Feeds:
Posts
Comments

Archive for the ‘Virology’ Category

The NIH-funded adjuvant improves the efficacy of India’s COVID-19 vaccine.

Curator and Reporter: Dr. Premalata Pati, Ph.D., Postdoc

Anthony S. Fauci, Director of the National Institute of Allergy and Infectious Diseases (NIAID), Part of National Institute of Health (NIH) said,

Ending a global pandemic demands a global response. I am thrilled that a novel vaccine adjuvant developed in the United States with NIAID support is now included in an effective COVID-19 vaccine that is available to individuals in India.”

Adjuvants are components that are created as part of a vaccine to improve immune responses and increase the efficiency of the vaccine. COVAXIN was developed and is manufactured in India, which is currently experiencing a terrible health catastrophe as a result of COVID-19. An adjuvant designed with NIH funding has contributed to the success of the extremely effective COVAXIN-COVID-19 vaccine, which has been administered to about 25 million individuals in India and internationally.

Alhydroxiquim-II is the adjuvant utilized in COVAXIN, was discovered and validated in the laboratory by the biotech company ViroVax LLC of Lawrence, Kansas, with funding provided solely by the NIAID Adjuvant Development Program. The adjuvant is formed of a small molecule that is uniquely bonded to Alhydrogel, often known as alum and the most regularly used adjuvant in human vaccines. Alhydroxiquim-II enters lymph nodes, where it detaches from alum and triggers two cellular receptors. TLR7 and TLR8 receptors are essential in the immunological response to viruses. Alhydroxiquim-II is the first adjuvant to activate TLR7 and TLR8 in an approved vaccine against an infectious disease. Additionally, the alum in Alhydroxiquim-II activates the immune system to look for an infiltrating pathogen.

Although molecules that activate TLR receptors strongly stimulate the immune system, the adverse effects of Alhydroxiquim-II are modest. This is due to the fact that after COVAXIN is injected, the adjuvant travels directly to adjacent lymph nodes, which contain white blood cells that are crucial in recognizing pathogens and combating infections. As a result, just a minimal amount of Alhydroxiquim-II is required in each vaccination dosage, and the adjuvant does not circulate throughout the body, avoiding more widespread inflammation and unwanted side effects.

This scanning electron microscope image shows SARS-CoV-2 (round gold particles) emerging from the surface of a cell cultured in the lab. SARS-CoV-2, also known as 2019-nCoV, is the virus that causes COVID-19. Image Source: NIAID

COVAXIN is made up of a crippled version of SARS-CoV-2 that cannot replicate but yet encourages the immune system to produce antibodies against the virus. The NIH stated that COVAXIN is “safe and well tolerated,” citing the results of a phase 2 clinical investigation. COVAXIN safety results from a Phase 3 trial with 25,800 participants in India will be released later this year. Meanwhile, unpublished interim data from the Phase 3 trial show that the vaccine is 78% effective against symptomatic sickness, 100% effective against severe COVID-19, including hospitalization, and 70% effective against asymptomatic infection with SARS-CoV-2, the virus that causes COVID-19. Two tests of blood serum from persons who had received COVAXIN suggest that the vaccine creates antibodies that efficiently neutralize the SARS-CoV-2 B.1.1.7 (Alpha) and B.1.617 (Delta) variants (1) and (2), which were originally identified in the United Kingdom and India, respectively.

Since 2009, the NIAID Adjuvant Program has supported the research of ViroVax’s founder and CEO, Sunil David, M.D., Ph.D. His research has focused on the emergence of new compounds that activate innate immune receptors and their application as vaccination adjuvants.

Dr. David’s engagement with Bharat Biotech International Ltd. of Hyderabad, which manufactures COVAXIN, began during a 2019 meeting in India organized by the NIAID Office of Global Research under the auspices of the NIAID’s Indo-US Vaccine Action Program. Five NIAID-funded adjuvant investigators, including Dr. David, two representatives of the NIAID Division of Allergy, Immunology, and Transplantation, and the NIAID India representative, visited 4 top biotechnology companies to learn about their work and discuss future collaborations. The delegation also attended a consultation in New Delhi, which was co-organized by the NIAID and India’s Department of Biotechnology and hosted by the National Institute of Immunology.

Among the scientific collaborations spawned by these endeavors was a licensing deal between Bharat Biotech and Dr. David to use Alhydroxiquim-II in their candidate vaccines. During the COVID-19 outbreak, this license was expanded to cover COVAXIN, which has Emergency Use Authorization in India and more than a dozen additional countries. COVAXIN was developed by Bharat Biotech in partnership with the Indian Council of Medical Research’s National Institute of Virology. The company conducted thorough safety research on Alhydroxiquim-II and undertook the arduous process of scaling up production of the adjuvant in accordance with Good Manufacturing Practice standards. Bharat Biotech aims to generate 700 million doses of COVAXIN by the end of 2021.

NIAID conducts and supports research at the National Institutes of Health, across the United States, and across the world to better understand the causes of infectious and immune-mediated diseases and to develop better methods of preventing, detecting, and treating these illnesses. The NIAID website contains news releases, info sheets, and other NIAID-related materials.

Main Source:

https://www.miragenews.com/adjuvant-developed-with-nih-funding-enhances-587090/

References

  1. https://academic.oup.com/cid/advance-article-abstract/doi/10.1093/cid/ciab411/6271524?redirectedFrom=fulltext
  2. https://academic.oup.com/jtm/article/28/4/taab051/6193609

Other Related Articles published in this Open Access Online Scientific Journal include the following:

Comparing COVID-19 Vaccine Schedule Combinations, or “Com-COV” – First-of-its-Kind Study will explore the Impact of using eight different Combinations of Doses and Dosing Intervals for Different COVID-19 Vaccines

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2021/02/08/comparing-covid-19-vaccine-schedule-combinations-or-com-cov-first-of-its-kind-study-will-explore-the-impact-of-using-eight-different-combinations-of-doses-and-dosing-intervals-for-diffe/

Thriving Vaccines and Research: Weizmann Institute Coronavirus Research Development

Reporter:Amandeep Kaur, B.Sc., M.Sc.

https://pharmaceuticalintelligence.com/2021/05/04/thriving-vaccines-and-research-weizmann-coronavirus-research-development/

National Public Radio interview with Dr. Anthony Fauci on his optimism on a COVID-19 vaccine by early 2021

Reporter: Stephen J. Williams, PhD

https://pharmaceuticalintelligence.com/2020/07/19/national-public-radio-interview-with-dr-anthony-fauci-on-his-optimism-on-a-covid-19-vaccine-by-early-2021/

Cryo-EM disclosed how the D614G mutation changes SARS-CoV-2 spike protein structure

Reporter: Dr. Premalata Pati, Ph.D., Postdoc

https://pharmaceuticalintelligence.com/2021/04/10/cryo-em-disclosed-how-the-d614g-mutation-changes-sars-cov-2-spike-protein-structure/

Updates on the Oxford, AstraZeneca COVID-19 Vaccine

Reporter: Stephen J. Williams, PhD

https://pharmaceuticalintelligence.com/2020/06/16/updates-on-the-oxford-astrazeneca-covid-19-vaccine/

Read Full Post »

C.D.C. Reviewing Cases of Heart Problem in Youngsters After Getting Vaccinated and AHA Reassures that Benefits Overwhelm the Risks of Vaccination

Reporter: Amandeep Kaur, B.Sc. , M.Sc.

The latest article in New York times reported by Apoorva Mandavilli outlines the statement of officials that C.D.C. agency is investigating few cases of young adults and teenagers who might have developed myocarditis after getting vaccinated. It is not confirmed by the agency that whether this condition is caused by vaccine or not.

According to the vaccine safety group of the Centers for Disease Control and Prevention, the reports of heart problems experienced by youngsters is relatively very small in number. The group stated that these cases could be unlinked to vaccination. The condition of inflammation of heart muscle which can occur due to certain infections is known as myocarditis.

Moreover, the agency still has to determine any evidence related to vaccines causing the heart issues. The C.D.C. has posted on its website the updated guidance for doctors and clinicians, urging them to be alert to uncommon symptoms related to heart cases among teenagers who are vaccine recipients.

In New York, Dr. Celine Gounder, an infectious disease specialist at Bellevue Hospital Center stated that “It may simply be a coincidence that some people are developing myocarditis after vaccination. It’s more likely for something like that to happen by chance, because so many people are getting vaccinated right now.”

The article reported that the cases appeared mainly in young adults after about four days of their second shot of mRNA vaccines, made by Moderna and Pfizer-BioNTech. Such cases are more prevalent in males as compared to females.

The vaccine safety group stated “Most cases appear to be mild, and follow-up of cases is ongoing.” It is strongly recommended by C.D.C. that American young adults from the age of 12 and above should get vaccinated against COVID-19.

Dr. Yvonne Maldonado, chair of the American Academy of Pediatrics’s Committee on Infectious Diseases stated “We look forward to seeing more data about these cases, so we can better understand if they are related to the vaccine or if they are coincidental. Meanwhile, it’s important for pediatricians and other clinicians to report any health concerns that arise after vaccination.”

Experts affirmed that the potentially uncommon side effects of myocarditis get insignificant compared to the potential risks of SARS-CoV-2 infection, including the continuous syndrome known as “long Covid.” It is reported in the article that acute Covid can lead to myocarditis.

According to the data collected by A.A.P, about 16 thousand children were hospitalized and more than 3.9 million children were infected by coronavirus till the second week of May. In the United States, about 300 children died of SARS-CoV-2 infection, which makes it among the top 10 death causes in children since the start of pandemic.

Dr. Jeremy Faust, an emergency medicine physician at Brigham and Women’s Hospital in Boston stated that “And that’s in the context of all the mitigation measures taken.”

According to researchers, about 10 to 20 of every 1 lakh people each year develop myocarditis in the general population, facing symptoms from fatigue and chest pain to arrhythmias and cardiac arrest, whereas some have mild symptoms which remain undiagnosed.

Currently, the number of reports of myocarditis after vaccination is less than that reported normally in young adults, confirmed by C.D.C. The article reported that the members of vaccine safety group felt to communicate the information about upcoming cases of myocarditis to the providers.

The C.D.C. has not yet specified the ages of the patients involved in reporting. Since December 2020, the Pfizer-BioNTech vaccine was authorized for young people of age 16 and above. The Food and Drug Administration extended the authorization to children of age 12 to 15 years, by the starting of this month.

On 14th May, the clinicians have been alerted by C.D.C. regarding the probable link between myocarditis and vaccination. Within three days, the team started reviewing data on myocarditis, reports filed with the Vaccine Adverse Event Reporting System and others from the Department of Defense.

A report on seven cases has been submitted to the journal Pediatrics for review and State health departments in Washington, Oregon and California have notified emergency providers and cardiologists about the potential problem.

In an interview, Dr. Liam Yore, past president of the Washington State chapter of the American College of Emergency Physicians detailed a case of teenager with myocarditis after vaccination. The patient was provided treatment for mild inflammation of the inner lining of the heart and was discharged afterwards. Later, the young adult returned for care due to decrease in the heart’s output. Dr. Yore reported that still he had come across worse cases in youngsters with Covid, including in a 9-year-old child who arrived at the hospital after a cardiac arrest last winter.

He stated that “The relative risk is a lot in favor of getting the vaccine, especially considering how coronavirus vaccine have been administered.”

In the United States, more than 161 million people have received their first shot of vaccine in which about 4.5 million people were between the age 12 to 18 years.

Benefits Overwhelm Risks of COVID Vaccination, AHA Reassures

The latest statement of American Heart Association (AHA)/ American Stroke Association (ASA) on May 23rd states that the benefits of COVID-19 vaccination enormously outweigh the rare risk for myocarditis cases, which followed the C.D.C. report that the agency is tracking the Vaccine Adverse Events Reporting System (VAERS) and the Vaccine Safety Datalink (VSD) for myocarditis cases linked with mRNA vaccines against coronavirus.

The myocarditis cases in young adults are more often observed after the second dose of vaccine rather than the first one, and have more cases of males than females. The CDC’s COVID-19 Vaccine Safety Technical Work Group (VaST) observed such heart complications after 4 days of vaccination.

CDC reported that “Within CDC safety monitoring systems, rates of myocarditis reports in the window following COVID-19 vaccination have not differed from expected baseline rates.”

The CDC team stated that “The evidence continues to indicate that the COVID-19 vaccines are nearly 100% effective at preventing death and hospitalization due to COVID-19 infection, and Strongly urged all young adults and children 12 years and above to get vaccinated as soon as possible.”

Even though the analysis of myocarditis reports related to coronavirus vaccine is in progress, the AHA/ASA stated that “myocarditis is typically the result of an actual viral infection, and it is yet to be determined if these cases have any correlation to receiving a COVID-19 vaccine.”

Richard Besser, MD, president and CEO of the Robert Wood Johnson Foundation (RWJF) and former acting director of the CDC stated on ABC’s Good Morning America “We’ve lost hundreds of children and there have been thousands who have been hospitalized, thousands who developed an inflammatory syndrome, and one of the pieces of that can be myocarditis.” He added “still, from my perspective, the risk of COVID is so much greater than any theoretical risk from the vaccine.”

After COVID-19 vaccination the symptoms that occur include tiredness, muscle pain, headaches, chills, nausea and fever. The AHA/ASA stated that “typically appear within 24 to 48 hours and usually pass within 36-48 hours after receiving the vaccine.”

All healthcare providers are suggested to be aware of the rare adverse symptoms such as myocarditis, low platelets, blood clots, and severe inflammation. The agency stated that “Healthcare professionals should strongly consider inquiring about the timing of any recent COVID vaccination among patients presenting with these conditions, as needed, in order to provide appropriate treatment quickly.”

President Mitchell S.V. Elkind, M.D., M.S., FAHA, FAAN, Immediate Past President Robert A. Harrington, M.D., FAHA, President-Elect Donald M. Lloyd-Jones, M.D., Sc.M., FAHA, Chief Science and Medical Officer Mariell Jessup, M.D., FAHA, and Chief Medical Officer for Prevention Eduardo Sanchez, M.D, M.P.H., FAAFP are science leaders of AHA/ASA and reflected their views in the following statements:

We strongly urge all adults and children ages 12 and older in the U.S. to receive a COVID vaccine as soon as they can receive it, as recently approved by the U.S. Food and Drug Administration and the CDC. The evidence continues to indicate that the COVID-19 vaccines are nearly 100% effective at preventing death and hospitalization due to COVID-19 infection. According to the CDC as of May 22, 2021, over 283 million doses of COVID-19 vaccines have been administered in the U.S. since December 14, 2020, and more than 129 million Americans are fully vaccinated (i.e., they have received either two doses of the Pfizer-BioNTech or Moderna COVID-19 vaccine, or the single-dose Johnson & Johnson/Janssen COVID-19 vaccine).

We remain confident that the benefits of vaccination far exceed the very small, rare risks. The risks of vaccination are also far smaller than the risks of COVID-19 infection itself, including its potentially fatal consequences and the potential long-term health effects that are still revealing themselves, including myocarditis. The recommendation for vaccination specifically includes people with cardiovascular risk factors such as high blood pressure, obesity and type 2 diabetes, those with heart disease, and heart attack and stroke survivors, because they are at much greater risk of an adverse outcome from the COVID-19 virus than they are from the vaccine.

We commend the CDC’s continual monitoring for adverse events related to the COVID-19 vaccines through VAERS and VSD, and the consistent meetings of ACIP’s VaST Work Group, demonstrating transparent and robust attention to any and all health events possibly related to a COVID-19 vaccine. The few cases of myocarditis that have been reported after COVID-19 vaccination are being investigated. However, myocarditis is usually the result of a viral infection, and it is yet to be determined if these cases have any correlation to receiving a COVID-19 vaccine, especially since the COVID-19 vaccines authorized in the U.S. do not contain any live virus.

We also encourage everyone to keep in touch with their primary care professionals and seek care immediately if they have any of these symptoms in the weeks after receiving the COVID-19 vaccine: chest pain including sudden, sharp, stabbing pains; difficulty breathing/shortness of breath; abnormal heartbeat; severe headache; blurry vision; fainting or loss of consciousness; weakness or sensory changes; confusion or trouble speaking; seizures; unexplained abdominal pain; or new leg pain or swelling.

We will stay up to date with the CDC’s recommendations regarding all potential complications related to COVID-19 vaccines, including myocarditis, pericarditis, central venous sinus thrombosis (CVST) and other blood clotting events, thrombosis thrombocytopenia syndrome (TTS), and vaccine-induced immune thrombosis thrombocytopenia (VITT).

The American Heart Associationrecommends all health care professionals be aware of these very rare adverse events that may be related to a COVID-19 vaccine, including myocarditis, blood clots, low platelets, or symptoms of severe inflammation. Health care professionals should strongly consider inquiring about the timing of any recent COVID vaccination among patients presenting with these conditions, as needed, in order to provide appropriate treatment quickly. As detailed in last month’s AHA/ASA statement, all suspected CVST or blood clots associated with the COVID-19 vaccine should be treated initially using non-heparin anticoagulants. Heparin products should not be administered in any dose if TTS/VITT is suspected, until appropriate testing can be done to exclude heparin-induced antibodies. In addition, health care professionals are required to report suspected vaccine-related adverse events to the Vaccine Adverse Event Reporting System, in accordance with federal regulations.

Individuals should refer to their local and state health departments for specific information about when and where they can get vaccinated. We implore everyone ages 12 and older to get vaccinated so we can return to being together, in person – enjoying life with little to no risk of severe COVID-19 infection, hospitalization or death.

We also support the CDC recommendations last week that loosen restrictions on mask wearing and social distancing for people who are fully vaccinated. For those who are unable to be vaccinated, we reiterate the importance of handwashing, social distancing and wearing masks, particularly for people at high risk of infection and/or severe COVID-19. These simple precautions remain crucial to protecting people who are not vaccinated from the virus that causes COVID-19.

Source:

Other related articles were published in this Open Access Online Scientific Journal, including the following:

Thriving Vaccines and Research: Weizmann Institute Coronavirus Research Development

Reporter: Amandeep Kaur, B.Sc., M.Sc.

https://pharmaceuticalintelligence.com/2021/05/04/thriving-vaccines-and-research-weizmann-coronavirus-research-development/

Identification of Novel genes in human that fight COVID-19 infection

Reporter: Amandeep Kaur, B.Sc., M.Sc.

https://pharmaceuticalintelligence.com/2021/04/19/identification-of-novel-genes-in-human-that-fight-covid-19-infection/

Fighting Chaos with Care, community trust, engagement must be cornerstones of pandemic response

Reporter: Amandeep Kaur, B.Sc., M.Sc. 

https://pharmaceuticalintelligence.com/2021/04/13/fighting-chaos-with-care/

T cells recognize recent SARS-CoV-2 variants

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2021/03/30/t-cells-recognize-recent-sars-cov-2-variants/

Need for Global Response to SARS-CoV-2 Viral Variants

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2021/02/12/need-for-global-response-to-sars-cov-2-viral-variants/

Read Full Post »

Thriving Vaccines and Research: Weizmann Institute Coronavirus Research Development

Reporter: Amandeep Kaur, B.Sc., M.Sc.

In early February, Prof. Eran Segal updated in one of his tweets and mentioned that “We say with caution, the magic has started.”

The article reported that this statement by Prof. Segal was due to decreasing cases of COVID-19, severe infection cases and hospitalization of patients by rapid vaccination process throughout Israel. Prof. Segal emphasizes in another tweet to remain cautious over the country and informed that there is a long way to cover and searching for scientific solutions.

A daylong webinar entitled “COVID-19: The epidemic that rattles the world” was a great initiative by Weizmann Institute to share their scientific knowledge about the infection among the Israeli institutions and scientists. Prof. Gideon Schreiber and Dr. Ron Diskin organized the event with the support of the Weizmann Coronavirus Response Fund and Israel Society for Biochemistry and Molecular Biology. The speakers were invited from the Hebrew University of Jerusalem, Tel-Aviv University, the Israel Institute for Biological Research (IIBR), and Kaplan Medical Center who addressed the molecular structure and infection biology of the virus, treatments and medications for COVID-19, and the positive and negative effect of the pandemic.

The article reported that with the emergence of pandemic, the scientists at Weizmann started more than 60 projects to explore the virus from different range of perspectives. With the help of funds raised by communities worldwide for the Weizmann Coronavirus Response Fund supported scientists and investigators to elucidate the chemistry, physics and biology behind SARS-CoV-2 infection.

Prof. Avi Levy, the coordinator of the Weizmann Institute’s coronavirus research efforts, mentioned “The vaccines are here, and they will drastically reduce infection rates. But the coronavirus can mutate, and there are many similar infectious diseases out there to be dealt with. All of this research is critical to understanding all sorts of viruses and to preempting any future pandemics.”

The following are few important projects with recent updates reported in the article.

Mapping a hijacker’s methods

Dr. Noam Stern-Ginossar studied the virus invading strategies into the healthy cells and hijack the cell’s systems to divide and reproduce. The article reported that viruses take over the genetic translation system and mainly the ribosomes to produce viral proteins. Dr. Noam used a novel approach known as ‘ribosome profiling’ as her research objective and create a map to locate the translational events taking place inside the viral genome, which further maps the full repertoire of viral proteins produced inside the host.

She and her team members grouped together with the Weizmann’s de Botton Institute and researchers at IIBR for Protein Profiling and understanding the hijacking instructions of coronavirus and developing tools for treatment and therapies. Scientists generated a high-resolution map of the coding regions in the SARS-CoV-2 genome using ribosome-profiling techniques, which allowed researchers to quantify the expression of vital zones along the virus genome that regulates the translation of viral proteins. The study published in Nature in January, explains the hijacking process and reported that virus produces more instruction in the form of viral mRNA than the host and thus dominates the translation process of the host cell. Researchers also clarified that it is the misconception that virus forced the host cell to translate its viral mRNA more efficiently than the host’s own translation, rather high level of viral translation instructions causes hijacking. This study provides valuable insights for the development of effective vaccines and drugs against the COVID-19 infection.

Like chutzpah, some things don’t translate

Prof. Igor Ulitsky and his team worked on untranslated region of viral genome. The article reported that “Not all the parts of viral transcript is translated into protein- rather play some important role in protein production and infection which is unknown.” This region may affect the molecular environment of the translated zones. The Ulitsky group researched to characterize that how the genetic sequence of regions that do not translate into proteins directly or indirectly affect the stability and efficiency of the translating sequences.

Initially, scientists created the library of about 6,000 regions of untranslated sequences to further study their functions. In collaboration with Dr. Noam Stern-Ginossar’s lab, the researchers of Ulitsky’s team worked on Nsp1 protein and focused on the mechanism that how such regions affect the Nsp1 protein production which in turn enhances the virulence. The researchers generated a new alternative and more authentic protocol after solving some technical difficulties which included infecting cells with variants from initial library. Within few months, the researchers are expecting to obtain a more detailed map of how the stability of Nsp1 protein production is getting affected by specific sequences of the untranslated regions.

The landscape of elimination

The article reported that the body’s immune system consists of two main factors- HLA (Human Leukocyte antigen) molecules and T cells for identifying and fighting infections. HLA molecules are protein molecules present on the cell surface and bring fragments of peptide to the surface from inside the infected cell. These peptide fragments are recognized and destroyed by the T cells of the immune system. Samuels’ group tried to find out the answer to the question that how does the body’s surveillance system recognizes the appropriate peptide derived from virus and destroy it. They isolated and analyzed the ‘HLA peptidome’- the complete set of peptides bound to the HLA proteins from inside the SARS-CoV-2 infected cells.

After the analysis of infected cells, they found 26 class-I and 36 class-II HLA peptides, which are present in 99% of the population around the world. Two peptides from HLA class-I were commonly present on the cell surface and two other peptides were derived from coronavirus rare proteins- which mean that these specific coronavirus peptides were marked for easy detection. Among the identified peptides, two peptides were novel discoveries and seven others were shown to induce an immune response earlier. These results from the study will help to develop new vaccines against new coronavirus mutation variants.

Gearing up ‘chain terminators’ to battle the coronavirus

Prof. Rotem Sorek and his lab discovered a family of enzymes within bacteria that produce novel antiviral molecules. These small molecules manufactured by bacteria act as ‘chain terminators’ to fight against the virus invading the bacteria. The study published in Nature in January which reported that these molecules cause a chemical reaction that halts the virus’s replication ability. These new molecules are modified derivates of nucleotide which integrates at the molecular level in the virus and obstruct the works.

Prof. Sorek and his group hypothesize that these new particles could serve as a potential antiviral drug based on the mechanism of chain termination utilized in antiviral drugs used recently in the clinical treatments. Yeda Research and Development has certified these small novel molecules to a company for testing its antiviral mechanism against SARS-CoV-2 infection. Such novel discoveries provide evidences that bacterial immune system is a potential repository of many natural antiviral particles.

Resolving borderline diagnoses

Currently, Real-time Polymerase chain reaction (RT-PCR) is the only choice and extensively used for diagnosis of COVID-19 patients around the globe. Beside its benefits, there are problems associated with RT-PCR, false negative and false positive results and its limitation in detecting new mutations in the virus and emerging variants in the population worldwide. Prof. Eran Elinavs’ lab and Prof. Ido Amits’ lab are working collaboratively to develop a massively parallel, next-generation sequencing technique that tests more effectively and precisely as compared to RT-PCR. This technique can characterize the emerging mutations in SARS-CoV-2, co-occurring viral, bacterial and fungal infections and response patterns in human.

The scientists identified viral variants and distinctive host signatures that help to differentiate infected individuals from non-infected individuals and patients with mild symptoms and severe symptoms.

In Hadassah-Hebrew University Medical Center, Profs. Elinav and Amit are performing trails of the pipeline to test the accuracy in borderline cases, where RT-PCR shows ambiguous or incorrect results. For proper diagnosis and patient stratification, researchers calibrated their severity-prediction matrix. Collectively, scientists are putting efforts to develop a reliable system that resolves borderline cases of RT-PCR and identify new virus variants with known and new mutations, and uses data from human host to classify patients who are needed of close observation and extensive treatment from those who have mild complications and can be managed conservatively.

Moon shot consortium refining drug options

The ‘Moon shot’ consortium was launched almost a year ago with an initiative to develop a novel antiviral drug against SARS-CoV-2 and was led by Dr. Nir London of the Department of Chemical and Structural Biology at Weizmann, Prof. Frank von Delft of Oxford University and the UK’s Diamond Light Source synchroton facility.

To advance the series of novel molecules from conception to evidence of antiviral activity, the scientists have gathered support, guidance, expertise and resources from researchers around the world within a year. The article reported that researchers have built an alternative template for drug-discovery, full transparency process, which avoids the hindrance of intellectual property and red tape.

The new molecules discovered by scientists inhibit a protease, a SARS-CoV-2 protein playing important role in virus replication. The team collaborated with the Israel Institute of Biological Research and other several labs across the globe to demonstrate the efficacy of molecules not only in-vitro as well as in analysis against live virus.

Further research is performed including assaying of safety and efficacy of these potential drugs in living models. The first trial on mice has been started in March. Beside this, additional drugs are optimized and nominated for preclinical testing as candidate drug.

Source: https://www.weizmann.ac.il/WeizmannCompass/sections/features/the-vaccines-are-here-and-research-abounds

Other related articles were published in this Open Access Online Scientific Journal, including the following:

Identification of Novel genes in human that fight COVID-19 infection

Reporter: Amandeep Kaur, B.Sc., M.Sc. (ept. 5/2021)

https://pharmaceuticalintelligence.com/2021/04/19/identification-of-novel-genes-in-human-that-fight-covid-19-infection/

Fighting Chaos with Care, community trust, engagement must be cornerstones of pandemic response

Reporter: Amandeep Kaur, B.Sc., M.Sc. (ept. 5/2021)

https://pharmaceuticalintelligence.com/2021/04/13/fighting-chaos-with-care/

T cells recognize recent SARS-CoV-2 variants

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2021/03/30/t-cells-recognize-recent-sars-cov-2-variants/

Need for Global Response to SARS-CoV-2 Viral Variants

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2021/02/12/need-for-global-response-to-sars-cov-2-viral-variants/

Mechanistic link between SARS-CoV-2 infection and increased risk of stroke using 3D printed models and human endothelial cells

Reporter: Adina Hazan, PhD

https://pharmaceuticalintelligence.com/2020/12/28/mechanistic-link-between-sars-cov-2-infection-and-increased-risk-of-stroke-using-3d-printed-models-and-human-endothelial-cells/

Read Full Post »

Identification of Novel genes in human that fight COVID-19 infection

Reporter: Amandeep Kaur, B.Sc., M.Sc. (ept. 5/2021)

Scientists have recognized human genes that fight against the SARS-CoV-2 viral infection. The information about genes and their function can help to control infection and aids the understanding of crucial factors that causes severe infection. These novel genes are related to interferons, the frontline fighter in our body’s defense system and provide options for therapeutic strategies.

The research was published in the journal Molecular Cell.

Sumit K. Chanda, Ph.D., professor and director of the Immunity and Pathogenesis Program at Sanford Burnham Prebys reported in the article that they focused on better understanding of the cellular response and downstream mechanism in cells to SARS-CoV-2, including the factors which causes strong or weak response to viral infection. He is the lead author of the study and explained that in this study they have gained new insights into how the human cells are exploited by invading virus and are still working towards finding any weak point of virus to develop new antivirals against SARS-CoV-2.

With the surge of pandemic, researchers and scientists found that in severe cases of COVID-19, the response of interferons to SARS-CoV-2 viral infection is low. This information led Chanda and other collaborators to search for interferon-stimulated genes (ISGs), are genes in human which are triggered by interferons and play important role in confining COVID-19 infection by controlling their viral replication in host.

The investigators have developed laboratory experiments to identify ISGs based on the previous knowledge gathered by the outbreak of SARS-CoV-1 from 2002-2004 which was similar to COVID-19 pandemic caused by SARS-CoV-2 virus.

The article reports that Chanda mentioned “we found that 65 ISGs controlled SAR-CoV-2 infection, including some that inhibited the virus’ ability to enter cells, some that suppressed manufacture of the RNA that is the virus’s lifeblood, and a cluster of genes that inhibited assembly of the virus.” They also found an interesting fact about ISGs that some of these genes revealed control over unrelated viruses, such as HIV, West Nile and seasonal flu.

Laura Martin-Sancho, Ph.D., a senior postdoctoral associate in the Chanda lab and first author of the study reported in the article that they identified 8 different ISGs that blocked the replication of both SARS-CoV-1 and CoV-2 in the subcellular compartments responsible for packaging of proteins, which provide option to exploit these vulnerable sites to restrict infection. They are further investigating whether the genetic variability within the ISGs is associated with COVID-19 severity.

The next step for researchers will be investigating and observing the biology of variants of SARS-CoV-2 that are evolving and affecting vaccine efficacy. Martin-Sancho mentioned that their lab has already started gathering all the possible variants for further investigation.

“It’s vitally important that we don’t take our foot off the pedal of basic research efforts now that vaccines are helping control the pandemic,” reported in the article by Chanda.

“We’ve come so far so fast because of investment in fundamental research at Sanford Burnham Prebys and elsewhere, and our continued efforts will be especially important when, not if, another viral outbreak occurs,” concluded Chanda.

Source: https://medicalxpress.com/news/2021-04-covid-scientists-human-genes-infection.html

Reference: Laura Martin-Sancho et al. Functional Landscape of SARS-CoV-2 Cellular Restriction, Molecular Cell (2021). DOI: 10.1016/j.molcel.2021.04.008

Other related articles were published in this Open Access Online Scientific Journal, including the following:

Fighting Chaos with Care, community trust, engagement must be cornerstones of pandemic response

Reporter: Amandeep Kaur

https://pharmaceuticalintelligence.com/2021/04/13/fighting-chaos-with-care/

Mechanism of Thrombosis with AstraZeneca and J & J Vaccines: Expert Opinion by Kate Chander Chiang & Ajay Gupta, MD

Reporter & Curator: Dr. Ajay Gupta, MD

https://pharmaceuticalintelligence.com/2021/04/14/mechanism-of-thrombosis-with-astrazeneca-and-j-j-vaccines-expert-opinion-by-kate-chander-chiang-ajay-gupta-md/

T cells recognize recent SARS-CoV-2 variants

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2021/03/30/t-cells-recognize-recent-sars-cov-2-variants/

Need for Global Response to SARS-CoV-2 Viral Variants

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2021/02/12/need-for-global-response-to-sars-cov-2-viral-variants/

Mechanistic link between SARS-CoV-2 infection and increased risk of stroke using 3D printed models and human endothelial cells

Reporter: Adina Hazan, PhD

https://pharmaceuticalintelligence.com/2020/12/28/mechanistic-link-between-sars-cov-2-infection-and-increased-risk-of-stroke-using-3d-printed-models-and-human-endothelial-cells/

Read Full Post »

National Resilience, Inc. is a first-of-its-kind manufacturing and technology company dedicated to broadening access to complex medicines and protecting biopharmaceutical supply chains against disruption – the Acquisition of Two Premier Biologics Manufacturing Facilities: Boston and in Ontario, Canada

 

Reporter: Aviva Lev-Ari, PhD, RN

Resilience’s new facility, located at 500 Soldiers Field Rd., Boston, MA. (Photo: Business Wire) – The Genzyme-Sanofi Building

 

SAN DIEGO & BOSTON–(BUSINESS WIRE)–Resilience (National Resilience, Inc.), a new company building the world’s most advanced biopharmaceutical manufacturing ecosystem, announced it has acquired two premier commercial manufacturing facilities in North America, joining other facilities already in Resilience’s network to boost total capacity under management to more than 750,000 square feet.

“These locations will serve as hubs for the future of biopharma manufacturing, leading the way and shaping the future of Resilience.”

  • The acquired facilities include a 310,000-square-foot plant in Boston, MA, purchased from Sanofi; and in a separate transaction,
  • a 136,000-square-foot plant in Mississauga, Ontario, Canada.

Both facilities, which currently produce commercial, marketed products, will see significant investments as Resilience adds capacity and capabilities to produce new therapies at these locations. In addition, the company has offered employment to the existing plant staff and intends to add more jobs at each facility.

“We have big plans for these facilities including investing in new capacity, applying new manufacturing technologies, creating jobs and bringing in new customers,” said Rahul Singhvi, Sc.D, Chief Executive Officer of Resilience. “These locations will serve as hubs for the future of biopharma manufacturing, leading the way and shaping the future of Resilience.”

As part of its agreement with Sanofi, Resilience will continue to manufacture a marketed product at the Boston location. The facility plan includes a build out to facilitate multi-modality manufacturing and state-of-the-art quality laboratories to ensure safe, reliable supply to patients. The facility itself is certified ISO 14001 (Environmental management system), OSHAS 18001 (Health & safety management system) and ISO 50001 (Energy management system).​

This is currently the largest of several facilities in Resilience’s growing biologics and advanced therapeutics manufacturing network, with plans to acquire and develop other sites in the U.S. this year. The facility offers 24/7/365 production, multiple 2000L bioreactors capacity and multiple downstream processing trains, with investment in additional capabilities to come.

Our state-of-the-art flexible facility in Mississauga, Ontario, provides upstream, downstream and aseptic fill finish, and is designed to comply with cGMP. The plant has been inspected and approved by multiple regulatory bodies, and handles development and commercialized products.

About Resilience

Resilience (National Resilience, Inc.) is a first-of-its-kind manufacturing and technology company dedicated to broadening access to complex medicines and protecting biopharmaceutical supply chains against disruption. Founded in 2020, the company is building a sustainable network of high-tech, end-to-end manufacturing solutions to ensure the medicines of today and tomorrow can be made quickly, safely, and at scale. Resilience offers the highest quality and regulatory capabilities, and flexible and adaptive facilities to serve partners of all sizes. By continuously advancing the science of biopharmaceutical manufacturing and development, Resilience frees partners to focus on the discoveries that improve patients’ lives.

For more information, visit www.Resilience.com.

Contacts

Ryan Flinn
Head of Communications
Ryan.flinn@Resilience.com
510-207-7616

Read Full Post »

Online Event: Vaccine matters: Can we cure coronavirus? An AAAS Webinar on COVID19: 8/12/2020

Reporter: Stephen J. Williams. PhD

Source: Online Event

Top on the world’s want list right now is a coronavirus vaccine. There is plenty of speculation about how and when this might become a reality, but clear answers are scarce.Science/AAAS, the world’s leading scientific organization and publisher of the Science family of journals, brings together experts in the field of coronavirus vaccine research to answer the public’s most pressing questions: What vaccines are being developed? When are we likely to get them? Are they safe? And most importantly, will they work?

link: https://view6.workcast.net/AuditoriumAuthenticator.aspx?cpak=1836435787247718&pak=8073702641735492

Presenters

Presenter
Speaker: Sarah Gilbert, Ph.D.

University of Oxford
Oxford, UK
View Bio

Presenter
Speaker: Kizzmekia Corbett, Ph.D.

National Institute of Allergy and Infectious Diseases, NIH
Bethesda, MD
View Bio

Presenter
Speaker: Kathryn M. Edwards, M.D.

Vanderbilt Vaccine Research Program
Nashville, TN
View Bio

Presenter
Speaker: Jon Cohen

Science/AAAS
San Diego, CA
View Bio

Presenter
Moderator: Sean Sanders, Ph.D.

Science/AAAS
Washington, DC
View Moderator Bio

Read Full Post »

 

Contagious

We are in the midst of a pandemic that is impacting people and society in ways that are hard to grasp. The most apparent impact is on physical health. It also effects our attitudes in society, our economy and our cultural life. Throughout history, humanity has had to face the challenge of understanding, managing and fighting viruses.

In the exhibition Contagious we are highlighting Nobel Prize-awarded researchers who have expanded our knowledge about viruses, mapped our immune system and developed vaccines. We also examine the perspectives from Literature and Economics Laureates about the impact of epidemics on life and society. Visit us at the museum or on these pages.

Museums have an important role to play in times of crisis, since they can help people tackle existential questions and provide a broader context. The Nobel Museum is about ideas that have changed the world. The Nobel Prize points to the ability of humans to find solutions to difficult challenges that we face time and time again. It is a source of hope, even in the midst of the crisis.

SOURCE

Nobel Prize Museum

https://nobelprizemuseum.se/en/whats-on/contagious/?utm_content=contagious_text

Coronavirus

On March 11 this year, the World Health Organization announced that the spread of the coronavirus should be classified as a pandemic, that is “an infectious disease that spreads to large parts of the world and affects a large proportion of the population of each country”. Today, nobody knows how many will die in this pandemic, or when, or if, we can have a vaccine against the disease.

SARS-CoV-2, or Severe acute respiratory syndrome coronavirus 2, is an RNA virus from the family coronavirus that causes the respiratory disease covid-19.

The virus was detected at the end of last year in the Wuhan sub-province of China, and in most cases causes milder disease symptoms that disappear within two weeks. But sometimes, especially in certain groups such as the elderly and people with certain other underlying illnesses, the infection becomes more severe and can in some cases lead to death.

The virus is believed to have zoonotic origin, that is, it has been transmitted to humans from another animal. Where the origin of the disease comes from, that is to say from which host animal the virus originates, is still unknown. However, the virus has close genetic similarity to a corona virus carried by some bats, which might indicate where the virus comes from.

This model shows the SARS-CoV-2 virus, which causes the illness covid-19. The globe-shaped envelope has a membrane of fat-like substances. Inside the envelope are proteins bound to RNA molecules, that contain the virus’s genes. Short spikes of proteins and longer spikes of glycoprotein stick out of the envelope and attach to receptors on the surface of attacked cells. The spikes, which are bigger at the top, give the virus its appearance reminiscent of the Sun’s corona. This where the coronavirus’s name comes from.

Testing is an important tool for tracking and preventing the spread of infection during an epidemic.

One type of test looks at if a person is infected by looking for traces of the virus’s RNA genetic material. The test is taken using a swab stick inserted into the throat. The small amounts of RNA or DNA that attach to the swab are analyzed using the PCR technique, which was invented by Kary Mullis in 1983. Ten years later he was awarded the Nobel Prize in Chemistry.

Another type of test looks for antibodies to the virus in the blood. This indicates that the person has had the disease.

https://nobelprizemuseum.se/en/coronavirus/

The first virus ever discovered

We have understood since the 19th century that many diseases are caused by microscopic bacteria that cannot be seen by the naked eye. It turned out that there were even smaller contagions: viruses. Research on viruses has been recognized with several Nobel Prizes.

https://nobelprizemuseum.se/en/the-first-virus-ever-discovered/

Spanish flu

The worst pandemic of the 20th century was the Spanish flu, which swept across the world 1918–1920.

The Spanish flu was caused by an influenza virus. American soldiers at military facilities at the end of World War I were likely an important source of its spread in Europe. The war had just ended, and the pandemic claimed even more lives than the war. Between 50 and 100 million people died in the pandemic.

The Red Cross, an international aid organization, which received the Nobel Peace Prize for its efforts during the war, also took part in fighting the Spanish flu. International Committee of the Red Cross received the prize in 1917, 1944 and 1963.

This photo shows personnel from the Red Cross providing transportation for people suffering from the Spanish flu in St. Louis, Missouri in the United States.

https://nobelprizemuseum.se/en/spanish-flu/

Polio

Polio is an illness that often affects children and young people and that can lead to permanent paralysis.

Polio is a highly infectious RNA virus belonging to the genus Enterovirus. The virus only infects humans and enters the body via droplets such as sneezing and coughing, or through contact with infected people’s feces. Usually, polio infects our respiratory and intestinal tract, but sometimes the virus spreads to the spinal cord and can then cause paralysis. The virus mainly affects children, but most of those infected show no or very mild symptoms.

Vaccines are a way to help our immune system fight viruses. The immune system is the body’s defence mechanism against attacks from viruses and bacteria. A number of Nobel Laureates have researched the immune system and contributed to the development of vaccines.

Hepatitis B

The virus can infect people without them becoming sick. Discoveries in the 1960s enabled both vaccines and tests to prevent the spread.

Hepatitis B can infect humans and apes, and is most common in West Africa and in sub-Saharan Africa. The disease also occurs in the rest of Africa, as well as in areas from the Caspian Sea through to China and Korea and further down to Southeast Asia.

Baruch Blumberg discovered the virus behind hepatitis B and developed a vaccine against the disease.

There are many varieties of hepatitis, or jaundice, that cause inflammation in the liver. When studying blood proteins from people from different parts of the world at the end of the 1960s, Baruch Blumberg unexpectedly discovered an infectious agent for hepatitis B. He showed that the infectious agent was linked to a virus of previously unknown type. The virus can infect people without them becoming sick. The discoveries enabled both vaccines and tests to prevent the spread through blood transfusions.

Baruch Blumberg was awarded the Nobel Prize in Physiology or Medicine 1976. He has summarized what the Nobel Prize meant to him.

https://nobelprizemuseum.se/en/hepatitis-b/

Yellow fever

Each year, Yellow fever causes about 30,000 deaths. The vaccine against yellow fever was produced in the 1930s. A work awarded the Nobel Prize.

Yellow fever is a serious disease caused by a virus that is spread by mosquitos in tropical areas of Africa and South America.

Each year, Yellow fever causes about 200,000 infections and 30,000 deaths. About 90% of the cases occur in Africa. The disease is common in warm, tropical climates such as South America and Africa, but it is not found in Asia.

You may think that the number of people infected would be decreasing, but since the 1980s the number of yellow fever cases has unfortunately increased. This is believed to be due to the fact that more and more people are living in cities, that we are traveling more than before, and an increased climate impact.

Since there is no cure for the disease, preventive vaccination is a very important measure. Max Theiler successfully infected mice with a virus in the 1930s, which opened the door to more in-depth studies. When the virus was transferred between mice, a weakened form of the virus was created that gave monkeys immunity. In 1937, Theiler was able to develop an even weaker version of the virus. This version could be used as a vaccine for people.

Max Theiler was awarded the Nobel Prize in Physiology or Medicine in 1951.

https://nobelprizemuseum.se/en/yellow-fever/

HIV/AIDS

In the early 1980s, reports began to emerge about young men that suffered from unusual infections and cancers that normally only affect patients with weakened immune systems. It turned out to be a previously unknown epidemic, HIV, which spread rapidly across the world.

HIV, which is an abbreviation of human immunodeficiency virus, is a sexually transmitted retrovirus that attacks our immune system. An untreated infection eventually leads to AIDS, or acquired immune deficiency syndrome. In 2008, French scientists Luc Montagnier and Françoise Barré-Sinoussi were awarded the Nobel Prize in Physiology or Medicine for the detection of human immunodeficiency virus.

Watch the interview where Françoise Barré-Sinoussi talks about what it is like to meet patients affected by the virus she discovered.

https://nobelprizemuseum.se/en/hiv-aids/

 

Viruses captured in photos

Viruses are incredibly small and cannot be seen in normal microscopes.

The electron microscope, which was invented by Ernst Ruska and Max Knoll in 1933, made it possible to take pictures of much smaller objects than was previously possible. Ernst Ruska’s brother, Helmut Ruska, was a doctor and biologist, and used early electron microscopes to make images of viruses and other small objects. The tobacco mosaic virus was the first virus captured on film. The development of the electron microscope has enabled increasingly better images to be taken.

Ernst Ruska was awarded the 1986 Nobel Prize in Physics together with Gerd Binnig and Heinrich Röhrer, who developed the scanning electron microscope.

Read more about Ernst Ruska – his life and research. https://www.nobelprize.org/prizes/physics/1986/ruska/facts/

https://nobelprizemuseum.se/en/viruses-captured-in-photos/

 

Epidemics and literature

When epidemics and pandemics strike the world, it isn’t just the physical health of people that are impacted but also ways of life, thoughts and feelings. Nobel Laureates in literature have been effected by epidemics and written about life under real and fictive epidemics.

The coronavirus crisis has had a dramatic impact on our lives and our view of our lives. Olga Tokarczuk is one of the authors who has reflected on this.

Tokarczuk argues that the coronavirus has swept away the illusion that we are the masters of creation and that we can do anything since the world belongs to us. She wonders if the pandemic has forced us into a slower, more natural rhythm in life, but also worries about how it may increase distrust of strangers and worsen inequality among people.

Orhan Pamuk has worked for many years on a novel about a bubonic plague epidemic that struck primarily Asia in 1901. The coronavirus crisis has caused him to consider the similarities between the ongoing pandemic and past epidemics throughout history.

He sees several recurring behaviors when epidemics strike: denial and false information, distrust of individuals belonging to other groups, and theories about a malicious intent behind the pandemic. But epidemics also remind us that we are not alone and allow us to rediscover a sense of solidarity. He writes in The New York Times.

https://nobelprizemuseum.se/en/epidemics-and-literature/

Economics Laureates on the current pandemic

Pandemics have wide-ranging impacts on the economy. Paul Romer and Paul Krugman are two economists who have been active in the public discourse during the coronavirus crisis.

Paul Romer has expressed concerns about the pandemic’s effects on the economy but is optimistic about the possibilities of technology. He supports widespread testing. Those who are infected have to stay home for two weeks while others can work and take part in other ways in society.

Paul Romer was awarded the prize “for integrating technological innovations into long-run macroeconomic analysis.” Paul Romer has demonstrated how knowledge can function as a driver of long-term economic growth. He showed how economic forces govern the willingness of firms to produce new ideas.

His thoughts are developed in his lecture during the Nobel Week 2018.

https://nobelprizemuseum.se/en/economics-laureates-on-the-current-pandemic/

 

Other SOURCE

https://www.nobelprize.org/

 

Read Full Post »

The race for a COVID-19 vaccine: What’s ahead ?

Reporter: Irina Robu, PhD

Researchers are conducting over 100 coronavirus vaccines studies, as they race to produce the first serum to protect people from COVID-19. Its uncertain which one would be successful, but what is certain is that without the vaccine, life would not return to normal anywhere on the world.

Usually, a vaccine takes 20 to 15 years to develop, but Moderna Therapeutics, a U.S. pharmaceutical company will test their vaccine on tens of thousands of people which are in critical phase 3. Even though many vaccines are tested now, only ten candidates are currently in clinical trials. The process to develop a vaccine is complicated and requires time and money.

However, in order to develop a vaccine, a pathogen has to be identified. After several in vitro trials, the vaccine is tested in mice, then in a non-human primate model. After these preclinical studies show  promising results, then the next step is to into clinical trials i.e. human testing. The human testing, occurs in various steps. The first step, phase 1 clinical trial is usually a small trial with 20 to 100 patients. The goal of this step is to asses the toxicity of the vaccine. Once, the first step clinical trials are completed and the results show positive result on toxicity and safety, progress to phase 2 trials can be started. Phase 2 clinical trials include 200 to 400 patients. In this phase, immunogenicity of the vaccine it is tested as well as how long it is effective.  Then, the last step is phase 3 clinical trial which can include as many as 30,000 people. The last phase it assesses whether the vaccine works on a broader scale.

Once the vaccine is effective, companies have to increase production to develop more than 7 billion doses. But due to the large number of people requiring this vaccine, scientists have to look at how to increase the manufacturing capability and distribution. In order to produce them effectively, a portfolio of vaccines have to be used.

 SOURCE

https://scopeblog.stanford.edu/2020/06/25/the-race-for-a-covid-19-vaccine-whats-ahead/

 

 

 

Read Full Post »

Pfizer bets $1 billion on BioAtla Conditionally Active Biologics | BioAcceleration™ for Protein Therapeutics

Reporter: Aviva Lev-Ari, PhD, RN

 

 

SAN DIEGO, CA – December 8, 2015 – BioAtla® LLC, a biotechnology company focused on the development of Conditionally Active Biologic (CAB) antibody therapeutics, today announced that it has entered into a license and option agreement with Pfizer Inc. (NYSE: PFE) to advance the development and commercialization of a new class of antibody therapeutics based on BioAtla’s CAB platform and utilizing Pfizer’s proprietary antibody drug conjugate (ADC) payloads.

Under the agreement, BioAtla and Pfizer will each have a license to the other’s respective technology to pursue the development and commercialization of several CAB-ADC antibodies. Pfizer also gains an exclusive option to develop and commercialize BioAtla CAB antibodies that target CTLA4, a validated immuno-oncology target in humans. If successful, BioAtla’s technology would allow the selective targeting of CTLA4 expressed on immune cells localized in the tumor microenvironment. BioAtla and Pfizer are both eligible to receive milestone payments and royalties based on individual CAB-ADC antibody candidates developed and commercialized by the other party. Including the CTLA4 option and license, BioAtla is eligible to receive a potential total of more than $1.0 billion in up-front, regulatory and sales milestone payments as well as tiered marginal royalties reaching double digits on potential future product sales.

CAB-ADC antibodies aim to address the inherent limitations of current ADC antibody technology by actively binding to antigens expressed on tumor tissue-resident cancer cells, but not to the same antigens expressed on normal cells in non-diseased tissues. If successful, this approach would allow the preferential targeting of tumor tissues by ADCs, thereby increasing the efficacy-safety ratios of CAB-ADCs relative to their conventional counterparts. The use of CAB antibodies as payload delivery vehicles could dramatically increase the number of tumor-associated antigens that are addressable with ADC technology.

Sourced through Scoop.it from: bioatla.com

See on Scoop.itCardiovascular Disease: PHARMACO-THERAPY

Read Full Post »

Researchers have hijacked a defense system normally used by bacteria to fend off viral infections and redirected it against the human papillomavirus (HPV), the virus that causes cervical, head and neck, and other cancers.

Using the genome editing tool known as CRISPR, the Duke University researchers were able to selectively destroy two viral genes responsible for the growth and survival of cervical carcinoma cells, causing the cancer cells to self-destruct.

The findings, published in the Journal of Virology, give credence to an approach only recently attempted in mammalian cells, and could pave the way toward antiviral strategies targeted against other DNA-based viruses like hepatitis B and herpes simplex. 

“Because this approach is only going after viral genes, there should be no off-target effects on normal cells,” said Bryan R. Cullen, Ph.D., senior study author and professor of molecular genetics and microbiology at Duke University School of Medicine. “You can think of this as targeting a missile that will destroy a certain target. You put in a code that tells the missile exactly what to hit, and it will only hit that, and it won’t hit anything else because it doesn’t have the code for another target.”

In this study, Cullen decided to target the human papillomavirus (HPV), which causes almost all cervical cancers and about half of head and neck cancers. Specifically, he and his colleagues went after the viral genes E6 and E7, two “oncogenes” that block the host’s own efforts to keep cancer cells at bay.

 

To run CRISPR against the virus, the researchers needed two ingredients. First, they needed the target code for E6 or E7, consisting of a short strip of RNA sequence, the chemical cousin of DNA. To this “guide RNA” they added the Cas9 protein, which would cut any DNA that could line up and bind to that RNA sequence.

 

The carcinoma cells that received the anti-HPV guide RNA/Cas9 combination immediately stopped growing. In contrast, cells that had received a control virus, containing a random guide RNA sequence, continued on their path to immortality. The researchers then dug down to the molecular level to investigate the consequences of destroying E6 or E7 in cancer cells. E6 normally blocks a protein called p53, known as the guardian of the genome because it can turn on suicide pathways in the cell when it senses that something has gone awry. In this study, targeting E6 enabled p53 to resume its normal function, spurring death of the cancer cell.

E7 works in a similar way, blocking another protein called retinoblastoma or Rb that can trigger growth arrest and senescence, another form of cell death. As expected, the researchers found that targeting E7 also set this second “tumor suppressor” back in motion.

“As soon as you turn off E6 or E7, the host defense mechanisms are allowed to come back on again, because they have been there this whole time, but they have been turned off by HPV,” Cullen said. “What happens is the cell immediately commits suicide.”

Cullen and his colleagues are now working on developing a different viral vector, based on the adeno-associated virus, to deliver their CRISPR cargo into cancer cells. Once they are happy with their delivery system, they will begin to test this approach in animal models.

“What we would hope to see in an HPV-induced cancer is rapid induction of tumor necrosis caused by loss of E6 or E7,” Cullen said. “This method has the potential to be a single hit treatment that will dramatically reduce tumor load without having any effect on normal cells.”

The researchers are also targeting other viruses that use DNA as their genetic material, including the hepatitis B virus and herpes simplex virus.

Reference: “Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells using a bacterial CRISPR/Cas RNA-guided endonuclease,” Edward M. Kennedy, Anand V. R. Kornepati, Michael Goldstein, Hal P. Bogerd, Brigid C. Poling, Adam W. Whisnant, Michael B. Kastan and Bryan R. Cullen.Journal of Virology, August 6, 2014. DOI 10.1128/JVI.01879-14.

Source: www.fiercebiotechresearch.com

See on Scoop.itCardiovascular and vascular imaging

Read Full Post »

%d bloggers like this: