Advertisements
Feeds:
Posts
Comments

Archive for the ‘Drug Delivery Platform Technology’ Category


Press Conference: Exosome-based Drug Delivery Systems, June 5, BIO 2018!, Boston, BCEC

10:00 AM–11:00 AM Jun 5, 2018 Room 153B

bio2018-mybio-sessionicon-session

Press Conference: Exosome-based Drug Delivery Systems

ALXERION

2007 IDE for Exosome-based drug delivery system in 2018 in Phase III clinical system

In Argentina – Biobank of Exosomes 35,000  sequensed for new drugs in Partnership with MIT

Speakers
  • PI working with Prof. Edelman
NOT Attended
  • DNA samples can be collected for RNA sequences best conditions in lab are needed
  • EXOKIT Cartilege – personalized exosome-based medicines – drug delivery device & system technology for PM
  • High throughput for screening exosomes for genetic drugs,
  • Conflict among species: Fungus and Bacteria – cross communication
  • incubate samples in invitro conditiond as in nature and the Medium has the entire ecosystem – a sample of – basal conditions technologies
  • intra extra viscicles
  • strong discovery and strong delivery
  • In a month – launch of Cancer new drug, lung, use isolated exosome

 

Advertisements

Read Full Post »


The Convergence of Medical Devices & Drugs: Advances in Drug Delivery May 3, 2018 12:00 PM – 5:00 PM, Westin Hotel, Waltham, MA

Westin Waltham Boston 
70 3rd Avenue Waltham MA US 02451

MassBio’s second annual Medical Device Event will focus on opportunities and advances in drug delivery, including the unique developmental and regulatory challenges these products face, the many scientific advances in the space and new opportunities for funding.  Panelists will discuss innovation and commercialization strategies.

Advances in drug delivery technologies are improving the safety and efficacy of new and existing therapies. The success of many new therapies in development is contingent on the development of effective delivery systems.   Traditional drug delivery methods won’t work for some compounds and biologics.   Stability issues create challenges for storage and transport.  There are opportunities for combination drug delivery products to extend the patent life of drugs on the market.  From diffusion based polymer systems to complex delivery devices utilizing diagnostic sensors and sophisticated control systems for precise and timely delivery of life-saving agents, a diverse set of scientific and engineering disciplines are being brought to bear within this space.  However, combination products involve components that would normally be developed under different types of regulations, design criteria, and controls.  This symposium will explore many of the diverse aspects impacting drug delivery products.

This event will feature an active exhibit hall, panel discussions, a keynote speaker and networking sessions. This is an excellent opportunity for companies to reach a diverse audience that represents nearly every aspect of the life sciences industry, including academic researchers, entrepreneurs, device engineers and biopharma executives.

Clinicians will discuss the medical challenges for which drug delivery innovations have provided a unique solution.  Academic researchers will discuss scientific advances which may lead to breakthrough products.   Entrepreneurs will discuss strategies for funding new product ventures, and development issues specific to drug delivery products.  Corporate speakers will discuss the challenges across the value chain of manufacturing and selling combination products globally.  Regulatory speakers will address current thinking and approaches to drug delivery products within government agencies, both US and internationally.

SOURCE

https://www.massbio.org/events/the-convergence-of-medical-devices-and-drugs-advances-in-drug-delivery-2624?utm_campaign=med-device-18&utm_medium=email&utm_source=email-signature&utm_content=&utm_term=

Registration

12:00 pm  12:30 pm

Opening Remarks

12:30 pm  12:45 pm

Keynote Presentation

12:45 pm  1:15 pm

Innovation & Development Panel

1:30 pm  2:45 pm

Networking Break

2:45 pm  3:15 pm

Commercialization Pathways Panel

3:15 pm  4:30 pm

Networking Reception

4:30 pm  5:30 pm

Speakers

  • Bob Coughlin, President & CEO, MassBio

Keynote Speaker: Michael J. Cima, Ph.D., Associate Dean of Innovation, MIT

  1. Intraperiotneal Chemotherapy needed to remove the few cells left after surgery _ delivery of drugs to a single compartment
  2. Hyperthermic Intraperiotneal Chemotherapy
  3. Tumor burden – stage 3 women ovarian cancer
  4. Extended IP drug exposure
  5. device for drug delivery to the bladder (cancer): Inflammatory bladder disease, overactive Bladder, bladder (cancer); bladder removal (radical cystectomy – residual tumor size 3 cm tumor)
  6. Local Drug delivery for stone disease in ureter
  7. Change the pharmacology and change the lesion in the bladder – lesion disappeared in a single compartment
  8. Mutation burden in Brain Cancer and in Ovarian Cancer much smaller than in Lung cancer
  9. local drug delivery to one location in the brain and the drug will be carried to the entire body – pathology of the brain leads to different disease related to the Human Brain. Treatment of hemorrhage
  10. Cervical cancer under MRI deliver drug to the tumor hypoxy of the tumor, guide the drug dosage using imaging MRI is Radiation therapy not drug therapy

PANEL 1: Product Development: Drug-Device Technology moderated by Kristina Bieker-Brady, Ph.D., Partner, McDermott Will & Emery LLP

  1. Basic research to clinical development: Drug delivery System
  • Benjamin S. Bleier, MD, FACS, FARS, Associate Professor, Director of Endoscopic Skull Base Surgery, Co-Director Center for Thyroid Eye Disease and Orbital Surgery, Massachusetts Eye and Ear Infirmary, Harvard Medical School
  1. BBB – Invasive, Non-invasive, Drug modification
  2. Platform technology , Enabling technology to pass BBB Scalable technology: SAfe
  3. Nasal bleed
  4. Nasal Cavity – ENTRY point to the brain use vascularized tissue
  5. nasal mucosa more permeable that any other tissue – diffuse drugs into the brain
  6. Autologous tissue – Nasal Mucosa: Proteins Oligonucleotides,
  • Maria Palasis, President and CEO, 480 Biomedical, Inc.
  • Maria Berkman, MD, MBA, Director and Head of MedTech practice, Broadview Ventures
  • Evan Sherr
  1. Brent Buchine, Ph.D., Co-Founder and CTO, Windgap Medical, Inc.

 PANEL 2: Commercialization Challenges

Moderator: Harry Glorikian, General Partner, New Ventures Funds

  • Paul Just, PharmD, Senior Principal, Medical Device Health Economics, ICON plc
  1. VALUE (outcome achieved per $) is the currency for market ACCESS knock down barriers Care COST
  2. Physician choose product that they wish to use while providing therapy as the lowest cost
  3. Assessing Differentiating Value and Reimbursement
  4. No guidance for combination products: New method of treating patients: Drug-Device
  5. Value: Who benefits from the Value – Target stakeholders: 90 days vs 18-24 month, long term value
  • Pamela J. Weagraff, Director, MedTech Regulatory, IQVIA [Quantile merged IMS]
  1. MedTech meet BioPharma
  2. Clinical data requirements for medical devices on the increase but not not necessarily in many cases
  3. Combination Products: Microfluidics, micronization – not chemistry but features of the drug delivery device
  4. Option 1,2,3 for Combination Product Pathways: Draft Guidance –>> FINAL immediately in effect
  • Jessica Ballinger, Chief Operating Officer, Lyndra
  1. Lyndra’s Ultra-long drug release – Extended Release Oral Capsule: 7 days
  2. Dosage Form – Safety
  3. Drug delivery – material manufacturing for long term resident inside the human body
  4. Candidates: AD, Diabetes
  5. Encapsulation automated – 3 partners assembly in several int’l locations in the supply chain: complications in making tablets – three years before the launch, freeze design 1st generation, 2nd generation
  • Steven Rosenberg, Otsuka Pharmaceutical

 

Read Full Post »


CHI’s Discovery on Target, Sheraton Boston, Sept. 25-28, 2018

Reporter: Aviva Lev-Ari, PhD, RN

 

ANNOUNCEMENT

Leaders in Pharmaceutical Business Intelligence (LPBI) Group is a selected CHI Business Partner for Media Communication for this event as well a provider of REAL TIME PRESS COVERAGE for this cardinal event in the domain of  Drug Discovery and Drug Delivery.

Dr. Aviva Lev-Ari, PhD, RN, Editor-in-Chief, PharmaceuticalIntelligence.com  will be in attendance covering this event for the Press using Social Media via 12 Channels

LOGO of LPBI Group

Follow us on ALL our Media Communication Channels:

Channels for e-Marketing of Biotech Conferences

  • Our Journal has 1,373,977  eReaders on 1/29/2018, for All Time and 7,283 Scientific Comments

http://pharmaceuticalintelligence.com

  • Aviva’s – +6,430 BIOTECH Followers on LinkedIn

http://www.linkedin.com/in/avivalevari

  • Aviva is a Member of +60 LinkedIn Groups in Biotech related fields

https://www.linkedin.com/groups/my-groups

  • LPBI Group’s FaceBook Page

http://www.facebook.com/LeadersInPharmaceuticalBusinessIntelligence

  • LPBI Group’s Twitter Account

http://twitter.com/pharma_BI

  • LPBI Group’s Company’s Page on LinkedIn

https://www.linkedin.com/company/9325543?trk=tyah&trkInfo=clickedVertical%3Acompany%2CclickedEntityId%3A9325543%2Cidx%3A1-1-1%2CtarId%3A1439226813927%2Ctas%3ALeaders%20in%20Pharmaceutica

 

 

For UPDATES on this Cardinal Conference and for REGISTRATION, go to 

http://www.discoveryontarget.com/?utm_source=partner

 

For PROGRAMS, go to 

http://www.discoveryontarget.com/programs

What is the Role of the Editor-in-Chief at PharmaceuticalIntelligence.com 

Editor-in-Chief’s Roles and Accomplishments

1        Curation Methodology Development

Leadership we provide on curation of scientific findings in the eScientific publishing for Medical Education contents.

In Section 1, the Leadership we provide on curation of scientific findings in the eScientific publishing for Medical Education contents is demonstrated by a subset of several outstanding curations with high electronic Viewer volume. Each article included presents unique content contribution to Medical Clinical Education.

·       These articles are extracted from the list of all Journal articles with >1,000 eReaders, 4/28/2012 to 1/29/2018.

Article Title,         # of electronic Viewers,         Author(s) Name

Is the Warburg Effect the Cause or the Effect of Cancer: A 21st Century View?                      16,114 Larry H. Bernstein, MD, FCAP

Do Novel Anticoagulants Affect the PT/INR? The Cases of XARELTO (rivaroxaban) and PRADAXA (dabigatran) 11,606 Vivek Lal, MBBS, MD, FCIR,

Justin D. Pearlman, MD, PhD, FACC and

Aviva Lev-Ari, PhD, RN

Clinical Indications for Use of Inhaled Nitric Oxide (iNO) in the Adult Patient Market: Clinical Outcomes after Use, Therapy Demand and Cost of Care

 

 5,865 Aviva Lev-Ari, PhD, RN
Peroxisome proliferator-activated receptor (PPAR-gamma) Receptors Activation: PPARγ transrepression for Angiogenesis in Cardiovascular Disease and PPARγ transactivation for Treatment of Diabetes                  1,919 Aviva Lev-Ari, PhD, RN  

 

Bystolic’s generic Nebivolol – Positive Effect on circulating Endothelial Progenitor Cells Endogenous Augmentation  1,059 Aviva Lev-Ari, PhD, RN

 

Triple Antihypertensive Combination Therapy Significantly Lowers Blood Pressure in Hard-to-Treat Patients with Hypertension and Diabetes  1,339 Aviva Lev-Ari, PhD, RN

 

Clinical Trials Results for Endothelin System: Pathophysiological role in Chronic Heart Failure, Acute Coronary Syndromes and MI – Marker of Disease Severity or Genetic Determination?  1,472 Aviva Lev-Ari, PhD, RN
Treatment of Refractory Hypertension via Percutaneous Renal Denervation  1,085 Aviva Lev-Ari, PhD, RN

2        Content Creation and Key Opinion Leader (KOL) Recognition

2.1     Volume of Articles in the Journal and in the 16 Volume-BioMed e-Series

Select

Aviva Lev-Ari, PhD, RN 2012pharmaceutical

3,064 Articles

·       All  (5,288)

avivalev-ari@alum.berkeley.edu Administrator 3064

2.1     Volume of Articles in the Journal and in the 16 Volume-BioMed e-Series

1.   Volume of Articles in the Journal since Journal inception on 4/28/2012:

·       Total articles by ALL authors in Journal Archive on 1/29/2018 = 5,288

·       ALL articles/posts Authored, Curated, Reported by Aviva Lev-Ari, PhD, RN = 3,064

2.   Volume of Articles in the 16 Volume-BioMed e-Series

·    Editorial & Publication of Articles in e-Books by Leaders in Pharmaceutical Business Intelligence: Contributions of Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2014/10/16/editorial-publication-of-articles-in-e-books-by-leaders-in-pharmaceutical-business-intelligence-contributions-of-aviva-lev-ari-phd-rn/

·       LPBI Group’s Founder: Biography and Bibliographies – Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/founder/

 

2.2     Digital Presence measured by eViews: Clicks on article by Author Name

Top Authors for all days ending 2018-01-29 (Summarized)

All Time

Author Name electronic Views
Aviva Lev-Ari, PhD, RN [2012pharmaceutical]

352,153

 

Our TEAM 5,934  

 

Founder 3,257
BioMed e-Series 3,140

 

Journal PharmaceuticalIntelligence.com 2,214
About 2,054
  VISION   2,803  

 


LPBI Group
            1,201

2.3     Digital KOL Parameters

Key Opinion Leader (KOL) – Aviva Lev-Ari, PhD, RN, as Evidenced by

https://pharmaceuticalintelligence.com/2016/07/21/key-opinion-leader-kol-aviva-lev-ari-phd-rn-as-evidenced-by/

 

3        Team building: Editors and Expert, Authors, Writers

Our Team

Selection of Journal’s Chief Scientific Officer (CSO) and BioMed e-Series Content Consultant (CC): Series B, C, D, E

L.H. Bernstein, MD, FCAP

Editorial & Publication of Articles in e-Books by  Leaders in Pharmaceutical Business Intelligence:  Contributions of Larry H Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2014/10/16/editorial-publication-of-articles-in-e-books-by-leaders-in-pharmaceutical-business-intelligence-contributions-of-larry-h-bernstein-md-fcap/

4        Book Title Generation and Cover Page Design

As BioMed e-Series Editor–in-Chief, I was responsible for the following functions of product design and product launch

·       16 Title creations for e-Books

·       Designed 16 Cover Pages for a 16-Volume e-Books e-Series in BioMed

·       Designed Series A eTOCs and approved of all 16 electronic Table of Contents (eTOCs), working in tandem with all the Editors of each volume and all the Author contributors of article contents in the Journal.

·       Commissioned Articles by Authors/Curators per Author’s expertise on a daily basis

 

Below, see Volume Titles and Cover Pages:

13 LIVE results for Kindle Store: “Aviva Lev-Ari”

 

 

The VOICES of Patients, Hospitals CEOs, Health Care Providers, Caregivers and Families: Personal Experience with Critical Care and Invasive Medical Procedures … E: Patient-Centered Medicine Book 1)

Oct 16, 2017 | Kindle eBook

by Larry H. Bernstein and Aviva Lev-Ari

$0.00

Subscribers read for free.

Read for Free

$49.00$ 49 00 to buyKindle Edition

Get it TODAY, Jan 29

Sold by: Amazon Digital Services LLC

Cancer Therapies: Metabolic, Genomics, Interventional, Immunotherapy and Nanotechnology in Therapy Delivery (Series C Book 2)

May 13, 2017 | Kindle eBook

by Larry H. Bernstein and Demet Sag

$0.00

Subscribers read for free.

Read for Free

$100.00$ 100 00 to buyKindle Edition

Get it TODAY, Jan 29

Sold by: Amazon Digital Services LLC

The Immune System, Stress Signaling, Infectious Diseases and Therapeutic Implications: VOLUME 2: Infectious Diseases and Therapeutics and VOLUME 3: The … (Series D: BioMedicine & Immunology)

Sep 4, 2017 | Kindle eBook

by Larry H. Bernstein and Aviva Lev-Ari

$0.00

Subscribers read for free.

Read for Free

$115.00$ 115 00 to buyKindle Edition

Get it TODAY, Jan 29

Sold by: Amazon Digital Services LLC

Perspectives on Nitric Oxide in Disease Mechanisms (Biomed e-Books Book 1)

Jun 20, 2013 | Kindle eBook

by Margaret Baker PhD and Tilda Barliya PhD

$0.00

Subscribers read for free.

Read for Free

$75.00$ 75 00 to buyKindle Edition

Get it TODAY, Jan 29

5 out of 5 stars 6

Sold by: Amazon Digital Services LLC

Medical Scientific Discoveries for the 21st Century & Interviews with Scientific Leaders (Series E)

Dec 9, 2017 | Kindle eBook

by Larry H. Bernstein and Aviva Lev-Ari

$0.00

Subscribers read for free.

Read for Free

$75.00$ 75 00 to buyKindle Edition

Get it TODAY, Jan 29

Sold by: Amazon Digital Services LLC

Etiologies of Cardiovascular Diseases: Epigenetics, Genetics and Genomics

Nov 28, 2015 | Kindle eBook

by Justin D. Pearlman MD ME PhD MA FACC and Stephen J. Williams PhD

$0.00

Subscribers read for free.

Read for Free

$75.00$ 75 00 to buyKindle Edition

Get it TODAY, Jan 29

Sold by: Amazon Digital Services LLC

Cardiovascular Original Research: Cases in Methodology Design for Content Co-Curation: The Art of Scientific & Medical Curation

Nov 29, 2015 | Kindle eBook

by Larry H. Bernstein MD FCAP and Aviva Lev-Ari PhD RN

$0.00

Subscribers read for free.

Read for Free

$75.00$ 75 00 to buyKindle Edition

Get it TODAY, Jan 29

Sold by: Amazon Digital Services LLC

Medical 3D BioPrinting – The Revolution in Medicine Technologies for Patient-centered Medicine: From R&D in Biologics to New Medical Devices (Series E: Patient-Centered Medicine Book 4)

Dec 30, 2017 | Kindle eBook

by Larry H. Bernstein and Irina Robu

$0.00

Subscribers read for free.

Read for Free

$75.00$ 75 00 to buyKindle Edition

Get it TODAY, Jan 29

Sold by: Amazon Digital Services LLC

Metabolic Genomics & Pharmaceutics (BioMedicine – Metabolomics, Immunology, Infectious Diseases Book 1)

Jul 21, 2015 | Kindle eBook

by Larry H. Bernstein MD FCAP and Prabodah Kandala PhD

$0.00

Subscribers read for free.

Read for Free

$75.00$ 75 00 to buyKindle Edition

Get it TODAY, Jan 29

5 out of 5 stars 1

Sold by: Amazon Digital Services LLC

Cancer Biology and Genomics for Disease Diagnosis (Series C: e-Books on Cancer & Oncology Book 1)

Aug 10, 2015 | Kindle eBook

by Larry H Bernstein MD FCAP and Prabodh Kumar Kandala PhD

$0.00

Subscribers read for free.

Read for Free

$75.00$ 75 00 to buyKindle Edition

Get it TODAY, Jan 29

Sold by: Amazon Digital Services LLC

Genomics Orientations for Personalized Medicine (Frontiers in Genomics Research Book 1)

Nov 22, 2015 | Kindle eBook

by Sudipta Saha PhD and Ritu Saxena PhD

$0.00

Subscribers read for free.

Read for Free

$75.00$ 75 00 to buyKindle Edition

Get it TODAY, Jan 29

Sold by: Amazon Digital Services LLC

Milestones in Physiology: Discoveries in Medicine, Genomics and Therapeutics (Series E: Patient-Centered Medicine Book 3)

Dec 26, 2015 | Kindle eBook

by Larry H. Bernstein MD FACP and Aviva Lev-Ari PhD RN

$0.00

Subscribers read for free.

Read for Free

$75.00$ 75 00 to buyKindle Edition

Get it TODAY, Jan 29

Sold by: Amazon Digital Services LLC

Regenerative and Translational Medicine: The Therapeutic Promise for Cardiovascular Diseases

Dec 26, 2015 | Kindle eBook

by Justin D. Pearlman MD ME PhD MA FACC and Ritu Saxena PhD

$0.00

Subscribers read for free.

Read for Free

$75.00$ 75 00 to buyKindle Edition

Get it TODAY, Jan 29

Sold by: Amazon Digital Services LLC

5        Style Setting: Instruction manuals for Journal, Articles, Books

As BioMed e-Series Editor–in-Chief, Aviva Lev-Ari, PhD, RN was responsible for

·       All the documentation (Instruction manuals) on Style setting, and for

·       Training all team members

·       Journal Articles Format

·       Journal Comment Exchange Format

·       e-Books Production Process:

1.               Volume creation from Journal’s Article Archive,

2.               Format Translation from HTML to .mobi for Kindle devices,

3.               Proof reading process,

4.               Title release,

5.               Book electronic Upload to Amazon.com Cloud.

6.               Connection of all articles and e-Books to Social Media, Ping back generation by mentioning other related articles published in the Journal

 

Lastly, 6, below

6        Annual Workflow Management of Multiple eTOCs – Multi-year Book Publishing Scheduling Plan, 2013 – Present

 

Title Date of Publication Number of Pages
Perspectives on Nitric Oxide in Disease Mechanisms 6/21/2013 895
Cardiovascular Original Research: Cases in Methodology Design for Content Co-Curation 11/30/2015 11039 KB
Etiologies of Cardiovascular Diseases: Epigenetics, Genetics and Genomics 11/29/2015 12333 KB
Regenerative and Translational Medicine: The Therapeutics Promise for Cardiovascular Diseases 12/26/2015 11668 KB
Genomics Orientations for Personalized Medicine 11/23/2015 11724 KB
Cancer Biology & Genomics for Disease Diagnosis 8/11/2015 13744 KB
Cancer Therapies: Metabolic, Genomics, Interventional, Immunotherapy and Nanotechnology in Therapy Delivery 5/18/2017 5408 pages
Metabolic Genomics and Pharmaceutics 7/21/2015 13927 KB
The Immune System, Stress    Signaling, Infectious Diseases and Therapeutic Implications 9/4/2017 3747 pages
The VOICES of Patients, Hospitals CEOs, Health Care Providers, Caregivers and Families: Personal Experience with Critical Care and Invasive Medical Procedures 10/16/2017 826 pages
Medical Scientific Discoveries for the 21st Century & Interviews with Scientific Leaders 12/9/2017 2862 pages
Milestones in Physiology: Discoveries in Medicine, Genomics and Therapeutics 12/27/2015 11125 KB
Medical 3D BioPrinting – The Revolution in Medicine, Technologies for Patient-centered Medicine: From R&D in Biologics to New Medical Devices 12/30/2017 1005 pages
Pharmacological Agents in Treatment of Cardiovascular Disease

 

Work-in-Progress, Expected Publishing date in 2018 ???
Interventional Cardiology and Cardiac Surgery for Disease Diagnosis and Guidance of Treatment Work-in-Progress, Expected Publishing date in 2018

 

???

 

Read Full Post »


FDA Approval of Anti-Depression Digital Pill Tracks Use When Swallowed and transmits to MDs Smartphone – A Breakthrough in Medication Remote Compliance Monitoring

 

Reporter: Aviva Lev-Ari, PhD, RN

 

The so-called digital pill is a version of Otsuka Pharmaceutical Co.’s Abilify, which treats depression, bipolar disorder and schizophrenia. The sensor, developed by Proteus Digital Health, is activated by stomach fluids, sending a signal to a patch worn on the patient’s torso and transmitting the information to a smartphone app.

  • Sensor in depression pill transmits data to a smartphone app
  • Lets doctors track patient’s use, prevent missing medicines

SOURCE

https://www.bloomberg.com/news/articles/2017-11-14/fda-approves-a-digital-pill-that-can-track-when-you-swallowed-it

Read Full Post »


Image Source:Koch Institute

 

LIVE – OCTOBER 16 – DAY 1- Koch Institute Immune Engineering Symposium 2017, MIT, Kresge Auditorium

Koch Institute Immune Engineering Symposium 2017

http://kochinstituteevents.cvent.com/events/koch-institute-immune-engineering-symposium-2017/agenda-64e5d3f55b964ff2a0643bd320b8e60d.aspx

 

#IESYMPOSIUM

 

Image Source: Leaders in Pharmaceutical Business Intelligence (LPBI) Group

Aviva Lev-Ari, PhD, RN will be in attendance covering the event in REAL TIME

@pharma_BI

@AVIVA1950

#IESYMPOSIUM

@KOCHINSTITUTE

  • The Immune System, Stress Signaling, Infectious Diseases and Therapeutic Implications: VOLUME 2: Infectious Diseases and Therapeutics and VOLUME 3: The Immune System and Therapeutics (Series D: BioMedicine & Immunology) Kindle Edition – on Amazon.com since September 4, 2017

https://www.amazon.com/dp/B075CXHY1B

SYMPOSIUM SCHEDULE

OCTOBER 16 – DAY 1

7:00 – 8:15 Registration

8:15 – 8:30Introductory Remarks
Darrell Irvine | MIT, Koch Institute; HHMI

  • Stimulating the Immune system not only sustaining it for therapies

K. Dane Wittrup | MIT, Koch Institute

8:30 – 9:45Session I
Moderator: Douglas Lauffenburger | MIT, Biological Engineering and Koch Institute

Garry P. Nolan – Stanford University School of Medicine
Pathology from the Molecular Scale on Up

  • Intracellular molecules,
  • how molecules are organized to create tissue
  • Meaning from data Heterogeneity is an illusion: Order in Data ?? Cancer is heterogeneous, Cells in suspension – number of molecules
  • System-wide changes during Immune Response (IR)
  • Untreated, Ineffective therapy, effective therapy
  • Days 3-8 Tumor, Lymph node…
  • Variation is a Feature – not a bug: Effective therapy vs Ineffective – intercellular modules – virtual neighborhoods
  • ordered by connectivity: very high – CD4 T-cells, CD8 T-cels, moderate, not connected
  • Landmark nodes, Increase in responders
  • CODEX: Multiples epitome detection
  • Adaptable to proteins & mRNA
  • Rendering antibody staining via removal to neighborhood mapping
  • Human tonsil – 42 parameters: CD7, CD45, CD86,
  • Automated Annotations of tissues: F, P, V,
  • Normal BALBs
  • Marker expression defined by the niche: B220 vs CD79
  • Marker expression defines the niche
  • Learn neighborhoods and Trees
  • Improving Tissue Classification and staining – Ce3D – Tissue and Immune Cells in 3D
  • Molecular level cancer imaging
  • Proteomic Profiles: multi slice combine
  • Theory is formed to explain 3D nuclear images of cells – Composite Ion Image, DNA replication
  • Replication loci visualization on DNA backbone – nascent transcriptome – bar code of isotopes – 3D  600 slices
  • use CRISPR Cas9 for Epigenetics

Susan Napier Thomas – Georgia Institute of Technology
Transport Barriers in the Tumor Microenvironment: Drug Carrier Design for Therapeutic Delivery to Sentinel Lymph Nodes

  • Lymph Nodes important therapeutics target tissue
  • Lymphatic flow support passive and active antigen transport to lymph nodes
  • clearance of biomolecules and drug formulations: Interstitial transport barriers influence clearance: Arteriole to Venule –
  • Molecular tracers to analyze in vivo clearance mechanisms and vascular transport function
  • quantifying molecular clearance and biodistribution
  • Lymphatic transport increases tracer concentrations within dLN by orders of magnitude
  • Melanoma growth results in remodeled tumor vasculature
  • passive transport via lymphatic to dLN sustained in advanced tumors despite abrogated cell trafficking
  • Engineered biomaterial drug carriers to enhance sentinel lymph node-drug delivery: facilitated by exploiting lymphatic transport
  • TLR9 ligand therapeutic tumor in situ vaccination – Lymphatic-draining CpG-NP enhanced
  • Sturcutral and Cellular barriers: transport of particles is restriced by
  • Current drug delivery technology: lymph-node are undrugable
  • Multistage delivery platform to overcome barriers to lymphatic uptake and LN targeting
  • nano particles – OND – Oxanorbornade OND Time sensitive Linker synthesized large cargo – NP improve payload
  • OND release rate from nanoparticles changes retention in lymph nodes – Axilliary-Brachial delivery
  • Two-stage OND-NP delivery and release system dramatically – OND acumulate in lymphocyte
  •  delivers payload to previously undraggable lymphe tissue
  • improved drug bioactivity  – OND-NP eliminate LN LYMPHOMAS
  • Engineered Biomaterials

Douglas Lauffenburger – MIT, Biological Engineering and Koch Institute
Integrative Multi-Omic Analysis of Tissue Microenvironment in Inflammatory Pathophysiology

  • How to intervene, in predictive manner, in immunesystem-associated complex diseases
  • Understand cell communication beteen immune cells and other cells, i.e., tumor cells
  • Multi-Variate in Vivo – System Approach: Integrative Experiment & COmputational Analysis
  • Cell COmmunication & Signaling in CHronic inflammation – T-cell transfer model for colitis
  • COmparison of diffrential Regulation (Tcell transfer-elicited vs control) anong data types – relying solely on mRNA can be misleading
  • Diparities in differential responses to T cell transfer across data types yield insights concerning broader multi-organ interactions
  • T cell transfer can be ascertained and validated by successful experimental test
  • Cell COmmunication in Tumor MIcro-Environment — integration of single-cell transcriptomic data and protein interaction
  • Standard Cluster Elucidation – Classification of cell population on Full gene expression Profiles using Training sets: Decision Tree for Cell Classification
  • Wuantification of Pairwise Cell-Cell Receptor/Ligand Interactions: Cell type Pairs vs Receptor/Ligand Interaction
  • Pairwise Cell-Cell Receptor/Ligand Interactions
  • Calculate strength of interaction and its statistical significance
  • How the interaction is related to Phenotypic Behaviors – tumor growth rate, MDSC levels,
  • Correlated the Interactions translated to Phynotypic behavior for Therapeutic interventions (AXL via macrophage and fibroblasts)
  • Mouth model translation to Humans – New machine learning approach
  • Pathways, false negative, tumor negative expression
  • Molecular vs Phynotypical expression
  • Categories of inter-species translation
  • Semi-supervised Learning ALgorithms on Transcriptomic Data can ascertain Key Pathways/Processes in Human IBD from mapping mouse IBD

9:45 – 10:15 Break

10:15 – 11:30Session II
Moderator: Tyler Jacks | MIT, Koch Institute; HHMI

Tyler Jacks – MIT, Koch Institute; HHMI
Using Genetically Engineered Mouse Models to Probe Cancer-Immune Interactions

  • Utility of genetically-engineered mouse models of Cancer:
  1. Immune Response (IR),
  2. Tumor0immune microenvironment
  • Lung adenocarcinoma – KRAS mutation: Genetically-engineered model, applications: CRISPR, genetic interactions
  • Minimal Immune response to KP lung tumors: H&E, T cells (CD3), Bcells (B220) for Lenti-x 8 weeks
  • Exosome sequencing : Modeling loss-and gain-of-function mutations in Lung Cancer by CRISPR-Cas9 – germline – tolerance in mice, In vivo CRISPR-induced knockout of Msh2
  • Signatures of MMR deficient
  • Mutation burden and response to Immunotherapy (IT)
  • Programmed neoantigen expression – robust infiltration of T cells (evidence of IR)
  • Immunosuppression – T cell rendered ineffective
  • Lymphoid infiltration: Acute Treg depletion results in T cell infiltration — this depletion causes autoimmune response
  • Lung Treg from KP tumor-bearing mice have a distinct transcriptional heterogeneity through single cell mRNA sequencing
  • KP, FOXP3+, CD4
  • Treg from no existent to existance, Treg cells increase 20 fold =>>>  Treg activation and effectiveness
  • Single cells cluster by tissue and cell type: Treg, CD4+, CD8+, Tetramer-CD4+
  • ILrl1/II-33r unregulated in Treg at late time point
  • Treg-specific deletion of IL-33r results in fewer effector Tregs in Tumor-bearing lungs
  • CD8+ T cell infiltration
  • Tetramer-positive T cells cluster according to time point: All Lung CD8+ T cells
  • IR is not uniform functional differences – Clones show distinct transcriptional profiles
  • Different phynotypes Exhaustive signature
  • CRISPR-mediated modulation of CD8 T cell regulatory genes
  • Genetic dissection of the tumor-immune microenvironment
  • Single cell analysis, CRISPR – CRISPRa,i, – Drug development

Wendell Lim – University of California, San Francisco

Synthetic Immunology: Hacking Immune Cells

  • Precision Cell therapies – engineered by synthetic biology
  • Anti CD19 – drug approved
  • CAR-T cells still face major problems
  1. success limited to B cells cancers = blood vs solid tumors
  2. adverse effects
  3. OFF-TUMOR effects
  • Cell engineering for Cancer Therapy: User remote control (drug) – user control safety
  • Cell Engineering for TX
  1. new sensors – decision making for
  2. tumor recognition – safety,
  3. Cancer is a recognition issue
  • How do we avoid cross-reaction with bystader tissue (OFF TISSUE effect)
  • Tumor recognition: More receptors & integration
  • User Control
  • synthetic NOTCH receptors (different flavors of synNotch) – New Universal platform for cell-to -cell recognition: Target molecule: Extracellular antigen –>> transciptional instruction to cell
  • nextgen T cell: Engineer T cell recognition circuit that integrates multiple inputs: Two receptors – two antigen priming circuit
  • UNARMED: If antigen A THEN receptor A activates CAR
  • “Bystander” cell single antigen vs “tumor” drug antigen
  • Selective clearance of combinatorial tumor – Boulian formulation, canonical response
  • Cell response: Priming –>> Killing: Spatial & Temporal choreographed cell
  • CAR expression while removed from primed cells deminished
  • Solid Tumor: suppress cell microenvironment: Selected response vs non-natural response
  • Immune stimulator IR IL2, IL12, flagellin in the payload — Ourcome: Immune enhancement “vaccination”
  • Immune suppression –  block
  • Envision ideal situation: Unarmed cells
  • FUTURE: identify disease signatures and vulnerabilities – Precision Medicine using Synthetic Biology

Darrell Irvine – MIT, Koch Institute; HHMI
Engineering Enhanced Cancer Vaccines to Drive Combination Immunotherapies

  • Vaccine to drive IT
  • Intervening in the cancer-immunity cycle – Peptide Vaccines
  • poor physiology  of solute transport to tissue
  • endogenous albumin affinity – Lymphe Node dying
  • Designing Albumin-hitchhiking vaccines
  • Amphiphile-vaccine enhance uptake in lymph nodes in small and large animal models
  • soluble vaccine vs Amphiphile-vaccine
  • DIRECTING Vaccines to the Lymph nodes
  • amph-peptide antigen: Prime, booster, tetramer
  • albimin-mediated LN-targeting of both antigen and adjuvant maximizes IR
  • Immuno-supressed microenvironment will not be overcome by vaccines
  • Replacing adoptive T cell transfer with potent vaccine
  • exploiting albumin biology for mucosal vaccine delivery by amph-vaccines
  • Amph-peptides and -adjuvants show enhanced uptake/retention in lung tissue
  •  Enhancing adoptive T cell therapy: loss of T cell functionality, expand in vivo
  • boost in vivo enhanced adoptive T cell therapy
  • CAR-T cells: Enable T cells to target any cell surface protein
  • “Adaptor”-targeting CAR-T cells to deal with tumor cell heterogeneity
  • Lymph node-targeting Amph as CAR T booster vaccine: prining, production of cytokines
  • Boosting CAR T with amph-caccines: anti FITC CAR-T by DSPE=PEG-FITC coated
  • Targeting FITC to lymph node antigen presenting cells
  • Modulatory Macrophages
  • Amph-FITC expands FITC-CAR T cells in vivo – Adjuvant is needed
  • Hijacking albumin’s natural trafficking pathway

11:30 – 1:00  Lunch Break

1:00 – 2:15Session III
Moderator: Darrell Irvine | MIT, Koch Institute; HHMI

Nicholas P. Restifo – National Cancer Institute
Extracellular Potassium Regulates Epigenetics and Efficacy of Anti-Tumor T Cells

Why T cell do not kill Cancer cells?

  • co-inhibition
  • hostile tumor microenvironment

CAR T – does not treat solid tumors

Somatic mutation

  1. resistence of T cell based IT due to loss of function mutations
  2. Can other genes be lost?

CRISPR Cas9 – used to identify agents – GeCKOv2 Human library

Two cell-type (2CT) CRISPR assay system for genome-wide mutagenesis

  • work flow for genome-scale SRISPR mutagenesis profiling of genes essential for T cell mediate cytosis
  • sgRNA enrichment at the individual gene level by multiple methods:
  1. subunits of the MHC Class I complex
  2. CRISPR mutagenesis cut germline
  • Measutring the generalizability of resistance mechanism and mice in vivo validation
  • Validation of top gene candidates using libraries: MART-1
  • Checkpoint blockade: cells LOF causes tumor growth and immune escape
  • Weird genesL Large Ribisomal Subunit Proteins are nor all essential for cell survival
  • Bias in enrichment of 60S vs 40S
  • Novel elements of MHC class I antigen processing and presentation
  • Association of top CRISPR hits with response rates to IT – antiCTLA-4
  • CRISPR help identify novel regulators of T cells
  • Analyzed sgRNA – second rarest sgRNA for gene BIRC2 – encoded the Baculoviral Inhibitor
  • Drugs that inhibit BIRC2
  • How T cells can kill tumor cells more efficiently
  • p38kiaseas target for adoptive immunotherapy
  • FACS-based – Mapk14
  • Potent targets p38 – Blockade PD-1 or p38 ??
  • p38 signaling: Inhibition augments expansion and memory-marked human PBMC and TIL cells, N. P. Restifo
  • Tumor killing capacity of human CD19-specific, gene engineered T cells

Jennifer Elisseeff – Johns Hopkins University
The Adaptive Immune Response to Biomaterials and Tissue Repair

  • design scafolds, tissue-specific microenvironment
  • clinical translation of biosynthetic implants for soft tissue reconstruction
  • Local environment affects biomaterials: Epidermis, dermis
  • CD4+ T cells
  • Immune system – first reponders to materials: Natural or Synthetic
  • Biological (ECM) scaffolds to repair muscle injury
  • Which immune cells enter the WOUND?
  • ECM alters Macrophages: CD86, CD206
  • Adaptive system impact on Macrophages: CD86
  • mTOR signaling pathway M2 depend on Th2 Cells in regeneration of cell healing of surgical wounds
  • Systemic Immunological changes
  • Is the response antigen specific? – IL-4 expression in ILN,
  • Tissue reconstruction Clinical Trial: FDA ask to look at what cells infiltrate the scaffold
  • Trauma/biomaterial response – Injury induction of Senescence, anti apoptosis
  • Injury to skin or muscle
  • Is pro-regenerative environment (Th2/M2) pro-tumorigenic?
  • SYNTHETIC Materials for scafolds
  • Biomaterials and Immunology
  1. Immune response to bioscafolds
  2. environment modulate the immune system
  • Regenerative Immunetherapy

Marcela Maus – Massachusetts General Hospital

Engineering Better T Cells

  • Comparing CD19 CARs for Leukemia – anti-CD19- directed CAR T cells with r/r B-cell ALL – age 3-25 – FDA approved Novartis tisagenlecleucel – for pediatric r/r/ ALL
  • Phase II in diffuse large B cell lymphoma. Using T cells – increases prospects for cure
  • Vector retroviral – 30 day expression
  • measuring cytokines release syndrome: Common toxicity with CAR 19
  • neurological toxicity, B-cell aplagia
  • CART issues with heme malignancies
  1. decrease cytokine release
  2. avoid neurological toxicity – homing
  3. new targets address antigene escape variants – Resistance, CD19 is shaded, another target needed
  4. B Cell Maturation Antigen (BCMA) Target
  5. Bluebird Bio: Response duratio up to 54 weeks – Active dose cohort
  6. natural ligand CAR based on April
  7. activated in response to TACI+ target cells – APRIL-based CARs but not BCMA-CAR is able to kill TACI+ target cells
  • Hurdles for Solid Tumors
  1. Specific antigen targets
  2. tumor heterogeneity
  3. inhibitory microenvironment
  • CART in Glioblastoma
  1. rationale for EGFRvIII as therapeutic target
  2. Preclinical Studies & Phase 1: CAR t engraft, not as highly as CD19
  3. Upregulation of immunosuppression and Treg infiltrate in CART EGFRvIII as therapeutic target, Marcela Maus
  • What to do differently?

 

2:15 – 2:45 Break

2:45 – 4:00 Session IV
Moderator: Arup K. Chakraborty | MIT, IMES

Laura Walker – Adimab, LLC
Molecular Dissection of the Human Antibody Response to Respiratory Syncytial Virus

  • prophylactic antibody is available
  • Barriers for development of Vaccine
  • Prefusion and Postfusion RSV structures
  • Six major antigenic sites on RSV F
  • Blood samples Infants less 6 month of age and over 6 month: High abundance RSV F -specific memory B Cells are group  less 6 month

Arup K. Chakraborty – MIT, Institute for Medical Engineering & Science
How to Hit HIV Where it Hurts

  • antibody  – Model IN SILICO
  • Check affinity of each Ab for the Seaman panel of strain
  • Breadth of coverage
  • immmunize with cocktail of variant antigens
  • Mutations on Affinity Maturation: Molecular dynamics
  • bnAb eveolution: Hypothesis – mutations evolution make the antigen binding region more flexible,
  • Tested hypothesisi: carrying out affinity maturation – LOW GERMLINE AFFINITY TO CONSERVE RESIDUES IN 10,000 trials, acquire the mutation (generation 300)

William Schief – The Scripps Research Institute
HIV Vaccine Design Targeting the Human Naive B Cell Repertoire

  • HIV Envelope Trimer Glycan): the Target of neutralizing Antibodies (bnAbs)
  • Proof of principle for germline-targeting: VRC)!-class bnAbs
  • design of a nanoparticle
  • can germline -targeting innumogens prime low frequency precursors?
  • Day 14 day 42 vaccinate
  • Precursor frequency and affinity are limiting for germline center (GC) entry at day 8
  • Germline-targeting immunogens can elicit robust, high quality SHM under physiological conditions of precursor frequency and affinity at day 8, 16, 36
  • Germline-targeting immunogens can lead to production of memory B cells

Read Full Post »


QIAGEN – International Leader in NGS and RNA Sequencing

Reporter: Aviva Lev-Ari, PhD, RN

 

The reader is encouraged to review all the products of QIAGEN on the company web site.

miRCURY Exosome Kits

For enrichment of exosomes and other extracellular vesicles from serum/plasma or cell/urine/CSF samples
  • Excellent recovery of exosomes and other extracellular vesicles
  • Easy and straightforward protocol that takes less than 2 hours
  • No ultracentrifugation or phenol/chloroform steps required
  • Fully compatible with the miRCURY LNA miRNA PCR System
  • Suited for a variety of applications, such as miRNA or RNA profiling

miRCURY Exosome Kits enable high-quality and scalable exosome isolation with an easy protocol that does not require special laboratory equipment. The miRCURY Exosome Serum/Plasma Kit is optimized for serum and plasma samples, while the miRCURY Exosome Cell/Urine/CSF Kit is designed for processing cell-conditioned media, urine and CSF samples. Both kits provide high exosomal recovery and seamless integration with different downstream assays.

SOURCE

https://www.qiagen.com/us/shop/sample-technologies/tumor-cells-and-exosomes/mircury-exosome-kits/#orderinginformation

QIAGEN – Product Profile

Read Full Post »


The Role of Exosomes in Metabolic Regulation

Author: Larry H. Bernstein, MD, FCAP

 

On 9/25/2017, Aviva Lev-Ari, PhD, RN commissioned Dr. Larry H. Bernstein to write a short article on the following topic reported on 9/22/2017 in sciencemission.com

 

We are publishing, below the new article created by Larry H. Bernstein, MD, FCAP.

 

Background

During the period between 9/2015  and 6/2017 the Team at Leaders in Pharmaceutical Business Intelligence (LPBI)  has launched an R&D effort lead by Aviva Lev-Ari, PhD, RN in conjunction with SBH Sciences, Inc. headed by Dr. Raphael Nir.

This effort, also known as, “DrugDiscovery @LPBI Group”  has yielded several publications on EXOSOMES on this Open Access Online Scientific Journal. Among them are included the following:

 

QIAGEN – International Leader in NGS and RNA Sequencing, 10/08/2017

Reporter: Aviva Lev-Ari, PhD, RN

 

cell-free DNA (cfDNA) tests could become the ultimate “Molecular Stethoscope” that opens up a whole new way of practicing Medicine, 09/08/2017

Reporter: Aviva Lev-Ari, PhD, RN

 

Detecting Multiple Types of Cancer With a Single Blood Test (Human Exomes Galore), 07/02/2017

Reporter and Curator: Irina Robu, PhD

 

Exosomes: Natural Carriers for siRNA Delivery, 04/24/2017

Reporter: Aviva Lev-Ari, PhD, RN

 

One blood sample can be tested for a comprehensive array of cancer cell biomarkers: R&D at WPI, 01/05/2017

Curator: Marzan Khan, B.Sc

 

SBI’s Exosome Research Technologies, 12/29/2016

Reporter: Aviva Lev-Ari, PhD, RN

 

A novel 5-gene pancreatic adenocarcinoma classifier: Meta-analysis of transcriptome data – Clinical Genomics Research @BIDMC, 12/28/2016

Curator: Tilda Barliya, PhD

 

Liquid Biopsy Chip detects an array of metastatic cancer cell markers in blood – R&D @Worcester Polytechnic Institute, Micro and Nanotechnology Lab, 12/28/2016

Reporters: Tilda Barliya, PhD and Aviva Lev-Ari, PhD, RN

 

Exosomes – History and Promise, 04/28/2016

Reporter: Aviva Lev-Ari, PhD, RN

 

Exosomes, 11/17/2015

Curator: Larry H. Bernstein, MD, FCAP

 

Liquid Biopsy Assay May Predict Drug Resistance, 11/16/2015

Curator: Larry H. Bernstein, MD, FCAP

 

Glypican-1 identifies cancer exosomes, 10/31/2015

Curator: Larry H. Bernstein, MD, FCAP

 

Circulating Biomarkers World Congress, March 23-24, 2015, Boston: Exosomes, Microvesicles, Circulating DNA, Circulating RNA, Circulating Tumor Cells, Sample Preparation, 03/24/2015

Reporter: Aviva Lev-Ari, PhD, RN

 

Cambridge Healthtech Institute’s Second Annual Exosomes and Microvesicles as Biomarkers and Diagnostics Conference, March 16-17, 2015 in Cambridge, MA, 03/17, 2015

Reporter: Aviva Lev-Ari, PhD, RN

 

The newly created think-piece on the relationship between regulatory functions of Exosomes and Metabolic processes is developed conceptually, below.

 

The Role of Exosomes in Metabolic Regulation

Author: Larry H. Bernstein, MD, FCAP

We have had more than a half century of research into the genetic code and transcription leading to abundant work on RNA and proteomics. However, more recent work in the last two decades has identified RNA interference in siRNA. These molecules may be found in the circulation, but it has been a challenge to find their use in therapeutics. Exosomes were first discovered in the 1980s, but only recently there has been a huge amount of research into their origin, structure and function. Exosomes are 30–120 nm endocytic membrane-bound extracellular vesicles (EVs)(1-23) , and more specifically multiple vesicle bodies (MVBs) by a budding process from invagination of the outer cell membrane that carry microRNA (miRNA), and have structures composed of protein and lipids (1,23-27 ). EVs are the membrane vesicles secreted by eukaryotic cells for intracellular communication by transferring the proteins, lipids, and RNA under various physiologic conditions as well as during the disease stage. EVs also act as a signalosomes in many biological processes. Inward budding of the plasma membrane forms small vesicles that fuse. Intraluminal vesicles (ILVs) are formed by invagination of the limiting endosomal membrane during the maturation process of early endosome.

EVs are the MVBs secreted that serve in intracellular communication by transferring a cargo consisting of proteins, lipids, and RNA under various physiologic conditions (4, 23). Exosome-mediated miRNA transfer between cells is considered to be necessary for intercellular signaling and exosome-associated miRNAs in biofluids (23). Exosomes carry various molecular constituents of their cell of origin, including proteins, lipids, mRNAs, and microRNAs (miRNAs) (. They are released from many cell types, such as dendritic cells (DCs), lymphocytes, platelets, mast cells, epithelial cells, endothelial cells, and neurons, and can be found in most bodily fluids including blood, urine, saliva, amniotic fluid, breast milk, hydrothoracic fluid, and ascitic fluid, as well as in culture medium of most cell types.Exosomes have also been shown to be involved in noncoding RNA surveillance machinery in generating antibody diversity (24). There are also a vast number of long non-coding RNAs (lncRNAs) and enhancer RNAs (eRNAs) that accumulate R-loop structures upon RNA exosome ablation, thereby, resolving deleterious DNA/RNA hybrids arising from active enhancers and distal divergent eRNA-expressing elements (lncRNA-CSR) engaged in long-range DNA interactions (25). RNA exosomes are large multimeric 3′-5′ exo- and endonucleases representing the central RNA 3′-end processing factor and are implicated in processing, quality control, and turnover of both coding and noncoding RNAs. They are large macromolecular cages that channel RNA to the ribonuclease sites (29). A major interest has been developed to characterize of exosomal cargo, which includes numerous non-randomly packed proteins and nucleic acids (1). Moreover, exosomes play an active role in tumorigenesis, metastasis, and response to therapy through the transfer of oncogenes and onco-miRNAs between cancer cells and the tumor stroma. Blood cells and the vascular endothelium is also exosomal shedding, which has significance for cardiovascular,   neurologicological disorders, stroke, and antiphospholipid syndrome (1). Dysregulation of microRNAs and the affected pathways is seen in numerous pathologies their expression can reflect molecular processes of tumor onset and progression qualifying microRNAs as potential diagnostic and prognostic biomarkers (30).

Exosomes are secreted by many cells like B lymphocytes and dendritic cells of hematopoietic and non-hematopoietic origin viz. platelets, Schwann cells, neurons, mast cells, cytotoxic T cells, oligodendrocytes, intestinal epithelial cells were also found to be releasing exosomes (4). They are engaged in complex functions like persuading immune response as the exosomes secreted by antigen presenting cells activate T cells (4). They all have a common set of proteins e.g. Rab family of GTPases, Alix and ESCRT (required for transport) protein and they maintain their cytoskeleton dynamics and participate in membrane fusion. However, they are involved in retrovirus disease pathology as a result of recruitment of the host`s endosomal compartments in order to generate viral vesicles, and they can either spread or limit an infection based on the type of pathogen and its target cells (5).

Upon further consideration, it is understandable how this growing biological work on exosomes has enormous significance for laboratory diagnostics (1, 3, 5, 6, 11, 14, 15, 17-20, 23,30-41) . They are released from many cell types, such as dendritic cells (DCs), lymphocytes, platelets, mast cells, epithelial cells, endothelial cells, and neurons, and can be found in most bodily fluids including blood, urine, saliva, amniotic fluid, breast milk, thoracic and abdominal effusions, and ascitic fluid (1). The involvement of exosomes in disease is broad, and includes: cancer, autoimmune and infectious disease, hematologic disorders, neurodegenerative diseases, and cardiovascular disease. Proteins frequently identified in exosomes include membrane transporters and fusion proteins (e.g., GTPases, annexins, and flotillin), heat shock proteins (e.g., HSC70), tetraspanins (e.g., CD9, CD63, and CD81), MVB biogenesis proteins (e.g., alix and TSG101), and lipid-related proteins and phospholipases. The exosomal lipid composition has been thoroughly analyzed in exosomes secreted from several cell types including DCs and mast cells, reticulocytes, and B-lymphocytes (1). Dysregulation of microRNAs of pathways observed in numerous pathologies (5, 10, 12, 21, 27, 35, 37) including cancers (30), particularly, colon, pancreas, breast, liver, brain, lung (2, 6, 17-20, 30, 33-36, 38, 39). Following these considerations, it is important that we characterize the content of exosomal cargo to gain clues to their biogenesis, targeting, and cellular effects which may lead to identification of biomarkers for disease diagnosis, prognosis and response to treatment (42).

We might continue in pursuit of a particular noteworthy exosome, the NLRP3 inflammasome, which is activated by a variety of external or host-derived stimuli, thereby, initiating an inflammatory response through caspase-1 activation, resulting in inflammatory cytokine IL-1b maturation and secretion (43).
Inflammasomes are multi-protein signaling complexes that activate the inflammatory caspases and the maturation of interleukin-1b. The NLRP3 inflammasome is linked with human autoinflammatory and autoimmune diseases (44). This makes the NLRP3 inflammasome a promising target for anti-inflammatory therapies. The NLRP3 inflammasome is activated in response to a variety of signals that indicate tissue damage, metabolic stress, and infection (45). Upon activation, the NLRP3 inflammasome serves as a platform for activation of the cysteine protease caspase-1, which leads to the processing and secretion of the proinflammatory cytokines interleukin-1β (IL-1β) and IL-18. Heritable and acquired inflammatory diseases are both characterized by dysregulation of NLRP3 inflammasome activation (45).
Receptors of innate immunity recognize conserved moieties associated with either cellular damage [danger-associated molecular patterns (DAMPs)] or invading organisms [pathogen-associated molecular patterns (PAMPs)](45). Either chronic stimulation or overwhelming tissue damage is injurious and responsible for the pathology seen in a number of autoinflammatory and autoimmune disorders, such as arthritis and diabetes. The nucleotide-binding domain leucine-rich repeat (LRR)-containing receptors (NLRs) are PRRs are found intracellularly and they share a unique domain architecture. It consists of a central nucleotide binding and oligomerization domain called the NACHT domain that is located between an N-terminal effector domain and a C-terminal LRR domain (45). The NLR family members NLRP1, NLRP3, and NLRC4 are capable of forming multiprotein complexes called inflammasomes when activated.

The (NLRP3) inflammasome is important in chronic airway diseases such as asthma and chronic obstructive pulmonary disease because the activation results, in pro-IL-1β processing and the secretion of the proinflammatory cytokine IL-1β (46). It has been proposed that Activation of the NLRP3 inflammasome by invading pathogens may prove cell type-specific in exacerbations of airway inflammation in asthma (46). First, NLRP3 interacts with the adaptor protein ASC by sensing microbial pathogens and self-danger signals. Then pro-caspase-1 is recruited and the large protein complex called the NLRP3 inflammasome is formed. This is followed by autocleavage and activation of caspase-1, after which pro-IL-1β and pro-IL-18 are converted into their mature forms. Ion fluxes disrupt membrane integrity, and also mitochondrial damage both play key roles in NLRP3 inflammasome activation (47). Depletion of mitochondria as well as inhibitors that block mitochondrial respiration and ROS production prevented NLRP3 inflammasome activation. Futhermore, genetic ablation of VDAC channels (namely VDAC1 and VDAC3) that are located on the mitochondrial outer membrane and that are responsible for exchanging ions and metabolites with the cytoplasm, leads to diminished mitochondrial (mt) ROS production and inhibition of NLRP3 inflammasome activation (47). Inflammasome activation not only occurs in immune cells, primarily macrophages and dendritic cells, but also in kidney cells, specifically the renal tubular epithelium. The NLRP3 inflammasome is probably involved in the pathogenesis of acute kidney injury, chronic kidney disease, diabetic nephropathy and crystal-related nephropathy (48). The inflammasome also plays a role in autoimmune kidney disease. IL-1 blockade and two recently identified specific NLRP3 inflammasome blockers, MCC950 and β-hydroxybutyrate, may prove to have value in the treatment of inflammasome-mediated conditions.

Autophagosomes derived from tumor cells are referred to as defective ribosomal products in blebs (DRibbles). DRibbles mediate tumor regression by stimulating potent T-cell responses and, thus, have been used as therapeutic cancer vaccines in multiple preclinical cancer models (49). It has been found that DRibbles could induce a rapid differentiation of monocytes and DC precursor (pre-DC) cells into functional APCs (49). Consequently, DRibbles could potentially induce strong innate immune responses via multiple pattern recognition receptors. This explains why DRibbles might be excellent antigen carriers to induce adaptive immune responses to both tumor cells and viruses. This suggests that isolated autophagosomes (DRibbles) from antigen donor cells activate inflammasomes by providing the necessary signals required for IL-1β production.

The Hsp90 system is characterized by a cohort of co-chaperones that bind to Hsp90 and affect its function (50). The co-chaperones enable Hsp90 to chaperone structurally and functionally diverse client proteins. Sahasrabudhe et al. (50) show that the nature of the client protein dictates the contribution of a co-chaperone to its maturation. The study reveals the general importance of the cochaperone Sgt1 (50). In addition to Hsp90, we have to consider Hsp60. Adult cardiac myocytes release heat shock protein (HSP)60 in exosomes. Extracellular HSP60, when not in exosomes, causes cardiac myocyte apoptosis via the activation of Toll-like receptor 4. the protein content of cardiac exosomes differed significantly from other types of exosomes in the literature and contained cytosolic, sarcomeric, and mitochondrial proteins (21).

A new Protein Organic Solvent Precipitation (PROSPR) method efficiently isolates the EV repertoire from human biological samples. Proteomic profiling of PROSPR-enriched CNS EVs indicated that > 75 % of the proteins identified matched previously reported exosomal and microvesicle cargoes. In addition lipidomic characterization of enriched CNS vesicles identified previously reported EV-specific lipid families and novel lipid isoforms not previously detected in human EVs. The characterization of these structures from central nervous system (CNS) tissues is relevant to current neuroscience, especially to advance the understanding of neurodegeneration in amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD) and Alzheimer’s disease (AD)(15). In addition, study of EVs in brain will enable characterization of the degenerative posttranslational modifications (DPMs) occurring in those proteins.
Neurodegenerative disease is characterized by dysregulation because of NLRP3 inflammasome activation. Alzheimer’s disease (AD) and Parkinson’s disease (PD), both neurodegenerative diseases are associated with the NLRP3 inflammasome. PD is characterized by accumulation of Lewy bodies (LB) formed by a-synuclein (aSyn) aggregation. A recent study revealed that aSyn induces synthesis of pro-IL-1b by an interaction with TLR2 and activates NLRP3 inflammasome resulting in caspase-1 activation and IL-1b maturation in human primary monocytes (43). In addition mitophagy downregulates NLRP3 inflammasome activation by eliminating damaged mitochondria, blocking NLRP3 inflammasome activating signals. It is notable that in this aberrant activation mitophagy downregulates NLRP3 inflammasome activation by eliminating damaged mitochondria, blocking NLRP3 inflammasome activating signals (43).

REFERENCES

  1. Lin J, Li J, Huang B, Liu J, Chen X. Exosomes: Novel Biomarkers for Clinical Diagnosis. Scie World J 2015; Article ID 657086, 8 pages http://dx.doi.org/10.1155/2015/657086
  2. Kahlert C, Melo SA, Protopopov A, Tang J, Seth S, et al. Identification of Double-stranded Genomic DNA Spanning All Chromosomes with Mutated KRAS and p53 DNA in the Serum Exosomes of Patients with Pancreatic Cancer. J Biol Chem 2014; 289: 3869-3875. doi: 10.1074/jbc.C113.532267.
  3. Lässer C, Eldh M, Lötvall J. Isolation and Characterization of RNA-Containing Exosomes. J. Vis. Exp. 2012; 59, e3037. doi:10.3791/3037(2012).
  4. Kaur A, Leishangthem GD, Bhat P, et al. Role of Exosomes in Pathology – A Review. Journal of Pathology and Toxicology 2014; 1: 07-11
  5. Hosseini HM, Fooladi AAI, Nourani MR and Ghanezadeh F. The Role of Exosomes in Infectious Diseases. Inflammation & Allergy – Drug Targets 2013; 12:29-37.
  6. Ciregia F, Urbani A and Palmisano G. Extracellular Vesicles in Brain Tumors and Neurodegenerative Diseases. Front. Mol. Neurosci. 2017;10:276. doi: 10.3389/fnmol.2017.00276
  7. Zhang B, Yin Y, Lai RC, Lim SK. Immunotherapeutic potential of extracellular vesicles. Front Immunol (2014)
  8. Kowal J, Tkach M, Théry C. Biogenesis and secretion of exosomes. Current Opin in Cell Biol 2014 Aug; 29: 116-125. https://doi.org/10.1016/j.ceb.2014.05.004
  9. McKelvey KJ, Powell KL, Ashton AW, Morris JM and McCracken SA. Exosomes: Mechanisms of Uptake. J Circ Biomark, 2015; 4:7   DOI: 10.5772/61186
  10. Xiao T, Zhang W, Jiao B, Pan C-Z, Liu X and Shen L. The role of exosomes in the pathogenesis of Alzheimer’ disease. Translational Neurodegen 2017; 6:3. DOI 10.1186/s40035-017-0072-x
  11. Gonzales PA, Pisitkun T, Hoffert JD, et al. Large-Scale Proteomics and Phosphoproteomics of Urinary Exosomes. J Am Soc Nephrol 2009; 20: 363–379. doi: 10.1681/ASN.2008040406
  12. Waldenström A, Ronquist G. Role of Exosomes in Myocardial Remodeling. Circ Res. 2014; 114:315-324.
  13. Xin H, Li Y and Chopp M. Exosomes/miRNAs as mediating cell-based therapy of stroke. Front. Cell. Neurosci. 10 Nov, 2014; 8(377) doi: 10.3389/fncel.2014.00377
  14. Wang S, Zhang L, Wan S, Cansiz S, Cui C, et al. Aptasensor with Expanded Nucleotide Using DNA Nanotetrahedra for Electrochemical Detection of Cancerous Exosomes. ACS Nano, 2017; 11(4):3943–3949 DOI: 10.1021/acsnano.7b00373
  15. Gallart-Palau X, Serra A, Sze SK. (2016) Enrichment of extracellular vesicles from tissues of the central nervous system by PROSPR. Mol Neurodegener 11(1):41.
  16. Simpson RJ, Jensen SS, Lim JW. Proteomic profiling of exosomes: current perspectives. Proteomics. 2008 Oct; 8(19):4083-99. doi: 10.1002/pmic.200800109.
  17. Sandfeld-Paulsen R, Aggerholm-Pedersen N, Bæk R, Jakobs KR, et al. Exosomal proteins as prognostic biomarkers in non-small cell lung cancer. Mol Onc 2016 Dec; 10(10):1595-1602.
  18. Li W, Li C, Zhou T, et al. Role of exosomal proteins in cancer diagnosis. Molecular Cancer 2017; 16:145 DOI 10.1186/s12943-017-0706-8
  19. Zhang W, Xia W, Lv Z, Xin Y, Ni C, Yang L. Liquid Biopsy for Cancer: Circulating Tumor Cells, Circulating Free DNA or Exosomes? Cell Physiol Biochem 2017; 41:755-768. DOI: 10.1159/00045873
  20. Thakur BK ,…, Williams C, Rodriguez-Barrueco R, Silva JM, Zhang W, et al. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Research 2014 June; 24(6):766-769. doi:10.1038/cr.2014.44.
  21. Malik ZA, Kott KS, Poe AJ, Kuo T, Chen L, Ferrara KW, Knowlton AA. Cardiac myocyte exosomes: stability, HSP60, and proteomics. Am J Physiol Heart Circ Physiol 304: H954–H965, 2013. doi:10.1152/ajpheart.00835.2012.
  22. De Toro J, Herschlik L, Waldner C and Mongini C. Emerging roles of exosomes in normal and pathological conditions: new insights for diagnosis and therapeutic applications. Front. Immunol. 2015; 6:203. doi: 10.3389/fimmu.2015.00203
  23. Chevilleta JR, Kanga Q, Rufa IK, Briggs HA, et al. Quantitative and stoichiometric analysis of the microRNA content of exosomes. PNAS 2014 Oct 14; 111(41): 14888–14893. pnas.org/cgi/doi/10.1073/pnas.1408301111
  24. Basu U, Meng F-L, Keim C, Grinstein V, Pefanis E, et al. The RNA Exosome Targets the AID Cytidine Deaminase to Both Strands of Transcribed Duplex DNA Substrates. Cell 2011; 144: 353–363, DOI 10.1016/j.cell.2011.01.001
  25. Pefanis E, Wang J, …, Rabadan R, Basu U. RNA Exosome-Regulated Long Non-Coding RNA Transcription Controls Super-Enhancer Activity. Cell 2015; 161: 774–789. http://dx.doi.org/10.1016/j.cell.2015.04.034
  26. Kilchert C,Wittmann S & Vasiljeva L. The regulation and functions of the nuclear RNA exosome complex. In RNA processing and modifications. Nature Reviews Molecular Cell Biology 17, 227–239 (2016) doi:10.1038/nrm.2015.15
  27. Guay C, Regazzi R. Exosomes as new players in metabolic organ cross-talk. Diabetes Obes Metab. 2017;19(Suppl. 1):137–146. DOI: 10.1111/dom.13027.
  28. Abramowicz A, Widlak P, Pietrowska M. Proteomic analysis of exosomal cargo: the challenge of high purity vesicle isolation. Molecular BioSystems MB-REV-02-2016-000082.R1
  29. Hopfner K-P, Hartung S. The RNA Exosomes. In Nucleic Acids and Molecular Biology. 2011. Ribonucleases pp 223-244. https://link.springer.com/chapter/10.1007/978-3-642-21078-5_9/fulltext.html
  30. Fuessel S, Lohse-Fischer A, Vu Van D, Salomo K, Erdmann K, Wirth MP. (2017) Quantification of MicroRNAs in Urine-Derived Specimens. In Urothelial Carcinoma, Methods Mol Biol 1655:201-226.
  31. Street JM, Barran PE, Mackay CL, Weidt S, et al. Identification and proteomic profiling of exosomes in human cerebrospinal fluid. Journal of Translational Medicine 2012; 10:5. http://www.translational-medicine.com/content/10/1/5
  32. Pisitkun T, Shen R-F, and Knepper MA. Identification and proteomic profiling of exosomes in human urine. PNAS 2004, Sept 7; 101(36): 13368–13373. http://www.pnas.org/cgi/doi/10.1073/pnas.0403453101
  33. Duijvesz D, Burnum-Johnson KE, Gritsenko MA, Hoogland AM, Vredenbregt-van den Berg MS, et al. Proteomic Profiling of Exosomes Leads to the Identification of Novel Biomarkers for Prostate Cancer. PLoS ONE 2013; 8(12): e82589. doi:10.1371/journal.pone.0082589
  34. Welton JL, Khanna S, Giles PJ, Brennan P, et al. Proteomics Analysis of Bladder Cancer Exosomes. Molecular & Cellular Proteomics 2010; 9:1324–1338. DOI 10.1074/mcp.M000063-MCP201
  35. Lee S, Suh G-Y, Ryter SW, and Choi AMK. Regulation and Function of the Nucleotide Binding Domain Leucine-Rich Repeat-Containing Receptor, PyrinDomain-Containing-3 Inflammasome in Lung Disease. Am J Respir Cell Mol Biol 2016 Feb; 54(2):151–160. DOI: 10.1165/rcmb.2015-0231TR.
  36. Zhang X, Yuan X, Shi H, Wu L, Qian H, Xu W. Exosomes in cancer: small particle, big player. J Hematol Oncol (2015)
  37. Zhao X, Wu Y, Duan J, Ma Y, Shen Z, et al. Quantitative Proteomic Analysis of Exosome Protein Content Changes Induced by Hepatitis B Virus in Huh-7 Cells Using SILAC Labeling and LC–MS/MS. J. Proteome Res.; 2014, 13 (12):5391–5402. DOI: 10.1021/pr5008703
  38. Liang B, Peng P, et al. Characterization and proteomic analysis of ovarian cancer-derived exosomes. J Proteomics. 2013 Mar; 80:171-182. https://doi.org/10.1016/j.jprot.2012.12.029
  39. Beckler MD, Higginbotham JN, Franklin JL,…, Li M, Liebler DC, Coffey RJ. Proteomic analysis of exosomes from mutant KRAS colon cancer cells identifies intercellular transfer of mutant KRAS. Mol. Cell Proteomics. 2013 Feb 12; (2). https://edrn.nci.nih.gov/publications/23161513-proteomic-analysis-of-exosomes
  40. Alvarez-Llamas G, Díaz J, Zubiri I. Proteome of Human Urinary Exosomes in Diabetic Nephropathy. In Biomarkers in Kidney Disease. Vinood B. Patel, Ed. Springer Science 2015; pp 1-21. DOI 10.1007/978-94-007-7743-9_22-1
  41. Simpson RJ, Jensen SS, Lim JW. Proteomic profiling of exosomes: current perspectives. Proteomics. 2008 Oct; 8(19):4083-99. doi: 10.1002/pmic.200800109.
  42. Scheya JKL, Luther M, Rose KL. Proteomics characterization of exosome cargo. Methods 2015 Oct; 87(1): 75-82. https://doi.org/10.1016/j.ymeth.2015.03.018
  43. Kim M-J, Yoon J-H & Ryu J-H. Mitophagy: a balance regulator of NLRP3 inflammasome Activation. BMB Rep. 2016; 49(10): 529-535. https://doi.org/10.5483/BMBRep.2016.49.10.115
  44. Eun-Kyeong Jo, Kim JK, Shin D-M and C Sasakawa. Molecular mechanisms regulating NLRP3 inflammasome activation. Cell Molec Immunol 2016; 13: 148–159. doi:10.1038/cmi.2015.95
  45. Leemans JC, Cassel SL, and Sutterwala FS. Sensing damage by the NLRP3 inflammasome. Immunol Rev. 2011 Sept; 243(1): 152–162. doi:10.1111/j.1600-065X.2011.01043.x.
  46. Hirota JA, Im H, Rahman MM, Rumzhum NN, Manetsch M, Pascoe CD, Bunge K, Alkhouri H, Oliver BG, Ammit AJ. The nucleotide-binding domain and leucine-rich repeat protein-3 inflammasome is not activated in airway smooth muscle upon toll-like receptor-2 ligation. Am J Respir Cell Mol Biol. 2013 Oct; 49(4):517-24. doi: 10.1165/rcmb.2013-0047OC.
  47. Zhong Z, Sanchez-Lopez E, Karin M. Autophagy, NLRP3 inflammasome and auto-inflammatory immune diseases. Clin Exp Rheumatol. 2016 Jul-Aug; 34(4 Suppl 98):12-6. Epub 2016 Jul 21.
  48. Hutton HL, Ooi JD, Holdsworth SR, Kitching AR. The NLRP3 inflammasome in kidney disease and autoimmunity. Nephrology (Carlton). 2016 Sep; 21(9):736-44. doi: 10.1111/nep.12785
  49. Xing Y, Cao R and Hu H-M. TLR and NLRP3 inflammasome-dependent innate immune responses to tumor-derived autophagosomes (DRibbles). Cell Death and Disease (2016) 7, e2322; doi:10.1038/cddis.2016.206
  50. Sahasrabudhe P, Rohrberg J, Biebl MM, Rutz DA, Buchner J. The Plasticity of the Hsp90 Co-chaperone System. Molecular Cell 2017 Sept; 67:947–961. http://dx.doi.org/10.1016/j.molcel.2017.08.004

 

Read Full Post »

Older Posts »