Advertisements
Feeds:
Posts
Comments

Archive for the ‘Drug Delivery Platform Technology’ Category


Real Time Coverage @BIOConvention #BIO2019: What’s Next: The Landscape of Innovation in 2019 and Beyond. 3-4 PM June 3 Philadelphia PA

Reporter: Stephen J. Williams, PhD @StephenJWillia2

 

Results from Clarivate
In 2018 most of deals were in CART area but now we are seeing more series A rounds that are on novel mechanisms as well as rare diseases.  US is still highest in venture capital series A but next is China. 10 of top ex US VC are from China, a whole lot of money.
Preclinical is very strong for US VC but China VC is focused on clinical.  First time this year we see US series A break above 100.  But ex US the series A is going down.  Although preclinical deals in US is coming back not like as good as in 2006.  But alot of > 1 billion $ deals.  Most of money into mAbs and protein therapy;  antisense is big and cell therapy is big too; small molecule not as much
ClearView Healthcare
Which innovation classes attracted VC in 2018?
  • Oncology drives a disproportionate focus could be driven by pharma focus on oncology; however there is some focus on neuro and infectious disease
  • therapeutic classes: shift to differentiated technology…. companies want technologic platforms not just drugs.  Nucleic Acid tech and antibody tech is high need platforms.  Startups can win by developing a strong platform not just a drug
There are pros and cons of developing a platform company versus a focused company.  Many VCs have a portfolio and want something to fit in so look for a focused company and may not want a platform company.  Pfizer feels that when alot of money is available (like now) platform investing is fine but when money becomes limited they will focus on those are what will be needed to fill therapy gaps.  They believe buy the therapy and only rent the platform.
Merck does feel the way Pfizer does but they have separate ventures so they can look and license platforms.  they are active in looking at companies with new modalities but they are focused on the money so they feel best kept in hands of biotech not pharma.
At Celgene they were solely focused on approvals not platforms.  Alot of money is required to get these platforms to market.  Concentration for platform companies should be the VCs not partnering or getting bought out by pharma.  it seems from panel speakers from pharma that they are waiting for science to prove itself and waiting for favorable monetary environments (easy money).  However it seems they (big pharma) are indicating that money is drying up or at least expect it too.
At Axial and with VCs they feel it is important to paint a picture or a vision at the early stage.
At Ontogeny, they focus on evaluating assets especially and most important, ThE MANAGEMENT TEAM.  There are not that many great talented drug development management teams he feels out there even though great science out there.
Advertisements

Read Full Post »


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

RNA plays various roles in determining how the information in our genes drives cell behavior. One of its roles is to carry information encoded by our genes from the cell nucleus to the rest of the cell where it can be acted on by other cell components. Rresearchers have now defined how RNA also participates in transmitting information outside cells, known as extracellular RNA or exRNA. This new role of RNA in cell-to-cell communication has led to new discoveries of potential disease biomarkers and therapeutic targets. Cells using RNA to talk to each other is a significant shift in the general thought process about RNA biology.

 

Researchers explored basic exRNA biology, including how exRNA molecules and their transport packages (or carriers) were made, how they were expelled by producer cells and taken up by target cells, and what the exRNA molecules did when they got to their destination. They encountered surprising complexity both in the types of carriers that transport exRNA molecules between cells and in the different types of exRNA molecules associated with the carriers. The researchers had to be exceptionally creative in developing molecular and data-centric tools to begin making sense of the complexity, and found that the type of carrier affected how exRNA messages were sent and received.

 

As couriers of information between cells, exRNA molecules and their carriers give researchers an opportunity to intercept exRNA messages to see if they are associated with disease. If scientists could change or engineer designer exRNA messages, it may be a new way to treat disease. The researchers identified potential exRNA biomarkers for nearly 30 diseases including cardiovascular disease, diseases of the brain and central nervous system, pregnancy complications, glaucoma, diabetes, autoimmune diseases and multiple types of cancer.

 

As for example some researchers found that exRNA in urine showed promise as a biomarker of muscular dystrophy where current studies rely on markers obtained through painful muscle biopsies. Some other researchers laid the groundwork for exRNA as therapeutics with preliminary studies demonstrating how researchers might load exRNA molecules into suitable carriers and target carriers to intended recipient cells, and determining whether engineered carriers could have adverse side effects. Scientists engineered carriers with designer RNA messages to target lab-grown breast cancer cells displaying a certain protein on their surface. In an animal model of breast cancer with the cell surface protein, the researchers showed a reduction in tumor growth after engineered carriers deposited their RNA cargo.

 

Other than the above research work the scientists also created a catalog of exRNA molecules found in human biofluids like plasma, saliva and urine. They analyzed over 50,000 samples from over 2000 donors, generating exRNA profiles for 13 biofluids. This included over 1000 exRNA profiles from healthy volunteers. The researchers found that exRNA profiles varied greatly among healthy individuals depending on characteristics like age and environmental factors like exercise. This means that exRNA profiles can give important and detailed information about health and disease, but careful comparisons need to be made with exRNA data generated from people with similar characteristics.

 

Next the researchers will develop tools to efficiently and reproducibly isolate, identify and analyze different carrier types and their exRNA cargos and allow analysis of one carrier and its cargo at a time. These tools will be shared with the research community to fill gaps in knowledge generated till now and to continue to move this field forward.

 

References:

 

https://www.nih.gov/news-events/news-releases/scientists-explore-new-roles-rna

 

https://www.cell.com/consortium/exRNA

 

https://www.sciencedaily.com/releases/2016/06/160606120230.htm

 

https://www.pasteur.fr/en/multiple-roles-rnas

 

https://www.nature.com/scitable/topicpage/rna-functions-352

 

https://www.umassmed.edu/rti/biology/role-of-rna-in-biology/

 

Read Full Post »

Digital Therapeutics: A Threat or Opportunity to Pharmaceuticals


Digital Therapeutics: A Threat or Opportunity to Pharmaceuticals

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Digital Therapeutics (DTx) have been defined by the Digital Therapeutics Alliance (DTA) as “delivering evidence based therapeutic interventions to patients, that are driven by software to prevent, manage or treat a medical disorder or disease”. They might come in the form of a smart phone or computer tablet app, or some form of a cloud-based service connected to a wearable device. DTx tend to fall into three groups. Firstly, developers and mental health researchers have built digital solutions which typically provide a form of software delivered Cognitive-Behaviour Therapies (CBT) that help patients change behaviours and develop coping strategies around their condition. Secondly there are the group of Digital Therapeutics which target lifestyle issues, such as diet, exercise and stress, that are associated with chronic conditions, and work by offering personalized support for goal setting and target achievement. Lastly, DTx can be designed to work in combination with existing medication or treatments, helping patients manage their therapies and focus on ensuring the therapy delivers the best outcomes possible.

 

Pharmaceutical companies are clearly trying to understand what DTx will mean for them. They want to analyze whether it will be a threat or opportunity to their business. For a long time, they have been providing additional support services to patients who take relatively expensive drugs for chronic conditions. A nurse-led service might provide visits and telephone support to diabetics for example who self-inject insulin therapies. But DTx will help broaden the scope of support services because they can be delivered cost-effectively, and importantly have the ability to capture real-world evidence on patient outcomes. They will no-longer be reserved for the most expensive drugs or therapies but could apply to a whole range of common treatments to boost their efficacy. Faced with the arrival of Digital Therapeutics either replacing drugs, or playing an important role alongside therapies, pharmaceutical firms have three options. They can either ignore DTx and focus on developing drug therapies as they have done; they can partner with a growing number of DTx companies to develop software and services complimenting their drugs; or they can start to build their own Digital Therapeutics to work with their products.

 

Digital Therapeutics will have knock-on effects in health industries, which may be as great as the introduction of therapeutic apps and services themselves. Together with connected health monitoring devices, DTx will offer a near constant stream of data about an individuals’ behavior, real world context around factors affecting their treatment in their everyday lives and emotional and physiological data such as blood pressure and blood sugar levels. Analysis of the resulting data will help create support services tailored to each patient. But who stores and analyses this data is an important question. Strong data governance will be paramount to maintaining trust, and the highly regulated pharmaceutical industry may not be best-placed to handle individual patient data. Meanwhile, the health sector (payers and healthcare providers) is becoming more focused on patient outcomes, and payment for value not volume. The future will say whether pharmaceutical firms enhance the effectiveness of drugs with DTx, or in some cases replace drugs with DTx.

 

Digital Therapeutics have the potential to change what the pharmaceutical industry sells: rather than a drug it will sell a package of drugs and digital services. But they will also alter who the industry sells to. Pharmaceutical firms have traditionally marketed drugs to doctors, pharmacists and other health professionals, based on the efficacy of a specific product. Soon it could be paid on the outcome of a bundle of digital therapies, medicines and services with a closer connection to both providers and patients. Apart from a notable few, most pharmaceutical firms have taken a cautious approach towards Digital Therapeutics. Now, it is to be observed that how the pharmaceutical companies use DTx to their benefit as well as for the benefit of the general population.

 

References:

 

https://eloqua.eyeforpharma.com/LP=23674?utm_campaign=EFP%2007MAR19%20EFP%20Database&utm_medium=email&utm_source=Eloqua&elqTrackId=73e21ae550de49ccabbf65fce72faea0&elq=818d76a54d894491b031fa8d1cc8d05c&elqaid=43259&elqat=1&elqCampaignId=24564

 

https://www.s3connectedhealth.com/resources/white-papers/digital-therapeutics-pharmas-threat-or-opportunity/

 

http://www.pharmatimes.com/web_exclusives/digital_therapeutics_will_transform_pharma_and_healthcare_industries_in_2019._heres_how._1273671

 

https://www.mckinsey.com/industries/pharmaceuticals-and-medical-products/our-insights/exploring-the-potential-of-digital-therapeutics

 

https://player.fm/series/digital-health-today-2404448/s9-081-scaling-digital-therapeutics-the-opportunities-and-challenges

 

Read Full Post »


Record Innovations in Drug Discovery by Koch Institute @MIT Members and Affiliates

Reporter: Aviva Lev-Ari, PhD, RN

 

 

In Good Company

Trovagene announced a new patent for the use of the drug onvansertib in combination with other anti-androgen drugs for the treatment of prostate cancer. Last fall, Trovagene secured exclusive rights to develop combination therapies and clinical biomarkers for prostate cancer based in part on Bridge Project-funded research. Read more.

Lyndra Therapeutics, co-founded by KI member Bob Langer, raised $55 million in its Series B round, with new investors including the Bill and Melinda Gates Foundation and Gilead Sciences. Phase 2 trials for its ultra long-acting drug delivery capsule are expected to begin next year. Read more.

Dragonfly Therapeutics, co-founded by KI director Tyler Jacks, has committed $10 million to launch the first clinical studies of its TriNKETs (Tri-specific, NK cell Engager Therapies) platform for both solid tumor and hematological cancers. Read more.

Following its record-breaking IPO, Moderna Therapeutics (co-founded by KI member Bob Langer) published preclinical data in Science Translational Medicine demonstrating the promise of its mRNA-2752 program in several cancers. Read more.

Dewpoint Therapeutics launched with a $60 million Series A, aims to translate recent insights into biomolecular condensates from the laboratory of co-founder and KI member Rick Young to drug discovery. Read more.

KI member Bob Langer and collaborator Omid Farokhzad co-founded Seer— combining nanotechnology, protein chemistry, and machine learning—to develop liquid biopsy tests for the early detection of cancer and other diseases. Read more.

Epizyme, co-founded by KI member Bob Horvitz, is submitting a New Drug Application to gain accelerated approval of tazemetostat for patients with relapsed or refractory follicular lymphoma. Read more.

Ribon Therapeutics, founded by former KI member Paul Chang, launched with $65 million in a Series B funding round with Victoria Richon, a veteran of Sanofi and Epizyme, at the helm. Ribon focuses on developing PARP7 inhibitors for cancer treatment. Read more.

SOURCE

From: MIT Koch Institute for Integrative Cancer Research <cancersolutions=mit.edu@cmail19.com> on behalf of MIT Koch Institute for Integrative Cancer Research <cancersolutions@mit.edu>

Reply-To: <ki-communications@mit.edu>

Date: Wednesday, February 6, 2019 at 3:15 PM

To: Aviva Lev-Ari <AvivaLev-Ari@alum.berkeley.edu>

Subject: Lung Microbiome Corrupted in Cancer; Angelika Amon wins 2019 Vilcek Award; Lunch Lines of Inquiry

Read Full Post »


The second annual PureTech Health BIG (Brain-Immune-Gut) Summit 2019 – By invitation only –

Selected Tweets from  #BIGAxisSummit

by @pharma_BI @AVIVA1950

for @pharmaceuticalintelligence.com

Reporter: Aviva Lev-Ari, PhD, RN

 

January 30 – February 1, 2019

The second annual PureTech Health BIG Summit brings together an elite ensemble of leading scientific researchers, investors, and CEOs and R&D leaders from major pharmaceutical, technology, and biotech companies.

The BIG Summit is designed to stimulate ideas that will have an impact on existing pipelines and catalyze future interactions among a group of delegates that represent leaders and innovators in their fields.

Please follow the discussion on Twitter using #BIGAxisSummit

By invitation only; registration is non-transferable.

For more information, please contact PureTechHealthSummit@PureTechHealth.com

 

HOST COMMITTEE

Participants

 

BIG SUMMIT AGENDA

(Subject to Change)

PureTech Health BIG Summit 2019 Agenda_FINALv2_WEBSITE.jpg

“Almost starting to understand immunology at this thought-provoking @PureTechh #BIGAxisSummit. Great Speakers.”

-tweet by Simone Fishburn, BioCentury @SimoneFishburn

SOURCE

https://bigsummit2019.com/agenda/

 

Selected Tweets from  #BIGAxisSummit

by @pharma_BI @AVIVA1950

for @pharmaceuticalintelligence.com

Gail S. Thornton Selections

Luke Timmerman‏ @ldtimmerman 7h7 hours ago

Back for final sessions at #BIGAxisSummit. @PureTechH Jim Harper of Sonde Health talking about how voice data — pacing, fine motor articulation, oscillation — can point the way to objective, quantitative measures for detecting and monitoring depression.

 

Eddie Martucci

 @EddieMartucci 5h5 hours ago

Paul Biondi at #BIGAxisSummit : What makes big deals happen is financial, and *deep conviction* of a big future fit. Disproportionate valuation from bidders is expected.

Love this. We often reduce everything to mathematical analyses to champion or ridicule deals. Not that simple

 

PureTech Health Plc‏ @PureTechH Jan 31

Bob Langer (@MIT) asks how #lymphatics affected by #aging. Santambrogio: typically blame aging #immune cells for increased disease, but aging affects lymphatics too (less efficient trafficking shown). Rejuvenating these could affect several aging-related diseases #BigAxisSummit

 

PureTech Health Plc‏ @PureTechH Jan 31

Viviane Labrie (@VAInstitute) discusses why the appendix has been identified as a potential starting point for #parkinsons #BIGAxisSummit

 

PureTech Health Plc‏ @PureTechH Jan 31

Chris Porter (@MIPS_Australia) notes #lymphatics is major route for trafficking #immune cells that surveil gut and respond to immune & #autoimmune stimuli. This is key in #BIGAxis interactions and why lymphatics-targeted therapies could enhance #immunomodulation #BIGAxisSummit

 

Dr. Stephen J. Williams Selections

1.

2.

3.

4.

5.

Dr. Irina Robu Selection

1.

2.

3.

4.

5.

Dr. Sudipta Saha Selection

1.

2.

3.

4.

5.

 

 

Read Full Post »


News announced during the 37th J.P. Morgan Healthcare Conference (#JPM19): Dublin medtech HealthBeacon raises $12m in a Series A round

Reporter: Gail S. Thornton

HealthBeacon’s Smart Sharps system helps patients adhere to their medication schedule. The company was founded by Jim Joyce and Kieran Daly in 2013, and opened offices in Boston in 2017. The digital platform, which last year received vital FDA clearance for the US market, not only ensures that patients keep up with their injectable treatments, but also allows them to dispose of medication in a safe way, and keeps carers up to date with the patients’ progress.

Published January 8, 2019 by John Kennedy, Silicon Republic.

Two men in dark jackets sit before a green wall holding a white medical device.

From left: Co-founders Kieran Daly and Jim Joyce. Image: HealthBeacon

With funding and FDA approval under its belt, this Dublin tech start-up has plans to help patients stick to their medication schedule.

Dublin and Boston digital health company HealthBeacon has raised $12m in a Series A investment round that brings total investment in the company to almost $15m.

The round was organised by HealthBeacon and Cantor Fitzgerald, led by Oyster Capital and Elkstone Partners, and the investment syndicate included Quorndon Capital and Cantor Fitzgerald’s private client group. Earlier investors in HealthBeacon include Enterprise Ireland, BVP and a range of angel investors.

‘I know with confidence as to whether my patients are adhering to their treatment strategy’
– DOUG VEALE

“Cantor has a major focus on life sciences and on digital health, and we have every confidence that CEO and co-founder Jim Joyce has created a true sector leader in HealthBeacon,” said Liam Kiely, director of Cantor Fitzgerald.

The announcement was made in San Francisco at the JPMorgan Chase Biotech Showcase. The funding comes on the back of rapid global expansion of the FDA-cleared HealthBeacon Smart Sharps technology.

The right stuff

Dublin-based HealthBeacon’s Smart Sharps system helps patients adhere to their medication schedule. The company was founded by Jim Joyce and Kieran Daly in 2013, and opened offices in Boston in 2017.

The digital platform, which last year received vital FDA clearance for the US market, not only ensures that patients keep up with their injectable treatments, but also allows them to dispose of medication in a safe way, and keeps carers up to date with the patients’ progress.

The funding from this Series A will be used to launch its Smart Sharps system in the US and to develop its portfolio of medical adherence tools for high-value medications.

In 2017, HealthBeacon revealed plans to create 20 new jobs in Dublinin roles spanning IT, software development, project management and customer service. As of today, HealthBeacon operates in 10 markets and has tracked more than 200,000 home-based injections, making it one of the largest global deployments of a medical adherence device. Today, HealthBeacon employs more than 30 people and plans to double the team over the next 18 months.

The addressable market for injectable medications has reached nearly $50bn, according to the company. The Smart Sharps bin system by HealthBeacon has made it easier for patients using injectable medications to stay on track with their treatment. This has resulted in improved patient medication adherence, driving patient care.

In December, HealthBeacon was named eHealth Innovation of the Year by the Irish Medtech Association.

“I’ve been using the HealthBeacon for over two years, and their Smart Sharps bin has had a profound impact on how patients manage their treatment,” said Doug Veale, professor of rheumatology at St Vincent’s Hospital in Dublin.

“I know with confidence as to whether my patients are adhering to their treatment strategy.”

Editor John Kennedy is an award-winning technology journalist.

editorial@siliconrepublic.com

 

SOURCE

https://www.siliconrepublic.com/start-ups/healthbeacon-series-a-investment

Other posts on the JP Morgan 2019 Healthcare Conference on this Open Access Journal include:

#JPM19 Conference: Lilly Announces Agreement To Acquire Loxo Oncology

37th Annual J.P. Morgan HEALTHCARE CONFERENCE: #JPM2019 for Jan. 8, 2019; Opening Videos, Novartis expands Cell Therapies, January 7 – 10, 2019, Westin St. Francis Hotel | San Francisco, California

37th Annual J.P. Morgan HEALTHCARE CONFERENCE: News at #JPM2019 for Jan. 8, 2019: Deals and Announcements

 

Read Full Post »


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

MRI-guided focused ultrasound (MRgFUS) surgery is a noninvasive thermal ablation method that uses magnetic resonance imaging (MRI) for target definition, treatment planning, and closed-loop control of energy deposition. Ultrasound is a form of energy that can pass through skin, muscle, fat and other soft tissue so no incisions or inserted probes are needed. High intensity focused ultrasound (HIFU) pinpoints a small target and provides a therapeutic effect by raising the temperature high enough to destroy the target with no damage to surrounding tissue. Integrating FUS and MRI as a therapy delivery system allows physicians to localize, target, and monitor in real time, and thus to ablate targeted tissue without damaging normal structures. This precision makes MRgFUS an attractive alternative to surgical resection or radiation therapy of benign and malignant tumors.

 

Hypothalamic hamartoma is a rare, benign (non-cancerous) brain tumor that can cause different types of seizures, cognitive problems or other symptoms. While the exact number of people with hypothalamic hamartomas is not known, it is estimated to occur in 1 out of 200,000 children and teenagers worldwide. In one such case at Nicklaus Children’s Brain Institute, USA the patient was able to return home the following day after FUS, resume normal regular activities and remained seizure free. Patients undergoing standard brain surgery to remove similar tumors are typically hospitalized for several days, require sutures, and are at risk of bleeding and infections.

 

MRgFUS is already approved for the treatment of uterine fibroids. It is in ongoing clinical trials for the treatment of breast, liver, prostate, and brain cancer and for the palliation of pain in bone metastasis. In addition to thermal ablation, FUS, with or without the use of microbubbles, can temporarily change vascular or cell membrane permeability and release or activate various compounds for targeted drug delivery or gene therapy. A disruptive technology, MRgFUS provides new therapeutic approaches and may cause major changes in patient management and several medical disciplines.

 

References:

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4005559/

 

https://www.mayoclinic.org/tests-procedures/focused-ultrasound-surgery/about/pac-20384707

 

https://www.mdtmag.com/news/2017/04/nicklaus-childrens-hospital-performs-worlds-first-focused-ultrasound-surgery-hypothalamic-hamartoma?et_cid=5922034&et_rid=765461457&location=top&et_cid=5922034&et_rid=765461457&linkid=https%3a%2f%2fwww.mdtmag.com%2fnews%2f2017%2f04%2fnicklaus-childrens-hospital-performs-worlds-first-focused-ultrasound-surgery-hypothalamic-hamartoma%3fet_cid%3d5922034%26et_rid%3d%%subscriberid%%%26location%3dtop

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3097768/

 

https://stanfordhealthcare.org/medical-treatments/m/mr-guided-focused-ultrasound.html

 

Read Full Post »

Older Posts »