNOW, DR. ERIC LANDER. AND THANK YOU, DOC, FOR COMING BACK. THE PIONEER — HE’S A PIONEER IN THE STIFFING COMMUNITY. PRINCIPAL LEADER IN THE HUMAN GENOME PROJECT. AND NOT HYPERBOLE TO SUGGEST THAT DR. LANDER’S WORK HAS CHANGED THE COURSE OF HUMAN HISTORY. HIS ROLE IN HELPING US MAP THE GENOME PULLED BACK THE CURTAIN ON HUMAN DISEASE, ALLOWING SCIENTISTS, EVER SINCE, AND FOR GENERATIONS TO COME TO EXPLORE THE MOLECULAR BASIS FOR SOME OF THE MOST DEVASTATING ILLNESSES AFFECTING OUR WORLD. AND THE APPLICATION OF HIS PIONEERING WORK AS — ARE POISED TO LEAD TO INCREDIBLE CURES AND BREAKTHROUGHS IN THE YEARS TO COME. DR. LANDER NOW SERVES AS THE PRESIDENT AND FOUNDING DIRECTOR OF THE BRODE INSTITUTE AT M.I.T. AND HARVARD, THE WORLD’S FOREMOST NONPROFIT GENETIC RESEARCH ORGANIZATION. AND I CAME TO APPRECIATE DR. LANDER’S EXTRAORDINARY MIND WHEN HE SERVED AS THE CO-CHAIR OF THE PRESIDENT’S COUNCIL ON ADVISORS AND SCIENCE AND TECHNOLOGY DURING THE OBAMA-BIDEN ADMINISTRATION. AND I’M GRATEFUL, I’M GRATEFUL THAT WE CAN WORK TOGETHER AGAIN. I’VE ALWAYS SAID THAT BIDEN-HARRIS ADMINISTRATION WILL ALSO LEAD AND WE’RE GOING TO LEAD WITH SCIENCE AND TRUTH. WE BELIEVE IN BOTH. [LAUGHTER] GOD WILLING OVERCOME THE PANDEMIC AND BUILD OUR COUNTRY BETTER THAN IT WAS BEFORE. AND THAT’S WHY FOR THE FIRST TIME IN HISTORY, I’M GOING TO BE ELEVATING THE PRESIDENTIAL SCIENCE ADVISOR TO A CABINET RANK BECAUSE WE THINK IT’S THAT IMPORTANT. AS DEPUTY DIRECTOR OF THE OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND SCIENCE AND — SCIENCE AND SOCIETY, I APPOINT DR. NELSON. SHE’S A PROFESSOR AT THE INSTITUTE OF ADVANCED STUDIES AT PRINCETON UNIVERSITY. THE PRESIDENT OF THE SOCIAL SCIENCE RESEARCH COUNCIL. AND ONE OF AMERICA’S LEADING SCHOLARS IN THE — AN AWARD-WINNING AUTHOR AND RESEARCHER AND EXPLORING THE CONNECTIONS BETWEEN SCIENCE AND OUR SOCIETY. THE DAUGHTER OF A MILITARY FAMILY, HER DAD SERVED IN THE UNITED STATES NAVY AND HER MOM WAS AN ARMY CRIPPING TO RAFFER. DR. NELSON DEVELOPED A LOVE OF TECHNOLOGY AT A VERY YOUNG AGE PARTICULARLY WITH THE EARLY COMPUTER PRODUCTS. COMPUTING PRODUCTS AND CODE-BREAKING EQUIPMENT THAT EVERY KID HAS AROUND THEIR HOUSE. AND SHE GREW UP WITHIN HER HOME. WHEN I WROTE THAT DOWN, I THOUGHT TO MYSELF, I MEAN, HOW MANY KIDS — ANY WAY, THAT PASSION WAS A PASSION FORGED A LIFELONG CURIOSITY ABOUT THE INEQUITIES AND THE POWER DIAMONDICS THAT SIT BENEATH THE SURFACE OF SCIENTIFIC RESEARCH AND THE TECHNOLOGY WE BUILD. DR. NELSON IS FOCUSED ON THOSE INSIGHTS. AND THE SCIENCE, TECHNOLOGY AND SOCIETY, LIKE FEW BEFORE HER EVER HAVE IN AMERICAN HISTORY. BREAKING NEW GROUND ON OUR UNDERSTANDING OF THE ROLE SCIENCE PLAYS IN AMERICAN LIFE AND OPENING THE DOOR TO — TO A FUTURE WHICH SCIENCE BETTER SERVES ALL PEOPLE. AS CO-CHAIR OF THE PRESIDENT’S COUNCIL ON ADVISORS OF SCIENCE AND TECHNOLOGY,APPOINT DR. FRANCIS ARNOLD, DIRECTOR OF THE ROSE BIOENGINEERING CENTER AT CALTECH AND ONE OF THE WORLD’S LEADING EXPERTS IN PROTEIN ENGINEERING, A LIFE-LONG CHAMPION OF RENEWABLE ENERGY SOLUTIONS WHO HAS BEEN INDUCTED INTO THE NATIONAL INVENTORS’ HALL OF FAME. THAT AIN’T A BAD PLACE TO BE. NOT ONLY IS SHE THE FIRST WOMAN TO BE ELECTED TO ALL THREE NATIONAL ACADEMIES OF SCIENCE, MEDICINE AND ENGINEERING AND ALSO THE FIRST WOMAN, AMERICAN WOMAN, TO WIN A NOBEL PRIZE IN CHEMISTRY. A VERY SLOW LEARNER, SLOW STARTER, THE DAUGHTER OF PITTSBURGH, SHE WORKED AS A CAB DRIVER, A JAZZ CLUB SERVER, BEFORE MAKING HER WAY TO BERKELEY AND A CAREER ON THE LEADING EDGE OF HUMAN DISCOVERY. AND I WANT TO MAKE THAT POINT AGAIN. I WANT — IF ANY OF YOUR CHILDREN ARE WATCHING, LET THEM KNOW YOU CAN DO ANYTHING. THIS COUNTRY CAN DO ANYTHING. ANYTHING AT ALL. AND SO SHE SURVIVED BREAST CANCER, OVERCAME A TRAGIC LOSS IN HER FAMILY WHILE RISING TO THE TOP OF HER FIELD, STILL OVERWHELMINGLY DOMINATED BY MEN. HER PASSION HAS BEEN A STEADFAST COMMITMENT TO RENEWABLE ENERGY FOR THE BETTERMENT OF OUR PLANET AND HUMANKIND. SHE IS AN INSPIRING FIGURE TO SCIENTISTS ACROSS THE FIELD AND ACROSS NATIONS. AND I WANT TO THANK DR. ARNOLD FOR AGREEING TO CO-CHAIR A FIRST ALL WOMAN TEAM TO LEAD THE PRESIDENT’S COUNCIL OF ADVISORS ON SCIENCE AND TECHNOLOGY WHICH LEADS ME TO THE NEXT MEMBER OF THE TEAM. AS CO-CHAIR, THE PRESIDENT’S COUNCIL OF ADVISORS ON SCIENCE AND TECHNOLOGY, I APPOINT DR. MARIE ZUBER. A TRAIL BLAZER BRAISING GEO PHYSICIST AND PLANETARY SCIENTIST A. FORMER CHAIR OF THE NATIONAL SCIENCE BOARD. FIRST WOMAN TO LEAD THE SCIENCE DEPARTMENT AT M.I.T. AND THE FIRST WOMAN TO LEAD NASA’S ROBOTIC PLANETARY MISSION. GROWING UP IN COLE COUNTRY NOT FAR FROM HEAVEN, SCRANTON, PENNSYLVANIA, IN CARBON COUNTY, PENNSYLVANIA, ABOUT 50 MILES SOUTH OF WHERE I WAS A KID, SHE DREAMED OF EXPLORING OUTER SPACE. COULD HAVE TOLD HER SHE WOULD JUST GO TO GREEN REACH IN SCRANTON AND FIND WHERE IT WAS. AND I SHOULDN’T BE SO FLIPPANT. BUT I’M SO EXCITED ABOUT THESE FOLKS. YOU KNOW, READING EVERY BOOK SHE COULD FIND AND LISTENING TO HER MOM’S STORIES ABOUT WATCHING THE EARLIEST ROCKET LAUNCH ON TELEVISION, MARIE BECAME THE FIRST PERSON IN HER FAMILY TO GO TO COLLEGE AND NEVER LET GO OF HER DREAM. TODAY SHE OVERSEES THE LINCOLN LABORATORY AT M.I.T. AND LEADS THE INSTITUTION’S CLIMATE ACTION PLAN. GROWING UP IN COLD COUNTRY, NOT AND FINALLY, COULD NOT BE HERE TODAY, BUT I’M PLEASED TO ANNOUNCE THAT I’VE HAD A LONG CONVERSATION WITH DR. FRANCIS COLLINS AND COULD NOT BE HERE TODAY. AND I’VE ASKED THEM TO STAY ON AS DIRECTOR OF THE INSTITUTE OF HEALTH AND — AT THIS CRITICAL MOMENT. I’VE KNOWN DR. COLLINS FOR MANY YEARS. I WORKED WITH HIM CLOSELY. HE’S BRILLIANT. A PIONEER. A TRUE LEADER. AND ABOVE ALL, HE’S A MODEL OF PUBLIC SERVICE AND I’M HONORED TO BE WORKING WITH HIM AGAIN. AND IT IS — IN HIS ABSENCE I WANT TO THANK HIM AGAIN FOR BEING WILLING TO STAY ON. I KNOW THAT WASN’T HIS ORIGINAL PLAN. BUT WE WORKED AN AWFUL LOT ON THE MOON SHOT AND DEALING WITH CANCER AND I JUST WANT TO THANK HIM AGAIN. AND TO EACH OF YOU AND YOUR FAMILIES, AND I SAY YOUR FAMILIES, THANK YOU FOR THE WILLINGNESS TO SERVE. AND NOT THAT YOU HAVEN’T BEEN SERVING ALREADY BUT TO SERVE IN THE ADMINISTRATION. AND THE AMERICAN PEOPLE, TO ALL THE AMERICAN PEOPLE, THIS IS A TEAM THAT’S GOING TO HELP RESTORE YOUR FAITH IN AMERICA’S PLACE IN THE FRONTIER OF SCIENCE AND DISCOVER AND HOPE. I’M NOW GOING TO TURN THIS OVER STARTING WITH DR. LANDER, TO EACH OF OUR NOMINEES AND THEN WITH — HEAR FROM THE VICE PRESIDENT. BUT AGAIN, JUST CAN’T THANK YOU ENOUGH AND I REALLY MEAN IT. THANK YOU, THANK YOU, THANK YOU FOR WILLING TO DO THIS. DOCTOR, IT’S ALL YOURS. I BETTER PUT MY MASK ON OR I’M GOING TO GET IN TROUBLE.

 

Director’s Page

Read Full Post »

2020 Nobel Prize in Economic Sciences for improvements to auction theory and inventions of new auction formats to Paul R. Milgrom and Robert B. Wilson

Reporter: Aviva Lev- Ari, PhD, RN

UPDATED on 10/16/2020

The Nobel Prize for economic sciences this year went to Paul MIlgrom and Robert Wilson. Milgrom is recognized as one of the world’s great experts in auction theory, and I interviewed him for my book In the Plex (finally out in paper next February!) about Google’s clever AdWords approach to bidding, which was crafted by Google engineer Eric Veach along with his boss Salar Kamangar. I’d asked Milgrom to compare the AdWords system to the competitor, Overture:

One fan of Veach’s system was the top auction theorist, Stanford economist Paul Milgrom. “Overture’s auctions were much less successful,” says Milgrom. “In that world, you bid by the slot. If you wanted to be in third position, you put in a bid for third. If there’s an obvious guy to win the first position, nobody would bid against him, and he’d get it cheap. If you wanted to be in every position, you had to make bids for each of them. But Google simplified the auction. Instead of making eight bids for the eight positions, you made one single bid. The competition for second position will automatically raise the price for the first position. So the simplification thickens the market. The effect is that it guarantees that there’s competition for the top positions.”

Veach and Kamangar’s implementation was so impressive that it changed even Milgrom’s way of thinking. “Once I saw this from Google, I began seeing it everywhere,” he says, citing examples in spectrum auctions, diamond markets, and the competition between Kenyan and Rwandan coffee beans. “I’ve begun to realize that Google somehow or other introduced a level of simplification to ad auctions that was not included before.” And it wasn’t just a theoretical advance. “Google immediately started getting higher prices for advertising than Overture was getting,” he notes.

SOURCE

From: WIRED’s Steven Levy <wired@newsletters.wired.com>

Date: Friday, October 16, 2020 at 8:00 AM

To: “Aviva Lev-Ari, PhD, RN” <AvivaLev-Ari@alum.berkeley.edu>

Subject: Clarence Thomas wants to rethink internet speech. Be afraid

Paul Milgrom (left) and Robert Wilson share the 2020 Nobel prize in economic sciences for improvements to auction theory and invention of new auction formats.

Image Credit: Elena Zhukova for the Stanford Graduate School of Business

UPDATED on 10/13/2020

 

The 2020 Nobel prize in economic sciences rewards work on an ancient form of transaction that has acquired new complexity and urgency in the modern age: the auction.

Insights in auction theory made by Paul Milgrom and Robert Wilson, both of Stanford University in California, have found applications ranging from the pricing of government bonds to the licensing of radio-spectrum bands in telecommunications.

Diane Coyle of the University of Cambridge, UK, says that the Nobel, announced on 12 October, will be widely welcomed. “These two not only did foundational work themselves”, she says, “but also inspired cohorts of younger researchers.”

Economist Preston McAfee of Google agrees. “I, and thousands like me, use the fruits of their work on a daily basis to make markets work better — to improve pricing, to manage incentives, to facilitate decision-making, to increase efficiency.”

Their research has intersected with computer science and communications engineering to lay the foundations for many online platforms, Coyle adds.

Economist John Kagel of Ohio State University in Columbus, USA, called it “an outstanding selection”.

Online platforms such as eBay have raised public awareness of some of the complexities of auctions. There are many ways to stage them: for example, in a so-called “English auction” the item on offer simply goes to the highest bidder; whereas in a “Dutch auction” the selling starts from a high price, and bidders submit the price they are willing to pay.

But bidding is affected by many more factors that might reduce the seller’s final profit, cause losses for the winning bidder, create inefficiencies of allocation, or harm the public good. The work of the two laureates has helped to reduce these problems and to suggest new, more efficient ways for auctions to be conducted.

One problem is that different bidders can have different degrees of knowledge about an item for sale. For example, in a property auction, all bidders for a property will have access to some public information such as its resale value. But other kinds of information — such as hidden structural damage — will be private and not known to everyone.

A bidder who does not have such information might end up overpaying if they want to buy the property. They might be able to infer what others know about the value if bids are public – and people start to drop out – but not if bids are private.

In the late 1960s and 1970s, Wilson showed what happens to prices and profits in auctions when bidders have different degrees of private information.

Furthermore, if information about a property is highly uncertain — if the nature of the neighbourhood is rapidly changing, say — that could make buyers cautious and reduce the seller’s profit. In the 1980s, Milgrom — a former doctoral student of Wilson’s — developed models (partly in conjunction with Robert Weber of Northwestern University) that showed there is then an incentive for sellers to gather and share expert information with bidders, within different auction formats. The predictions of how such public information helps prevent losses to sellers and increases their revenue have been born out by experiments, says Kagel.

A spectrum of options

Auctions can be more complex when the goods for sale are divisible into parts or batches — for example, when governments sell licenses to companies bidding to operate in energy, telecommunications or transportation markets. One issue for such auctions is that sellers are vulnerable to collusion between buyers to keep the buying price down. Wilson’s work in the 1970s helped to identify these problems and to design new auctions to avoid them, for example in markets for electricity provision.

The sales of items might also be interdependent. A classic example in the 1990s was the sale of radio-frequency bands to telecom companies for mobile-phone networks — which many countries decided was best done through auctions.

If rights to frequency bands were simply auctioned region by region, a national telecoms company couldn’t be sure of acquiring the same frequency everywhere. And the value to them for one region would depend on whether they could buy the same frequency band elsewhere. The resulting patchwork of coverage would be inconvenient for users too.

To tackle such problems, Milgrom and Wilson (and independently, McAfee) devised the simultaneous multiple-round auction (SMRA). Here, bidders can place bids over several rounds of bidding. This gives them a chance to glean something about others’ private information while bidding, creating fairer and more efficient outcomes.

This approach was used in 1994 for auctioning telecom licenses in the United States, and has been adopted in Canada, India, and several European and Scandinavian countries. Milgrom has also devised other formats that ease some of the shortcomings of the SMRA.

“Unlike many theoreticians, Wilson and Milgrom brought their work to the real world, and transformed government policies toward auctions around the world,” says McAfee.

“There was no question that these two would win the Nobel prize at some point,” says economist Paul Klemperer of the University of Oxford. “It could have happened at any time in the past 20 years.”

“One could even imagine Paul Milgrom having a second Nobel prize,” he adds, for his work in information economics and industrial organization. Milgrom has given a Nobel acceptance speech before: in 1996, as a stand-in for William Vickery, who died three days after the announcement of his prize for laying the foundations of auction theory in the 1960s.

SOURCE

Prize announcement. NobelPrize.org. Nobel Media AB 2020. Mon. 12 Oct 2020

https://www.nobelprize.org/prizes/economic-sciences/2020/prize-announcement/

The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 2020

Paul R. Milgrom

© Nobel Media. Ill. Niklas Elmehed.

Paul R. Milgrom

Prize share: 1/2

Robert B. Wilson

 

© Nobel Media. Ill. Niklas Elmehed.

Robert B. Wilson

Prize share: 1/2

The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 2020 was awarded jointly to Paul R. Milgrom and Robert B. Wilson “for improvements to auction theory and inventions of new auction formats.”

 
 

Prize announcement

Announcement of the 2020 Prize in Economic Sciences by Professor Göran K. Hansson, Secretary General of the Royal Swedish Academy of Sciences, on 12 October 2020.

“This prize is about avoiding the winner’s curse”

Immediately after the announcement, Tommy Andersson, member of the committee for the Prize in Economic Sciences, was interviewed by freelance journalist Joanna Rose regarding the 2020 Prize in Economic Sciences.

Press release: The Prize in Economic Sciences 2020

English
English (pdf)
Swedish
Swedish (pdf)
Logo

12 October 2020

The Royal Swedish Academy of Sciences has decided to award the Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 2020 to

Paul R. Milgrom
Stanford University, USA

Robert B. Wilson
Stanford University, USA

“for improvements to auction theory and inventions of new auction formats”

Their theoretical discoveries have improved auctions in practice

This year’s Laureates, Paul Milgrom and Robert Wilson, have studied how auctions work. They have also used their insights to design new auction formats for goods and services that are difficult to sell in a traditional way, such as radio frequencies. Their discoveries have benefitted sellers, buyers and taxpayers around the world.

People have always sold things to the highest bidder, or bought them from whoever makes the cheapest offer. Nowadays, objects worth astronomical sums of money change hands every day in auctions, not only household objects, art and antiquities, but also securities, minerals and energy. Public procurements can also be conducted as auctions.

Using auction theory, researchers try to understand the outcomes of different rules for bidding and final prices, the auction format. The analysis is difficult, because bidders behave strategically, based on the available information. They take into consideration both what they know themselves and what they believe other bidders to know.

Robert Wilson developed the theory for auctions of objects with a common value – a value which is uncertain beforehand but, in the end, is the same for everyone. Examples include the future value of radio frequencies or the volume of minerals in a particular area. Wilson showed why rational bidders tend to place bids below their own best estimate of the common value: they are worried about the winner’s curse – that is, about paying too much and losing out.

Paul Milgrom formulated a more general theory of auctions that not only allows common values, but also private values that vary from bidder to bidder. He analysed the bidding strategies in a number of well-known auction formats, demonstrating that a format will give the seller higher expected revenue when bidders learn more about each other’s estimated values during bidding.

Over time, societies have allocated ever more complex objects among users, such as landing slots and radio frequencies. In response, Milgrom and Wilson invented new formats for auctioning off many interrelated objects simultaneously, on behalf of a seller motivated by broad societal benefit rather than maximal revenue. In 1994, the US authorities first used one of their auction formats to sell radio frequencies to telecom operators. Since then, many other countries have followed suit.

“This year’s Laureates in Economic Sciences started out with fundamental theory and later used their results in practical applications, which have spread globally. Their discoveries are of great benefit to society,” says Peter Fredriksson, chair of the Prize Committee.

Illustrations

The illustrations are free to use for non-commercial purposes. Attribute ”© Johan Jarnestad/The Royal Swedish Academy of Sciences”

Illustration: Auctions (pdf)
Illustration: Winner’s curse (pdf)
Illustration: Auction frequencies (pdf)

Read more about this year’s prize

Popular science background: The quest for the perfect auction
Scientific Background: Improvements to auction theory and inventions of new auction formats

Paul R. Milgrom, born 1948 in Detroit, USA.
Ph.D. 1979 from Stanford University, Stanford, USA. Shirley and Leonard Ely Jr. Professor of Humanities and Sciences, Stanford University, USA.

Robert B. Wilson, born 1937 in Geneva, USA.
D.B.A. 1963 from Harvard University, Cambridge, USA. Adams Distinguished Professor of Management, Emeritus, Stanford University, USA.

The Prize amount: 10 million Swedish kronor, to be shared equally between the Laureates.
Further information: www.kva.se and http://www.nobelprize.org
Press contact: Eva Nevelius, Press Secretary, +46 70 878 67 63, eva.nevelius@kva.se
Experts: Tommy Andersson, +46 73 358 26 54, tommy.andersson@nek.lu.se, Tore Ellingsen, +46 70 796 10 49, tore.ellingsen@hhs.se, Torsten Persson, +46 79 313 39 04, torsten.persson@iies.su.se, Committee for the Prize in Economic Sciences in Memory of Alfred Nobel

SOURCE

https://www.nobelprize.org/prizes/economic-sciences/2020/summary/

Read Full Post »

The University of California has a proud legacy of winning Nobel Prizes, 68 faculty and staff have been awarded 69 Nobel Prizes.

Reporter: Aviva Lev-Ari, PhD, RN

 

PREVIOUS PRIZE WINNERS

The University of California has a proud legacy of winning Nobel Prizes that stretches all the way back to 1939, when Ernest O. Lawrence was awarded the prize in physics for his invention of the cyclotron. In the years since, dozens of other University of California faculty and staff have been awarded this highest international honor for their contributions in medicine, economics, physics and more.

Today, 68 faculty and staff have been awarded 69 Nobel Prizes.

View as grid

Name

Campus affiliation

Field of study

Year of award

  • Jennifer Doudna

    UC Berkeley

    Chemistry

    2020

  • Andrea Ghez

    UCLA

    Physics

    2020

  • Reinhard Genzel

    UC Berkeley

    Physics

    2020

  • Randy Schekman

    UC Berkeley

    Physiology or medicine

    2013

  • Lloyd Shapley

    UCLA

    Economics

    2012

  • Shinya Yamanaka

    UC San Francisco

    Physiology or medicine

    2012

  • Saul Perlmutter

    UC Berkeley/Berkeley Lab

    Physics

    2011

  • Elizabeth Blackburn

    UC San Francisco

    Physiology or medicine

    2009

  • Oliver E. Williamson

    UC Berkeley

    Economics

    2009

  • Roger Y. Tsien

    UC San Diego

    Chemistry

    2008

  • George Smoot

    UC Berkeley/Berkeley Lab

    Physics

    2006

  • Richard R. Schrock

    UC Riverside

    Chemistry

    2005

  • David Gross

    UC Santa Barbara

    Physics

    2004

  • Finn E. Kydland

    UC Santa Barbara

    Economic sciences

    2004

  • Irwin Rose

    UC Irvine

    Chemistry

    2004

  • Robert F. Engle

    UC San Diego

    Economic sciences

    2003

  • Clive Granger

    UC San Diego

    Economic sciences

    2003

  • Sydney Brenner

    UC San Diego

    Physiology or medicine

    2002

  • George Akerlof

    UC Berkeley

    Economic sciences

    2001

  • Alan J. Heeger

    UC Santa Barbara

    Chemistry

    2000

  • Herbert Kroemer

    UC Santa Barbara

    Physics

    2000

  • Daniel McFadden

    UC Berkeley

    Economic sciences

    2000

  • Louis J. Ignarro

    UCLA

    Physiology or medicine

    1998

  • Walter Kohn

    UC Santa Barbara

    Chemistry

    1998

  • Robert B. Laughlin

    UC Livermore Lab

    Physics

    1998

  • Paul D. Boyer

    UCLA

    Chemistry

    1997

  • Steven Chu

    UC Berkeley/Berkeley Lab

    Physics

    1997

  • Stanley B. Prusiner

    UC San Francisco

    Physiology or medicine

    1997

  • Paul Crutzen

    UC San Diego

    Chemistry

    1995

  • Mario J. Molina

    UC San Diego

    Chemistry

    1995

  • Frederick Reines

    UC Irvine

    Physics

    1995

  • F. Sherwood Rowland

    UC Irvine

    Chemistry

    1995

  • John Harsanyi

    UC Berkeley

    Economic sciences

    1994

  • Harry Markowitz

    UC San Diego

    Economic sciences

    1990

  • J. Michael Bishop

    UC San Francisco

    Physiology or medicine

    1989

  • Harold E. Varmus

    UC San Francisco

    Physiology or medicine

    1989

  • Donald J. Cram

    UCLA

    Chemistry

    1987

  • Yuan T. Lee

    UC Berkeley/Berkeley Lab

    Chemistry

    1986

  • Gerard Debreu

    UC Berkeley

    Economic sciences

    1983

  • Czeslaw Milosz

    UC Berkeley

    Literature

    1980

  • Roger Guillemin

    UC San Diego

    Physiology or medicine

    1977

  • Renato Dulbecco

    UC San Diego

    Physiology or medicine

    1975

  • George Emil Palade

    UC San Diego

    Physiology or medicine

    1974

  • John Robert Schrieffer

    UC Santa Barbara

    Physics

    1972

  • Hannes Alfven

    UC San Diego

    Physics

    1970

  • Luis Walter Alvarez

    UC Berkeley/Berkeley Lab

    Physics

    1968

  • Robert W. Holley

    UC San Diego

    Physiology or medicine

    1968

  • Julian Schwinger

    UCLA

    Physics

    1965

  • Charles H. Townes

    UC Berkeley

    Physics

    1964

  • Maria Goeppert-Mayer

    UC San Diego

    Physics

    1963

  • Francis Crick

    UC San Diego

    Physiology or medicine

    1962

  • Melvin Calvin

    UC Berkeley/Berkeley Lab

    Chemistry

    1961

  • Donald A. Glaser

    UC Berkeley/Berkeley Lab

    Physics

    1960

  • Willard Libby

    UCLA

    Chemistry

    1960

  • Owen Chamberlain

    UC Berkeley/Berkeley Lab

    Physics

    1959

  • Emilio Segrè

    UC Berkeley/Berkeley Lab

    Chemistry

    1959

  • Linus Pauling

    UC San Diego

    Chemistry, Peace

    1954, 1962

  • Edwin McMillan

    UC Berkeley/Berkeley Lab

    Chemistry

    1951

  • Glenn T. Seaborg

    UC Berkeley/Berkeley Lab

    Chemistry

    1951

  • William Giauque

    UC Berkeley

    Chemistry

    1949

  • John Howard Northrop

    UC Berkeley

    Chemistry

    1946

  • Wendell Meredith Stanley

    UC Berkeley

    Chemistry

    1946

  • Ernest Lawrence

    UC Berkeley/Berkeley Lab

    Physics

    1939

  • Harold Urey

    UC San Diego

    Chemistry

    1934

HOW UC NOBEL LAUREATES ARE COUNTED

Our list of Nobel Prize winners includes University of California faculty and staff who were affiliated with UC when they received their award. It also includes faculty and staff who joined UC after receiving their Nobel Prize. And although we are immensely proud of the many UC alumni who have gone on to receive Nobel Prizes, they are not counted here. Nor are visiting scholars or others who had short-term assignments with UC. Finally, our Nobelist list is a “lifetime” list and includes those living, retired or deceased.

SOURCE

https://nobel.universityofcalifornia.edu/

Read Full Post »

The Nobel Prize in Chemistry 2020: Emmanuelle Charpentier & Jennifer A. Doudna

Reporters: Stephen J. Williams, Ph.D. and Aviva Lev-Ari, PhD, RN

The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Chemistry 2020 to

Emmanuelle Charpentier
Max Planck Unit for the Science of Pathogens, Berlin, Germany

Jennifer A. Doudna
University of California, Berkeley, USA

“for the development of a method for genome editing”

Genetic scissors: a tool for rewriting the code of life

Emmanuelle Charpentier and Jennifer A. Doudna have discovered one of gene technology’s sharpest tools: the CRISPR/Cas9 genetic scissors. Using these, researchers can change the DNA of animals, plants and microorganisms with extremely high precision. This technology has had a revolutionary impact on the life sciences, is contributing to new cancer therapies and may make the dream of curing inherited diseases come true.

Researchers need to modify genes in cells if they are to find out about life’s inner workings. This used to be time-consuming, difficult and sometimes impossible work. Using the CRISPR/Cas9 genetic scissors, it is now possible to change the code of life over the course of a few weeks.

“There is enormous power in this genetic tool, which affects us all. It has not only revolutionised basic science, but also resulted in innovative crops and will lead to ground-breaking new medical treatments,” says Claes Gustafsson, chair of the Nobel Committee for Chemistry.

As so often in science, the discovery of these genetic scissors was unexpected. During Emmanuelle Charpentier’s studies of Streptococcus pyogenes, one of the bacteria that cause the most harm to humanity, she discovered a previously unknown molecule, tracrRNA. Her work showed that tracrRNA is part of bacteria’s ancient immune system, CRISPR/Cas, that disarms viruses by cleaving their DNA.

Charpentier published her discovery in 2011. The same year, she initiated a collaboration with Jennifer Doudna, an experienced biochemist with vast knowledge of RNA. Together, they succeeded in recreating the bacteria’s genetic scissors in a test tube and simplifying the scissors’ molecular components so they were easier to use.

In an epoch-making experiment, they then reprogrammed the genetic scissors. In their natural form, the scissors recognise DNA from viruses, but Charpentier and Doudna proved that they could be controlled so that they can cut any DNA molecule at a predetermined site. Where the DNA is cut it is then easy to rewrite the code of life.

Since Charpentier and Doudna discovered the CRISPR/Cas9 genetic scissors in 2012 their use has exploded. This tool has contributed to many important discoveries in basic research, and plant researchers have been able to develop crops that withstand mould, pests and drought. In medicine, clinical trials of new cancer therapies are underway, and the dream of being able to cure inherited diseases is about to come true. These genetic scissors have taken the life sciences into a new epoch and, in many ways, are bringing the greatest benefit to humankind.

Illustrations

The illustrations are free to use for non-commercial purposes. Attribute ”© Johan Jarnestad/The Royal Swedish Academy of Sciences”

Illustration: Using the genetic scissors (pdf)
Illustration: Streptococcus’ natural immune system against viruses:CRISPR/Cas9 pdf)
Illustration: CRISPR/Cas9 genetic scissors (pdf)

Read more about this year’s prize

Popular information: Genetic scissors: a tool for rewriting the code of life (pdf)
Scientific Background: A tool for genome editing (pdf)

Emmanuelle Charpentier, born 1968 in Juvisy-sur-Orge, France. Ph.D. 1995 from Institut Pasteur, Paris, France. Director of the Max Planck Unit for the Science of Pathogens, Berlin, Germany.

Jennifer A. Doudna, born 1964 in Washington, D.C, USA. Ph.D. 1989 from Harvard Medical School, Boston, USA. Professor at the University of California, Berkeley, USA and Investigator, Howard Hughes Medical Institute.

 

Other Articles on the Nobel Prize in this Open Access Journal Include:

2020 Nobel Prize for Physiology and Medicine for Hepatitis C Discovery goes to British scientist Michael Houghton and US researchers Harvey Alter and Charles Rice

CONTAGIOUS – About Viruses, Pandemics and Nobel Prizes at the Nobel Prize Museum, Stockholm, Sweden 

AACR Congratulates Dr. William G. Kaelin Jr., Sir Peter J. Ratcliffe, and Dr. Gregg L. Semenza on 2019 Nobel Prize in Physiology or Medicine

2018 Nobel Prize in Physiology or Medicine for contributions to Cancer Immunotherapy to James P. Allison, Ph.D., of the University of Texas, M.D. Anderson Cancer Center, Houston, Texas. Dr. Allison shares the prize with Tasuku Honjo, M.D., Ph.D., of Kyoto University Institute, Japan

2017 Nobel prize in chemistry given to Jacques Dubochet, Joachim Frank, and Richard Henderson  for developing cryo-electron microscopy

2016 Nobel Prize in Chemistry awarded for development of molecular machines, the world’s smallest mechanical devices, the winners: Jean-Pierre Sauvage, J. Fraser Stoddart and Bernard L. Feringa

Correspondence on Leadership in Genomics and other Gene Curations: Dr. Williams with Dr. Lev-Ari

Programming life: An interview with Jennifer Doudna by Michael Chui, a partner of the McKinsey Global Institute

Read Full Post »

2020 Nobel Prize for Physiology and Medicine for Hepatitis C Discovery goes to British scientist Michael Houghton and US researchers Harvey Alter and Charles Rice

Reporter: Aviva Lev-Ari, PhD, RN

The Nobel Prize in Physiology or Medicine 2020

Harvey J. Alter

Ill. Niklas Elmehed. © Nobel Media.

Harvey J. Alter

Prize share: 1/3

Michael Houghton

 

Ill. Niklas Elmehed. © Nobel Media.

Michael Houghton

Prize share: 1/3

Charles M. Rice

 

Ill. Niklas Elmehed. © Nobel Media.

Charles M. Rice

Prize share: 1/3

The Nobel Prize in Physiology or Medicine 2020 was awarded jointly to Harvey J. Alter, Michael Houghton and Charles M. Rice “for the discovery of Hepatitis C virus.”

Nobel Prize for Medicine goes to Hepatitis C discovery

The winners are British scientist Michael Houghton and US researchers Harvey Alter and Charles Rice.

The Nobel Prize committee said their discoveries ultimately “saved millions of lives”. The virus is a common cause of liver cancer and a major reason why people need a liver transplant.

In the 1960s, there was huge concern that people receiving donated blood were getting chronic hepatitis (liver inflammation) from an unknown, mysterious disease. The Nobel Prize committee said a blood transfusion at the time was like “Russian roulette”. Highly sensitive blood tests mean such cases have now been eliminated in many parts of the world, and effective anti-viral drugs have also been developed. “For the first time in history, the disease can now be cured, raising hopes of eradicating Hepatitis C virus from the world,” the prize committee said. However, the 70 million people are currently living with the virus, which still kills around 400,000 a year.

The mystery killer

The viruses Hepatitis A and Hepatitis B had been discovered by the mid-1960s.

But Prof Harvey Alter, while studying transfusion patients at the US National Institutes of Health in 1972, showed there was another, mystery, infection at work. Patients were still getting sick after receiving donated blood. He showed that giving blood from infected patients to chimpanzees led to them developing the disease.

The mysterious illness became known as “non-A, non-B” hepatitis in and the hunt was now on.

Prof Michael Houghton, while at the pharmaceutical firm Chiron, managed to isolated the genetic sequence of the virus in 1989. This showed it was a type of flavivirus and it was named Hepatitis C.

And Prof Charles Rice, while at Washington University in St. Louis, applied the finishing touches in 1997. He injected a genetically engineered Hepatitis C virus into the liver of chimpanzees and showed this could lead to hepatitis.

SOURCE

https://www.bbc.com/news/health-54418463

 

2014, 2015, 2016, 2017, 2019 Nobel Prize in Medicine went to:

 

Read Full Post »

Older Posts »