Feeds:
Posts
Comments

Archive for the ‘virology’ Category

Non-toxic antiviral nanoparticles with a broad spectrum of virus inhibition

Curator and Reporter: Dr. Premalata Pati, Ph.D., Postdoc

Infectious diseases account for 20% of global deaths, with viruses accounting for over a third of these deaths (1). Lower respiratory effects and human immunodeficiency viruses (HIV) are among the top ten causes of death worldwide, both of which contribute significantly to health-care costs (2). Every year, new viruses (such as Ebola) increase the mortality toll. Vaccinations are the most effective method of avoiding viral infections, but there are only a few of them, and they are not available in all parts of the world (3). After infection, antiviral medications are the only option; unfortunately, only a limited number of antiviral medications are approved in this condition. Antiviral drugs on a big scale that can influence a wide spectrum of existing and emerging viruses are critical.

The three types of treatments currently available are small molecules (such as nucleoside analogues and peptidomimetics), proteins that stimulate the immune system (such as interferon), and oligonucleotides (for example, fomivirsen). The primary priorities include HIV, hepatitis B and C viruses, Herpes Simplex Virus (HSV), human cytomegalovirus (HCMV), and influenza virus. They work mainly on viral enzymes, which are necessary for viral replication but which differ from other host enzymes to ensure selective function. The specificity of antivirals is far from perfect because viruses rely on the biosynthesis machinery for reproduction of infected cells, which results in a widespread and inherent toxicity associated with such therapy. However, most viruses mutate rapidly due to their improper replicating mechanisms and so often develop resistance (4). Finally, since antiviral substances are targeted at viral proteins, it is challenging to build broad-based antivirals that can act with a wide range of phylogenetic and structurally different virus.

Over the last decade breakthroughs in nanotechnology have led to scientists developing incredibly specialized nanoparticles capable of traveling in specific cells through a human body. A broad spectrum of destructive viruses is being targeted and not only bind to, but also destroy, by modern computer modeling technology.

An international team of researchers led by the University of Illinois at Chicago chemistry professor Petr Kral developed novel anti-viral nanoparticles that bind to a variety of viruses, including herpes simplex virus, human papillomavirus, respiratory syncytial virus, Dengue, and lentiviruses. In contrast to conventional broad-spectrum antivirals, which just prevent viruses from invading cells, the new nanoparticles eradicate viruses. The team’s findings have been published in the journal “Nature Materials.”

A molecular dynamics model showing a nanoparticle binding to the outer envelope of the human papillomavirus. (Credit: Petr Kral) https://today.uic.edu/files/2017/09/viralbindingcropped.png

The goal of this new study was to create a new anti-viral nanoparticle that could exploit the HSPG binding process to not only tightly attach with virus particles but also to destroy them. The work was done by a group of researchers ranging from biochemists to computer modeling experts until the team came up with a successful nanoparticle design that could, in principle, accurately target and kill individual virus particles.

The first step to combat many viruses consists in the attachment of heparin sulfate proteoglycan on cell surfaces to a protein (HSPG). Some of the antiviral medications already in place prevent an infection by imitating HSPG’s connection to the virus. An important constraint of these antivirals is that not only is this antiviral interaction weak, it does not kill the virus.

Kral said

We knew how the nanoparticles should bind on the overall composition of HSPG binding viral domains and the structures of the nanoparticles, but we did not realize why the various nanoparticles act so differently in terms of their both bond strength and viral entry in cells

Kral and colleagues assisted in resolving these challenges and guiding the experimentalists in fine-tuning the nanoparticle design so that it performed better.

The researchers have employed advanced computer modeling techniques to build exact structures of several target viruses and nanoparticles up to the atom’s position. A profound grasp of the interactions between individual atom groupings in viruses and nanoparticles allows the scientists to evaluate the strength and duration of prospective links between these two entities and to forecast how the bond could change over time and eventually kill the virus.


Atomistic MD simulations of an L1 pentamer of HPV capsid protein with the small NP (2.4 nm core, 100 MUP ligands). The NP and the protein are shown by van der Waals (vdW) and ribbon representations respectively. In the protein, the HSPG binding amino acids are displayed by vdW representation.

Kral added

We were capable of providing the design team with the data needed to construct a prototype of an antiviral of high efficiency and security, which may be utilized to save lives

The team has conducted several in vitro experiments following the development of a prototype nanoparticle design which have demonstrated success in binding and eventually destroying a wide spectrum of viruses, including herpes simplex, human papillomaviruses, respiratory syncytial viruses and dengue and lentiviruses.

The research is still in its early phases, and further in vivo animal testing is needed to confirm the nanoparticles’ safety, but this is a promising new road toward efficient antiviral therapies that could save millions of people from devastating virus infections each year.

The National Centers of Competence in Research on Bio-Inspired Materials, the University of Turin, the Ministry of Education, Youth and Sports of the Czech Republic, the Leenards Foundation, National Science Foundation award DMR-1506886, and funding from the University of Texas at El Paso all contributed to this study.

Main Source

Cagno, V., Andreozzi, P., D’Alicarnasso, M., Silva, P. J., Mueller, M., Galloux, M., … & Stellacci, F. (2018). Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism. Nature materials17(2), 195-203. https://www.nature.com/articles/nmat5053

Other Related Articles published in this Open Access Online Scientific Journal include the following:

Rare earth-doped nanoparticles applications in biological imaging and tumor treatment

Reporter: Irina Robu, PhD

https://pharmaceuticalintelligence.com/2020/10/04/rare-earth-doped-nanoparticles-applications-in-biological-imaging-and-tumor-treatment/

Nanoparticles Could Boost Effectiveness of Allergy Shots

Reporter: Irina Robu, PhD

https://pharmaceuticalintelligence.com/2019/05/25/nanoparticles-could-boost-effectiveness-of-allergy-shots/

Immunoreactivity of Nanoparticles

Author: Tilda Barliya PhD

https://pharmaceuticalintelligence.com/2012/10/27/immunoreactivity-of-nanoparticles/

Nanotechnology and HIV/AIDS Treatment

Author: Tilda Barliya, PhD

https://pharmaceuticalintelligence.com/2012/12/25/nanotechnology-and-hivaids-treatment/

Nanosensors for Protein Recognition, and gene-proteome interaction

Curator: Larry H Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2016/01/30/nanosensors-for-protein-recognition-and-gene-proteome-interaction/

Read Full Post »

Thriving Vaccines and Research: Weizmann Institute Coronavirus Research Development

Reporter: Amandeep Kaur, B.Sc., M.Sc.

In early February, Prof. Eran Segal updated in one of his tweets and mentioned that “We say with caution, the magic has started.”

The article reported that this statement by Prof. Segal was due to decreasing cases of COVID-19, severe infection cases and hospitalization of patients by rapid vaccination process throughout Israel. Prof. Segal emphasizes in another tweet to remain cautious over the country and informed that there is a long way to cover and searching for scientific solutions.

A daylong webinar entitled “COVID-19: The epidemic that rattles the world” was a great initiative by Weizmann Institute to share their scientific knowledge about the infection among the Israeli institutions and scientists. Prof. Gideon Schreiber and Dr. Ron Diskin organized the event with the support of the Weizmann Coronavirus Response Fund and Israel Society for Biochemistry and Molecular Biology. The speakers were invited from the Hebrew University of Jerusalem, Tel-Aviv University, the Israel Institute for Biological Research (IIBR), and Kaplan Medical Center who addressed the molecular structure and infection biology of the virus, treatments and medications for COVID-19, and the positive and negative effect of the pandemic.

The article reported that with the emergence of pandemic, the scientists at Weizmann started more than 60 projects to explore the virus from different range of perspectives. With the help of funds raised by communities worldwide for the Weizmann Coronavirus Response Fund supported scientists and investigators to elucidate the chemistry, physics and biology behind SARS-CoV-2 infection.

Prof. Avi Levy, the coordinator of the Weizmann Institute’s coronavirus research efforts, mentioned “The vaccines are here, and they will drastically reduce infection rates. But the coronavirus can mutate, and there are many similar infectious diseases out there to be dealt with. All of this research is critical to understanding all sorts of viruses and to preempting any future pandemics.”

The following are few important projects with recent updates reported in the article.

Mapping a hijacker’s methods

Dr. Noam Stern-Ginossar studied the virus invading strategies into the healthy cells and hijack the cell’s systems to divide and reproduce. The article reported that viruses take over the genetic translation system and mainly the ribosomes to produce viral proteins. Dr. Noam used a novel approach known as ‘ribosome profiling’ as her research objective and create a map to locate the translational events taking place inside the viral genome, which further maps the full repertoire of viral proteins produced inside the host.

She and her team members grouped together with the Weizmann’s de Botton Institute and researchers at IIBR for Protein Profiling and understanding the hijacking instructions of coronavirus and developing tools for treatment and therapies. Scientists generated a high-resolution map of the coding regions in the SARS-CoV-2 genome using ribosome-profiling techniques, which allowed researchers to quantify the expression of vital zones along the virus genome that regulates the translation of viral proteins. The study published in Nature in January, explains the hijacking process and reported that virus produces more instruction in the form of viral mRNA than the host and thus dominates the translation process of the host cell. Researchers also clarified that it is the misconception that virus forced the host cell to translate its viral mRNA more efficiently than the host’s own translation, rather high level of viral translation instructions causes hijacking. This study provides valuable insights for the development of effective vaccines and drugs against the COVID-19 infection.

Like chutzpah, some things don’t translate

Prof. Igor Ulitsky and his team worked on untranslated region of viral genome. The article reported that “Not all the parts of viral transcript is translated into protein- rather play some important role in protein production and infection which is unknown.” This region may affect the molecular environment of the translated zones. The Ulitsky group researched to characterize that how the genetic sequence of regions that do not translate into proteins directly or indirectly affect the stability and efficiency of the translating sequences.

Initially, scientists created the library of about 6,000 regions of untranslated sequences to further study their functions. In collaboration with Dr. Noam Stern-Ginossar’s lab, the researchers of Ulitsky’s team worked on Nsp1 protein and focused on the mechanism that how such regions affect the Nsp1 protein production which in turn enhances the virulence. The researchers generated a new alternative and more authentic protocol after solving some technical difficulties which included infecting cells with variants from initial library. Within few months, the researchers are expecting to obtain a more detailed map of how the stability of Nsp1 protein production is getting affected by specific sequences of the untranslated regions.

The landscape of elimination

The article reported that the body’s immune system consists of two main factors- HLA (Human Leukocyte antigen) molecules and T cells for identifying and fighting infections. HLA molecules are protein molecules present on the cell surface and bring fragments of peptide to the surface from inside the infected cell. These peptide fragments are recognized and destroyed by the T cells of the immune system. Samuels’ group tried to find out the answer to the question that how does the body’s surveillance system recognizes the appropriate peptide derived from virus and destroy it. They isolated and analyzed the ‘HLA peptidome’- the complete set of peptides bound to the HLA proteins from inside the SARS-CoV-2 infected cells.

After the analysis of infected cells, they found 26 class-I and 36 class-II HLA peptides, which are present in 99% of the population around the world. Two peptides from HLA class-I were commonly present on the cell surface and two other peptides were derived from coronavirus rare proteins- which mean that these specific coronavirus peptides were marked for easy detection. Among the identified peptides, two peptides were novel discoveries and seven others were shown to induce an immune response earlier. These results from the study will help to develop new vaccines against new coronavirus mutation variants.

Gearing up ‘chain terminators’ to battle the coronavirus

Prof. Rotem Sorek and his lab discovered a family of enzymes within bacteria that produce novel antiviral molecules. These small molecules manufactured by bacteria act as ‘chain terminators’ to fight against the virus invading the bacteria. The study published in Nature in January which reported that these molecules cause a chemical reaction that halts the virus’s replication ability. These new molecules are modified derivates of nucleotide which integrates at the molecular level in the virus and obstruct the works.

Prof. Sorek and his group hypothesize that these new particles could serve as a potential antiviral drug based on the mechanism of chain termination utilized in antiviral drugs used recently in the clinical treatments. Yeda Research and Development has certified these small novel molecules to a company for testing its antiviral mechanism against SARS-CoV-2 infection. Such novel discoveries provide evidences that bacterial immune system is a potential repository of many natural antiviral particles.

Resolving borderline diagnoses

Currently, Real-time Polymerase chain reaction (RT-PCR) is the only choice and extensively used for diagnosis of COVID-19 patients around the globe. Beside its benefits, there are problems associated with RT-PCR, false negative and false positive results and its limitation in detecting new mutations in the virus and emerging variants in the population worldwide. Prof. Eran Elinavs’ lab and Prof. Ido Amits’ lab are working collaboratively to develop a massively parallel, next-generation sequencing technique that tests more effectively and precisely as compared to RT-PCR. This technique can characterize the emerging mutations in SARS-CoV-2, co-occurring viral, bacterial and fungal infections and response patterns in human.

The scientists identified viral variants and distinctive host signatures that help to differentiate infected individuals from non-infected individuals and patients with mild symptoms and severe symptoms.

In Hadassah-Hebrew University Medical Center, Profs. Elinav and Amit are performing trails of the pipeline to test the accuracy in borderline cases, where RT-PCR shows ambiguous or incorrect results. For proper diagnosis and patient stratification, researchers calibrated their severity-prediction matrix. Collectively, scientists are putting efforts to develop a reliable system that resolves borderline cases of RT-PCR and identify new virus variants with known and new mutations, and uses data from human host to classify patients who are needed of close observation and extensive treatment from those who have mild complications and can be managed conservatively.

Moon shot consortium refining drug options

The ‘Moon shot’ consortium was launched almost a year ago with an initiative to develop a novel antiviral drug against SARS-CoV-2 and was led by Dr. Nir London of the Department of Chemical and Structural Biology at Weizmann, Prof. Frank von Delft of Oxford University and the UK’s Diamond Light Source synchroton facility.

To advance the series of novel molecules from conception to evidence of antiviral activity, the scientists have gathered support, guidance, expertise and resources from researchers around the world within a year. The article reported that researchers have built an alternative template for drug-discovery, full transparency process, which avoids the hindrance of intellectual property and red tape.

The new molecules discovered by scientists inhibit a protease, a SARS-CoV-2 protein playing important role in virus replication. The team collaborated with the Israel Institute of Biological Research and other several labs across the globe to demonstrate the efficacy of molecules not only in-vitro as well as in analysis against live virus.

Further research is performed including assaying of safety and efficacy of these potential drugs in living models. The first trial on mice has been started in March. Beside this, additional drugs are optimized and nominated for preclinical testing as candidate drug.

Source: https://www.weizmann.ac.il/WeizmannCompass/sections/features/the-vaccines-are-here-and-research-abounds

Other related articles were published in this Open Access Online Scientific Journal, including the following:

Identification of Novel genes in human that fight COVID-19 infection

Reporter: Amandeep Kaur, B.Sc., M.Sc. (ept. 5/2021)

https://pharmaceuticalintelligence.com/2021/04/19/identification-of-novel-genes-in-human-that-fight-covid-19-infection/

Fighting Chaos with Care, community trust, engagement must be cornerstones of pandemic response

Reporter: Amandeep Kaur, B.Sc., M.Sc. (ept. 5/2021)

https://pharmaceuticalintelligence.com/2021/04/13/fighting-chaos-with-care/

T cells recognize recent SARS-CoV-2 variants

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2021/03/30/t-cells-recognize-recent-sars-cov-2-variants/

Need for Global Response to SARS-CoV-2 Viral Variants

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2021/02/12/need-for-global-response-to-sars-cov-2-viral-variants/

Mechanistic link between SARS-CoV-2 infection and increased risk of stroke using 3D printed models and human endothelial cells

Reporter: Adina Hazan, PhD

https://pharmaceuticalintelligence.com/2020/12/28/mechanistic-link-between-sars-cov-2-infection-and-increased-risk-of-stroke-using-3d-printed-models-and-human-endothelial-cells/

Read Full Post »

Identification of Novel genes in human that fight COVID-19 infection

Reporter: Amandeep Kaur, B.Sc., M.Sc. (ept. 5/2021)

Scientists have recognized human genes that fight against the SARS-CoV-2 viral infection. The information about genes and their function can help to control infection and aids the understanding of crucial factors that causes severe infection. These novel genes are related to interferons, the frontline fighter in our body’s defense system and provide options for therapeutic strategies.

The research was published in the journal Molecular Cell.

Sumit K. Chanda, Ph.D., professor and director of the Immunity and Pathogenesis Program at Sanford Burnham Prebys reported in the article that they focused on better understanding of the cellular response and downstream mechanism in cells to SARS-CoV-2, including the factors which causes strong or weak response to viral infection. He is the lead author of the study and explained that in this study they have gained new insights into how the human cells are exploited by invading virus and are still working towards finding any weak point of virus to develop new antivirals against SARS-CoV-2.

With the surge of pandemic, researchers and scientists found that in severe cases of COVID-19, the response of interferons to SARS-CoV-2 viral infection is low. This information led Chanda and other collaborators to search for interferon-stimulated genes (ISGs), are genes in human which are triggered by interferons and play important role in confining COVID-19 infection by controlling their viral replication in host.

The investigators have developed laboratory experiments to identify ISGs based on the previous knowledge gathered by the outbreak of SARS-CoV-1 from 2002-2004 which was similar to COVID-19 pandemic caused by SARS-CoV-2 virus.

The article reports that Chanda mentioned “we found that 65 ISGs controlled SAR-CoV-2 infection, including some that inhibited the virus’ ability to enter cells, some that suppressed manufacture of the RNA that is the virus’s lifeblood, and a cluster of genes that inhibited assembly of the virus.” They also found an interesting fact about ISGs that some of these genes revealed control over unrelated viruses, such as HIV, West Nile and seasonal flu.

Laura Martin-Sancho, Ph.D., a senior postdoctoral associate in the Chanda lab and first author of the study reported in the article that they identified 8 different ISGs that blocked the replication of both SARS-CoV-1 and CoV-2 in the subcellular compartments responsible for packaging of proteins, which provide option to exploit these vulnerable sites to restrict infection. They are further investigating whether the genetic variability within the ISGs is associated with COVID-19 severity.

The next step for researchers will be investigating and observing the biology of variants of SARS-CoV-2 that are evolving and affecting vaccine efficacy. Martin-Sancho mentioned that their lab has already started gathering all the possible variants for further investigation.

“It’s vitally important that we don’t take our foot off the pedal of basic research efforts now that vaccines are helping control the pandemic,” reported in the article by Chanda.

“We’ve come so far so fast because of investment in fundamental research at Sanford Burnham Prebys and elsewhere, and our continued efforts will be especially important when, not if, another viral outbreak occurs,” concluded Chanda.

Source: https://medicalxpress.com/news/2021-04-covid-scientists-human-genes-infection.html

Reference: Laura Martin-Sancho et al. Functional Landscape of SARS-CoV-2 Cellular Restriction, Molecular Cell (2021). DOI: 10.1016/j.molcel.2021.04.008

Other related articles were published in this Open Access Online Scientific Journal, including the following:

Fighting Chaos with Care, community trust, engagement must be cornerstones of pandemic response

Reporter: Amandeep Kaur

https://pharmaceuticalintelligence.com/2021/04/13/fighting-chaos-with-care/

Mechanism of Thrombosis with AstraZeneca and J & J Vaccines: Expert Opinion by Kate Chander Chiang & Ajay Gupta, MD

Reporter & Curator: Dr. Ajay Gupta, MD

https://pharmaceuticalintelligence.com/2021/04/14/mechanism-of-thrombosis-with-astrazeneca-and-j-j-vaccines-expert-opinion-by-kate-chander-chiang-ajay-gupta-md/

T cells recognize recent SARS-CoV-2 variants

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2021/03/30/t-cells-recognize-recent-sars-cov-2-variants/

Need for Global Response to SARS-CoV-2 Viral Variants

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2021/02/12/need-for-global-response-to-sars-cov-2-viral-variants/

Mechanistic link between SARS-CoV-2 infection and increased risk of stroke using 3D printed models and human endothelial cells

Reporter: Adina Hazan, PhD

https://pharmaceuticalintelligence.com/2020/12/28/mechanistic-link-between-sars-cov-2-infection-and-increased-risk-of-stroke-using-3d-printed-models-and-human-endothelial-cells/

Read Full Post »

Cryo-EM disclosed how the D614G mutation changes SARS-CoV-2 spike protein structure.

Reporter: Dr. Premalata Pati, Ph.D., Postdoc

SARS-CoV-2, the virus that causes COVID-19, has had a major impact on human health globally; infecting a massive quantity of people around 136,046,262 (John Hopkins University); causing severe disease and associated long-term health sequelae; resulting in death and excess mortality, especially among older and prone populations; altering routine healthcare services; disruptions to travel, trade, education, and many other societal functions; and more broadly having a negative impact on peoples physical and mental health.

It’s need of the hour to answer the questions like what allows the variants of SARS-CoV-2 first detected in the UK, South Africa, and Brazil to spread so quickly? How can current COVID-19 vaccines better protect against them?

Scientists from the Harvard Medical School and the Boston Children’s Hospital help answer these urgent questions. The team reports its findings in the journal “Science a paper entitled Structural impact on SARS-CoV-2 spike protein by D614G substitution. The mutation rate of the SARS-CoV-2 virus has rapidly evolved over the past few months, especially at the Spike (S) protein region of the virus, where the maximum number of mutations have been observed by the virologists.

Bing Chen, HMS professor of pediatrics at Boston Children’s, and colleagues analyzed the changes in the structure of the spike proteins with the genetic change by D614G mutation by all three variants. Hence they assessed the structure of the coronavirus spike protein down to the atomic level and revealed the reason for the quick spreading of these variants.


This model shows the structure of the spike protein in its closed configuration, in its original D614 form (left) and its mutant form (G614). In the mutant spike protein, the 630 loop (in red) stabilizes the spike, preventing it from flipping open prematurely and rendering SARS-CoV-2 more infectious.

Fig. 1. Cryo-EM structures of the full-length SARS-CoV-2 S protein carrying G614.

(A) Three structures of the G614 S trimer, representing a closed, three RBD-down conformation, an RBD-intermediate conformation and a one RBD-up conformation, were modeled based on corresponding cryo-EM density maps at 3.1-3.5Å resolution. Three protomers (a, b, c) are colored in red, blue and green, respectively. RBD locations are indicated. (B) Top views of superposition of three structures of the G614 S in (A) in ribbon representation with the structure of the prefusion trimer of the D614 S (PDB ID: 6XR8), shown in yellow. NTD and RBD of each protomer are indicated. Side views of the superposition are shown in fig. S8.

IMAGE SOURCE: Bing Chen, Ph.D., Boston Children’s Hospital, https://science.sciencemag.org/content/early/2021/03/16/science.abf2303

The work

The mutant spikes were imaged by Cryo-Electron microscopy (cryo-EM), which has resolution down to the atomic level. They found that the D614G mutation (substitution of in a single amino acid “letter” in the genetic code for the spike protein) makes the spike more stable as compared with the original SARS-CoV-2 virus. As a result, more functional spikes are available to bind to our cells’ ACE2 receptors, making the virus more contagious.


Fig. 2. Cryo-EM revealed how the D614G mutation changes SARS-CoV-2 spike protein structure.

IMAGE SOURCE:  Zhang J, et al., Science

Say the original virus has 100 spikes,” Chen explained. “Because of the shape instability, you may have just 50 percent of them functional. In the G614 variants, you may have 90 percent that is functional. So even though they don’t bind as well, the chances are greater and you will have an infection

Forthcoming directions by Bing Chen and Team

The findings suggest the current approved COVID-19 vaccines and any vaccines in the works should include the genetic code for this mutation. Chen has quoted:

Since most of the vaccines so far—including the Moderna, Pfizer–BioNTech, Johnson & Johnson, and AstraZeneca vaccines are based on the original spike protein, adding the D614G mutation could make the vaccines better able to elicit protective neutralizing antibodies against the viral variants

Chen proposes that redesigned vaccines incorporate the code for this mutant spike protein. He believes the more stable spike shape should make any vaccine based on the spike more likely to elicit protective antibodies. Chen also has his sights set on therapeutics. He and his colleagues are further applying structural biology to better understand how SARS-CoV-2 binds to the ACE2 receptor. That could point the way to drugs that would block the virus from gaining entry to our cells.

In January, the team showed that a structurally engineered “decoy” ACE2 protein binds to SARS-CoV-2 200 times more strongly than the body’s own ACE2. The decoy potently inhibited the virus in cell culture, suggesting it could be an anti-COVID-19 treatment. Chen is now working to advance this research into animal models.

Main Source:

Abstract

Substitution for aspartic acid by glycine at position 614 in the spike (S) protein of severe acute respiratory syndrome coronavirus 2 appears to facilitate rapid viral spread. The G614 strain and its recent variants are now the dominant circulating forms. We report here cryo-EM structures of a full-length G614 S trimer, which adopts three distinct prefusion conformations differing primarily by the position of one receptor-binding domain. A loop disordered in the D614 S trimer wedges between domains within a protomer in the G614 spike. This added interaction appears to prevent premature dissociation of the G614 trimer, effectively increasing the number of functional spikes and enhancing infectivity, and to modulate structural rearrangements for membrane fusion. These findings extend our understanding of viral entry and suggest an improved immunogen for vaccine development.

https://science.sciencemag.org/content/early/2021/03/16/science.abf2303?rss=1

Other Related Articles published in this Open Access Online Scientific Journal include the following:

COVID-19-vaccine rollout risks and challenges

Reporter : Irina Robu, PhD

https://pharmaceuticalintelligence.com/2021/02/17/covid-19-vaccine-rollout-risks-and-challenges/

COVID-19 Sequel: Neurological Impact of Social isolation been linked to poorer physical and mental health

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2021/03/30/covid-19-sequel-neurological-impact-of-social-isolation-been-linked-to-poorer-physical-and-mental-health/

Comparing COVID-19 Vaccine Schedule Combinations, or “Com-COV” – First-of-its-Kind Study will explore the Impact of using eight different Combinations of Doses and Dosing Intervals for Different COVID-19 Vaccines

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2021/02/08/comparing-covid-19-vaccine-schedule-combinations-or-com-cov-first-of-its-kind-study-will-explore-the-impact-of-using-eight-different-combinations-of-doses-and-dosing-intervals-for-diffe/

COVID-19 T-cell immune response map, immunoSEQ T-MAP COVID for research of T-cell response to SARS-CoV-2 infection

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2020/11/20/covid-19-t-cell-immune-response-map-immunoseq-t-map-covid-for-research-of-t-cell-response-to-sars-cov-2-infection/

Tiny biologic drug to fight COVID-19 show promise in animal models

Reporter : Irina Robu, PhD

https://pharmaceuticalintelligence.com/2020/10/11/tiny-biologic-drug-to-fight-covid-19-show-promise-in-animal-models/

Miniproteins against the COVID-19 Spike protein may be therapeutic

Reporter: Stephen J. Williams, PhD

https://pharmaceuticalintelligence.com/2020/09/30/miniproteins-against-the-covid-19-spike-protein-may-be-therapeutic/

Read Full Post »

Recombinant Coronavirus Vaccines Delivered via Microneedle Array

Curator: Irina Robu, PhD

Coronavirus is an evolving pathogen with exponentially increasing significance due to the high case fatality rate, the large distribution of reservoir, and the lack of medical countermeasures. The public health emergencies triggered by coronaviruses, including SARS-CoV and SARS-CoV-2, obviously validate the urgency to assess candidate vaccines to fight these outbreaks. Continuous research contributes to the efforts of scientists to quickly progress safe vaccines against these developing infections. The recent COVID-19 pandemic indicates a vital need for the rapid design, production, testing, and clinical translation of candidate vaccines.

Coronavirus virus particles contain four main structural proteins. These are the spike, membrane, envelope, and nucleocapsid proteins, all of which are encoded within the 3′ end of the viral genome. Coronaviruses contain a non-segmented, positive-sense RNA genome, which contains a 5′ cap structure along with a 3′ poly (A) tail, allowing it to act as a mRNA for translation of the replicase polyproteins. The replicase gene encoding the nonstructural proteins inhabits two-thirds of the genome, which make up only about 10 kb of the viral genome. The 5′ end of the genome contains a leader sequence and untranslated region that encompasses multiple stem loop structures required for RNA replication and transcription. Furthermore, at the start of each structural gene are the transcriptional regulatory sequences that are essential for expression of each of these genes.

Researchers at U of Pittsburg generated codon optimized MERS-S1 subunit vaccines fused with a foldon trimerization domain to mimic the native viral structure. They engineered immune stimulants (RS09 or flagellin, as TLR4 or TLR5 agonists) into this trimeric design and tested the pre-clinical immunogenicity of MERS-CoV vaccines in mice, distributed subcutaneously by needle injection or intracutaneously by dissolving microneedle arrays by assessing virus specific IgG antibodies in the serum of vaccinated mice by ELISA and using virus neutralization assays.

Microneedle array mediated immunization has several mechanistic differences from traditional intramuscular needle injections, which could clarify the variations in the magnitude and kinetics of the ensuing responses. Due to the urgent need for COVID-19 vaccines, they used this approach to quickly advance MNA SARS-CoV-2 subunit vaccines and tested their pre-clinical immunogenicity in-vivo by manipulating the previous research on MNA MERS-CoV vaccines.

Even though it is still premature to predict whether humans immunized with these vaccine candidates will have similar responses and be protected from SARS-CoV-2 infections, their previous research show that development, production, and initial animal testing of clinically translatable MNA vaccine candidates against SARS-CoV-2. Incidentally it will be vital to determine whether antibodies from MNA-SARS-CoV-2 immunized animals will neutralize virus infectivity.

Finally, we note that the immunogenicity differences between MNA coronavirus vaccines and coronavirus vaccines delivered by traditional needle injection that we observe will need to be evaluated in clinical trials to establish the clinical advantages of MNA delivery.

SOURCE

E. Kim et al., Microneedle array delivered recombinant coronavirus vaccines: Immunogenicity and rapid translational development, EBioMedicine (2020).

Fehr, Anthony R, and Stanley Perlman. Coronaviruses: an overview of their replication and pathogenesis. Methods in molecular biology, vol. 1282 (2015): 1-23.

Susan R. Weiss, Sonia Navas-Martin. Coronavirus Pathogenesis and the Emerging Pathogen Severe Acute Respiratory Syndrome Coronavirus. Microbiology and Molecular Biology Reviews Dec 2005, 69 (4) 635-664.

Read Full Post »

Oncolytic Virotherapy for Pancreatic Cancer: Overcoming Obstacles in Oncolytic Virus Delivery

Reporter: Aviva Lev-Ari, PhD, RN

 

We covered MGH’s Innovation on Tumor targeted therapy in Pancreatic Cancer in

Pancreatic Cancer Targeted Treatment?

Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2016/05/18/pancreatic-cancer-targeted-treatment/

 

Below, we report on the State of the Science for Overcoming Obstacles in Oncolytic Virus Delivery and provide the source for all the references used

 

ONCOLYTIC VIROTHERAPY FOR PANCREATIC CANCER

Adenovirus

ONYX-015 was the first TOV used in a clinical trial for pancreatic cancer. ONYX-015 was administered intratumourally under endoscopic ultrasound-guidance into patients with locally advanced adenocarcinoma of the pancreas or metastatic disease in phase I/II trials[132]. The treatment was well-tolerated in most patients, however no objective responses were seen with ONYX-015 as a single agent and only 2/21 patients experienced mild responses when combined with gemcitabine[132]. A second adenovirus vector carries a deletion in the E1A gene[133]. E1A normally binds to the retinoblastoma protein, forcing cells to prematurely enter the S phase of the cell cycle. Since most pancreatic cancers harbor a mutation in CDKN2A[134], the E1A protein is unnecessary for entry of the TOV into cancer cells. Furthermore a double-deleted (E1A and E1B19) adenovirus demonstrated increase potency and selectivity in pancreatic cancer models[135,136]. This demonstrates that TOVs can be genetically engineered to increase selectivity and efficacy while maintaining their potency. Adenovirus selectivity has also been improved by engineering tumour-specific promoters such as a human CEA promoter[137] or by substituting the adenovirus serotype 5 fiber knob with the fiber knob from serotype 3[138]. The potency of TOVs can also be improved further by engineering them with therapeutic genes that stimulate the immune system and/or improve direct oncolysis. Adenovirus ZD55-IL-24 expressing IL-24 locally in pancreatic tumours in immune competent mice inhibited tumour growth and induced a stronger T cell response compared to its backbone virus, as measured by IL-6 and IFN-γ levels[139].

HSV

Two oncolytic HSV-1 vectors are currently in clinical trials for the treatment of pancreatic cancer. HF10 is a non-engineered, naturally occurring oncolytic HSV that demonstrated regression in 1/6 of the patients treated[140,141]. OncoVex GM-CSF is a ∆34.5 and ICP47-deleted mutant expressing GM-CSF, whereby the deletions allow for tumour-selective replication and inhibition of protein-kinase R activation, respectively[142]. Phase I/II trials in various solid tumours demonstrated OncoVex GM-CSF to be well-tolerated at high and repeated doses[143,144]. A phase I clinical trial with OncoVex GM-CSF in patients with unresectable pancreatic cancer is underway.

Poxviruses

The most widely studied poxvirus is VV, which is highly immunogenic and produces a strong cytotoxic T cell response[145] and circulating neutralizing antibodies which can be detected decades later[146]. For its crucial role in the eradication of smallpox, much has been learned about its potential role in immunotherapy today. The Lister strain of vaccinia remarkably showed no replication degradation even under the hypoxic conditions of PDAC[147]. A second Lister strain, thymidine kinase-deleted replicating VV armed with IL-10 demonstrated superior and long-lasting antitumour immunity in both a subcutaneous pancreatic cancer model and a Kras-p53 mutant-transgenic pancreatic cancer model after systemic delivery compared to its unarmed backbone virus[148]. Myxoma virus, a rabbit-specific poxvirus combined with gemcitabine resulted in 100% long-term survival in Pan02-engrafted immunocompetent intraperitoneal dissemination models of pancreatic cancer[149]. The only poxvirus to be tested in clinical trials is a non-replicative VV that expresses the pancreatic TAAs CEA and MUC-2[150]. The vaccine also includes a triad of costimulatory molecules, B7.1 (CD80), ICAM-1 (intra-cellular adhesion molecule-1) and LFA-3 (leukocyte function-associated antigen-3) (TRICOM) (PANVAC-VF)[150]. GM-CSF was also used as an adjuvant following each vaccination of PANVAC-VF. Phase I trials demonstrated antigen-specific antitumour responses in 62.5% of patients enrolled and antibody responses against VV was observed in all ten patients, which was associated with an increase in survival (15.1 mo vs 3.9 mo)[48]. A phase III clinical trial for the treatment of metastatic pancreatic cancer after failing treatment with gemcitabine, however, was terminated after failing to reach its primary efficacy endpoint[151].

Other pre-clinical TOVs for pancreatic cancer therapy

Parvovirus, measles virus and reovirus have also demonstrated pre-clinical activity in pancreatic cancer models. Parvoviruses particularly demonstrated enhanced IL-2-activated NK responses against PDAC cells[152,153]. An armed measles virus (MV), MV-purine nucleoside phosphorylase (PNP)-anti-prostate stem cell antigen, that expresses the prodrug convertase PNP, which then activates the prodrug fludarabine, was shown to enhance the oncolytic efficacy of the virus in gemcitabine-resistant PDAC cells[154]. Reovirus is another promising TOV for pancreatic cancer therapy, particularly because its selectivity depends on the cellular activity of Ras, which is constitutively active in pancreatic cancer[155]. Reolysin® (Oncolytics Biotech Inc., Calgary, AB, Canada) a reovirus administered intraportally resulted in decreased metastatic tumour volumes in the liver of immunocompetent animal models[156,157]. A phase II study of Reolysin® in combination with gemcitabine in patients with advanced PDAC has been completed (clinicaltrials.gov: NCT00998322). A two-armed randomized phase II study of carboplatin and paclitaxel plus Reolysin® vs carboplatin and paclitaxel alone in recurrent or metastatic pancreatic cancer is currently being conducted by the United States National Cancer Institute (NCI-8601/OSU-10045).

RATIONALIZING VIRO-IMMUNE-CHECKPOINT COMBINATION THERAPY

A understanding how antitumour immunity is regulated allows us to recognize barriers against effective immunotherapy delivery and furthermore, allow for the development of rational combination therapies aiming targeting these mechanisms[108,158,159]. This approach allows therapies to work synergistically and also has the potential to benefit a broader patient population[108]. Tumours have evolved to avoid immune recognition and/or destruction at every stage in the antitumour response, therefore targeting more than one immune resistance mechanism will enhance antitumour immunity.

An important immunological barrier in cancer immunotherapy is the tolerance towards self-antigens. Tumours downregulate their antigenicity through various mechanisms in response to selective pressure by the immune system, a process called “immunoediting”[37]. Therefore, in order to raise an effective antitumour response, the immunological tolerance must be broken to allow tumour antigen-specific cytotoxic T cell responses[158]. This can be achieved by increasing the tumour load and/or enhance antigen presentation[108]. TOVs can initiate selective infection and replication in the tumour bed, exposing TAA, disrupting the immunotolerance employed by the tumour while re-engaging adaptive immune effector responses[39]. Combining an agent that can cause disruption to the tumour bed i.e., an oncolytic virus, with a novel antitumour immunomodulating agent such as anti-PD-1/PD-L1 antibodies can maximize immune-stimulating and immune-recruiting inflammatory responses[39]. Specifically, TOV lysis induces the release of tumour antigens into the microenvironment, which are then cross-presented to T cells in the draining lymph nodes by APCs[159] (Figure (Figure1).1). This allows T cell infiltration to the tumour bed. Next, T cell dysfunction must be reversed[108,158]. Immune checkpoint inhibitors alleviate immunosuppression, allowing the elimination of the tumour by the adaptive immune system[70]. TOVs in combination with immune checkpoint inhibitors can therefore potentiate and activate the immune system synergistically, ultimately creating a pro-inflammatory environment. Pre-existing TILs are strong prognostic predictors in cancer[106]. This is extremely relevant for tumours with poor immune-cell infiltration, such as pancreatic cancer, which would depend on TOV-infection mediated lymphocyte infiltration for an enhanced response to immune checkpoint blockade. Zamarin et al[160] demonstrated constrained replication of an intratumoural-injected Newcastle disease virus in a B16 melanoma model. Lymphocytic infiltrates, however, were detected in both TOV-injected and non-TOV-injected tumours, and rendered the tumours sensitive to CTLA-4 blockade. The antitumour activity was dependent on CD8+ T cells, NK cells and type I and II IFNs[160]. Ipilimumab with or without talimogene laherparapvec, is in early clinical testing in patients with unresected melanoma (clinicaltrials.org: NCT01740297). Interestingly, an MV engineered to express CTLA-4 or PD-L1 antibodies delayed tumour progression and prolonged median OS in B16 melanoma models[161]. Finally, TOVs have demonstrated a tolerable toxicity profile, whereby flu-like symptoms are the most common adverse events, and in fact, most of the side effects seen so far in the combination regiment are related to the immune checkpoint blockade inhibitor[162]. Dias et al[163] suggested an oncolytic adenovirus expressing CTLA-4 locally might reduce systemic side effects normally induced with anti-CTLA-4 antibodies alone.

OVERCOMING OBSTACLES IN ONCOLYTIC VIRUS DELIVERY

The main issue with virotherapy is systemic delivery for targeting metastatic cancer cells. Intravenous administration is more practical, especially for treatment of a tumour in a hard-to-reach location such as the pancreas, and with the majority of patients presenting with advanced or metastatic disease. However, nonimmune human serum and existing anti-TOV antibodies may neutralize the TOV in the bloodstream. Furthermore, non-specific hepatic and splenic sequestration of the TOV and ineffective extravasation into the tumours are important issues[164]. Currently, studies in pre-clinical models aim to overcome these obstacles. These include chemical modification of viral coat proteins by conjugation of biocompatible polymers e.g. polyethylene glycosylation[165,166], using mesenchymal stem cell carrier systems to deliver the TOV to the tumour bed[167169], and increasing vessel permeabilization[170,171].

In PDAC, however, the biggest hurdle may not be the host immune system, but the TME. The TME has played a significant role in not only acting as a physical barrier to deliver treatments, but it also in the development of resistance to conventional drugs. The TME remains a problem for successful TOV treatment. The TOV must be able to spread in the hypoxic and densely stromal-rich TME in order to attract enough attention to induce antitumour immunity[172]. Breaching the stromal barrier in PDAC is needed for TOVs to access the cancer cells[173]. Paradoxically, a recent study by Ilkow et al[174] demonstrated that the cross-talk between CAFs and cancer cells actually lead to increased permissibility of TOV-based therapeutics. Tumour cells producing TGF-α reprogrammed CAFs, dampening levels of anti-viral transcripts. This allowed the cells to be more sensitive to VV, vesicular stomatitis virus and maraba MG1 TOVs. The reprogrammed CAFs produced fibroblast growth factor (FGF)-2 which suppressed levels of retinoic acid-inducible gene I and increased the susceptibility of the tumour cells to virus[175]. This study also demonstrated that an FGF2-expressing TOV has improved therapeutic efficacy by sensitizing the tumour cells to virotherapy and is particularly relevant to pancreatic cancers, where CAFs are a major component of the tumour stroma[175]. It is important to note that not only the patient’s existing immune system may impede successful TOV therapy, but that the enhanced antitumour response by combinatory approaches (e.g., the inclusion of immune-checkpoint inhibitors) may also impede successful TOV infection, spread and engagement of the immune system. This stresses the importance of determining strategic combinations, dosing and timing schedules in future studies.

CONCLUSION

The poor prognosis of pancreatic cancer due in part to the limited efficacy of conventional and targeted therapies, appeals for a novel strategy to treat this disease. It has become very clear that the immune system has the greatest potential to selectively destroy tumours, and when it is strategically induced, a durable benefit can be achieved. Past and present studies have defined means for tumour escape from immune surveillance and have developed immunotherapies to counteract these mechanisms. However, with the various escape strategies leading to low immunogenicity and highly immunosuppressive tumour beds, a successful control of tumour growth by immunotherapy does not come without various obstacles and challenges. Future steps include the development of immune-monitoring strategies for the identification of biomarkers, to establishment guidelines to assess clinical end points of immunotherapy and finally to evaluate combination therapeutic strategies to maximize clinical benefit[176]. The ability of TOVs to stimulate inflammation, deliver genes and immunomodulatory agents as well as reduce tumour burden by direct cell lysis, allows them to be important therapeutic vectors for a highly immunosuppressed tumour such as PDAC. Immune checkpoint blockade agents can then reverse T cell anergy and further boost OV-induced responses. As this combinatory approach may exist as a double-edged sword, it is crucial to determine appropriate timing, dosing and sequence schedules of each agent.

SOURCE & REFERENCES

Read Full Post »