Feeds:
Posts
Comments

Archive for the ‘Drug Delivery Platform Technology’ Category


Miniproteins against the COVID-19 Spike protein may be therapeutic

Reporter: Stephen J. Williams, PhD

Computer-designed proteins may protect against coronavirus

At a Glance

  • Researchers designed “miniproteins” that bound tightly to the SARS-CoV-2 spike protein and prevented the virus from infecting human cells in the lab.
  • More research is underway to test the most promising of the antiviral proteins.

 

 

 

 

 

 

 

An artist’s conception of computer-designed miniproteins (white) binding coronavirus spikes. UW Institute for Protein Design

The surface of SARS-CoV-2, the virus that causes COVID-19, is covered with spike proteins. These proteins latch onto human cells, allowing the virus to enter and infect them. The spike binds to ACE2 receptors on the cell surface. It then undergoes a structural change that allows it to fuse with the cell. Once inside, the virus can copy itself and produce more viruses.

Blocking entry of SARS-CoV-2 into human cells can prevent infection. Researchers are testing monoclonal antibody therapies that bind to the spike protein and neutralize the virus. But these antibodies, which are derived from immune system molecules, are large and not ideal for delivery through the nose. They’re also often not stable for long periods and usually require refrigeration.

Researchers led by Dr. David Baker of the University of Washington set out to design synthetic “miniproteins” that bind tightly to the coronavirus spike protein. Their study was funded in part by NIH’s National Institute of General Medical Sciences (NIGMS) and National Institute of Allergy and Infectious Diseases (NIAID). Findings appeared in Science on September 9, 2020.

The team used two strategies to create the antiviral miniproteins. First, they incorporated a segment of the ACE2 receptor into the small proteins. The researchers used a protein design tool they developed called Rosetta blueprint builder. This technology allowed them to custom build proteins and predict how they would bind to the receptor.

The second approach was to design miniproteins from scratch, which allowed for a greater range of possibilities. Using a large library of miniproteins, they identified designs that could potentially bind within a key part of the coronavirus spike called the receptor binding domain (RBD). In total, the team produced more than 100,000 miniproteins.

Next, the researchers tested how well the miniproteins bound to the RBD. The most promising candidates then underwent further testing and tweaking to improve binding.

Using cryo-electron microscopy, the team was able to build detailed pictures of how two of the miniproteins bound to the spike protein. The binding closely matched the predictions of the computational models.

Finally, the researchers tested whether three of the miniproteins could neutralize SARS-CoV-2. All protected lab-grown human cells from infection. Candidates LCB1 and LCB3 showed potent neutralizing ability. These were among the designs created from the miniprotein library. Tests suggested that these miniproteins may be more potent than the most effective antibody treatments reported to date.

“Although extensive clinical testing is still needed, we believe the best of these computer-generated antivirals are quite promising,” says Dr. Longxing Cao, the study’s first author. “They appear to block SARS-CoV-2 infection at least as well as monoclonal antibodies but are much easier to produce and far more stable, potentially eliminating the need for refrigeration.”

Notably, this study demonstrates the potential of computational models to quickly respond to future viral threats. With further development, researchers may be able to generate neutralizing designs within weeks of obtaining the genome of a new virus.

—by Erin Bryant

Source: https://www.nih.gov/news-events/nih-research-matters/computer-designed-proteins-may-protect-against-coronavirus

Original article in Science

De novo design of picomolar SARS-CoV-2 miniprotein inhibitors

 

  1. View ORCID ProfileLongxing Cao1,2
  2. Inna Goreshnik1,2
  3. View ORCID ProfileBrian Coventry1,2,3
  4. View ORCID ProfileJames Brett Case4
  5. View ORCID ProfileLauren Miller1,2
  6. Lisa Kozodoy1,2
  7. Rita E. Chen4,5
  8. View ORCID ProfileLauren Carter1,2
  9. View ORCID ProfileAlexandra C. Walls1
  10. Young-Jun Park1
  11. View ORCID ProfileEva-Maria Strauch6
  12. View ORCID ProfileLance Stewart1,2
  13. View ORCID ProfileMichael S. Diamond4,7
  14. View ORCID ProfileDavid Veesler1
  15. View ORCID ProfileDavid Baker1,2,8,*

See all authors and affiliations

Science  09 Sep 2020:
eabd9909
DOI: 10.1126/science.abd9909

Abstract

Targeting the interaction between the SARS-CoV-2 Spike protein and the human ACE2 receptor is a promising therapeutic strategy. We designed inhibitors using two de novo design approaches. Computer generated scaffolds were either built around an ACE2 helix that interacts with the Spike receptor binding domain (RBD), or docked against the RBD to identify new binding modes, and their amino acid sequences designed to optimize target binding, folding and stability. Ten designs bound the RBD with affinities ranging from 100pM to 10nM, and blocked ARS-CoV-2 infection of Vero E6 cells with IC 50 values between 24 pM and 35 nM; The most potent, with new binding modes, are 56 and 64 residue proteins (IC 50 ~ 0.16 ng/ml). Cryo-electron microscopy structures of these minibinders in complex with the SARS-CoV-2 spike ectodomain trimer with all three RBDs bound are nearly identical to the computational models. These hyperstable minibinders provide starting points for SARS-CoV-2 therapeutics.

 

RESEARCH ARTICLE

De novo design of picomolar SARS-CoV-2 miniprotein inhibitors

  1. View ORCID ProfileLongxing Cao1,2
  2. Inna Goreshnik1,2
  3. View ORCID ProfileBrian Coventry1,2,3
  4. View ORCID ProfileJames Brett Case4
  5. View ORCID ProfileLauren Miller1,2
  6. Lisa Kozodoy1,2
  7. Rita E. Chen4,5
  8. View ORCID ProfileLauren Carter1,2
  9. View ORCID ProfileAlexandra C. Walls1
  10. Young-Jun Park1
  11. View ORCID ProfileEva-Maria Strauch6
  12. View ORCID ProfileLance Stewart1,2
  13. View ORCID ProfileMichael S. Diamond4,7
  14. View ORCID ProfileDavid Veesler1
  15. View ORCID ProfileDavid Baker1,2,8,*

See all authors and affiliations

Science  09 Sep 2020:
eabd9909
DOI: 10.1126/science.abd9909

Abstract

Targeting the interaction between the SARS-CoV-2 Spike protein and the human ACE2 receptor is a promising therapeutic strategy. We designed inhibitors using two de novo design approaches. Computer generated scaffolds were either built around an ACE2 helix that interacts with the Spike receptor binding domain (RBD), or docked against the RBD to identify new binding modes, and their amino acid sequences designed to optimize target binding, folding and stability. Ten designs bound the RBD with affinities ranging from 100pM to 10nM, and blocked ARS-CoV-2 infection of Vero E6 cells with IC 50 values between 24 pM and 35 nM; The most potent, with new binding modes, are 56 and 64 residue proteins (IC 50 ~ 0.16 ng/ml). Cryo-electron microscopy structures of these minibinders in complex with the SARS-CoV-2 spike ectodomain trimer with all three RBDs bound are nearly identical to the computational models. These hyperstable minibinders provide starting points for SARS-CoV-2 therapeutics.

 

SARS-CoV-2 infection generally begins in the nasal cavity, with virus replicating there for several days before spreading to the lower respiratory tract (1). Delivery of a high concentration of a viral inhibitor into the nose and into the respiratory system generally might therefore provide prophylactic protection and/or therapeutic benefit for treatment of early infection, and could be particularly useful for healthcare workers and others coming into frequent contact with infected individuals. A number of monoclonal antibodies are in development as systemic treatments for COVID-19 (26), but these proteins are not ideal for intranasal delivery as antibodies are large and often not extremely stable molecules and the density of binding sites is low (two per 150 KDa. antibody); antibody-dependent disease enhancement (79) is also a potential issue. High-affinity Spike protein binders that block the interaction with the human cellular receptor angiotensin-converting enzyme 2 (ACE2) (10) with enhanced stability and smaller sizes to maximize the density of inhibitory domains could have advantages over antibodies for direct delivery into the respiratory system through intranasal administration, nebulization or dry powder aerosol. We found previously that intranasal delivery of small proteins designed to bind tightly to the influenza hemagglutinin can provide both prophylactic and therapeutic protection in rodent models of lethal influenza infection (11).

Design strategy

We set out to design high-affinity protein minibinders to the SARS-CoV-2 Spike RBD that compete with ACE2 binding. We explored two strategies: first we incorporated the alpha-helix from ACE2 which makes the majority of the interactions with the RBD into small designed proteins that make additional interactions with the RBD to attain higher affinity (Fig. 1A). Second, we designed binders completely from scratch without relying on known RBD-binding interactions (Fig. 1B). An advantage of the second approach is that the range of possibilities for design is much larger, and so potentially a greater diversity of high-affinity binding modes can be identified. For the first approach, we used the Rosetta blueprint builder to generate miniproteins which incorporate the ACE2 helix (human ACE2 residues 23 to 46). For the second approach, we used RIF docking (12) and design using large miniprotein libraries (11) to generate binders to distinct regions of the RBD surface surrounding the ACE2 binding site (Fig. 1 and fig. S1).

 

 

 

 

 

 

 

 

 

 

 

Download high-res image

Fig. 1 Overview of the computational design approaches.

(A) Design of helical proteins incorporating ACE2 helix. (B) Large scale de novo design of small helical scaffolds (top) followed by rotamer interaction field (RIF) docking to identify shape and chemically complementary binding modes.

For full article please  go to Science at https://science.sciencemag.org/content/early/2020/09/08/science.abd9909

 

Read Full Post »


Did FDA Reverse Course on Convalescent Plasma Therapy for COVID-19?

Reporter: Stephen J. Williams, PhD

 

Starting with a timeline of recent announcements by the FDA on convalescent plasma therapy

April 16, 2020

FDA STATEMENT

Coronavirus (COVID-19) Update: FDA Encourages Recovered Patients to Donate Plasma for Development of Blood-Related Therapies

 

As part of the all-of-America approach to fighting the COVID-19 pandemic, the U.S. Food and Drug Administration has been working with partners across the U.S. government, academia and industry to expedite the development and availability of critical medical products to treat this novel virus. Today, we are providing an update on one potential treatment called convalescent plasma and encouraging those who have recovered from COVID-19 to donate plasma to help others fight this disease.

Convalescent plasma is an antibody-rich product made from blood donated by people who have recovered from the disease caused by the virus. Prior experience with respiratory viruses and limited data that have emerged from China suggest that convalescent plasma has the potential to lessen the severity or shorten the length of illness caused by COVID-19. It is important that we evaluate this potential therapy in the context of clinical trials, through expanded access, as well as facilitate emergency access for individual patients, as appropriate.

The response to the agency’s recently announced national efforts to facilitate the development of and access to convalescent plasma has been tremendous. More than 1,040 sites and 950 physician investigators nationwide have signed on to participate in the Mayo Clinic-led expanded access protocol. A number of clinical trials are also taking place to evaluate the safety and efficacy of convalescent plasma and the FDA has granted numerous single patient emergency investigational new drug (eIND) applications as well.

Source: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-encourages-recovered-patients-donate-plasma-development-blood

August 23, 2020

 

Recommendations for Investigational COVID-19 Convalescent Plasma

 

  • FDA issues guidelines on clinical trials and obtaining emergency enrollment concerning convalescent plasma

FDA has issued guidance to provide recommendations to health care providers and investigators on the administration and study of investigational convalescent plasma collected from individuals who have recovered from COVID-19 (COVID-19 convalescent plasma) during the public health emergency.

The guidance provides recommendations on the following:

Because COVID-19 convalescent plasma has not yet been approved for use by FDA, it is regulated as an investigational product.  A health care provider must participate in one of the pathways described below.  FDA does not collect COVID-19 convalescent plasma or provide COVID-19 convalescent plasma.  Health care providers or acute care facilities should instead obtain COVID-19 convalescent plasma from an FDA-registered blood establishment.

Excerpts from the guidance document are provided below.

Background

The Food and Drug Administration (FDA or Agency) plays a critical role in protecting the United States (U.S.) from threats including emerging infectious diseases, such as the Coronavirus Disease 2019 (COVID-19) pandemic.  FDA is committed to providing timely guidance to support response efforts to this pandemic.

One investigational treatment being explored for COVID-19 is the use of convalescent plasma collected from individuals who have recovered from COVID-19.  Convalescent plasma that contains antibodies to severe acute respiratory syndrome coronavirus 2 or SARS-CoV-2 (the virus that causes COVID-19) is being studied for administration to patients with COVID-19. Use of convalescent plasma has been studied in outbreaks of other respiratory infections, including the 2003 SARS-CoV-1 epidemic, the 2009-2010 H1N1 influenza virus pandemic, and the 2012 MERS-CoV epidemic.

Although promising, convalescent plasma has not yet been shown to be safe and effective as a treatment for COVID-19. Therefore, it is important to study the safety and efficacy of COVID-19 convalescent plasma in clinical trials.

Pathways for Use of Investigational COVID-19 Convalescent Plasma

The following pathways are available for administering or studying the use of COVID-19 convalescent plasma:

  1. Clinical Trials

Investigators wishing to study the use of convalescent plasma in a clinical trial should submit requests to FDA for investigational use under the traditional IND regulatory pathway (21 CFR Part 312). CBER’s Office of Blood Research and Review is committed to engaging with sponsors and reviewing such requests expeditiously. During the COVID-19 pandemic, INDs may be submitted via email to CBERDCC_eMailSub@fda.hhs.gov.

  1. Expanded Access

An IND application for expanded access is an alternative for use of COVID-19 convalescent plasma for patients with serious or immediately life-threatening COVID-19 disease who are not eligible or who are unable to participate in randomized clinical trials (21 CFR 312.305). FDA has worked with multiple federal partners and academia to open an expanded access protocol to facilitate access to COVID-19 convalescent plasma across the nation. Access to this investigational product may be available through participation of acute care facilities in an investigational expanded access protocol under an IND that is already in place.

Currently, the following protocol is in place: National Expanded Access Treatment Protocol

  1. Single Patient Emergency IND

Although participation in clinical trials or an expanded access program are ways for patients to obtain access to convalescent plasma, for various reasons these may not be readily available to all patients in potential need. Therefore, given the public health emergency that the COVID-19 pandemic presents, and while clinical trials are being conducted and a national expanded access protocol is available, FDA also is facilitating access to COVID-19 convalescent plasma for use in patients with serious or immediately life-threatening COVID-19 infections through the process of the patient’s physician requesting a single patient emergency IND (eIND) for the individual patient under 21 CFR 312.310. This process allows the use of an investigational drug for the treatment of an individual patient by a licensed physician upon FDA authorization, if the applicable regulatory criteria are met.  Note, in such case, a licensed physician seeking to administer COVID-19 convalescent plasma to an individual patient must request the eIND (see 21 CFR 312.310(b)).

To Obtain a Single Patient Emergency IND  

The requesting physician may contact FDA by completing Form FDA 3926 (https://www.fda.gov/media/98616/download) and submitting the form by email to CBER_eIND_Covid-19@FDA.HHS.gov.

FACT SHEET FOR PATIENTS AND PARENTS/CAREGIVERS EMERGENCY USE AUTHORIZATION (EUA) OF COVID-19 CONVALESCENT PLASMA FOR TREATMENT OF COVID-19 IN HOSPITALIZED PATIENTS

  • FDA issues fact sheet for patients on donating plasma

August 23, 2020

 

FDA Issues Emergency Use Authorization for Convalescent Plasma as Potential Promising COVID–19 Treatment, Another Achievement in Administration’s Fight Against Pandemic

 

Today, the U.S. Food and Drug Administration issued an emergency use authorization (EUA) for investigational convalescent plasma for the treatment of COVID-19 in hospitalized patients as part of the agency’s ongoing efforts to fight COVID-19. Based on scientific evidence available, the FDA concluded, as outlined in its decision memorandum, this product may be effective in treating COVID-19 and that the known and potential benefits of the product outweigh the known and potential risks of the product.

Today’s action follows the FDA’s extensive review of the science and data generated over the past several months stemming from efforts to facilitate emergency access to convalescent plasma for patients as clinical trials to definitively demonstrate safety and efficacy remain ongoing.

The EUA authorizes the distribution of COVID-19 convalescent plasma in the U.S. and its administration by health care providers, as appropriate, to treat suspected or laboratory-confirmed COVID-19 in hospitalized patients with COVID-19.

Alex Azar, Health and Human Services Secretary:
“The FDA’s emergency authorization for convalescent plasma is a milestone achievement in President Trump’s efforts to save lives from COVID-19,” said Secretary Azar. “The Trump Administration recognized the potential of convalescent plasma early on. Months ago, the FDA, BARDA, and private partners began work on making this product available across the country while continuing to evaluate data through clinical trials. Our work on convalescent plasma has delivered broader access to the product than is available in any other country and reached more than 70,000 American patients so far. We are deeply grateful to Americans who have already donated and encourage individuals who have recovered from COVID-19 to consider donating convalescent plasma.”

Stephen M. Hahn, M.D., FDA Commissioner:
“I am committed to releasing safe and potentially helpful treatments for COVID-19 as quickly as possible in order to save lives. We’re encouraged by the early promising data that we’ve seen about convalescent plasma. The data from studies conducted this year shows that plasma from patients who’ve recovered from COVID-19 has the potential to help treat those who are suffering from the effects of getting this terrible virus,” said Dr. Hahn. “At the same time, we will continue to work with researchers to continue randomized clinical trials to study the safety and effectiveness of convalescent plasma in treating patients infected with the novel coronavirus.”

Scientific Evidence on Convalescent Plasma

Based on an evaluation of the EUA criteria and the totality of the available scientific evidence, the FDA’s Center for Biologics Evaluation and Research determined that the statutory criteria for issuing an EUA criteria were met.

The FDA determined that it is reasonable to believe that COVID-19 convalescent plasma may be effective in lessening the severity or shortening the length of COVID-19 illness in some hospitalized patients. The agency also determined that the known and potential benefits of the product, when used to treat COVID-19, outweigh the known and potential risks of the product and that that there are no adequate, approved, and available alternative treatments.

 

August 24, 2020

Donate COVID-19 Plasma

 

  • FDA posts video and blog about how to donate plasms if you had been infected with COVID

 

https://youtu.be/PlX15rWdBbY

 

 

Please go to https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/donate-covid-19-plasma

to read more from FDA

 

 

August 25, 2020

 

CLINICAL MEMORANDUM From: , OBRR/DBCD/CRS To: , OBRR Through: , OBRR/DBCD , OBRR/DBCD , OBRR/DBCD/CRS Re: EUA 26382: Emergency Use Authorization (EUA) Request (original request 8/12/20; amended request 8/23/20) Product: COVID-19 Convalescent Plasma Items reviewed: EUA request Fact Sheet for Health Care Providers Fact Sheet for Recipients Sponsor: Robert Kadlec, M.D. Assistant Secretary for Preparedness and Response (ASPR) Office of Assistant Secretary for Preparedness and Response (ASPR) U.S. Department of Health and Human Services (HHS) EXECUTIVE SUMMARY COVID-19 Convalescent Plasma (CCP), an unapproved biological product, is proposed for use under an Emergency Use Authorization (EUA) under section 564 of the Federal Food, Drug, and Cosmetic Act (the Act),(21 USC 360bbb-3) as a passive immune therapy for the treatment of hospitalized patients with COVID-19, a serious or life-threatening disease. There currently is no adequate, approved, and available alternative to CCP for treating COVID-19. The sponsor has pointed to four lines of evidence to support that CCP may be effective in the treatment of hospitalized patients with COVID-19: 1) History of convalescent plasma for respiratory coronaviruses; 2) Evidence of preclinical safety and efficacy in animal models; 3) Published studies of the safety and efficacy of CCP; and 4) Data on safety and efficacy from the National Expanded Access Treatment Protocol (EAP) sponsored by the Mayo Clinic. Considering the totality of the scientific evidence presented in the EUA, I conclude that current data for the use of CCP in adult hospitalized patients with COVID-19 supports the conclusion that CCP meets the “may be effective” criterion for issuance of an EUA from section 564(c)(2)(A) of the Act. It is reasonable to conclude that the known and potential benefits of CCP outweigh the known and potential risks of CCP for the proposed EUA. Current data suggest the largest clinical benefit is associated with high-titer units of CCP administered early course of the disease.

Source: https://www.fda.gov/media/141480/download

 

And Today August 26, 2020

  • A letter, from Senator Warren, to Commissioner Hahn from Senate Committee asking for documentation for any communication between FDA and White House

August 25, 2020 Dr. Stephen M. Hahn, M.D. Commissioner of Food and Drugs U.S. Food and Drug Administration 10903 New Hampshire Avenue Silver Spring, MD 20993 Dear Commissioner Hahn: We write regarding the U.S. Food and Drug Administration’s (FDA) troubling decision earlier this week to issue an Emergency Use Authorization (EUA) for convalescent plasma as a treatment for coronavirus disease 2019 (COVID-19).1 Reports suggests that the FDA granted the EUA amid intense political pressure from President Trump and other Administration officials, despite limited evidence of convalescent plasma’s effectiveness as a COVID-19 treatment.2 To help us better understand whether the issuance of the blood plasma EUA was motivated by politics, we request copies of any and all communications between FDA and White House officials regarding the blood plasma EUA.

Source: https://www.warren.senate.gov/imo/media/doc/2020.08.25%20Letter%20to%20FDA%20re%20Blood%20Plasma%20EUA.pdf

…….. which may have been a response to this article

FDA chief walks back comments on effectiveness of coronavirus plasma treatment

 

From CNBC: https://www.cnbc.com/2020/08/25/fda-chief-walks-back-comments-on-effectiveness-of-coronavirus-plasma-treatment.html

PUBLISHED TUE, AUG 25 202010:45 AM EDTUPDATED TUE, AUG 25 20204:12 PM EDT

Berkeley Lovelace Jr.@BERKELEYJR

Will Feuer@WILLFOIA

KEY POINTS

  • The authorization will allow health-care providers in the U.S. to use the plasma to treat hospitalized patients with Covid-19.
  • The FDA’s emergency use authorization came a day after President Trump accused the agency of delaying enrollment in clinical trials for vaccines or therapeutics.
  • The criticism from Trump and action from the FDA led some scientists to believe the authorization, which came on the eve of the GOP national convention, was politically motivated.

FDA Commissioner Dr. Stephen Hahn is walking back comments on the benefits of convalescent plasma, saying he could have done a better job of explaining the data on its effectiveness against the coronavirus after authorizing it for emergency use over the weekend.

Commisioners responses over Twitter

https://twitter.com/SteveFDA/status/1298071603675373569?s=20

https://twitter.com/SteveFDA/status/1298071619236245504?s=20

August 26, 2020

In an interview with Bloomberg’s , FDA Commissioner Hahn reiterates that his decision was based on hard evidence and scientific fact, not political pressure.  The whole interview is at the link below:

https://www.bloomberg.com/news/articles/2020-08-25/fda-s-hahn-vows-to-stick-to-the-science-amid-vaccine-pressure?sref=yLCixKPR

Some key points:

  • Dr. Hahn corrected his initial statement about 35% of people would be cured by convalescent plasma. In the interview he stated:

I was trying to do what I do with patients, because patients often understand things in absolute terms versus relative terms. And I should’ve been more careful, there’s no question about it. What I was trying to get to is that if you look at a hundred patients who receive high titre, and a hundred patients who received low titre, the difference between those two particular subset of patients who had these specific criteria was a 35% reduction in mortality. So I frankly did not do a good job of explaining that.

  • FDA colleagues had frank discussion after the statement was made.  He is not asking for other people in HHS to retract their statements, only is concerned that FDA has correct information for physicians and patients
  • Hahn is worried that people will not enroll due to chance they may be given placebo
  • He gave no opinion when asked if FDA should be an independent agency

 

For more articles on COVID19 please go to our Coronavirus Portal at

https://pharmaceuticalintelligence.com/coronavirus-portal/

 

Read Full Post »


“Repurposing” Off-patent Drugs offers big hopes of New Treatments

Reporter: Irina Robu, PhD

Given the substantial costs and the slow pace of drug discovery and development, repurposing old drugs has become a practice, partly because it involves the use of already developed compounds. Yet, there is lack of clinical interest in repurposing off patent drugs.

However, the scale of the opportunity for drug repurposing is huge. Initially approved for one disease, these drugs went off-patent and now show potential in other diseases. Even so, many non-profit groups see promise in supporting trials into drug repurposing. There is a huge untapped medicine chest of generic drugs with unexploited uses. These generic drugs are often cheap, already approved, off-patent and relatively quick to develop, whereas new drugs can cost millions of dollars to develop, test and 45% of the drugs fail in clinical trials.

However, numerous non-profit groups see potential in supporting trials into drug repurposing. Epidemiological data can offer enticing leads. Yet, clinical trials for these drugs are costly, but the benefits can be huge. The Drugs for Neglected Diseases Initiative, a Swiss non-profit research group, supported research into fexinidazole, which was abandoned by a pharma at an early stage. The drug showed to have antiparasitic qualities. However, after years of work in January 2020, it was approved for sleeping sickness in the Democratic Republic of Congo. It is the first oral medicine for the disease, and works for all stages of it.

Up till now, when it comes to cancer the most promising generic pills are known. Cancer Research, a UK based charity is testing aspirin to see if can stop cancer from recurring; metformin in a large prostate-cancer trial; and an anti-fungal medication to treat bowel cancer. At the same time, the Anticancer Fund in Brussels hopes that propranolol in treating cancers of the inner lining of blood vessels and pancreatic cancer. Propranolol is a generic 1960s beta-blocker used for a wide range of ailments such as hypertension, anxiety and migraine. If approved for cancer, its cost would be negligible in comparison the tens of thousands of dollars a month usually charged for cancer medicines.

Money seems the crucial constraint with these drugs, in addition to the clinical trials needed to have these drugs updated and relabeled. Only the makers or original developers of a drug are permitted to adjust its label. Sanofi, based in Paris, was the firm that requested regulatory review of fexinidazole for sleeping sickness, while the research was a charitable effort. But drug firms are not forced to support non-commercial efforts to repurpose drugs. And outside the industry it is tough to find the legal expertise to be able to do the  necessary paperwork.

As non-profits make progress in repurposing, corporate interest may be rising. In terms of achieving new treatment options, this is good news. But it will not bring cheaper medicines in areas traditionally neglected by the drug industry. Firms will focus on finding ways to patent the new uses and charge high prices for the finished product.

If governments need cheaper drugs, non-profits will need financial incentives and a cooperative regulatory framework. They include making regulators give free advice and waive approval fees, and a public fund to support repurposing. Yet, when drugs are approved, investors are paid back by the public health service, which makes savings by using the newly approved generic drugs.

SOURCE

https://www.economist.com/international/2019/02/28/repurposing-off-patent-drugs-offers-big-hopes-of-new-treatments?fsrc=scn/tw/te/bl/ed/crosspurposesrepurposingoffpatentdrugsoffersbighopesofnewtreatmentsinternational

 

Other related articles published in this Online Scientific Open Access Journal include:

 

The Castleman Disease Research Network publishes Phase 1 Results of Drug Repurposing Database for COVID-19

Reporter: Stephen J. Williams, PhD

https://pharmaceuticalintelligence.com/2020/06/27/the-castleman-disease-research-network-publishes-phase-1-results-of-drug-repurposing-database-for-covid-19/

Read Full Post »


Live Conference Coverage AACR 2020 in Real Time: Monday June 22, 2020 Late Day Sessions

 

Reporter: Stephen J. Williams, PhD

 

Follow Live in Real Time using

#AACR20

@pharma_BI

@AACR

 

Register for FREE at https://www.aacr.org/

 

AACR VIRTUAL ANNUAL MEETING II

 

June 22-24: Free Registration for AACR Members, the Cancer Community, and the Public
This virtual meeting will feature more than 120 sessions and 4,000 e-posters, including sessions on cancer health disparities and the impact of COVID-19 on clinical trials

 

This Virtual Meeting is Part II of the AACR Annual Meeting.  Part I was held online in April and was centered only on clinical findings.  This Part II of the virtual meeting will contain all the Sessions and Abstracts pertaining to basic and translational cancer research as well as clinical trial findings.

 

REGISTER NOW

 

 

 

Virtual Educational Session

Prevention Research, Science Policy, Epidemiology, Survivorship

Carcinogens at Home: Science and Pathways to Prevention

Chemicals known to cause cancer are used and released to the environment in large volumes, exposing people where they live, work, play, and go to school. The science establishing an important role for such exposures in the development of cancers continues to strengthen, yet cancer prevention researchers are largely unfamiliar with the data drawn upon in identifying carcinogens and making decisions about their use. Characterizing and reducing harmful exposures and accelerating the devel

Julia Brody, Kathryn Z. Guyton, Polly J. Hoppin, Bill Walsh, Mary H. Ward

DETAILS

Monday, June 22

1:30 PM – 3:30 PM EDT

Virtual Educational Session

Tumor Biology, Molecular and Cellular Biology/Genetics, Clinical Research Excluding Trials

EMT Still Matters: Let’s Explore! – Dedicated to the Memory of Isaiah J. Fidler

During carcinoma progression, initially benign epithelial cells acquire the ability to invade locally and disseminate to distant tissues by activating epithelial-mesenchymal transition (EMT). EMT is a cellular process during which epithelial cells lose their epithelial features and acquire mesenchymal phenotypes and behavior. Growing evidence supports the notion that EMT programs during tumor progression are usually activated to various extents and often partial and reversible, thus pr

Jean-Paul Thiery, Heide L Ford, Jing Yang, Geert Berx

DETAILS

Monday, June 22

1:30 PM – 3:00 PM EDT

Virtual Educational Session

Tumor Biology, Experimental and Molecular Therapeutics, Molecular and Cellular Biology/Genetics

One of These Things Is Not Like the Other: The Many Faces of Senescence in Cancer

Cellular senescence is a stable cell growth arrest that is broadly recognized to act as a barrier against tumorigenesis. Senescent cells acquire a senescence-associated secretory phenotype (SASP), a transcriptional response involving the secretion of inflammatory cytokines, immune modulators, and proteases that can shape the tumor microenvironment. The SASP can initially stimulate tumor immune surveillance and reinforce growth arrest. However, if senescent cells are not removed by the

Clemens A Schmitt, Andrea Alimonti, René Bernards

DETAILS

Monday, June 22

1:30 PM – 3:00 PM EDT

Virtual Educational Session

Clinical Research Excluding Trials, Molecular and Cellular Biology/Genetics

Recent Advances in Applications of Cell-Free DNA

The focus of this educational session will be on recent developments in cell-free DNA (cfDNA) analysis that have the potential to impact the care of cancer patients. Tumors continually shed DNA into the circulation, where it can be detected as circulating tumor DNA (ctDNA). Analysis of ctDNA has become a routine part of care for a subset of patients with advanced malignancies. However, there are a number of exciting potential applications that have promising preliminary data but that h

Michael R Speicher, Maximilian Diehn, Aparna Parikh

DETAILS

Monday, June 22

1:30 PM – 3:30 PM EDT

Virtual Methods Workshop

Clinical Research Excluding Trials, Clinical Trials, Experimental and Molecular Therapeutics, Molecular and Cellular Biology/Genetics

Translating Genetics and Genomics to the Clinic and Population

This session will describe how advances in understanding cancer genomes and in genetic testing technologies are being translated to the clinic. The speakers will illustrate the clinical impact of genomic discoveries for diagnostics and treatment of common tumor types in adults and in children. Cutting-edge technologies for characterization of patient and tumor genomes will be described. New insights into the importance of patient factors for cancer risk and outcome, including predispos

Heather L. Hampel, Gordana Raca, Jaclyn Biegel, Jeffrey M Trent

DETAILS

Monday, June 22

1:30 PM – 3:22 PM EDT

Virtual Educational Session

Regulatory Science and Policy, Drug Development, Epidemiology

Under-representation in Clinical Trials and the Implications for Drug Development

The U.S. Food and Drug Administration relies on data from clinical trials to determine whether medical products are safe and effective. Ideally, patients enrolled in those trials are representative of the population in which the product will be used if approved, including people of different ages, races, ethnic groups, and genders. Unfortunately, with few patients enrolling in clinical trials, many groups are not well-represented in clinical trials. This session will explore challenges

Ajay K. Nooka, Nicole J. Gormley, Kenneth C Anderson, Ruben A. Mesa, Daniel J. George, Yelak Biru, RADM Richardae Araojo, Lola A. Fashoyin-Aje

DETAILS

Monday, June 22

3:45 PM – 5:45 PM EDT

Virtual Educational Session

Cancer Chemistry

Targeted Protein Degradation: Target Validation Tools and Therapeutic Opportunity

This educational session will cover the exciting emerging field of targeted protein degradation. Key learning topics will include: 1. an introduction to the technology and its relevance to oncology; 2. PROTACS, degraders, and CELMoDs; 3. enzymology and protein-protein interactions in targeted protein degraders; 4. examples of differentiated biology due to degradation vs. inhibition; 5. how to address questions of specificity; and 6. how the field is approaching challenges in optimizing therapies

George Burslem, Mary Matyskiela, Lyn H. Jones, Stewart L Fisher, Andrew J Phillips

DETAILS

Monday, June 22

3:45 PM – 5:45 PM EDT

Virtual Educational Session

Bioinformatics and Systems Biology, Experimental and Molecular Therapeutics, Drug Development, Molecular and Cellular Biology/Genetics

Obstacles and opportunities for protein degradation drug discovery

Lyn H. Jones
  • PROTACs ubiquitin mediated by E3 ligases;  first discovered by DeShaies and targeted to specific proteins
  • PROTACs used in drug discovery against a host of types of targets including kinases and membrane receptors
  • PROTACs can be modular but lack molecular structural activity relationships
  • can use chemical probes for target validation
  • four requirements: candidate exposure at site of action (for example lipophilicity for candidates needed to cross membranes and accumulate in lysosomes), target engagement (ternary occupancy as measured by FRET), functional pharmacology, relevant phenotype
  • PROTACs hijack the proteosomal degradation system

Proteolysis-targeting chimeras as therapeutics and tools for biological discovery

George Burslem
  • first PROTAC developed to coopt the VHL ubiquitin ligase system which degrades HIF1alpha but now modified for EREalpha
  • in screen for potential PROTACS there were compounds which bound high affinity but no degradation so phenotypic screening very important
  • when look at molecular dynamics can see where PROTAC can add additional protein protein interaction, verifed by site directed mutagenesis
  • able to target bcr-Abl
  • he says this is a rapidly expanding field because of all the new E3 ligase targets being discovered

Expanding the horizons of cereblon modulators

Mary Matyskiela

Translating cellular targeted protein degradation to in vivo models using an enzymology framework

Stewart L Fisher
  • new targeting compounds have an E3 ligase binding domain, a target binding domain and a linker domain
  • in vivo these compounds are very effective; BRD4 degraders good invitro and in vivo with little effect on body weight
  • degraders are essential activators of E3 ligases as these degraders bring targets in close proximity so activates a catalytic cycle of a multistep process (has now high turnover number)
  • in enzymatic pathway the degraders make a productive complex so instead of a kcat think of measuring a kprod or productivity of degraders linked up an E3 ligase
  • the degraders are also affecting the rebound protein synthesis; so Emax never to zero and see a small rebound of protein synthesis

 

Data-Driven Approaches for Choosing Combinatorial Therapies

Drug combinations remain the gold standard for treating cancer, as they significantly outperform single agents. However, due to the enormous size of drug combination space, it is virtually impossible to interrogate all possible combinations. This session will discuss approaches to identify novel combinations using both experimental and computational approaches. Speakers will discuss i) approaches to drug screening in cell lines, the impact of the microenvironment, and attempts to more

Bence Szalai, James E Korkola, Lisa Tucker-Kellogg, Jeffrey W Tyner

DETAILS

Monday, June 22

3:45 PM – 5:21 PM EDT

Virtual Educational Session

Tumor Biology

Cancer Stem Cells and Therapeutic Resistance

Cancer stem cells are a subpopulation of cells with a high capacity for self-renewal, differentiation and resistance to therapy. In this session, we will define cancer stem cells, discuss cellular plasticity, interactions between cancer stem cells and the tumor microenvironment, and mechanisms that contribute to therapeutic resistance.

Robert S Kerbel, Dolores Hambardzumyan, Jennifer S. Yu

DETAILS

Monday, June 22

3:45 PM – 5:45 PM EDT

Virtual Educational Session

Drug Development, Experimental and Molecular Therapeutics

Molecular Imaging in Cancer Research

This session will cover the fundamentals as well as the major advances made in the field of molecular imaging. Topics covered will include the basics for optical, nuclear, and ultrasound imaging; the pros and cons of each modality; and the recent translational advancements. Learning objectives include the fundamentals of each imaging modality, recent advances in the technology, the processes involved to translate an imaging agent from bench to bedside, and how molecular imaging can gui

Julie Sutcliffe, Summer L Gibbs, Mark D Pagel, Katherine W Ferrara

DETAILS

Monday, June 22

3:45 PM – 5:45 PM EDT

Virtual Educational Session

Tumor Biology, Immunology, Experimental and Molecular Therapeutics, Drug Development

Tumor Endothelium: The Gatekeepers of Tumor Immune Surveillance

Tumor-associated endothelium is a gatekeeper that coordinates the entry and egress of innate and adaptive immune cells within the tumor microenvironment. This is achieved, in part, via the coordinated expression of chemokines and cell adhesion molecules on the endothelial cell surface that attract and retain circulating leukocytes. Crosstalk between adaptive immune cells and the tumor endothelium is therefore essential for tumor immune surveillance and the success of immune-based thera

Dai Fukumura, Maria M Steele, Wen Jiang, Andrew C Dudley

DETAILS

Monday, June 22

3:45 PM – 5:45 PM EDT

Virtual Educational Session

Immunology, Experimental and Molecular Therapeutics

Novel Strategies in Cancer Immunotherapy: The Next Generation of Targets for Anticancer Immunotherapy

T-cell immunotherapy in the form of immune checkpoint blockade or cellular T-cell therapies has been tremendously successful in some types of cancer. This success has opened the door to consider what other modalities or types of immune cells can be harnessed for exert antitumor functions. In this session, experts in their respective fields will discuss topics including novel approaches in immunotherapy, including NK cells, macrophage, and viral oncotherapies.

Evanthia Galanis, Kerry S Campbell, Milan G Chheda, Jennifer L Guerriero

DETAILS

Monday, June 22

3:45 PM – 5:45 PM EDT

Virtual Educational Session

Tumor Biology, Drug Development, Immunology, Clinical Research Excluding Trials

Benign Cells as Drivers of Cancer Progression: Fat and Beyond

Carcinomas develop metastases and resistance to therapy as a result of interaction with tumor microenvironment, composed of various nonmalignant cell types. Understanding the complexity and origins of tumor stromal cells is a prerequisite for development of effective treatments. The link between obesity and cancer progression has revealed the engagement of adipose stromal cells (ASC) and adipocytes from adjacent fat tissue. However, the molecular mechanisms through which they stimulate

Guojun Wu, Matteo Ligorio, Mikhail Kolonin, Maria T Diaz-Meco

DETAILS

Monday, June 22

3:45 PM – 5:45 PM EDT

Virtual Educational Session

Clinical Research Excluding Trials, Experimental and Molecular Therapeutics, Tumor Biology

Dharma Master Jiantai Symposium on Lung Cancer: Know Thy Organ – Lessons Learned from Lung and Pancreatic Cancer Research

The term “cancer” encompasses hundreds of distinct disease entities involving almost every possible site in the human body. Effectively interrogating cancer, either in animals models or human specimens, requires a deep understanding of the involved organ. This includes both the normal cellular constituents of the affected tissue as well as unique aspects of tissue-specific tumorigenesis. It is critical to “Know Thy Organ” when studying cancer. This session will focus on two of the most

Trudy G Oliver, Hossein Borghaei, Laura Delong Wood, Howard C Crawford

DETAILS

Monday, June 22

3:45 PM – 5:45 PM EDT

Virtual Methods Workshop

Clinical Trials

Clinical Trial Design: Part 1: Novel Approaches and Methods in Clinical Trial Design

Good clinical trial design has always had to balance the competing interests of effectively and convincingly answering the question with the limitations imposed by scarce resources, complex logistics, and risks and potential benefits to participants. New targeted therapies, immuno-oncology, and novel combination treatments add new challenges on top of the old ones. This session will introduce these concerns and 1) suggest ways to consider what outcomes are relevant, 2) how we can best

Mary W. Redman, Nolan A. Wages, Susan G Hilsenbeck, Karyn A. Goodman

DETAILS

Monday, June 22

3:45 PM – 5:45 PM EDT

Virtual Methods Workshop

Tumor Biology, Drug Development

High-Throughput Screens for Drivers of Progression and Resistance

The sequencing of human cancers now provides a landscape of the genetic alterations that occur in human cancer, and increasingly knowledge of somatic genetic alterations is becoming part of the evaluation of cancer patients. In some cases, this information leads directly to the selection of particular therapeutic approaches; however, we still lack the ability to decipher the significance of genetic alterations in many cancers. This session will focus on recent developments that permit the identification of molecular targets in specific cancers. This information, coupled with genomic characterization of cancer, will facilitate the development of new therapeutic agents and provide a path to implement precision cancer medicine to all patients.

William C Hahn, Mark A Dawson, Mariella Filbin, Michael Bassik

DETAILS

Monday, June 22

3:45 PM – 5:15 PM EDT

Defining a cancer dependency map

William C Hahn

Introduction

William C Hahn

Genome-scale CRISPR screens in 3D spheroids identify cancer vulnerabilities

Michael Bassik

Utilizing single-cell RNAseq and CRISPR screens to target cancer stem cells in pediatric brain tumors

Mariella Filbin
  • many gliomas are defined by discreet mutational spectra that also discriminates based on age and site as well (for example many cortical tumors have mainly V600E Braf mutations while thalamus will be FGFR1
  • they did single cell RNAseq on needle biopsy from 7 gliomas which gave about 3500 high quality single cells; obtained full length RNA
  • tumors clustered mainly where the patient it came from but had stromal cell contamination probably so did a deconvolution?  Copy number variation showed which were tumor cells and did principle component analysis
  • it seems they used a human glioma model as training set
  • identified a stem cell like glioma cell so concentrated on the genes altered in these for translational studies
  • developed multiple PDX models from patients
  • PDX transcriptome closest to patient transcriptome but organoid grown in serum free very close while organoids grown in serum very distinct transcriptome
  • developed a CRISPR barcoded library to determine genes for survival genes
  • pulled out BMI1  and EZH2 (polycomb complex proteins) as good targets

Virtual Methods Workshop

Prevention Research, Survivorship, Clinical Research Excluding Trials, Epidemiology

Implementation Science Methods for Cancer Prevention and Control in Diverse Populations: Integration of Implementation Science Methods in Care Settings

Through this Education Session we will use examples from ongoing research to provide an overview of implementation science approaches to cancer prevention and control research. We draw on examples to highlight study design approaches, research methods, and real-world solutions when applying implementation science to achieve health equity. Approaches to defining change in the care setting and measuring sustained changes are also emphasized. Using real examples of patient navigation prog

Graham A Colditz, Sanja Percac-Lima, Nathalie Huguet

DETAILS

Monday, June 22

3:45 PM – 5:30 PM EDT

Virtual Educational Session

Regulatory Science and Policy, Epidemiology

COVID-19 and Cancer: Guidance for Clinical Trial Conduct and Considerations for RWE

This session will consider the use of real-world evidence in the context of oncology clinical trials affected by the COVID-19 pandemic. Key aspects of the FDA’s recent “Guidance on Conduct of Clinical Trials of Medical Products of Medical Products during COVID-19 Public Health Emergency” will be discussed, including telemedicine, accounting for missing data, obtaining laboratory tests and images locally, using remote informed consent procedures, and additional considerations for contin

Wendy Rubinstein, Paul G. Kluetz, Amy P. Abernethy, Jonathan Hirsch, C.K. Wang

 

 

Read Full Post »


Updates on the Oxford, AstraZeneca COVID-19 Vaccine

Reporter: Stephen J. Williams, PhD

AstraZeneca’s CEO states that their COVID-19 vaccine, codeveloped with Oxford University, should provide protection for a year.

AstraZeneca’s potential coronavirus vaccine is likely to provide protection against contracting Covid-19 for about a year, the company’s chief executive told a Belgian radio station on Tuesday.

The British drugmaker has already begun human trials of the vaccine developed by the University of Oxford, with a phase I trial in Britain due to end soon and a phase III trial already begun, Pascal Soriot told broadcaster Bel RTL.

“We think that it will protect for about a year,” Soriot said.

AstraZeneca said on Saturday that it had signed contracts with France, Germany, Italy and the Netherlands to supply the European Union with up to 400 million doses of the potential vaccine.

It has also agreed deals with Britain and the United States.

“If all goes well, we will have the results of the clinical trials in August/September. We are manufacturing in parallel. We will be ready to deliver from October if all goes well,” Soriot said.

Source: https://www.cnbc.com/2020/06/16/astrazeneca-covid-19-vaccine-likely-to-protect-for-a-year-ceo-says.html

 

 

From In The Pipeline (Derek Lowe’s regular column in Science)

Criticism of the Oxford Coronavirus Vaccine

By Derek Lowe 18 May, 2020

This piece at Forbes by Bill Haseltine has set off a lot of comment – it’s a look at the Oxford group’s vaccine candidate as compared to the SinoVac candidate, and you may recall (background here) that these are the two teams that have separately reported that their vaccines appear to protect rhesus monkeys from infection after exposure to the coronavirus. Haseltine has some criticisms of the Oxford data, and as you will see from that link to his name, his opinions deserve to be taken seriously. So what’s going on? Update: here’s the take on this at BioCentury.

Looking at the preprint on the Oxford results, Haseltine has a problem with the claim that the monkeys were protected from infection by a dose of ChAdOx1 nCoV-19. The key data are in the preprint’s Figure 3. The Oxford team checked for viral RNA several different ways. One was using bronchoaveolar lavage (BAL fluid), a sampling technique that involves running a bronchoscope down into the lungs and washing out aveolar spaces – a pretty darn invasive assay, which is why you don’t hear about it all that much compared to the still-not-so-nonivasive nose swabs. BAL fluid of the virus-exposed unvaccinated animals showed coronavirus genomic RNA throughout the study, and viral subgenomic RNA (more indicative of active replication) at days 3 and 5 after exposure. Meanwhile, the vaccinated animals showed the genomic RNA in only two monkeys, and no subgenomic RNA at all.

So far, so good. But both vaccinated and unvaccinated monkeys showed the same amount of viral genomic RNA from nose swab samples (Figure 3c). That’s the test that’s used out in the human population, and that means that the vaccinated animals would still be declared as positive for the coronavirus after being exposed to it. And the other thing that Haseltine notes is that the amount (the “titer”, in the lingo) of neutralizing antibodies in the blood of the vaccinated animals does not appear to be that high. You’d like to be able to dilute the blood antibody samples down by hundreds of times or even a thousandfold and still see antiviral activity in an in vitro assay, but in the Oxford case the activity started disappearing at about fortyfold dilution (Figure 2b).

On the positive side, 2/3 of the unvaccinated animals showed clear evidence of viral pneumonia at autopsy, but none of the vaccinated ones did. The conclusion is that the vaccinated animals were indeed infected – the vaccine did not protect against that – but that the disease was definitely less severe. But these results mean that the virus might well still be transmissible from people who had been so vaccinated, even if the disease course itself was not as deadly. You’d want to do better than that, if you can. Haseltine’s take is “Time will tell if this is the best approach. I wouldn’t bet on it.

Haseltine compares these results to the SinoVac inactivated virus vaccine, and finds that that one looks better – at its highest dose, no viral RNA was recovered from the tissues of the vaccinated animals, for example. This sort of “sterilizing immunity” is what you’d want to aim for – it gives the virus nowhere to go in the human population if you can vaccinate enough people. But it’s worth noting that the SinoVac results were from three doses of their vaccine (versus one of the Oxford candidate), and the viral exposure challenge was about half as strong (total viral particles) as what the Oxford paper used. The Oxford group also inoculated their monkeys in both the upper and lower respiratory tract, while the SinoVac team used a single inoculation in the trachea. So I agree with that tweet linked from AndyBiotech; I don’t think that a head-to-head comparison is fair. But Haseltine’s point stands, that the results as we have them from the ChAdOx1 nCoV-19 vaccine did not actually protect monkeys from infection.

Source: https://blogs.sciencemag.org/pipeline/archives/2020/05/18/criticism-of-the-oxford-coronavirus-vaccine

 

Please see other Articles on COVID-19 on our Coronavirus Portal Including Late Breaking News at:

https://pharmaceuticalintelligence.com/coronavirus-portal/

 

Read Full Post »


Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 27, 2020 Opening Remarks and Clinical Session 11:45am-1:15pm Advances in Cancer Drug Discovery

SESSION VMS.CH01.01 – Advances in Cancer Drug Design and Discovery

April 27, 2020, 11:45 AM – 1:15 PM
Virtual Meeting: All Session Times Are U.S. EDT
DESCRIPTIONAll session times are U.S. Eastern Daylight Time (EDT).

Session Type
Virtual Minisymposium
Track(s)
Cancer Chemistry
14 Presentations
11:45 AM – 11:45 AM
– ChairpersonZoran Rankovic. St. Jude Children’s Research Hospital, Memphis, TN

11:45 AM – 11:45 AM
– ChairpersonChristopher G. Nasveschuk. C4 Therapeutics, Watertown, MA

11:45 AM – 11:50 AM
– IntroductionZoran Rankovic. St. Jude Children’s Research Hospital, Memphis, TN

11:50 AM – 12:00 PM
1036 – Discovery of a highly potent, efficacious and orally active small-molecule inhibitor of embryonic ectoderm development (EED)Changwei Wang, Rohan Kalyan Rej, Jianfeng Lu, Mi Wang, Kaitlin P. Harvey, Chao-Yie Yang, Ester Fernandez-Salas, Jeanne Stuckey, Elyse Petrunak, Caroline Foster, Yunlong Zhou, Rubin Zhou, Guozhi Tang, Jianyong Chen, Shaomeng Wang. Rogel Cancer Center and Departments of Internal Medicine, Pharmacology, and Medicinal Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, MI, Ascentage Pharma Group, Taizhou, Jiangsu, China

12:00 PM – 12:05 PM
– Discussion

12:05 PM – 12:15 PM
1037 – Orally available small molecule CD73 inhibitor reverses immunosuppression through blocking of adenosine productionXiaohui Du, Brian Blank, Brenda Chan, Xi Chen, Yuping Chen, Frank Duong, Lori Friedman, Tom Huang, Melissa R. Junttila, Wayne Kong, Todd Metzger, Jared Moore, Daqing Sun, Jessica Sun, Dena Sutimantanapi, Natalie Yuen, Tatiana Zavorotinskaya. ORIC Pharmaceuticals, South San Francisco, CA, ORIC Pharmaceuticals, South San Francisco, CA, ORIC Pharmaceuticals, South San Francisco, CA, ORIC Pharmaceuticals, South San Francisco, CA

12:15 PM – 12:20 PM
– Discussion

12:20 PM – 12:30 PM
1038 – A potent and selective PARP14 inhibitor decreases pro-tumor macrophage function and elicits inflammatory responses in tumor explantsLaurie Schenkel, Jennifer Molina, Kerren Swinger, Ryan Abo, Danielle Blackwell, Anne Cheung, William Church, Kristy Kuplast-Barr, Alvin Lu, Elena Minissale, Mario Niepel, Melissa Vasbinder, Tim Wigle, Victoria Richon, Heike Keilhack, Kevin Kuntz. Ribon Therapeutics, Cambridge, MA

12:30 PM – 12:35 PM
– Discussion

12:35 PM – 12:45 PM
1039 – Fragment-based drug discovery to identify small molecule allosteric inhibitors of SHP2. Philip J. Day, Valerio Berdini, Juan Castro, Gianni Chessari, Thomas G. Davies, James E. H. Day, Satoshi Fukaya, Chris Hamlett, Keisha Hearn, Steve Hiscock, Rhian Holvey, Satoru Ito, Yasuo Kodama, Kenichi Matsuo, Yoko Nakatsuru, Nick Palmer, Amanda Price, Tadashi Shimamura, Jeffrey D. St. Denis, Nicola G. Wallis, Glyn Williams, Christopher N. Johnson. Astex Pharmaceuticals, Inc., Cambridge, United Kingdom, Taiho Pharmaceutical Co., Ltd, Tsukuba, Japan

Abstract: The ubiquitously expressed protein tyrosine phosphatase SHP2 is required for signalling downstream of receptor tyrosine kinases (RTKs) and plays a role in regulating many cellular processes. Recent advances have shown that genetic knockdown and pharmacological inhibition of SHP2 suppresses RAS/MAPK signalling and inhibits proliferation of RTK-driven cancer cell lines. SHP2 is now understood to act upstream of RAS and plays a role in KRAS-driven cancers, an area of research which is rapidly growing. Considering that RTK deregulation often leads to a wide range of cancers and the newly appreciated role of SHP2 in KRAS-driven cancers, SHP2 inhibitors are therefore a promising therapeutic approach.
SHP2 contains two N-terminal tandem SH2 domains (N-SH2, C-SH2), a catalytic phosphatase domain and a C-terminal tail. SHP2 switches between “open” active and “closed” inactive forms due to autoinhibitory interactions between the N-SH2 domain and the phosphatase domain. Historically, phosphatases were deemed undruggable as there had been no advancements with active site inhibitors. We hypothesised that fragment screening would be highly applicable and amenable to this target to enable alternative means of inhibition through identification of allosteric binding sites. Here we describe the first reported fragment screen against SHP2.
Using our fragment-based PyramidTM approach, screening was carried out on two constructs of SHP2; a closed autoinhibited C-terminal truncated form (phosphatase and both SH2 domains), as well as the phosphatase-only domain. A combination of screening methods such as X-ray crystallography and NMR were employed to identify fragment hits at multiple sites on SHP2, including the tunnel-like allosteric site reported by Chen et al, 2016. Initial fragment hits had affinities for SHP2 in the range of 1mM as measured by ITC. Binding of these hits was improved using structure-guided design to generate compounds which inhibit SHP2 phosphatase activity and are promising starting points for further optimization.

  • anti estrogen receptor therapy: ER degraders is one class
  • AZ9833 enhances degradation of ER alpha
  • worked in preclinical mouse model (however very specific)
  • PK parameters were good for orally available in rodents;  also in vitro and in vivo correlation correlated in rats but not in dogs so they were not sure if good to go in humans
  • they were below Km in rats but already at saturated in dogs, dogs were high clearance
  • predicted human bioavailability at 40%

 

12:45 PM – 12:50 PM
– Discussion

12:50 PM – 1:00 PM
1042 – Preclinical pharmacokinetic and metabolic characterization of the next generation oral SERD AZD9833Eric T. Gangl, Roshini Markandu, Pradeep Sharma, Andy Sykes, Petar Pop-Damkov, Pablo Morentin Gutierrez, James S. Scott, Dermot F. McGinnity, Adrian J. Fretland, Teresa Klinowska. AstraZeneca, Waltham, MA

1:00 PM – 1:05 PM
– Discussion

1:05 PM – 1:15 PM
– Closing RemarksChristopher G. Nasveschuk. MA

Follow on Twitter at:

@pharma_BI

@AACR

@GenomeInstitute

@CureCancerNow

@UCLAJCCC

#AACR20

#AACR2020

#curecancernow

#pharmanews

Read Full Post »


Self-propelled Liposomes as a Drug Delivery System

Reporter: Irina Robu, PhD

Liposomes are small artificial vesicles of spherical shape that can be created from cholesterol and natural non-toxic phospholipids. As a result of their size and hydrophobic and hydrophilic character, liposomes are promising systems for drug delivery. Liposome properties diverge considerably with lipid composition, surface charge, size, and the method of preparation. Scientists at Penn State developed self-propelled liposomes that migrate away and/or towards chemical signals, making it possible for self-directed drug delivery vehicles that can actively target a specific area of the body. Besides, the choice of bilayer components controls the ‘rigidity’ or ‘fluidity’ and the charge of the bilayer. Countless liposomes proposed for drug delivery are tissue-specific, since of antibodies on their surface bind to the target tissue when they encounter it. The technology may help to enhance efficacy and reduce side-effects of drugs in a variation of applications.

Yet, the key to drug delivery is enhancing the specificity and affinity of a drug delivery vehicle for its target tissue. As the drawbacks of conventional drug therapies, scientists are developing an extensive variability of drug delivery vehicles including nanoparticles, biomaterials, and implantable devices, to increase drug accumulation at a target site in the body and reduce side-effects elsewhere. To address the drawbacks, these researchers developed a type of liposome that can actively propel itself near a chemical signal in the body, such as a chemical attractant released by a target tissue.

The liposomes proposed by Penn researchers are covered in enzymes that react with specific substrates to produce energy, which can help to push the liposomes along, through a phenomenon called chemotaxis. By changing the enzymes coating the liposomes, the investigators can tune this chemotaxis and permit the particles to either move towards or away the chemical signal. This could aid the particles to gravitate near certain tissues, and possibly avoid others in the body.
Currently, the are still developing the liposomes, and hope that they will be able to use them for drug delivery soon
SOURCE
https://www.sciencedaily.com/releases/2019/11/191118110928.htm

Read Full Post »


Medicine in 2045 – Perspectives by World Thought Leaders in the Life Sciences & Medicine

Reporter: Aviva Lev-Ari, PhD, RN

 

This report is based on an article in Nature Medicine | VOL 25 | December 2019 | 1800–1809 | http://www.nature.com/naturemedicine

Looking forward 25 years: the future of medicine.

Nat Med 25, 1804–1807 (2019) doi:10.1038/s41591-019-0693-y

 

Aviv Regev, PhD

Core member and chair of the faculty, Broad Institute of MIT and Harvard; director, Klarman Cell Observatory, Broad Institute of MIT and Harvard; professor of biology, MIT; investigator, Howard Hughes Medical Institute; founding co-chair, Human Cell Atlas.

  • millions of genome variants, tens of thousands of disease-associated genes, thousands of cell types and an almost unimaginable number of ways they can combine, we had to approximate a best starting point—choose one target, guess the cell, simplify the experiment.
  • In 2020, advances in polygenic risk scores, in understanding the cell and modules of action of genes through genome-wide association studies (GWAS), and in predicting the impact of combinations of interventions.
  • we need algorithms to make better computational predictions of experiments we have never performed in the lab or in clinical trials.
  • Human Cell Atlas and the International Common Disease Alliance—and in new experimental platforms: data platforms and algorithms. But we also need a broader ecosystem of partnerships in medicine that engages interaction between clinical experts and mathematicians, computer scientists and engineers

Feng Zhang, PhD

investigator, Howard Hughes Medical Institute; core member, Broad Institute of MIT and Harvard; James and Patricia Poitras Professor of Neuroscience, McGovern Institute for Brain Research, MIT.

  • fundamental shift in medicine away from treating symptoms of disease and toward treating disease at its genetic roots.
  • Gene therapy with clinical feasibility, improved delivery methods and the development of robust molecular technologies for gene editing in human cells, affordable genome sequencing has accelerated our ability to identify the genetic causes of disease.
  • 1,000 clinical trials testing gene therapies are ongoing, and the pace of clinical development is likely to accelerate.
  • refine molecular technologies for gene editing, to push our understanding of gene function in health and disease forward, and to engage with all members of society

Elizabeth Jaffee, PhD

Dana and Albert “Cubby” Broccoli Professor of Oncology, Johns Hopkins School of Medicine; deputy director, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins.

  • a single blood test could inform individuals of the diseases they are at risk of (diabetes, cancer, heart disease, etc.) and that safe interventions will be available.
  • developing cancer vaccines. Vaccines targeting the causative agents of cervical and hepatocellular cancers have already proven to be effective. With these technologies and the wealth of data that will become available as precision medicine becomes more routine, new discoveries identifying the earliest genetic and inflammatory changes occurring within a cell as it transitions into a pre-cancer can be expected. With these discoveries, the opportunities to develop vaccine approaches preventing cancers development will grow.

Jeremy Farrar, OBE FRCP FRS FMedSci

Director, Wellcome Trust.

  • shape how the culture of research will develop over the next 25 years, a culture that cares more about what is achieved than how it is achieved.
  • building a creative, inclusive and open research culture will unleash greater discoveries with greater impact.

John Nkengasong, PhD

Director, Africa Centres for Disease Control and Prevention.

  • To meet its health challenges by 2050, the continent will have to be innovative in order to leapfrog toward solutions in public health.
  • Precision medicine will need to take center stage in a new public health order— whereby a more precise and targeted approach to screening, diagnosis, treatment and, potentially, cure is based on each patient’s unique genetic and biologic make-up.

Eric Topol, MD

Executive vice-president, Scripps Research Institute; founder and director, Scripps Research Translational Institute.

  • In 2045, a planetary health infrastructure based on deep, longitudinal, multimodal human data, ideally collected from and accessible to as many as possible of the 9+ billion people projected to then inhabit the Earth.
  • enhanced capabilities to perform functions that are not feasible now.
  • AI machines’ ability to ingest and process biomedical text at scale—such as the corpus of the up-to-date medical literature—will be used routinely by physicians and patients.
  • the concept of a learning health system will be redefined by AI.

Linda Partridge, PhD

Professor, Max Planck Institute for Biology of Ageing.

  • Geroprotective drugs, which target the underlying molecular mechanisms of ageing, are coming over the scientific and clinical horizons, and may help to prevent the most intractable age-related disease, dementia.

Trevor Mundel, MD

President of Global Health, Bill & Melinda Gates Foundation.

  • finding new ways to share clinical data that are as open as possible and as closed as necessary.
  • moving beyond drug donations toward a new era of corporate social responsibility that encourages biotechnology and pharmaceutical companies to offer their best minds and their most promising platforms.
  • working with governments and multilateral organizations much earlier in the product life cycle to finance the introduction of new interventions and to ensure the sustainable development of the health systems that will deliver them.
  • deliver on the promise of global health equity.

Josep Tabernero, MD, PhD

Vall d’Hebron Institute of Oncology (VHIO); president, European Society for Medical Oncology (2018–2019).

  • genomic-driven analysis will continue to broaden the impact of personalized medicine in healthcare globally.
  • Precision medicine will continue to deliver its new paradigm in cancer care and reach more patients.
  • Immunotherapy will deliver on its promise to dismantle cancer’s armory across tumor types.
  • AI will help guide the development of individually matched
  • genetic patient screenings
  • the promise of liquid biopsy policing of disease?

Pardis Sabeti, PhD

Professor, Harvard University & Harvard T.H. Chan School of Public Health and Broad Institute of MIT and Harvard; investigator, Howard Hughes Medical Institute.

  • the development and integration of tools into an early-warning system embedded into healthcare systems around the world could revolutionize infectious disease detection and response.
  • But this will only happen with a commitment from the global community.

Els Toreele, PhD

Executive director, Médecins Sans Frontières Access Campaign

  • we need a paradigm shift such that medicines are no longer lucrative market commodities but are global public health goods—available to all those who need them.
  • This will require members of the scientific community to go beyond their role as researchers and actively engage in R&D policy reform mandating health research in the public interest and ensuring that the results of their work benefit many more people.
  • The global research community can lead the way toward public-interest driven health innovation, by undertaking collaborative open science and piloting not-for-profit R&D strategies that positively impact people’s lives globally.

Read Full Post »


Injectable inclisiran (siRNA) as 3rd anti-PCSK9 behind mAbs Repatha and Praluent

 

Reporter: Aviva Lev-Ari, PhD, RN

Next stop, filing for approval. The Medicines Company has said it plans to submit inclisiran for FDA review by the end of 2019 and EMA review in the first quarter of 2020. If the drug’s approved it’ll be the third anti-PCSK9 behind mAbs Repatha and Praluent, and could try to compete on price to gain market share.

The company’s been very careful not to disclose its pricing plans for inclisiran, said ORION-10 principal investigator Dr. Scott Wright, professor and cardiologist at the Mayo Clinic. But, Wright said, The Medicines Co. and other companies he advises on clinical trial design “have learned the lesson from the sponsors of the monoclonal antibodies [against PCSK9], they’re not going to come in and price a drug that’s out of proportion to what the market will bear.” 

Because the anti-PCSK9 mAbs were initially priced beyond what patients and insurers were willing to pay, “now most of the physicians that I meet have a resistance to using them just because they’re fearful about the pre-approval process” with insurers, said Wright. “They’re much easier to get approved and paid for today than they’ve ever been, but that message is not out in the medical community yet.”

SOURCE

From: “STAT: AHA in 30 Seconds” <newsletter@statnews.com>

Reply-To: “STAT: AHA in 30 Seconds” <newsletter@statnews.com>

Date: Monday, November 18, 2019 at 2:59 PM

To: Aviva Lev-Ari <AvivaLev-Ari@alum.berkeley.edu>

Subject: Interim look at Amarin data, an inclisiran update, & Philly’s giant heart

Read Full Post »


Advancing Drug Development – 12/12/2019, 8:30AM – 8:30PM at The University of Massachusetts Club, One Beacon Street, Boston, MA

 

Reporter: Aviva Lev-Ari, PhD, RN

4th Advancing Drug Development Forum – Making the Impossible Possible – Harnessing Small Molecule Drug Development scheduled to take place December 12th, 2019 at The University of Massachusetts Club, in Boston, Massachusetts from 8:30 AM – 8:30 PM.

http://advdrug.com/agenda/

 

Scientists are more than just chipping away and kicking down the barricades to develop complex small molecule products better and faster.  Successful companies are spending quality time finding novel and clever approaches and powerful technologies to better support their knowledgeable teams.  Often it takes establishing strong partnerships with 1 or more specialized service providers, cleverly combining resources – always striving to raise the bar in order to make life threatening diseases more of a chronic and tolerable disease or eradicated completely.

Hear from key opinion leaders in pharma, biotech, the investment community and innovative service providers on how they are meeting the challenges. Keep in mind, it takes being open-minded, flexible and willing sometimes to redesigning a new formulation that better enhances bioavailability, optimizes drug-delivery profiles, reduces dosing frequency, or improves the patient experience to have the potential to deliver quicker returns on investments than developing a completely new drug.

PROGRAM AGENDA Thursday, December 12, 2019
8:30 AM Registration and Networking Continental Breakfast
9:00 AM Welcome Address and Opening Remarks
Kevin Bittorf, Ph.D., & Shelly Amster
9:15 AM Opening VC Keynote
9:45 AM Bridging the Gap between Experimentation and Implementation
Panel Discussion
10:15 AM Refreshment Break
10:45 AM Cross-Talk Between Clin-Ops and Tech-Ops
Panel Discussion
11:15 AM The Cost of Speed and Value in Drug Development
Panel Discussion
12:00 PM Networking Luncheon
1:00 PM Advances in the Delivery of Therapeutics to the Brain
Academic Keynote
Mansoor M. Amiji, Ph.D., University Distinguished Professor, Professor of Pharmaceutical Sciences & Professor of Chemical Engineering, Northeastern University
1:30 PM Advancing Drug Delivery and Controlled Release
Panel Discussion
2:00 PM Drowning in DATA
2:30 PM Disruptive AI Technologies Improving Drug Development
3:00 PM Refreshment Break
3:30 PM Small Specialty VS Full Service – What Makes Sense for US?
Panel Discussion
4:00 PM Fireside Chat
Michael Bonney, Executive Chair, Kaleido Biosciences
Heinrich Schlieker, Ph.D., SVP Technical Operations, Sage Therapeutics
5:00 PM – 8:00 PM Networking Social
Direct electronic communication with Shelly Amster

Read Full Post »

Older Posts »