Advertisements
Feeds:
Posts
Comments

Archive for the ‘Disease Biology, Small Molecules in Development of Therapeutic Drugs’ Category


Live Conference Coverage @Medcitynews Converge 2018 @Philadelphia: Promising Drugs and Breaking Down Silos

Reporter: Stephen J. Williams, PhD

Promising Drugs, Pricing and Access

The drug pricing debate rages on. What are the solutions to continuing to foster research and innovation, while ensuring access and affordability for patients? Can biosimilars and generics be able to expand market access in the U.S.?

Moderator: Bunny Ellerin, Director, Healthcare and Pharmaceutical Management Program, Columbia Business School
Speakers:
Patrick Davish, AVP, Global & US Pricing/Market Access, Merck
Robert Dubois M.D., Chief Science Officer and Executive Vice President, National Pharmaceutical Council
Gary Kurzman, M.D., Senior Vice President and Managing Director, Healthcare, Safeguard Scientifics
Steven Lucio, Associate Vice President, Pharmacy Services, Vizient

What is working and what needs to change in pricing models?

Robert:  He sees so many players in the onStevencology space discovering new drugs and other drugs are going generic (that is what is working).  However are we spending too much on cancer care relative to other diseases (their initiative Going Beyond the Surface)

Steven:  the advent of biosimilars is good for the industry

Patrick:  large effort in oncology, maybe too much (750 trials on Keytruda) and he says pharma is spending on R&D (however clinical trials take large chunk of this money)

Robert: cancer has gotten a free ride but cost per year relative to benefit looks different than other diseases.  Are we overinvesting in cancer or is that a societal decision

Gary:  maybe as we become more specific with precision medicines high prices may be a result of our success in specifically targeting a mutation.  We need to understand the targeted drugs and outcomes.

Patrick: “Cancer is the last big frontier” but he says prices will come down in most cases.  He gives the example of Hep C treatment… the previous only therapeutic option was a very toxic yearlong treatment but the newer drugs may be more cost effective and safer

Steven: Our blockbuster drugs could diffuse the expense but now with precision we can’t diffuse the expense over a large number of patients

President’s Cancer Panel Recommendation

Six recommendations

  1. promoting value based pricing
  2. enabling communications of cost
  3. financial toxicity
  4. stimulate competition biosimilars
  5. value based care
  6. invest in biomedical research

Patrick: the government pricing regime is hurting.  Alot of practical barriers but Merck has over 200 studies on cost basis

Robert:  many concerns/impetus started in Europe on pricing as they are a set price model (EU won’t pay more than x for a drug). US is moving more to outcomes pricing. For every one health outcome study three studies did not show a benefit.  With cancer it is tricky to establish specific health outcomes.  Also Medicare gets best price status so needs to be a safe harbor for payers and biggest constraint is regulatory issues.

Steven: They all want value based pricing but we don’t have that yet and there is a challenge to understand the nuances of new therapies.  Hard to align all the stakeholders together so until some legislation starts to change the reimbursement-clinic-patient-pharma obstacles.  Possibly the big data efforts discussed here may help align each stakeholders goals.

Gary: What is the data necessary to understand what is happening to patients and until we have that information it still will be complicated to determine where investors in health care stand at in this discussion

Robert: on an ICER methods advisory board: 1) great concern of costs how do we determine fair value of drug 2) ICER is only game in town, other orgs only give recommendations 3) ICER evaluates long term value (cost per quality year of life), budget impact (will people go bankrupt)

4) ICER getting traction in the public eye and advocates 5) the problem is ICER not ready for prime time as evidence keeps changing or are they keeping the societal factors in mind and they don’t have total transparancy in their methodology

Steven: We need more transparency into all the costs associated with the drug and therapy and value-based outcome.  Right now price is more of a black box.

Moderator: pointed to a recent study which showed that outpatient costs are going down while hospital based care cost is going rapidly up (cost of site of care) so we need to figure out how to get people into lower cost setting

Breaking Down Silos in Research

“Silo” is healthcare’s four-letter word. How are researchers, life science companies and others sharing information that can benefit patients more quickly? Hear from experts at institutions that are striving to tear down the walls that prevent data from flowing.

Moderator: Vini Jolly, Executive Director, Woodside Capital Partners
Speakers:
Ardy Arianpour, CEO & Co-Founder, Seqster @seqster
Lauren Becnel, Ph.D., Real World Data Lead for Oncology, Pfizer
Rakesh Mathew, Innovation, Research, & Development Lead, HealthShareExchange
David Nace M.D., Chief Medical Officer, Innovaccer

Seqster: Seqster is a secure platform that helps you and your family manage medical records, DNA, fitness, and nutrition data—all in one place. Founder has a genomic sequencing background but realized sequence  information needs to be linked with medical records.

HealthShareExchange.org :

HealthShare Exchange envisions a trusted community of healthcare stakeholders collaborating to deliver better care to consumers in the greater Philadelphia region. HealthShare Exchange will provide secure access to health information to enable preventive and cost-effective care; improve quality of patient care; and facilitate care transitions. They have partnered with multiple players in healthcare field and have data on over 7 million patients.

Innovacer

Data can be overwhelming, but it doesn’t have to be this way. To drive healthcare efficiency, we designed a modular suite of products for a smooth transition into a data-driven world within 4 weeks. Why does it take so much money to move data around and so slowly?

What is interoperatibility?

Ardy: We knew in genomics field how to build algorithms to analyze big data but how do we expand this from a consumer standpoint and see and share your data.

Lauren: how can we use the data between patients, doctors, researchers?  On the research side genomics represent only 2% of data.  Silos are one issue but figuring out the standards for data (collection, curation, analysis) is not set. Still need to improve semantic interoperability. For example Flatiron had good annotated data on male metastatic breast cancer.

David: Technical interopatabliltiy (platform), semantic interopatability (meaning or word usage), format (syntactic) interopatibility (data structure).  There is technical interoperatiblity between health system but some semantic but formats are all different (pharmacies use different systems and write different prescriptions using different suppliers).  In any value based contract this problem is a big issue now (we are going to pay you based on the quality of your performance then there is big need to coordinate across platforms).  We can solve it by bringing data in real time in one place and use mapping to integrate the format (need quality control) then need to make the data democratized among players.

Rakesh:  Patients data should follow the patient. Of Philadelphia’s 12 health systems we had a challenge to make data interoperatable among them so tdhey said to providers don’t use portals and made sure hospitals were sending standardized data. Health care data is complex.

David: 80% of clinical data is noise. For example most eMedical Records are text. Another problem is defining a patient identifier which US does not believe in.

 

 

 

 

Please follow on Twitter using the following #hash tags and @pharma_BI

#MCConverge

#cancertreatment

#healthIT

#innovation

#precisionmedicine

#healthcaremodels

#personalizedmedicine

#healthcaredata

And at the following handles:

@pharma_BI

@medcitynews

Advertisements

Read Full Post »


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Hepatitis B virus can cause serious, long-term health problems, such as liver disease and cancer, and can spread from mother-to-child during delivery. According to the latest estimates from the World Health Organization (WHO), approximately 257 million people in 2015 were living with the virus. Countries in Asia have a high burden of hepatitis B. There is no cure, and antiviral drugs used to treat the infection usually need to be taken for life.

 

To prevent infection, WHO recommends that all newborns receive their first dose of hepatitis B vaccine within 24 hours of delivery. Infants born to hepatitis B-infected mothers are also given protective antibodies called hepatitis B immune globulin (HBIG). However, mother-to-child transmission can still occur in women with high levels of virus in their blood, as well as those with mutated versions of the virus.

 

Tenofovir disoproxil fumarate (TDF), an antiviral drug commonly prescribed to treat hepatitis B infection, does not significantly reduce mother-to-child transmission of hepatitis B virus when taken during pregnancy and after delivery, according to a phase III clinical trial in Thailand funded by the National Institutes of Health. The study tested TDF therapy in addition to the standard preventative regimen — administration of hepatitis B vaccine and protective antibodies at birth — to explore the drug’s potential effects on mother-to-child transmission rates. The results appear in the New England Journal of Medicine.

 

The present study was conducted at 17 hospitals of the Ministry of Public Health in Thailand. It screened more than 2,500 women for eligibility and enrolled 331 pregnant women with hepatitis B. The women received placebo (163) or TDF (168) at intervals from 28 weeks of pregnancy to two months after delivery. All infants received standard hepatitis B preventatives given in Thailand, which include HBIG at birth and five doses of the hepatitis B vaccine by age 6 months (which differs from the three doses given in the United States). A total of 294 infants (147 in each group) were followed through age 6 months.

 

Three infants in the placebo group had hepatitis B infection at age 6 months, compared to zero infants in the TDF treatment group. Given the unexpectedly low transmission rate in the placebo group, the researchers concluded that the addition of TDF to current recommendations did not significantly reduce mother-to-child transmission of the virus.

 

According to the study, the clinical trial had enough participants to detect statistical differences if the transmission rate in the placebo group reached at least 12 percent, a rate observed in previous studies. Though the reasons are unknown, the researchers speculate that the lower transmission rate seen in the study may relate to the number of doses of hepatitis B vaccine given to infants in Thailand, lower rates of amniocentesis and Cesarean section deliveries in this study, or the lower prevalence of mutated viruses that result in higher vaccine efficacy in Thailand compared to other countries.

 

References:

 

https://www.nih.gov/news-events/news-releases/antiviral-drug-not-beneficial-reducing-mother-child-transmission-hepatitis-b-when-added-existing-preventatives

 

https://www.ncbi.nlm.nih.gov/pubmed/29514030

 

https://www.ncbi.nlm.nih.gov/pubmed/29514035

 

https://www.ncbi.nlm.nih.gov/pubmed/25240752

 

https://www.ncbi.nlm.nih.gov/pubmed/28188612

 

Read Full Post »


  1. Lungs can supply blood stem cells and also produce platelets: Lungs, known primarily for breathing, play a previously unrecognized role in blood production, with more than half of the platelets in a mouse’s circulation produced there. Furthermore, a previously unknown pool of blood stem cells has been identified that is capable of restoring blood production when bone marrow stem cells are depleted.

 

  1. A new drug for multiple sclerosis: A new multiple sclerosis (MS) drug, which grew out of the work of UCSF (University of California, San Francisco) neurologist was approved by the FDA. Ocrelizumab, the first drug to reflect current scientific understanding of MS, was approved to treat both relapsing-remitting MS and primary progressive MS.

 

  1. Marijuana legalized – research needed on therapeutic possibilities and negative effects: Recreational marijuana will be legal in California starting in January, and that has brought a renewed urgency to seek out more information on the drug’s health effects, both positive and negative. UCSF scientists recognize marijuana’s contradictory status: the drug has proven therapeutic uses, but it can also lead to tremendous public health problems.

 

  1. Source of autism discovered: In a finding that could help unlock the fundamental mysteries about how events early in brain development lead to autism, researchers traced how distinct sets of genetic defects in a single neuronal protein can lead to either epilepsy in infancy or to autism spectrum disorders in predictable ways.

 

  1. Protein found in diet responsible for inflammation in brain: Ketogenic diets, characterized by extreme low-carbohydrate, high-fat regimens are known to benefit people with epilepsy and other neurological illnesses by lowering inflammation in the brain. UCSF researchers discovered the previously undiscovered mechanism by which a low-carbohydrate diet reduces inflammation in the brain. Importantly, the team identified a pivotal protein that links the diet to inflammatory genes, which, if blocked, could mirror the anti-inflammatory effects of ketogenic diets.

 

  1. Learning and memory failure due to brain injury is now restorable by drug: In a finding that holds promise for treating people with traumatic brain injury, an experimental drug, ISRIB (integrated stress response inhibitor), completely reversed severe learning and memory impairments caused by traumatic brain injury in mice. The groundbreaking finding revealed that the drug fully restored the ability to learn and remember in the brain-injured mice even when the animals were initially treated as long as a month after injury.

 

  1. Regulatory T cells induce stem cells for promoting hair growth: In a finding that could impact baldness, researchers found that regulatory T cells, a type of immune cell generally associated with controlling inflammation, directly trigger stem cells in the skin to promote healthy hair growth. An experiment with mice revealed that without these immune cells as partners, stem cells cannot regenerate hair follicles, leading to baldness.

 

  1. More intake of good fat is also bad: Liberal consumption of good fat (monounsaturated fat) – found in olive oil and avocados – may lead to fatty liver disease, a risk factor for metabolic disorders like type 2 diabetes and hypertension. Eating the fat in combination with high starch content was found to cause the most severe fatty liver disease in mice.

 

  1. Chemical toxicity in almost every daily use products: Unregulated chemicals are increasingly prevalent in products people use every day, and that rise matches a concurrent rise in health conditions like cancers and childhood diseases, Thus, researcher in UCSF is working to understand the environment’s role – including exposure to chemicals – in health conditions.

 

  1. Cytomegalovirus found as common factor for diabetes and heart disease in young women: Cytomegalovirus is associated with risk factors for type 2 diabetes and heart disease in women younger than 50. Women of normal weight who were infected with the typically asymptomatic cytomegalovirus, or CMV, were more likely to have metabolic syndrome. Surprisingly, the reverse was found in those with extreme obesity.

 

References:

 

https://www.ucsf.edu/news/2017/12/409241/most-popular-science-stories-2017

 

https://www.ucsf.edu/news/2017/03/406111/surprising-new-role-lungs-making-blood

 

https://www.ucsf.edu/news/2017/03/406296/new-multiple-sclerosis-drug-ocrelizumab-could-halt-disease

 

https://www.ucsf.edu/news/2017/06/407351/dazed-and-confused-marijuana-legalization-raises-need-more-research

 

https://www.ucsf.edu/news/2017/01/405631/autism-researchers-discover-genetic-rosetta-stone

 

https://www.ucsf.edu/news/2017/09/408366/how-ketogenic-diets-curb-inflammation-brain

 

https://www.ucsf.edu/news/2017/07/407656/drug-reverses-memory-failure-caused-traumatic-brain-injury

 

https://www.ucsf.edu/news/2017/05/407121/new-hair-growth-mechanism-discovered

 

https://www.ucsf.edu/news/2017/06/407536/go-easy-avocado-toast-good-fat-can-still-be-bad-you-research-shows

 

https://www.ucsf.edu/news/2017/06/407416/toxic-exposure-chemicals-are-our-water-food-air-and-furniture

 

https://www.ucsf.edu/news/2017/02/405871/common-virus-tied-diabetes-heart-disease-women-under-50

 

Read Full Post »


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

MicroRNAs (miRNAs) are a group of small non-coding RNA molecules that play a major role in posttranscriptional regulation of gene expression and are expressed in an organ-specific manner. One miRNA can potentially regulate the expression of several genes, depending on cell type and differentiation stage. They control every cellular process and their altered regulation is involved in human diseases. miRNAs are differentially expressed in the male and female gonads and have an organ-specific reproductive function. Exerting their affect through germ cells and gonadal somatic cells, miRNAs regulate key proteins necessary for gonad development. The role of miRNAs in the testes is only starting to emerge though they have been shown to be required for adequate spermatogenesis. In the ovary, miRNAs play a fundamental role in follicles’ assembly, growth, differentiation, and ovulation.

 

Deciphering the underlying causes of idiopathic male infertility is one of the main challenges in reproductive medicine. This is especially relevant in infertile patients displaying normal seminal parameters and no urogenital or genetic abnormalities. In these cases, the search for additional sperm biomarkers is of high interest. This study was aimed to determine the implications of the sperm miRNA expression profiles in the reproductive capacity of normozoospermic infertile individuals. The expression levels of 736 miRNAs were evaluated in spermatozoa from normozoospermic infertile males and normozoospermic fertile males analyzed under the same conditions. 57 miRNAs were differentially expressed between populations; 20 of them was regulated by a host gene promoter that in three cases comprised genes involved in fertility. The predicted targets of the differentially expressed miRNAs unveiled a significant enrichment of biological processes related to embryonic morphogenesis and chromatin modification. Normozoospermic infertile individuals exhibit a specific sperm miRNA expression profile clearly differentiated from normozoospermic fertile individuals. This miRNA cargo has potential implications in the individuals’ reproductive competence.

 

Circulating or “extracellular” miRNAs detected in biological fluids, could be used as potential diagnostic and prognostic biomarkers of several disease, such as cancer, gynecological and pregnancy disorders. However, their contributions in female infertility and in vitro fertilization (IVF) remain unknown. Polycystic ovary syndrome (PCOS) is a frequent endocrine disorder in women. PCOS is associated with altered features of androgen metabolism, increased insulin resistance and impaired fertility. Furthermore, PCOS, being a syndrome diagnosis, is heterogeneous and characterized by polycystic ovaries, chronic anovulation and evidence of hyperandrogenism, as well as being associated with chronic low-grade inflammation and an increased life time risk of type 2 diabetes. Altered miRNA levels have been associated with diabetes, insulin resistance, inflammation and various cancers. Studies have shown that circulating miRNAs are present in whole blood, serum, plasma and the follicular fluid of PCOS patients and that these might serve as potential biomarkers and a new approach for the diagnosis of PCOS. Presence of miRNA in mammalian follicular fluid has been demonstrated to be enclosed within microvesicles and exosomes or they can also be associated to protein complexes. The presence of microvesicles and exosomes carrying microRNAs in follicular fluid could represent an alternative mechanism of autocrine and paracrine communication inside the ovarian follicle. The investigation of the expression profiles of five circulating miRNAs (let-7b, miR-29a, miR-30a, miR-140 and miR-320a) in human follicular fluid from women with normal ovarian reserve and with polycystic ovary syndrome (PCOS) and their ability to predict IVF outcomes showed that these miRNAs could provide new helpful biomarkers to facilitate personalized medical care for oocyte quality in ART (Assisted Reproductive Treatment) and during IVF (In Vitro Fertilization).

 

References:

 

http://link.springer.com/chapter/10.1007%2F978-3-319-31973-5_12

 

http://onlinelibrary.wiley.com/doi/10.1111/andr.12276/abstract;jsessionid=F805A89DCC94BDBD42D6D60C40AD4AB0.f03t03

 

http://www.sciencedirect.com/science/article/pii/S0009279716302241

 

http://link.springer.com/article/10.1007%2Fs10815-016-0657-9

 

http://www.nature.com/articles/srep24976

 

 

Read Full Post »

Milestones in Physiology & Discoveries in Medicine and Genomics: Request for Book Review Writing on Amazon.com


physiology-cover-seriese-vol-3individualsaddlebrown-page2

Milestones in Physiology

Discoveries in Medicine, Genomics and Therapeutics

Patient-centric Perspective 

http://www.amazon.com/dp/B019VH97LU 

2015

 

 

Author, Curator and Editor

Larry H Bernstein, MD, FCAP

Chief Scientific Officer

Leaders in Pharmaceutical Business Intelligence

Larry.bernstein@gmail.com

Preface

Introduction 

Chapter 1: Evolution of the Foundation for Diagnostics and Pharmaceuticals Industries

1.1  Outline of Medical Discoveries between 1880 and 1980

1.2 The History of Infectious Diseases and Epidemiology in the late 19th and 20th Century

1.3 The Classification of Microbiota

1.4 Selected Contributions to Chemistry from 1880 to 1980

1.5 The Evolution of Clinical Chemistry in the 20th Century

1.6 Milestones in the Evolution of Diagnostics in the US HealthCare System: 1920s to Pre-Genomics

 

Chapter 2. The search for the evolution of function of proteins, enzymes and metal catalysts in life processes

2.1 The life and work of Allan Wilson
2.2  The  evolution of myoglobin and hemoglobin
2.3  More complexity in proteins evolution
2.4  Life on earth is traced to oxygen binding
2.5  The colors of life function
2.6  The colors of respiration and electron transport
2.7  Highlights of a green evolution

 

Chapter 3. Evolution of New Relationships in Neuroendocrine States
3.1 Pituitary endocrine axis
3.2 Thyroid function
3.3 Sex hormones
3.4 Adrenal Cortex
3.5 Pancreatic Islets
3.6 Parathyroids
3.7 Gastointestinal hormones
3.8 Endocrine action on midbrain
3.9 Neural activity regulating endocrine response

3.10 Genomic Promise for Neurodegenerative Diseases, Dementias, Autism Spectrum, Schizophrenia, and Serious Depression

 

Chapter 4.  Problems of the Circulation, Altitude, and Immunity

4.1 Innervation of Heart and Heart Rate
4.2 Action of hormones on the circulation
4.3 Allogeneic Transfusion Reactions
4.4 Graft-versus Host reaction
4.5 Unique problems of perinatal period
4.6. High altitude sickness
4.7 Deep water adaptation
4.8 Heart-Lung-and Kidney
4.9 Acute Lung Injury

4.10 Reconstruction of Life Processes requires both Genomics and Metabolomics to explain Phenotypes and Phylogenetics

 

Chapter 5. Problems of Diets and Lifestyle Changes

5.1 Anorexia nervosa
5.2 Voluntary and Involuntary S-insufficiency
5.3 Diarrheas – bacterial and nonbacterial
5.4 Gluten-free diets
5.5 Diet and cholesterol
5.6 Diet and Type 2 diabetes mellitus
5.7 Diet and exercise
5.8 Anxiety and quality of Life
5.9 Nutritional Supplements

 

Chapter 6. Advances in Genomics, Therapeutics and Pharmacogenomics

6.1 Natural Products Chemistry

6.2 The Challenge of Antimicrobial Resistance

6.3 Viruses, Vaccines and immunotherapy

6.4 Genomics and Metabolomics Advances in Cancer

6.5 Proteomics – Protein Interaction

6.6 Pharmacogenomics

6.7 Biomarker Guided Therapy

6.8 The Emergence of a Pharmaceutical Industry in the 20th Century: Diagnostics Industry and Drug Development in the Genomics Era: Mid 80s to Present

6.09 The Union of Biomarkers and Drug Development

6.10 Proteomics and Biomarker Discovery

6.11 Epigenomics and Companion Diagnostics

 

Chapter  7

Integration of Physiology, Genomics and Pharmacotherapy

7.1 Richard Lifton, MD, PhD of Yale University and Howard Hughes Medical Institute: Recipient of 2014 Breakthrough Prizes Awarded in Life Sciences for the Discovery of Genes and Biochemical Mechanisms that cause Hypertension

7.2 Calcium Cycling (ATPase Pump) in Cardiac Gene Therapy: Inhalable Gene Therapy for Pulmonary Arterial Hypertension and Percutaneous Intra-coronary Artery Infusion for Heart Failure: Contributions by Roger J. Hajjar, MD

7.3 Diagnostics and Biomarkers: Novel Genomics Industry Trends vs Present Market Conditions and Historical Scientific Leaders Memoirs

7.4 Synthetic Biology: On Advanced Genome Interpretation for Gene Variants and Pathways: What is the Genetic Base of Atherosclerosis and Loss of Arterial Elasticity with Aging

7.5 Diagnosing Diseases & Gene Therapy: Precision Genome Editing and Cost-effective microRNA Profiling

7.6 Imaging Biomarker for Arterial Stiffness: Pathways in Pharmacotherapy for Hypertension and Hypercholesterolemia Management

7.7 Neuroprotective Therapies: Pharmacogenomics vs Psychotropic drugs and Cholinesterase Inhibitors

7.8 Metabolite Identification Combining Genetic and Metabolic Information: Genetic association links unknown metabolites to functionally related genes

7.9 Preserved vs Reduced Ejection Fraction: Available and Needed Therapies

7.10 Biosimilars: Intellectual Property Creation and Protection by Pioneer and by

7.11 Demonstrate Biosimilarity: New FDA Biosimilar Guidelines

 

Chapter 7.  Biopharma Today

8.1 A Great University engaged in Drug Discovery: University of Pittsburgh

8.2 Introduction – The Evolution of Cancer Therapy and Cancer Research: How We Got Here?

8.3 Predicting Tumor Response, Progression, and Time to Recurrence

8.4 Targeting Untargetable Proto-Oncogenes

8.5 Innovation: Drug Discovery, Medical Devices and Digital Health

8.6 Cardiotoxicity and Cardiomyopathy Related to Drugs Adverse Effects

8.7 Nanotechnology and Ocular Drug Delivery: Part I

8.8 Transdermal drug delivery (TDD) system and nanotechnology: Part II

8.9 The Delicate Connection: IDO (Indolamine 2, 3 dehydrogenase) and Cancer Immunology

8.10 Natural Drug Target Discovery and Translational Medicine in Human Microbiome

8.11 From Genomics of Microorganisms to Translational Medicine

8.12 Confined Indolamine 2, 3 dioxygenase (IDO) Controls the Homeostasis of Immune Responses for Good and Bad

 

Chapter 9. BioPharma – Future Trends

9.1 Artificial Intelligence Versus the Scientist: Who Will Win?

9.2 The Vibrant Philly Biotech Scene: Focus on KannaLife Sciences and the Discipline and Potential of Pharmacognosy

9.3 The Vibrant Philly Biotech Scene: Focus on Computer-Aided Drug Design and Gfree Bio, LLC

9.4 Heroes in Medical Research: The Postdoctoral Fellow

9.5 NIH Considers Guidelines for CAR-T therapy: Report from Recombinant DNA Advisory Committee

9.6 1st Pitch Life Science- Philadelphia- What VCs Really Think of your Pitch

9.7 Multiple Lung Cancer Genomic Projects Suggest New Targets, Research Directions for Non-Small Cell Lung Cancer

9.8 Heroes in Medical Research: Green Fluorescent Protein and the Rough Road in Science

9.9 Issues in Personalized Medicine in Cancer: Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing

9.10 The SCID Pig II: Researchers Develop Another SCID Pig, And Another Great Model For Cancer Research

Epilogue

Read Full Post »


Toxicities Associated with Immuno-oncology Treatment

Larry H. Bernstein, MD, FCAP

Curator: LPBI

 

ICLIO: Be Aware of Novel Toxicities With New Ca Drugs  

Advent of new immunotherapies warrants education for non-oncologists

by Eric T. Rosenthal
Special Correspondent, MedPage Today
http://www.medpagetoday.com/HematologyOncology/Chemotherapy/58582

CHICAGO — A new class of cancer immunotherapies, led by pembrolizumab (Keytruda), has taken the oncology world by storm. But with this novel type of treatment comes a new challenge.

The Association of Community Cancer Centers (ACCC) wants to ensure that non-oncologist physicians know how to take care of their patients receiving these agents since doctors in other specialties may not be aware of the side effects related to the immunotherapies.

The initiative is one of the steps taken by the association’s Institute of Clinical Immuno-Oncology’s (ICLIO) in making immunotherapy available in the community.

ICLIO was launched 1 year ago to help prepare community cancer teams and centers to deal with the clinical, coverage, and reimbursement issues related to immunotherapy.

During the American Society of Clinical Oncology annual meeting here MedPage Todayspoke with ACCC President Jennie R. Crews, MD, and ICLIO Chair Lee S. Schwartzberg, MD, about the institute’s growth and future plans.

Schwartzberg, chief of the division of hematology and oncology at the University of Tennessee, as well as executive director of the West Cancer Center in Memphis, said that the field of immunotherapy “is moving so fast that we can’t have enough education.”

“Needs change over time and last year many cancer practices became familiar with immuno-oncology and now we have to go deeper and broader.”

The broadening, he explained, involves educating other medical subspecialists about immune-related toxicities from the new agents.

“The problem is that we see related toxicities that are not managed well, and we’re having trouble with this.”

He cited as two primary examples toxic side effects such as colitis and pneumonitis and the necessity of educating gastroenterologists and pulmonologists about their relationship to immunotherapy.

Many times these subspecialists, as well as dermatologists, endocrinologists, emergency physicians, and internists see autoimmune-related toxicities and first think they are from chemotherapy or infection, according to Schwartzberg.

“But they are going to be going down a very bad path with these patients if they think this way,” noting that a colleague from a leading cancer center had recently mentioned that the institution’s emergency room staff didn’t always understand about immunotherapy reactions.

He said that, although ICLIO does not have direct access to reaching many other subspecialists, it was beginning to develop educational materials that oncologists could share with other medical colleagues, as well as to work with some of the subspecialty societies.

“Education, however, has to be across the board, and has to include patients as well,” he said, adding that many cancer immunotherapy patients were being provided with cards that explained their immunotherapy and could be handed to nurses and physicians at the outset of their medical intervention, saving time and the risk of undergoing the wrong treatment.

In a separate interview, Crews, medical director for Cancer Services PeaceHealth at St. Joseph Medical Center in Bellingham, Wash., said that ACCC members include both academic centers and community practices including both hospital-based and private. (An ACCC public relations representative monitored the interview.)

“We are not focused on what the science is, but rather on how do we take this technology out to the community to bring cancer to where patients are,” she said, adding that she and others are very passionate in the belief that cancer care should be delivered wherever cancer patients live.

She said since ICLIO started in June 2015, much of its infrastructure and programs have been established, including a webinar series, eNewsletters, eLearning Modules, tumor subcommittee working groups, an on-site preceptorship program, an ICLIO stakeholder summit, and an upcoming second national conference this fall in Philadelphia.

That conference will be preceded by a stakeholder summit bringing together providers, patient advocates, payers, pharmaceutical producers, and others, which the ACCC hopes will produce a white paper.

The last year has seen the growth of the initiative’s Scholars Program to about 50 oncologists who have received training through ICLIO’s learning modules.

These scholars will in turn eventually be able to serve as mentors to the 2,000 cancer programs with some 20,000 individual members that make up ACCC’s membership.

Crews said that to date about 700 cancer programs involving some 1,900 individuals have participated in the webinars, and about 100 people attended ICLIO’s first annual conference last October.

She said that in addition to the charitable contribution initially made by Bristol-Myers Squibb last year to help launch ICLIO, Merck has also provided an educational grant, but she would not disclose the amount of the funding.

Read Full Post »


Another Promise for Immune Oncology

Curator: Larry H. Berstein, MD, FCAP

 

 

Preclinical Data Presented at ASCO 2016 Annual Meeting Demonstrate that Single-Agent NKTR-214 Produces a Large Increase in Tumor-Infiltrating Lymphocytes to Provide Durable Anti-Tumor Activity

http://ir.nektar.com/releasedetail.cfm

SAN FRANCISCO, June 6, 2016 /PRNewswire/ — Nektar Therapeutics (NASDAQ: NKTR) today announced new preclinical data for NKTR-214, an immuno-stimulatory CD-122 biased cytokine currently being evaluated in cancer patients with solid tumors in a Phase 1/2 clinical trial being conducted at MD Anderson Cancer Center and Yale Cancer Center. The new preclinical data presented demonstrate that treatment with single-agent NKTR-214 mobilizes tumor-killing T cells into colon cancer tumors.  In addition, mouse pharmacodynamics data demonstrated that a single dose of NKTR-214 can increase and sustain STAT5 phosphorylation (a marker of IL-2 pathway activation) through one week post-dose. These data were presented at the American Society of Clinical Oncology (ASCO) Annual Meeting in Chicago, IL from June 3-7, 2016.

“These latest data build upon our growing body of preclinical evidence demonstrating the unique mechanism of NKTR-214,” added Jonathan Zalevsky, PhD, Vice President, Biology and Preclinical Development at Nektar Therapeutics. “The studies presented at ASCO show that NKTR-214 promotes tumor-killing immune cell accumulation directly in the tumor, providing a mechanistic basis for its significant anti-tumor activity in multiple preclinical tumor models.  The ability to grow TILs1 in vivo and replenish the immune system is exceptionally important. We’ve now learned that many human tumors lack sufficient TIL populations and the addition of the NKTR-214 TIL-enhancing MOA could improve the success of many checkpoint inhibitors and other agents, and allow more patients to benefit from immuno-therapy.”

In studies previously published for NKTR-214, when mice bearing established breast cancer tumors are treated with NKTR-214 and anti-CTLA4 (a checkpoint inhibitor therapy known as ipilimumab for human treatment), a large proportion of mice become tumor-free. Anti-tumor immune memory was demonstrated when tumor-free mice were re-challenged by implant with a new breast cancer tumor and then found to clear the new tumor, without further therapy.  The new data presented at ASCO demonstrate that upon re-challenge, there is a rapid expansion of newly proliferative CD8 T cells and particularly CD8 effector memory T cells. Both cell populations were readily detectable in multiple tissues (blood, spleen, and lymph nodes) and likely contribute to the anti-tumor effect observed in these animals. Adoptive transfer studies confirmed the immune-memory effect as transplant of splenocytes from tumor-free mice into naïve recipients provided the ability to resist tumor growth.

“NKTR-214 provides a highly unique immune activation profile that allows it to access the IL-2 pathway without pushing the immune system into pathological overdrive,” said Dr. Steve Doberstein, Senior Vice President and Chief Scientific Officer. “NKTR-214’s unique immune-stimulatory profile and antibody-like dosing schedule positions it as a potentially important medicine within the immuno-oncology landscape.”

The data presentation at ASCO entitled, “Immune memory in nonclinical models after treatment with NKTR-214, an engineered cytokine biased towards expansion of CD8+ T cells in tumor,” can be accessed at http://www.nektar.com/2016_NKTR-214_ASCO_poster.pdf

NKTR-214 is a CD122-biased agonist designed to stimulate the patient’s own immune system to kill tumor cells by preferentially activating production of specific immune cells which promote tumor killing, including CD8-positive T cells and Natural Killer (NK) cells, within the tumor micro-environment.  CD122, which is also known as the Interleukin-2 receptor beta subunit, is a key signaling receptor that is known to increase proliferation of these types of T cells.2

In preclinical studies, NKTR-214 demonstrated a highly favorable mean ratio of 450:1 within the tumor micro-environment of CD8-positive effector T cells relative to regulatory T cells.3 Furthermore, the pro-drug design of NKTR-214 enables an antibody-like dosing regimen for an immuno-stimulatory cytokine.4

About the NKTR-214 Phase 1/2 Clinical Study
A Phase 1/2 clinical study is underway to evaluate NKTR-214 in patients with advanced solid tumors, including melanoma, renal cell carcinoma and non-small cell lung cancer. The first stage of this study, which is expected to be complete in the second half of 2016, is evaluating escalating doses of single-agent NKTR-214 treatment in approximately 20 patients with solid tumors. The primary objective of the first stage of the study is to evaluate the safety and efficacy of NKTR-214 and to identify a recommended Phase 2 dose. In addition, the study will also assess the immunologic effect of NKTR-214 on TILs and other immune cells in both blood and tumor tissue, and it will also include TCR repertoire profiling. Dose expansion cohorts are planned to evaluate NKTR-214 in specific tumor types, including melanoma, renal cell carcinoma and non-small cell lung cancer.

The NKTR-214 clinical study is being conducted initially at two primary investigator sites: MD Anderson Cancer Center under Drs. Patrick Hwu and Adi Diab; and Yale Cancer Center, under Drs. Mario Sznol and Michael Hurwitz.  Patients and physicians interested in the ongoing NKTR-214 study can visit the “Clinical Trials” section of www.mdanderson.org using identifier 2015-0573 or visit https://medicine.yale.edu/cancer/research/trials/active/858.trial.

About Nektar
Nektar Therapeutics has a robust R&D pipeline and portfolio of approved partnered medicines in oncology, pain, immunology and other therapeutic areas. In the area of oncology, Nektar is developing NKTR-214, an immuno-stimulatory CD122-biased agonist, that is in Phase 1/2 clinical development for patients with solid tumors. ONZEALD™ (etirinotecan pegol), a long-acting topoisomerase I inhibitor, is being developed for patients with advanced breast cancer and brain metastases and is partnered with Daiichi Sankyo in Europe.  In the area of pain, Nektar has an exclusive worldwide license agreement with AstraZeneca for MOVANTIK™ (naloxegol), the first FDA-approved once-daily oral peripherally-acting mu-opioid receptor antagonist (PAMORA) medication for the treatment of opioid-induced constipation (OIC), in adult patients with chronic, non-cancer pain. The product is also approved in the European Union as MOVENTIG® (naloxegol) and is indicated for adult patients with OIC who have had an inadequate response to laxatives. The AstraZeneca agreement also includes NKTR-119, an earlier stage development program that is a co-formulation of MOVANTIK and an opioid. NKTR-181, a wholly owned mu-opioid analgesic molecule for chronic pain conditions, is in Phase 3 development. In hemophilia, Nektar has a collaboration agreement with Baxalta for ADYNOVATE™ [Antihemophilic Factor (Recombinant)], a longer-acting PEGylated Factor VIII therapeutic approved in the U.S. and Japan for patients over 12 with hemophilia A. In anti-infectives, the company has two collaborations with Bayer Healthcare, Cipro Inhale in Phase 3 for non-cystic fibrosis bronchiectasis and Amikacin Inhale in Phase 3 for patients with Gram-negative pneumonia.

Immune memory in nonclinical models after treatment with NKTR-214, an engineered cytokine biased towards expansion of CD8+ T cells in tumor

Deborah H. Charych, Vidula Dixit, Peiwen Kuo, Werner Rubas, Janet Cetz, Rhoneil Pena, John L. Langowski, Ute Hoch, Murali Addepalli, Stephen K. Doberstein, Jonathan Zalevsky | Nektar Therapeutics, San Francisco, CA

INTRODUCTION

• Recombinant human IL-2 (aldesleukin) is an effective immunotherapy for metastatic melanoma and renal cell carcinoma with durable responses in ~ 10% of patients, but side effects limit its use

• IL-2 has pleiotropic immune modulatory effects[1] which may limit its anti-tumor activity

• Binding to the heterodimeric receptor IL-2Rβγ leads to expansion of tumor-killing CD8+ memory effector T cells and NK cells

• Binding to the heterotrimeric IL-2Rαβγ leads to expansion of suppressive Treg which antagonizes anti-tumor immunity

• NKTR-214 delivers a controlled, sustained and biased signal through the IL-2 receptor pathway.

• The prodrug design of NKTR-214 comprises recombinant human IL-2 chemically conjugated with multiple releasable chains of polyethylene glycol (PEG)

• Slow release of PEG chains over time generates active PEG-conjugated IL-2 metabolites of increasing bioactivity, improving pharmacokinetics and tolerability compared to aldesleukin

• Active NKTR-214 metabolites bias IL-2R activation towards CD8 T cells over Treg[2]

 

NKTR-214 was engineered to release PEG at physiological pH with predictable kinetics.

The kinetics of PEG release was evaluated in vitro by quantifying free PEG over time using HPLC.

The release of PEG from IL-2 followed predictable kinetics. Symbols = measured data; Line = curve fit based on first order kinetic model. R2 =0.997

 

In mice, a single dose of NKTR-214 gradually builds and sustains pSTAT5 levels through seven days post-dose. In contrast, IL-2 produces a rapid burst of pSTAT5 that declines four hours post-dose

C57BL/6 mice were treated with either one dose of NKTR-214 (blue) or aldesleukin (red); blood samples were collected at various time points post-dose. pSTAT5 in peripheral blood CD3+ T cells was assessed using flow cytometry. Top graph is an inset showing the 0-4 hour time period. Bottom graph shows the full 10 day time course of the experiment. Histograms on right depict pSTAT5 MFI for IL-2 (red) and NKTR-214 (blue)

 

Mobilization of lymphocytes from the periphery into the tumor is an inherent property of NKTR-214

A. C57BL/6 mice bearing established subcutaneous B16F10 melanoma tumors were dosed with either NKTR-214 (2 mg/kg, i.v., q9d x2) or aldesleukin (3 mg/kg, i.p. bid x5, two cycles)

B. Tumor infiltrating lymphocytes were analyzed by flow cytometry from treated tumors (*, p<0.05 relative to vehicle; ‡, p<0.05 relative to aldesleukin)

C. Tumor growth inhibition from NKTR-214 was compromised when NKTR-214 was co-administered with Fingolimod, an agent that blocks lymphocyte trafficking.[3], (C57BL/6 mice, B16F10 subcutaneous mouse melanoma). Fingolimod was dosed qd p.o. 5 ug/animal. Lymphocyte count in blood was significantly reduced as expected, for study duration. Tumor growth inhibition (TGI) shown at study endpoint. (One-way ANOVA, Dunnets multiple comparison test ***=p<0.001, ****=p<0.0001 vs. vehicle; #=p<0.05 vs. NKTR-214)

D. Balb/c mice bearing established subcutaneous CT26 colon tumors were dosed with NKTR-214, 0.8 mg/kg i.v. q9dx3 or checkpoint inhibitors, 200 ug/mouse 2x/week. (*, p<0.05 relative to vehicle) E. T cell infiltration into mouse CT26 colon tumors was determined by TIL DNA fraction 7 days post-dose, Adaptive Biotechnologies, n=4 per group

 

The combination of NKTR-214 and anti-CTLA4 delivers durable anti-tumor activity and vigorous immune memory recall Durable treatment-induced immune memory demonstrated by:

A. Rejection of new tumors implanted into tumor-free mice without further therapy,

Durable anti-tumor immune memory demonstrated by rechallenging treated tumor-free mice with new tumors. New tumors can be eliminated without further treatment.

Balb/c mice initially were implanted with EMT6 murine breast tumors and treated with NKTR-214 0.8mg/kg q9dx3 and anti-CTLA4 200ug/mouse 2x/week. Several weeks later, tumor-free mice were rechallenged with tumor cells EMT6 (blue), CT26 (red) or vehicle (black). Tumor outgrowth occurred when non-related CT26 tumors were implanted. In contrast, tumors were rejected by up to 100% of mice when the same EMT6 tumors were implanted (2×106 EMT6 or CT26 cells)

B. Production of proliferating CD8 effector memory T cells in 3 tissues after tumor rechallenge and

Durable anti-tumor immune memory demonstrated by vigorous proliferative (Ki67+) CD8 T cell responses. The increased activity of these cells is greatest for mice previously treated with NKTR-214 and anti-CTLA4, rechallenged with the same tumor type (blue) compared to a different tumor (red) or mice who were never treated (brown, gray). Treated mice received therapy ~6 months prior. Top row shows total CD8+ cells, bottom row shows effector memory CD8+ in 3 tissues. The role of CD8 and NK cells in mediating the anti-tumor response was previously shown using depletion antibodies.[2]

Mice that became tumor-free from NKTR-214+anti-CTLA4 therapy and treatment naïve controls were rechallenged ~6 months later with either EMT6, CT26 or Sham buffer. No further treatment was given. Immune cells in spleen, lymph and blood were enumerated by flow cytometry, n=4/group. Graphs indicate proliferating Ki67+ total CD8 T cells (top) and effector memory CD8+ CD44hi CD67L-lo (bottom).

C. Transference of immune memory from tumor-free mice to recipient mice.

Durable anti-tumor immune memory demonstrated by adoptive spleen transfer from tumor-free mice to recipient mice. The recipients resist tumor growth without further treatment.

Mouse EMT6 breast tumors were implanted in recipient mice 1 day after receiving spleens from tumor-free mice or naïve mice; (****=p<0.0001 vs. normal control , two way ANOVA Tukey’s multiple comparison test, ns = non-significant)

 

CONCLUSIONS

• NKTR-214 mechanism of action delivers a controlled, sustained and biased signal to the IL-2 pathway, potentially mitigating systemic toxicities observed from bolus activation by IL-2 (aldesleukin)

• NKTR-214 provides marked efficacy in multiple tumor models, alone or in combination, using lower doses of reduced administration frequency

• Mobilization of T cells from the periphery into the tumor is an inherent property of NKTR-214

• NKTR-214 mechanism enables durable complete anti-tumor response with immune memory recall when combined with anti-CTLA4

• Treatment provides tumor-free mice that consistently eliminate new tumors even in the absence of further therapy • Mice becoming tumor-free from prior treatment reject new tumors by mounting a vigorous CD8+ effector memory response up to 6 months post-therapy

• Adoptive spleen transfer from tumor-free mice confers an anti-tumor response in recipient mice in the absence of further therapy

• NKTR-214 is being evaluated in an ongoing outpatient Phase 1/2 clinical trial for the treatment of solid tumors

 

REFERENCES

[1] Boyman et al, Nature Reviews, 2012

[2] Charych et al, Clinical Cancer Research, 2016

[3] Spranger et al, J. Immunoth.. Cancer, 2014

 

SOURCE

http://www.nektar.com/2016_NKTR-214_ASCO_poster.pdf

 

 

Read Full Post »

Older Posts »