Feeds:
Posts
Comments

Archive for the ‘Drug Delivery Platform Technology’ Category


2021 Virtual World Medical Innovation Forum, Mass General Brigham, Gene and Cell Therapy, VIRTUAL May 19–21, 2021

The 2021 Virtual World Medical Innovation Forum will focus on the growing impact of gene and cell therapy. Senior healthcare leaders from all over look to shape and debate the area of gene and cell therapy. Our shared belief: no matter the magnitude of change, responsible healthcare is centered on a shared commitment to collaborative innovation–industry, academia, and practitioners working together to improve patients’ lives.

About the World Medical Innovation Forum

Mass General Brigham is pleased to present the World Medical Innovation Forum (WMIF) virtual event Wednesday, May 19 – Friday, May 21. This interactive web event features expert discussions of gene and cell therapy (GCT) and its potential to change the future of medicine through its disease-treating and potentially curative properties. The agenda features 150+ executive speakers from the healthcare industry, venture, startups, life sciences manufacturing, consumer health and the front lines of care, including many Harvard Medical School-affiliated researchers and clinicians. The annual in-person Forum will resume live in Boston in 2022. The World Medical Innovation Forum is presented by Mass General Brigham Innovation, the global business development unit supporting the research requirements of 7,200 Harvard Medical School faculty and research hospitals including Massachusetts General, Brigham and Women’s, Massachusetts Eye and Ear, Spaulding Rehab and McLean Hospital. Follow us on Twitter: twitter.com/@MGBInnovation

Accelerating the Future of Medicine with Gene and Cell Therapy What Comes Next

https://worldmedicalinnovation.org/agenda/

Virtual | May 19–21, 2021

#WMIF2021

@MGBInnovation

Leaders in Pharmaceutical Business Intelligence (LPBI) Group

will cover the event in Real Time

Aviva Lev-Ari, PhD, RN

Founder LPBI 1.0 & LPBI 2.0

member_60221522 copy

will be in virtual attendance producing the e-Proceedings

and the Tweet Collection of this Global event expecting +15,000 attendees

@pharma_BI

@AVIVA1950

LPBI’s Eighteen Books in Medicine

https://lnkd.in/ekWGNqA

Among them, books on Gene and Cell Therapy include the following:

Topics for May 19 – 21 include:

Impact on Patient Care – Therapeutic and Potentially Curative GCT Developments

GCT Delivery, Manufacturing – What’s Next

GCT Platform Development

Oncolytic Viruses – Cancer applications, start-ups

Regenerative Medicine/Stem Cells

Future of CAR-T

M&A Shaping GCT’s Future

Market Priorities

Venture Investing in GCT

China’s GCT Juggernaut

Disease and Patient Focus: Benign blood disorders, diabetes, neurodegenerative diseases

Click here for the current WMIF agenda  

Plus:

Fireside Chats: 1:1 interviews with industry CEOs/C-Suite leaders including Novartis Gene Therapies, ThermoFisher, Bayer AG, FDA

First Look: 18 briefings on emerging GCT research from Mass General Brigham scientists

Virtual Poster Session: 40 research posters and presenters on potential GCT discoveries from Mass General Brigham

Announcement of the Disruptive Dozen, 12 GCT technologies likely to break through in the next few years

AGENDA

Wednesday, May 19, 2021

8:00 AM – 8:10 AM

Opening Remarks

Welcome and the vision for Gene and Cell Therapy and why it is a top Mass General Brigham priority. Introducer: Scott Sperling

  • Co-President, Thomas H. Lee Partners
  • Chairman of the Board of Directors, PHS

Presenter: Anne Klibanski, MD

  • CEO, Mass General Brigham

3,000 people joined 5/19 morning

30 sessions: Lab to Clinic,  academia, industry, investment community

May 22,23,24, 2022 – in Boston, in-person 2022 WMIF on CGT 8:10 AM – 8:30 AM

The Grand Challenge of Widespread GCT Patient Benefits

Co-Chairs identify the key themes of the Forum –  set the stage for top GCT opportunities, challenges, and where the field might take medicine in the future. Moderator: Susan Hockfield, PhD

  • President Emerita and Professor of Neuroscience, MIT

GCT – poised to deliver therapies

Inflection point as Panel will present

Doctors and Patients – Promise for some patients 

Barriers for Cell & Gene

Access for patients to therapies like CGT Speakers: Nino Chiocca, MD, PhD

  • Neurosurgeon-in-Chief and Chairman, Neurosurgery, BWH
  • Harvey W. Cushing Professor of Neurosurgery, HMS

Oncolytic virus triple threat: Toxic, immunological, combine with anti cancer therapies

Polygenic therapy – multiple genes involved, plug-play, Susan Slaugenhaupt, PhD

  • Scientific Director and Elizabeth G. Riley and Daniel E. Smith Jr., Endowed Chair, Mass General Research Institute
  • Professor, Neurology, HMS

Ravi Thadhani, MD

  • CAO, Mass General Brigham
  • Professor, Medicine and Faculty Dean, HMS

Role of academia special to spear head the Polygenic therapy – multiple genes involved, plug-play, 

Access critical, relations with IndustryLuk Vandenberghe, PhD

  • Grousbeck Family Chair, Gene Therapy, MEE
  • Associate Professor, Ophthalmology, HMS

Pharmacology Gene-Drug, Interface academic centers and industry

many CGT drugs emerged in Academic center 8:35 AM – 8:50 AM FIRESIDE

Gene and Cell Therapy 2.0 – What’s Next as We Realize their Potential for Patients

Dave Lennon, PhD

  • President, Novartis Gene Therapies

Hope that CGT emerging, how the therapies work, neuro, muscular, ocular, genetic diseases of liver and of heart revolution for the industry 900 IND application 25 approvals Economic driver Skilled works, VC disease. Modality one time intervention, long duration of impart, reimbursement, ecosystem to be built around CGT

FDA works by indications and risks involved, Standards and expectations for streamlining manufacturing, understanding of process and products 

payments over time payers and Innovators relations Moderator: Julian Harris, MD

  • Partner, Deerfield

Promise of CGT realized, what part?

FDA role and interaction in CGT

Manufacturing aspects which is critical Speaker: Dave Lennon, PhD

  • President, Novartis Gene Therapies

Hope that CGT emerging, how the therapies work, neuro, muscular, ocular, genetic diseases of liver and of heart revolution for the industry 900 IND application 25 approvals Economic driver Skilled works, VC disease. Modality one time intervention, long duration of impart, reimbursement, ecosystem to be built around CGT

FDA works by indications and risks involved, Standards and expectations for streamlining manufacturing, understanding of process and products 

payments over time payers and Innovators relations

  • Q&A 8:55 AM – 9:10 AM  

8:55 AM – 9:20 AM

The Patient and GCT

GCT development for rare diseases is driven by patient and patient-advocate communities. Understanding their needs and perspectives enables biomarker research, the development of value-driving clinical trial endpoints and successful clinical trials. Industry works with patient communities that help identify unmet needs and collaborate with researchers to conduct disease natural history studies that inform the development of biomarkers and trial endpoints. This panel includes patients who have received cutting-edge GCT therapy as well as caregivers and patient advocates. Moderator: Patricia Musolino, MD, PhD

  • Co-Director Pediatric Stroke and Cerebrovascular Program, MGH
  • Assistant Professor of Neurology, HMS

What is the Power of One – the impact that a patient can have on their own destiny by participating in Clinical Trials Contacting other participants in same trial can be beneficial Speakers: Jack Hogan

  • Patient, MEE

Jeanette Hogan

  • Parent of Patient, MEE

Jim Holland

  • CEO, Backcountry.com

Parkinson patient Constraints by regulatory on participation in clinical trial advance stage is approved participation Patients to determine the level of risk they wish to take Information dissemination is critical Barbara Lavery

  • Chief Program Officer, ACGT Foundation

Advocacy agency beginning of work Global Genes educational content and out reach to access the information 

Patient has the knowledge of the symptoms and recording all input needed for diagnosis by multiple clinicians Early application for CGTDan Tesler

  • Clinical Trial Patient, BWH/DFCC

Experimental Drug clinical trial patient participation in clinical trial is very important to advance the state of scienceSarah Beth Thomas, RN

  • Professional Development Manager, BWH

Outcome is unknown, hope for good, support with resources all advocacy groups, 

  • Q&A 9:25 AM – 9:40 AM  

9:25 AM – 9:45 AM FIRESIDE

GCT Regulatory Framework | Why Different?

  Moderator: Vicki Sato, PhD

  • Chairman of the Board, Vir Biotechnology

Diversity of approaches

Process at FDA generalize from 1st entry to rules more generalizable  Speaker: Peter Marks, MD, PhD

  • Director, Center for Biologics Evaluation and Research, FDA

Last Spring it became clear that something will work a vaccine by June 2020 belief that enough candidates the challenge manufacture enough and scaling up FDA did not predicted the efficacy of mRNA vaccine vs other approaches expected to work

Recover Work load for the pandemic will wean & clear, Gene Therapies IND application remained flat in the face of the pandemic Rare diseases urgency remains Consensus with industry advisory to get input gene therapy Guidance  T-Cell therapy vs Regulation best thinking CGT evolve speedily flexible gained by Guidance

Immune modulators, Immunotherapy Genome editing can make use of viral vectors future technologies nanoparticles and liposome encapsulation 

  • Q&A 9:50 AM – 10:05 AM  

9:50 AM – 10:15 AM

Building a GCT Platform for Mainstream Success

This panel of GCT executives, innovators and investors explore how to best shape a successful GCT strategy. Among the questions to be addressed:

  • How are GCT approaches set around defining and building a platform?
  • Is AAV the leading modality and what are the remaining challenges?
  • What are the alternatives?
  • Is it just a matter of matching modalities to the right indications?

Moderator: Jean-François Formela, MD

  • Partner, Atlas Venture

Established core components of the Platform Speakers: Katherine High, MD

  • President, Therapeutics, AskBio

Three drugs approved in Europe in the Gene therapy space

Regulatory Infrastructure exists for CGT drug approval – as new class of therapeutics

Participants investigators, regulators, patients i. e., MDM 

Hemophilia in male most challenging

Human are natural hosts for AV safety signals Dave Lennon, PhD

  • President, Novartis Gene Therapies

big pharma has portfolios of therapeutics not one drug across Tx areas: cell, gene iodine therapy 

collective learning infrastructure features manufacturing at scale early in development Acquisitions strategy for growth # applications for scaling Rick Modi

  • CEO, Affinia Therapeutics

Copy, paste EDIT from product A to B novel vectors leverage knowledge varient of vector, coder optimization choice of indication is critical exploration on larger populations Speed to R&D and Speed to better gene construct get to clinic with better design vs ASAP 

Data sharing clinical experience with vectors strategies patients selection, vector selection, mitigation, patient type specific Louise Rodino-Klapac, PhD

  • EVP, Chief Scientific Officer, Sarepta Therapeutics

AAV based platform 15 years in development same disease indication vs more than one indication stereotype, analytics as hurdle 1st was 10 years 2nd was 3 years

Safety to clinic vs speed to clinic, difference of vectors to trust

  • Q&A 10:20 AM – 10:35 AM  

10:20 AM – 10:45 AM

AAV Success Studies | Retinal Dystrophy | Spinal Muscular Atrophy

Recent AAV gene therapy product approvals have catalyzed the field. This new class of therapies has shown the potential to bring transformative benefit to patients. With dozens of AAV treatments in clinical studies, all eyes are on the field to gauge its disruptive impact.

The panel assesses the largest challenges of the first two products, the lessons learned for the broader CGT field, and the extent to which they serve as a precedent to broaden the AAV modality.

  • Is AAV gene therapy restricted to genetically defined disorders, or will it be able to address common diseases in the near term?
  • Lessons learned from these first-in-class approvals.
  • Challenges to broaden this modality to similar indications.
  • Reflections on safety signals in the clinical studies?

Moderator: Joan Miller, MD

  • Chief, Ophthalmology, MEE
  • Cogan Professor & Chair of Ophthalmology, HMS

Retina specialist, Luxturna success FMA condition cell therapy as solution

Lessons learned

Safety Speakers: Ken Mills

  • CEO, RegenXBio

Tissue types additional administrations, tech and science, address additional diseases, more science for photoreceptors a different tissue type underlying pathology novelties in last 10 years 

Cell therapy vs transplant therapy no immunosuppressionEric Pierce, MD, PhD

  • Director, Ocular Genomics Institute, MEE
  • Professor of Ophthalmology, HMS

Laxterna success to be replicated platform, paradigms measurement visual improved

More science is needed to continue develop vectors reduce toxicity,

AAV can deliver different cargos reduce adverse events improve vectorsRon Philip

  • Chief Operating Officer, Spark Therapeutics

The first retinal gene therapy, voretigene neparvovec-rzyl (Luxturna, Spark Therapeutics), was approved by the FDA in 2017.Meredith Schultz, MD

  • Executive Medical Director, Lead TME, Novartis Gene Therapies

Impact of cell therapy beyond muscular dystrophy, translational medicine, each indication, each disease, each group of patients build platform unlock the promise

Monitoring for Safety signals real world evidence remote markers, home visits, clinical trial made safer, better communication of information

  • Q&A 10:50 AM – 11:05 AM  

10:45 AM – 10:55 AM

Break

  10:55 AM – 11:05 AM FIRST LOOK

Control of AAV pharmacology by Rational Capsid Design

Luk Vandenberghe, PhD

  • Grousbeck Family Chair, Gene Therapy, MEE
  • Associate Professor, Ophthalmology, HMS

AAV a complex driver in Pharmacology durable, vector of choice, administer in vitro, gene editing tissue specificity, pharmacokinetics side effects and adverse events manufacturability site variation diversify portfolios,

Pathway for rational AAV rational design, curated smart variant libraries, AAV  sequence screen multiparametric , data enable liver (de-) targeting unlock therapeutics areas: cochlea 

  • Q&A 11:05 AM – 11:25 AM  

11:05 AM – 11:15 AM FIRST LOOK

Enhanced gene delivery and immunoevasion of AAV vectors without capsid modification

Casey Maguire, PhD

  • Associate Professor of Neurology, MGH & HMS

Virus Biology: Enveloped (e) or not 

enveloped for gene therapy eAAV platform technology: tissue targets and Indications commercialization of eAAV 

  • Q&A 11:15 AM – 11:35 AM  

11:20 AM – 11:45 AM HOT TOPICS

AAV Delivery

This panel will address the advances in the area of AAV gene therapy delivery looking out the next five years. Questions that loom large are: How can biodistribution of AAV be improved? What solutions are in the wings to address immunogenicity of AAV? Will patients be able to receive systemic redosing of AAV-based gene therapies in the future? What technical advances are there for payload size? Will the cost of manufacturing ever become affordable for ultra-rare conditions? Will non-viral delivery completely supplant viral delivery within the next five years?What are the safety concerns and how will they be addressed? Moderators: Xandra Breakefield, PhD

  • Geneticist, MGH, MGH
  • Professor, Neurology, HMS

Florian Eichler, MD

  • Director, Center for Rare Neurological Diseases, MGH
  • Associate Professor, Neurology, HMS

Speakers: Jennifer Farmer

  • CEO, Friedreich’s Ataxia Research Alliance

Ataxia requires therapy targeting multiple organ with one therapy, brain, spinal cord, heart several IND, clinical trials in 2022Mathew Pletcher, PhD

  • SVP, Head of Gene Therapy Research and Technical Operations, Astellas

Work with diseases poorly understood, collaborations needs example of existing: DMD is a great example explain dystrophin share placedo data 

Continue to explore large animal guinea pig not the mice, not primates (ethical issues) for understanding immunogenicity and immune response Manny Simons, PhD

  • CEO, Akouos

AAV Therapy for the fluid of the inner ear, CGT for the ear vector accessible to surgeons translational work on the inner ear for gene therapy right animal model 

Biology across species nerve ending in the cochlea

engineer out of the caspid, lowest dose possible, get desired effect by vector use, 2022 new milestones

  • Q&A 11:50 AM – 12:05 PM  

11:50 AM – 12:15 PM

M&A | Shaping GCT Innovation

The GCT M&A market is booming – many large pharmas have made at least one significant acquisition. How should we view the current GCT M&A market? What is its impact of the current M&A market on technology development? Are these M&A trends new are just another cycle? Has pharma strategy shifted and, if so, what does it mean for GCT companies? What does it mean for patients? What are the long-term prospects – can valuations hold up? Moderator: Adam Koppel, MD, PhD

  • Managing Director, Bain Capital Life Sciences

What acquirers are looking for??

What is the next generation vs what is real where is the industry going? Speakers:

Debby Baron,

  • Worldwide Business Development, Pfizer 

CGT is an important area Pfizer is active looking for innovators, advancing forward programs of innovation with the experience Pfizer has internally 

Scalability and manufacturing  regulatory conversations, clinical programs safety in parallel to planning getting drug to patients

Kenneth Custer, PhD

  • Vice President, Business Development and Lilly New Ventures, Eli Lilly and Company

Marianne De Backer, PhD

Head of Strategy, Business Development & Licensing, and Member of the Executive Committee, Bayer

Absolute Leadership in Gene editing, gene therapy, via acquisition and strategic alliance 

Operating model of the acquired company discussed , company continue independence

Sean Nolan

  • Board Chairman, Encoded Therapeutics & Affinia

Executive Chairman, Jaguar Gene Therapy & Istari Oncology

As acquiree multiple M&A: How the acquirer looks at integration and cultures of the two companies 

Traditional integration vs jump start by external acquisition 

AAV – epilepsy, next generation of vectors 

  • Q&A 12:20 PM – 12:35 PM  

12:15 PM – 12:25 PM FIRST LOOK

Gene Therapies for Neurological Disorders: Insights from Motor Neuron Disorders

Merit Cudkowicz, MD

  • Chief of Neurology, MGH

ALS – Man 1in 300, Women 1 in 400, next decade increase 7% 

10% ALS is heredity 160 pharma in ALS space, diagnosis is late 1/3 of people are not diagnosed, active community for clinical trials Challenges: disease heterogeneity cases of 10 years late in diagnosis. Clinical Trials for ALS in Gene Therapy targeting ASO1 protein therapies FUS gene struck youngsters 

Q&A

  • 12:25 PM – 12:45 PM  

12:25 PM – 12:35 PM FIRST LOOK

Gene Therapy for Neurologic Diseases

Patricia Musolino, MD, PhD

  • Co-Director Pediatric Stroke and Cerebrovascular Program, MGH
  • Assistant Professor of Neurology, HMS

Cerebral Vascular disease – ACTA2 179H gene smooth muscle cell proliferation disorder

no surgery or drug exist –

Cell therapy for ACTA2 Vasculopathy  in the brain and control the BP and stroke – smooth muscle intima proliferation. Viral vector deliver aiming to change platform to non-viral delivery rare disease , gene editing, other mutations of ACTA2 gene target other pathway for atherosclerosis 

  • Q&A 12:35 PM – 12:55 PM  

12:35 PM – 1:15 PM

Lunch

  1:15 PM – 1:40 PM

Oncolytic Viruses in Cancer | Curing Melanoma and Beyond

Oncolytic viruses represent a powerful new technology, but so far an FDA-approved oncolytic (Imlygic) has only occurred in one area – melanoma and that what is in 2015. This panel involves some of the protagonists of this early success story.  They will explore why and how Imlygic became approved and its path to commercialization.  Yet, no other cancer indications exist for Imlygic, unlike the expansion of FDA-approved indication for immune checkpoint inhibitors to multiple cancers.  Why? Is there a limitation to what and which cancers can target?  Is the mode of administration a problem?

No other oncolytic virus therapy has been approved since 2015. Where will the next success story come from and why?  Will these therapies only be beneficial for skin cancers or other easily accessible cancers based on intratumoral delivery?

The panel will examine whether the preclinical models that have been developed for other cancer treatment modalities will be useful for oncolytic viruses.  It will also assess the extent pre-clinical development challenges have slowed the development of OVs. Moderator: Nino Chiocca, MD, PhD

  • Neurosurgeon-in-Chief and Chairman, Neurosurgery, BWH
  • Harvey W. Cushing Professor of Neurosurgery, HMS

Challenges of manufacturing at Amgen what are they? Speakers: Robert Coffin, PhD

  • Chief Research & Development Officer, Replimune

2002 in UK promise in oncolytic therapy GNCSF

Phase III melanoma 2015 M&A with Amgen

oncolytic therapy remains non effecting on immune response 

data is key for commercialization 

do not belief in systemic therapy achieve maximum immune response possible from a tumor by localized injection Roger Perlmutter, MD, PhD

  • Chairman, Merck & Co.

response rates systemic therapy like PD1, Keytruda, OPTIVA well tolerated combination of Oncolytic with systemic 

GMP critical for manufacturing David Reese, MD

  • Executive Vice President, Research and Development, Amgen

Inter lesion injection of agent vs systemic therapeutics 

cold tumors immune resistant render them immune susceptible 

Oncolytic virus is a Mono therapy

addressing the unknown Ann Silk, MD

  • Physician, Dana Farber-Brigham and Women’s Cancer Center
  • Assistant Professor of Medicine, HMS

Which person gets oncolytics virus if patient has immune suppression due to other indications

Safety of oncolytic virus greater than Systemic treatment

series biopsies for injected and non injected tissue and compare Suspect of hot tumor and cold tumors likely to have sme response to agent unknown all potential 

  • Q&A 1:45 PM – 2:00 PM  

1:45 PM – 2:10 PM

Market Interest in Oncolytic Viruses | Calibrating

There are currently two oncolytic virus products on the market, one in the USA and one in China.  As of late 2020, there were 86 clinical trials 60 of which were in phase I with just 2 in Phase III the rest in Phase I/II or Phase II.   Although global sales of OVs are still in the ramp-up phase, some projections forecast OVs will be a $700 million market by 2026. This panel will address some of the major questions in this area:

What regulatory challenges will keep OVs from realizing their potential? Despite the promise of OVs for treating cancer only one has been approved in the US. Why has this been the case? Reasons such have viral tropism, viral species selection and delivery challenges have all been cited. However, these are also true of other modalities. Why then have oncolytic virus approaches not advanced faster and what are the primary challenges to be overcome?

  • Will these need to be combined with other agents to realize their full efficacy and how will that impact the market?
  • Why are these companies pursuing OVs while several others are taking a pass?

Moderators: Martine Lamfers, PhD

  • Visiting Scientist, BWH

Challenged in development of strategies 

Demonstrate efficacyRobert Martuza, MD

  • Consultant in Neurosurgery, MGH
  • William and Elizabeth Sweet Distinguished Professor of Neurosurgery, HMS

Modulation mechanism Speakers: Anlong Li, MD, PhD

  • Clinical Director, Oncology Clinical Development, Merck Research Laboratories

IV delivery preferred – delivery alternative are less aggereable Jeffrey Infante, MD

  • Early development Oncolytic viruses, Oncology, Janssen Research & Development

oncologic virus if it will generate systemic effects the adoption will accelerate

What areas are the best efficacious 

Direct effect with intra-tumor single injection with right payload 

Platform approach  Prime with 1 and Boost with 2 – not yet experimented with 

Do not have the data at trial design for stratification of patients 

Turn off strategy not existing yetLoic Vincent, PhD

  • Head of Oncology Drug Discovery Unit, Takeda

R&D in collaboration with Academic

Vaccine platform to explore different payload

IV administration may not bring sufficient concentration to the tumor is administer  in the blood stream

Classification of Patients by prospective response type id UNKNOWN yet, population of patients require stratification

  • Q&A 2:15 PM – 2:30 PM  

2:10 PM – 2:20 PM FIRST LOOK

Oncolytic viruses: turning pathogens into anticancer agents

Nino Chiocca, MD, PhD

  • Neurosurgeon-in-Chief and Chairman, Neurosurgery, BWH
  • Harvey W. Cushing Professor of Neurosurgery, HMS

Oncolytic therapy DID NOT WORK Pancreatic Cancer and Glioblastoma 

Intra- tumoral heterogeniety hinders success 

Solution: Oncolytic VIRUSES – Immunological “coldness”

GADD-34 20,000 GBM 40,000 pancreatic cancer

  • Q&A 2:25 PM – 2:40 PM  

2:20 PM – 2:45 PM

Entrepreneurial Growth | Oncolytic Virus

In 2020 there were a total of 60 phase I trials for Oncolytic Viruses. There are now dozens of companies pursuing some aspect of OV technology. This panel will address:

  •  How are small companies equipped to address the challenges of developing OV therapies better than large pharma or biotech?
  • Will the success of COVID vaccines based on Adenovirus help the regulatory environment for small companies developing OV products in Europe and the USA?
  • Is there a place for non-viral delivery and other immunotherapy companies to engage in the OV space?  Would they bring any real advantages?

Moderator: Reid Huber, PhD

  • Partner, Third Rock Ventures

Critical milestones to observe Speakers: Caroline Breitbach, PhD

  • VP, R&D Programs and Strategy, Turnstone Biologics

Trying Intra-tumor delivery and IV infusion delivery oncolytic vaccine pushing dose 

translation biomarkers program 

transformation tumor microenvironment Brett Ewald, PhD

  • SVP, Development & Corporate Strategy, DNAtrix

Studies gets larger, kicking off Phase III multiple tumors Paul Hallenbeck, PhD

  • President and Chief Scientific Officer, Seneca Therapeutics

Translation: Stephen Russell, MD, PhD

  • CEO, Vyriad

Systemic delivery Oncolytic Virus IV delivery woman in remission

Collaboration with Regeneron

Data collection: Imageable reporter secretable reporter, gene expression

Field is intense systemic oncolytic delivery is exciting in mice and in human, response rates are encouraging combination immune stimulant, check inhibitors 

  • Q&A 2:50 PM – 3:05 PM  

2:45 PM – 3:00 PM

Break

  3:00 PM – 3:25 PM

CAR-T | Lessons Learned | What’s Next

Few areas of potential cancer therapy have had the attention and excitement of CAR-T. This panel of leading executives, developers, and clinician-scientists will explore the current state of CAR-T and its future prospects. Among the questions to be addressed are:

  • Is CAR-T still an industry priority – i.e. are new investments being made by large companies? Are new companies being financed? What are the trends?
  • What have we learned from first-generation products, what can we expect from CAR-T going forward in novel targets, combinations, armored CAR’s and allogeneic treatment adoption?
  • Early trials showed remarkable overall survival and progression-free survival. What has been observed regarding how enduring these responses are?
  • Most of the approvals to date have targeted CD19, and most recently BCMA. What are the most common forms of relapses that have been observed?
  • Is there a consensus about what comes after these CD19 and BCMA trials as to additional targets in liquid tumors? How have dual-targeted approaches fared?
  • Moderator:
  • Marcela Maus, MD, PhD
    • Director, Cellular Immunotherapy Program, Cancer Center, MGH
    • Associate Professor, Medicine, HMSIs CAR-T Industry priority
  • Speakers:
  • Head of R&D, Atara BioTherapeutics
  • Phyno-type of the cells for hematologic cancers 
  • solid tumor 
  • inventory of Therapeutics for treating patients in the future 
  • Progressive MS program
  • EBBT platform B-Cells and T-Cells
    • Stefan Hendriks
      • Gobal Head, Cell & Gene, Novartis
      • yes, CGT is a strategy in the present and future
      • Journey started years ago 
      • Confirmation the effectiveness of CAR-T therapies, 1 year response prolonged to 5 years 26 months
      • Patient not responding – a lot to learn
      • Patient after 8 months of chemo can be helped by CAR-T
    • Christi Shaw
      • CEO, Kite
      • CAR-T is priority 120 companies in the space
      • Manufacturing consistency 
      • Patients respond with better quality of life
      • Blood cancer – more work to be done

Q&A

  • 3:30 PM – 3:45 PM  

3:30 PM – 3:55 PM HOT TOPICS

CAR-T | Solid Tumors Success | When?

The potential application of CAR-T in solid tumors will be a game-changer if it occurs. The panel explores the prospects of solid tumor success and what the barriers have been. Questions include:

  •  How would industry and investor strategy for CAR-T and solid tumors be characterized? Has it changed in the last couple of years?
  •  Does the lack of tumor antigen specificity in solid tumors mean that lessons from liquid tumor CAR-T constructs will not translate well and we have to start over?
  •  Whether due to antigen heterogeneity, a hostile tumor micro-environment, or other factors are some specific solid tumors more attractive opportunities than others for CAR-T therapy development?
  •  Given the many challenges that CAR-T faces in solid tumors, does the use of combination therapies from the start, for example, to mitigate TME effects, offer a more compelling opportunity.

Moderator: Oladapo Yeku, MD, PhD

  • Clinical Assistant in Medicine, MGH

window of opportunities studies  Speakers: Jennifer Brogdon

  • Executive Director, Head of Cell Therapy Research, Exploratory Immuno-Oncology, NIBR

2017 CAR-T first approval

M&A and research collaborations

TCR tumor specific antigens avoid tissue toxicity Knut Niss, PhD

  • CTO, Mustang Bio

tumor hot start in 12 month clinical trial solid tumors , theraties not ready yet. Combination therapy will be an experimental treatment long journey checkpoint inhibitors to be used in combination maintenance Lipid tumor Barbra Sasu, PhD

  • CSO, Allogene

T cell response at prostate cancer 

tumor specific 

cytokine tumor specific signals move from solid to metastatic cell type for easier infiltration

Where we might go: safety autologous and allogeneic Jay Short, PhD

  • Chairman, CEO, Cofounder, BioAlta, Inc.

Tumor type is not enough for development of therapeutics other organs are involved in the periphery

difficult to penetrate solid tumors biologics activated in the tumor only, positive changes surrounding all charges, water molecules inside the tissue acidic environment target the cells inside the tumor and not outside 

Combination staggered key is try combination

  • Q&A 4:00 PM – 4:15 PM  

4:00 PM – 4:25 PM

GCT Manufacturing | Vector Production | Autologous and Allogeneic | Stem Cells | Supply Chain | Scalability & Management

The modes of GCT manufacturing have the potential of fundamentally reordering long-established roles and pathways. While complexity goes up the distance from discovery to deployment shrinks. With the likelihood of a total market for cell therapies to be over $48 billion by 2027,  groups of products are emerging.  Stem cell therapies are projected to be $28 billion by 2027 and non-stem cell therapies such as CAR-T are projected be $20 billion by 2027. The manufacturing challenges for these two large buckets are very different. Within the CAR-T realm there are diverging trends of autologous and allogeneic therapies and the demands on manufacturing infrastructure are very different. Questions for the panelists are:

  • Help us all understand the different manufacturing challenges for cell therapies. What are the trade-offs among storage cost, batch size, line changes in terms of production cost and what is the current state of scaling naïve and stem cell therapy treatment vs engineered cell therapies?
  • For cell and gene therapy what is the cost of Quality Assurance/Quality Control vs. production and how do you think this will trend over time based on your perspective on learning curves today?
  • Will point of care production become a reality? How will that change product development strategy for pharma and venture investors? What would be the regulatory implications for such products?
  • How close are allogeneic CAR-T cell therapies? If successful what are the market implications of allogenic CAR-T? What are the cost implications and rewards for developing allogeneic cell therapy treatments?

Moderator: Michael Paglia

  • VP, ElevateBio

Speakers:

  • Dannielle Appelhans
    • SVP TechOps and Chief Technical Officer, Novartis Gene Therapies
  • Thomas Page, PhD
    • VP, Engineering and Asset Development, FUJIFILM Diosynth Biotechnologies
  • Rahul Singhvi, ScD
    • CEO and Co-Founder, National Resilience, Inc.
  • Thomas VanCott, PhD
    • Global Head of Product Development, Gene & Cell Therapy, Catalent
    • 2/3 autologous 1/3 allogeneic  CAR-T high doses and high populations scale up is not done today quality maintain required the timing logistics issues centralized vs decentralized  allogeneic are health donors innovations in cell types in use improvements in manufacturing

Ropa Pike, Director,  Enterprise Science & Partnerships, Thermo Fisher Scientific 

Centralized biopharma industry is moving  to decentralized models site specific license 

  • Q&A 4:30 PM – 4:45 PM  

4:30 PM – 4:40 PM FIRST LOOK

CAR-T

Marcela Maus, MD, PhD

  • Director, Cellular Immunotherapy Program, Cancer Center, MGH
  • Assistant Professor, Medicine, HMS 

Fit-to-purpose CAR-T cells: 3 lead programs

Tr-fill 

CAR-T induce response myeloma and multiple myeloma GBM

27 patents on CAR-T

+400 patients treaded 40 Clinical Trials 

  • Q&A 4:40 PM – 5:00 PM  

4:40 PM – 4:50 PM FIRST LOOK

Repurposed Tumor Cells as Killers and Immunomodulators for Cancer Therapy

Khalid Shah, PhD

  • Vice Chair, Neurosurgery Research, BWH
  • Director, Center for Stem Cell Therapeutics and Imaging, HMS

Solid tumors are the hardest to treat because: immunosuppressive, hypoxic, Acidic Use of autologous tumor cells self homing ThTC self targeting therapeutic cells Therapeutic tumor cells efficacy pre-clinical models GBM 95% metastesis ThTC translation to patient settings

  • Q&A 4:50 PM – 5:10 PM  

4:50 PM – 5:00 PM FIRST LOOK

Other Cell Therapies for Cancer

David Scadden, MD

  • Director, Center for Regenerative Medicine; Co-Director, Harvard Stem Cell Institute, Director, Hematologic Malignancies & Experimental Hematology, MGH
  • Jordan Professor of Medicine, HMS

T-cell are made in bone marrow create cryogel  can be an off-the-shelf product repertoire on T Receptor CCL19+ mesenchymal cells mimic Tymus cells –

inter-tymic injection. Non human primate validation

Q&A

 

5:00 PM – 5:20 PM   5:00 PM – 5:20 PM FIRESIDE

Fireside with Mikael Dolsten, MD, PhD

  Introducer: Jonathan Kraft Moderator: Daniel Haber, MD, PhD

  • Chair, Cancer Center, MGH
  • Isselbacher Professor of Oncology, HMS

Vaccine Status Mikael Dolsten, MD, PhD

  • Chief Scientific Officer and President, Worldwide Research, Development and Medical, Pfizer

Deliver vaccine around the Globe, Israel, US, Europe.

3BIL vaccine in 2022 for all Global vaccination 

Bio Ntech in Germany

Experience with Biologics immuneoncology & allogeneic antibody cells – new field for drug discovery 

mRNA curative effort and cancer vaccine 

Access to drugs developed by Pfizer to underdeveloped countries 

  • Q&A 5:25 PM – 5:40 AM  

5:20 PM – 5:30 PM

Closing Remarks

Thursday, May 20, 2021

8:00 AM – 8:25 AM

GCT | The China Juggernaut

China embraced gene and cell therapies early. The first China gene therapy clinical trial was in 1991. China approved the world’s first gene therapy product in 2003—Gendicine—an oncolytic adenovirus for the treatment of advanced head and neck cancer.  Driven by broad national strategy, China has become a hotbed of GCT development, ranking second in the world with more than 1,000 clinical trials either conducted or underway and thousands of related patents.  It has a booming GCT biotech sector, led by more than 45 local companies with growing IND pipelines.

In late 1990, a T cell-based immunotherapy, cytokine-induced killer (CIK) therapy became a popular modality in the clinic in China for tumor treatment.  In early 2010, Chinese researchers started to carry out domestic CAR T trials inspired by several important reports suggested the great antitumor function of CAR T cells. Now, China became the country with the most registered CAR T trials, CAR T therapy is flourishing in China.

The Chinese GCT ecosystem has increasingly rich local innovation and growing complement of development and investment partnerships – and also many subtleties.

This panel, consisting of leaders from the China GCT corporate, investor, research and entrepreneurial communities, will consider strategic questions on the growth of the gene and cell therapy industry in China, areas of greatest strength, evolving regulatory framework, early successes and products expected to reach the US and world market. Moderator: Min Wu, PhD

  • Managing Director, Fosun Health Fund

What are the area of CGT in China, regulatory similar to the US Speakers: Alvin Luk, PhD

  • CEO, Neuropath Therapeutics

Monogenic rare disease with clear genomic target

Increase of 30% in patient enrollment 

Regulatory reform approval is 60 days no delayPin Wang, PhD

  • CSO, Jiangsu Simcere Pharmaceutical Co., Ltd.

Similar starting point in CGT as the rest of the World unlike a later starting point in other biologicalRichard Wang, PhD

  • CEO, Fosun Kite Biotechnology Co., Ltd

Possibilities to be creative and capitalize the new technologies for innovating drug

Support of the ecosystem by funding new companie allowing the industry to be developed in China

Autologous in patients differences cost challengeTian Xu, PhD

  • Vice President, Westlake University

ICH committee and Chinese FDA -r regulation similar to the US

Difference is the population recruitment, in China patients are active participants in skin disease 

Active in development of transposome 

Development of non-viral methods, CRISPR still in D and transposome

In China price of drugs regulatory are sensitive Shunfei Yan, PhD

  • Investment Manager, InnoStar Capital

Indication driven: Hymophilia, 

Allogogenic efficiency therapies

Licensing opportunities 

  • Q&A 8:30 AM – 8:45 AM  

8:30 AM – 8:55 AM

Impact of mRNA Vaccines | Global Success Lessons

The COVID vaccine race has propelled mRNA to the forefront of biomedicine. Long considered as a compelling modality for therapeutic gene transfer, the technology may have found its most impactful application as a vaccine platform. Given the transformative industrialization, the massive human experience, and the fast development that has taken place in this industry, where is the horizon? Does the success of the vaccine application, benefit or limit its use as a therapeutic for CGT?

  • How will the COVID success impact the rest of the industry both in therapeutic and prophylactic vaccines and broader mRNA lessons?
  • How will the COVID success impact the rest of the industry both on therapeutic and prophylactic vaccines and broader mRNA lessons?
  • Beyond from speed of development, what aspects make mRNA so well suited as a vaccine platform?
  • Will cost-of-goods be reduced as the industry matures?
  • How does mRNA technology seek to compete with AAV and other gene therapy approaches?

Moderator: Lindsey Baden, MD

  • Director, Clinical Research, Division of Infectious Diseases, BWH
  • Associate Professor, HMS

In vivo delivery process regulatory cooperation new opportunities for same platform for new indication Speakers:

Many years of mRNA pivoting for new diseases, DARPA, nucleic Acids global deployment of a manufacturing unit on site where the need arise Elan Musk funds new directions at Moderna

How many mRNA can be put in one vaccine: Dose and tolerance to achieve efficacy 

45 days for Personalized cancer vaccine one per patient

1.6 Billion doses produced rare disease monogenic correct mRNA like CF multiple mutation infection disease and oncology applications

Platform allowing to swap cargo reusing same nanoparticles address disease beyond Big Pharma options for biotech

WHat strain of Flu vaccine will come back in the future when people do not use masks 

  • Kate Bingham, UK Vaccine Taskforce

July 2020, AAV vs mRNA delivery across UK local centers administered both types supply and delivery uplift 

  • Q&A 9:00 AM – 9:15 AM  

9:00 AM – 9:25 AM HOT TOPICS

Benign Blood Disorders

Hemophilia has been and remains a hallmark indication for the CGT. Given its well-defined biology, larger market, and limited need for gene transfer to provide therapeutic benefit, it has been at the forefront of clinical development for years, however, product approval remains elusive. What are the main hurdles to this success? Contrary to many indications that CGT pursues no therapeutic options are available to patients, hemophiliacs have an increasing number of highly efficacious treatment options. How does the competitive landscape impact this field differently than other CGT fields? With many different players pursuing a gene therapy option for hemophilia, what are the main differentiators? Gene therapy for hemophilia seems compelling for low and middle-income countries, given the cost of currently available treatments; does your company see opportunities in this market? Moderator: Nancy Berliner, MD

  • Chief, Division of Hematology, BWH
  • H. Franklin Bunn Professor of Medicine, HMS

Speakers: Theresa Heggie

  • CEO, Freeline Therapeutics

Safety concerns, high burden of treatment CGT has record of safety and risk/benefit adoption of Tx functional cure CGT is potent Tx relative small quantity of protein needs be delivered 

Potency and quality less quantity drug and greater potency

risk of delivery unwanted DNA, capsules are critical 

analytics is critical regulator involvement in potency definition

Close of collaboration is excitingGallia Levy, MD, PhD

  • Chief Medical Officer, Spark Therapeutics

Hemophilia CGT is the highest potential for Global access logistics in underdeveloped countries working with NGOs practicality of the Tx

Roche reached 120 Counties great to be part of the Roche GroupAmir Nashat, PhD

  • Managing Partner, Polaris Ventures

Suneet Varma

  • Global President of Rare Disease, Pfizer

Gene therapy at Pfizer small molecule, large molecule and CGT – spectrum of choice allowing Hemophilia patients to marry 

1/3 internal 1/3 partnership 1/3 acquisitions 

Learning from COVID-19 is applied for other vaccine development

review of protocols and CGT for Hemophelia

You can’t buy Time

With MIT Pfizer is developing a model for Hemopilia CGT treatment

  • Q&A 9:30 AM – 9:45 AM  

9:25 AM – 9:35 AM FIRST LOOK

Treating Rett Syndrome through X-reactivation

Jeannie Lee, MD, PhD

  • Molecular Biologist, MGH
  • Professor of Genetics, HMS

200 disease X chromosome unlock for neurological genetic diseases: Rett Syndromeand other autism spectrum disorders female model vs male mice model

deliver protein to the brain 

restore own missing or dysfunctional protein

Epigenetic not CGT – no exogent intervention Xist ASO drug

Female model

  • Q&A 9:35 AM – 9:55 AM  

9:35 AM – 9:45 AM FIRST LOOK

Rare but mighty: scaling up success in single gene disorders

Florian Eichler, MD

  • Director, Center for Rare Neurological Diseases, MGH
  • Associate Professor, Neurology, HMS

Single gene disorder NGS enable diagnosis, DIagnosis to Treatment How to know whar cell to target, make it available and scale up Address gap: missing components Biomarkers to cell types lipid chemistry cell animal biology 

crosswalk from bone marrow matter 

New gene discovered that causes neurodevelopment of stagnant genes Examining new Biology cell type specific biomarkers 

  • Q&A 9:45 AM – 10:05 AM  

9:50 AM – 10:15 AM HOT TOPICS

Diabetes | Grand Challenge

The American Diabetes Association estimates 30 million Americans have diabetes and 1.5 million are diagnosed annually. GCT offers the prospect of long-sought treatment for this enormous cohort and their chronic requirements. The complexity of the disease and its management constitute a grand challenge and highlight both the potential of GCT and its current limitations.

  •  Islet transplantation for type 1 diabetes has been attempted for decades. Problems like loss of transplanted islet cells due to autoimmunity and graft site factors have been difficult to address. Is there anything different on the horizon for gene and cell therapies to help this be successful?
  • How is the durability of response for gene or cell therapies for diabetes being addressed? For example, what would the profile of an acceptable (vs. optimal) cell therapy look like?

Moderator: Marie McDonnell, MD

  • Chief, Diabetes Section and Director, Diabetes Program, BWH
  • Lecturer on Medicine, HMS

Type 1 Diabetes cost of insulin for continuous delivery of drug

alternative treatments: 

The Future: neuropotent stem cells 

What keeps you up at night  Speakers: Tom Bollenbach, PhD

  • Chief Technology Officer, Advanced Regenerative Manufacturing Institute

Data managment sterility sensors, cell survival after implantation, stem cells manufacturing, process development in manufacturing of complex cells

Data and instrumentation the Process is the Product

Manufacturing tight schedules Manasi Jaiman, MD

  • Vice President, Clinical Development, ViaCyte
  • Pediatric Endocrinologist

continous glucose monitoring Bastiano Sanna, PhD

  • EVP, Chief of Cell & Gene Therapies and VCGT Site Head, Vertex Pharmaceuticals

100 years from discovering Insulin, Insulin is not a cure in 2021 – asking patients to partner more 

Produce large quantities of the Islet cells encapsulation technology been developed 

Scaling up is a challengeRogerio Vivaldi, MD

  • CEO, Sigilon Therapeutics

Advanced made, Patient of Type 1 Outer and Inner compartments of spheres (not capsule) no immune suppression continuous secretion of enzyme Insulin independence without immune suppression 

Volume to have of-the-shelf inventory oxegenation in location lymphatic and vascularization conrol the whole process modular platform learning from others

  • Q&A 10:20 AM – 10:35 AM  

10:20 AM – 10:40 AM FIRESIDE

Building A Unified GCT Strategy

  Introducer: John Fish

  • CEO, Suffolk
  • Chairman of Board Trustees, Brigham Health

Moderator: Meg Tirrell

  • Senior Health and Science Reporter, CNBC

Last year, what was it at Novartis Speaker: Jay Bradner, MD

  • President, NIBR

Keep eyes open, waiting the Pandemic to end and enable working back on all the indications 

Portfolio of MET, Mimi Emerging Therapies 

Learning from the Pandemic – operationalize the practice science, R&D leaders, new collaboratives at NIH, FDA, Novartis

Pursue programs that will yield growth, tropic diseases with Gates Foundation, Rising Tide pods for access CGT within Novartis Partnership with UPenn in Cell Therapy 

Cost to access to IP from Academia to a Biotech CRISPR accessing few translations to Clinic

Protein degradation organization constraint valuation by parties in a partnership 

Novartis: nuclear protein lipid nuclear particles, tamplate for Biotech to collaborate

Game changing: 10% of the Portfolio, New frontiers human genetics in Ophthalmology, CAR-T, CRISPR, Gene Therapy Neurological and payloads of different matter

  • Q&A 10:45 AM – 11:00 AM  

10:40 AM – 10:50 AM

Break

  10:50 AM – 11:00 AM FIRST LOOK

Getting to the Heart of the Matter: Curing Genetic Cardiomyopathy

Christine Seidman, MD

  • Director, Cardiovascular Genetics Center, BWH
  • Smith Professor of Medicine & Genetics, HMS

The Voice of Dr. Seidman – Her abstract is cited below

The ultimate opportunity presented by discovering the genetic basis of human disease is accurate prediction and disease prevention. To enable this achievement, genetic insights must enable the identification of at-risk

individuals prior to end-stage disease manifestations and strategies that delay or prevent clinical expression. Genetic cardiomyopathies provide a paradigm for fulfilling these opportunities. Hypertrophic cardiomyopathy (HCM) is characterized by left ventricular hypertrophy, diastolic dysfunction with normal or enhanced systolic performance and a unique histopathology: myocyte hypertrophy, disarray and fibrosis. Dilated cardiomyopathy (DCM) exhibits enlarged ventricular volumes with depressed systolic performance and nonspecific histopathology. Both HCM and DCM are prevalent clinical conditions that increase risk for arrhythmias, sudden death, and heart failure. Today treatments for HCM and DCM focus on symptoms, but none prevent disease progression. Human molecular genetic studies demonstrated that these pathologies often result from dominant mutations in genes that encode protein components of the sarcomere, the contractile unit in striated muscles. These data combined with the emergence of molecular strategies to specifically modulate gene expression provide unparalleled opportunities to silence or correct mutant genes and to boost healthy gene expression in patients with genetic HCM and DCM. Many challenges remain, but the active and vital efforts of physicians, researchers, and patients are poised to ensure success.

Hypertrophic and Dilated Cardiomyopaies ‘

10% receive heart transplant 12 years survival 

Mutation puterb function

TTN: contribute 20% of dilated cardiomyopaty

Silence gene 

pleuripotential cells deliver therapies 

  • Q&A 11:00 AM – 11:20 AM  

11:00 AM – 11:10 AM FIRST LOOK

Unlocking the secret lives of proteins in health and disease

Anna Greka, MD, PhD

  • Medicine, BWH
  • Associate Professor, Medicine, HMS

Cyprus Island, kidney disease by mutation causing MUC1 accumulation and death BRD4780 molecule that will clear the misfolding proteins from the kidney organoids: pleuripotent stem cells small molecule developed for applications in the other cell types in brain, eye, gene mutation build mechnism for therapy clinical models transition from Academia to biotech 

Q&A

  • 11:10 AM – 11:30 AM  

11:10 AM – 11:35 AM

Rare and Ultra Rare Diseases | GCT Breaks Through

One of the most innovative segments in all of healthcare is the development of GCT driven therapies for rare and ultra-rare diseases. Driven by a series of insights and tools and funded in part by disease focused foundations, philanthropists and abundant venture funding disease after disease is yielding to new GCT technology. These often become platforms to address more prevalent diseases. The goal of making these breakthroughs routine and affordable is challenged by a range of issues including clinical trial design and pricing.

  • What is driving the interest in rare diseases?
  • What are the biggest barriers to making breakthroughs ‘routine and affordable?’
  • What is the role of retrospective and prospective natural history studies in rare disease?  When does the expected value of retrospective disease history studies justify the cost?
  • Related to the first question, what is the FDA expecting as far as controls in clinical trials for rare diseases?  How does this impact the collection of natural history data?

Moderator: Susan Slaugenhaupt, PhD

  • Scientific Director and Elizabeth G. Riley and Daniel E. Smith Jr., Endowed Chair, Mass General Research Institute
  • Professor, Neurology, HMS

Speakers: Leah Bloom, PhD

  • SVP, External Innovation and Strategic Alliances, Novartis Gene Therapies

Ultra rare (less than 100) vs rare difficulty to recruit patients and to follow up after treatment Bobby Gaspar, MD, PhD

  • CEO, Orchard Therapeutics

Study of rare condition have transfer to other larger diseases – delivery of therapeutics genes, like immune disorders 

Patient testimonials just to hear what a treatment can make Emil Kakkis, MD, PhD

  • CEO, Ultragenyx

Do 100 patient study then have information on natural history to develop a clinical trial Stuart Peltz, PhD

  • CEO, PTC Therapeutics

Rare disease, challenge for FDA approval and after market commercialization follow ups

Justification of cost for Rare disease – demonstration of Change is IP in value patients advocacy is helpful

  • Q&A 11:40 AM – 11:55 AM  

11:40 AM – 12:00 PM FIRESIDE

Partnering Across the GCT Spectrum

  Moderator: Erin Harris

  • Chief Editor, Cell & Gene

Perspective & professional tenure

Partnership in manufacturing what are the recommendations?

Hospital systems: Partnership Challenges  Speaker: Marc Casper

  • CEO, ThermoFisher

25 years in Diagnostics last 20 years at ThermoFisher 

products used in the Lab for CAR-T research and manufacture 

CGT Innovations: FDA will have a high level of approval each year

How move from research to clinical trials to manufacturing Quicker process

Best practices in Partnerships: the root cause if acceleration to market service providers to deliver highest standards

Building capacity by acquisition to avoid the waiting time

Accelerate new products been manufactured 

Collaborations with Academic Medical center i.e., UCSF in CGT joint funding to accelerate CGT to clinics’

Customers are extremely knowledgable, scale the capital investment made investment

150MIL a year to improve the Workflow 

  • Q&A 12:05 PM – 12:20 PM  

12:05 PM – 12:30 PM

  • 12:05 PM – 12:20 PM  

12:05 PM – 12:30 PM

CEO Panel | Anticipating Disruption | Planning for Widespread GCT

The power of GCT to cure disease has the prospect of profoundly improving the lives of patients who respond. Planning for a disruption of this magnitude is complex and challenging as it will change care across the spectrum. Leading chief executives shares perspectives on how the industry will change and how this change should be anticipated. Moderator: Meg Tirrell

  • Senior Health and Science Reporter, CNBC

CGT becoming staple therapy what are the disruptors emerging Speakers: Lisa Dechamps

  • SVP & Chief Business Officer, Novartis Gene Therapies

Reimagine medicine with collaboration at MGH, MDM condition in children 

The Science is there, sustainable processes and systems impact is transformational

Value based pricing, risk sharing Payers and Pharma for one time therapy with life span effect

Collaboration with FDAKieran Murphy

  • CEO, GE Healthcare

Diagnosis of disease to be used in CGT

2021 investment in CAR-T platform 

Investment in several CGT frontier

Investment in AI, ML in system design new technologies 

GE: Scale and Global distributions, sponsor companies in software 

Waste in Industry – Healthcare % of GDP, work with MGH to smooth the workflow faster entry into hospital and out of Hospital

Telemedicine during is Pandemic: Radiologist needs to read remotely 

Supply chain disruptions slow down all ecosystem 

Production of ventilators by collaboration with GM – ingenuity 

Scan patients outside of hospital a scanner in a Box Christian Rommel, PhD

  • Head, Pharmaceuticals Research & Development, Bayer AG

CGT – 2016 and in 2020 new leadership and capability 

Disease Biology and therapeutics

Regenerative Medicine: CGT vs repair building pipeline in ophthalmology and cardiovascular 

During Pandemic: Deliver Medicines like Moderna, Pfizer – collaborations between competitors with Government Bayer entered into Vaccines in 5 days, all processes had to change access innovations developed over decades for medical solutions 

  • Q&A 12:35 PM – 12:50 PM  

12:35 PM – 12:55 PM FIRESIDE

Building a GCT Portfolio

GCT represents a large and growing market for novel therapeutics that has several segments. These include Cardiovascular Disease, Cancer, Neurological Diseases, Infectious Disease, Ophthalmology, Benign Blood Disorders, and many others; Manufacturing and Supply Chain including CDMO’s and CMO’s; Stem Cells and Regenerative Medicine; Tools and Platforms (viral vectors, nano delivery, gene editing, etc.). Bayer’s pharma business participates in virtually all of these segments. How does a Company like Bayer approach the development of a portfolio in a space as large and as diverse as this one? How does Bayer approach the support of the production infrastructure with unique demands and significant differences from its historical requirements? Moderator:

Shinichiro Fuse, PhD

  • Managing Partner, MPM Capital

Speaker: Wolfram Carius, PhD

  • EVP, Pharmaceuticals, Head of Cell & Gene Therapy, Bayer AG

CGT will bring treatment to cure, delivery of therapies 

Be a Leader repair, regenerate, cure

Technology and Science for CGT – building a portfolio vs single asset decision criteria development of IP market access patients access acceleration of new products

Bayer strategy: build platform for use by four domains  

Gener augmentation

Autologeneic therapy, analytics

Gene editing

Oncology Cell therapy tumor treatment: What kind of cells – the jury is out

Of 23 product launch at Bayer no prediction is possible some high some lows 

  • Q&A 1:00 PM – 1:15 PM  

12:55 PM – 1:35 PM

Lunch

  1:40 PM – 2:05 PM

GCT Delivery | Perfecting the Technology

Gene delivery uses physical, chemical, or viral means to introduce genetic material into cells. As more genetically modified therapies move closer to the market, challenges involving safety, efficacy, and manufacturing have emerged. Optimizing lipidic and polymer nanoparticles and exosomal delivery is a short-term priority. This panel will examine how the short-term and long-term challenges are being tackled particularly for non-viral delivery modalities. Moderator: Natalie Artzi, PhD

  • Assistant Professor, BWH

Speakers: Geoff McDonough, MD

  • CEO, Generation Bio

Sonya Montgomery

  • CMO, Evox Therapeutics

Laura Sepp-Lorenzino, PhD

  • Chief Scientific Officer, Executive Vice President, Intellia Therapeutics

Doug Williams, PhD

  • CEO, Codiak BioSciences
  • Q&A 2:10 PM – 2:25 PM  

2:05 PM – 2:10 PM

Invention Discovery Grant Announcement

  2:10 PM – 2:20 PM FIRST LOOK

Enhancing vesicles for therapeutic delivery of bioproducts

Xandra Breakefield, PhD

  • Geneticist, MGH, MGH
  • Professor, Neurology, HMS
  • Q&A 2:20 PM – 2:35 PM  

2:20 PM – 2:30 PM FIRST LOOK

Versatile polymer-based nanocarriers for targeted therapy and immunomodulation

Natalie Artzi, PhD

  • Assistant Professor, BWH
  • Q&A 2:30 PM – 2:45 PM  

2:55 PM – 3:20 PM HOT TOPICS

Gene Editing | Achieving Therapeutic Mainstream

Gene editing was recognized by the Nobel Committee as “one of gene technology’s sharpest tools, having a revolutionary impact on life sciences.” Introduced in 2011, gene editing is used to modify DNA. It has applications across almost all categories of disease and is also being used in agriculture and public health.

Today’s panel is made up of pioneers who represent foundational aspects of gene editing.  They will discuss the movement of the technology into the therapeutic mainstream.

  • Successes in gene editing – lessons learned from late-stage assets (sickle cell, ophthalmology)
  • When to use what editing tool – pros and cons of traditional gene-editing v. base editing.  Is prime editing the future? Specific use cases for epigenetic editing.
  • When we reach widespread clinical use – role of off-target editing – is the risk real?  How will we mitigate? How practical is patient-specific off-target evaluation?

Moderator: J. Keith Joung, MD, PhD

  • Robert B. Colvin, M.D. Endowed Chair in Pathology & Pathologist, MGH
  • Professor of Pathology, HMS

Speakers: John Evans

  • CEO, Beam Therapeutics

Lisa Michaels

  • EVP & CMO, Editas Medicine
  • Q&A 3:25 PM – 3:50 PM  

3:25 PM – 3:50 PM HOT TOPICS

Common Blood Disorders | Gene Therapy

There are several dozen companies working to develop gene or cell therapies for Sickle Cell Disease, Beta Thalassemia, and  Fanconi Anemia. In some cases, there are enzyme replacement therapies that are deemed effective and safe. In other cases, the disease is only managed at best. This panel will address a number of questions that are particular to this class of genetic diseases:

  • What are the pros and cons of various strategies for treatment? There are AAV-based editing, non-viral delivery even oligonucleotide recruitment of endogenous editing/repair mechanisms. Which approaches are most appropriate for which disease?
  • How can companies increase the speed of recruitment for clinical trials when other treatments are available? What is the best approach to educate patients on a novel therapeutic?
  • How do we best address ethnic and socio-economic diversity to be more representative of the target patient population?
  • How long do we have to follow up with the patients from the scientific, patient’s community, and payer points of view? What are the current FDA and EMA guidelines for long-term follow-up?
  • Where are we with regards to surrogate endpoints and their application to clinically meaningful endpoints?
  • What are the emerging ethical dilemmas in pediatric gene therapy research? Are there challenges with informed consent and pediatric assent for trial participation?
  • Are there differences in reimbursement policies for these different blood disorders? Clearly durability of response is a big factor. Are there other considerations?

Moderator: David Scadden, MD

  • Director, Center for Regenerative Medicine; Co-Director, Harvard Stem Cell Institute, Director, Hematologic Malignancies & Experimental Hematology, MGH
  • Jordan Professor of Medicine, HMS

Speakers: Samarth Kukarni, PhDNick Leschly

  • Chief Bluebird, Bluebird Bio

Mike McCune, MD, PhD

  • Head, HIV Frontiers, Global Health Innovative Technology Solutions, Bill & Melinda Gates Foundation
  • Q&A 3:55 PM – 4:15 PM  

3:50 PM – 4:00 PM FIRST LOOK

Gene Editing

J. Keith Joung, MD, PhD

  • Robert B. Colvin, M.D. Endowed Chair in Pathology & Pathologist, MGH
  • Professor of Pathology, HMS
  • Q&A 4:00 PM – 4:20 PM  

4:20 PM – 4:45 PM HOT TOPICS

Gene Expression | Modulating with Oligonucleotide-Based Therapies

Oligonucleotide drugs have recently come into their own with approvals from companies such as Biogen, Alnylam, Novartis and others. This panel will address several questions:

How important is the delivery challenge for oligonucleotides? Are technological advancements emerging that will improve the delivery of oligonucleotides to the CNS or skeletal muscle after systemic administration?

  • Will oligonucleotides improve as a class that will make them even more effective?   Are further advancements in backbone chemistry anticipated, for example.
  • Will oligonucleotide based therapies blaze trails for follow-on gene therapy products?
  • Are small molecules a threat to oligonucleotide-based therapies?
  • Beyond exon skipping and knock-down mechanisms, what other roles will oligonucleotide-based therapies take mechanistically — can genes be activating oligonucleotides?  Is there a place for multiple mechanism oligonucleotide medicines?
  • Are there any advantages of RNAi-based oligonucleotides over ASOs, and if so for what use?

Moderator: Jeannie Lee, MD, PhD

  • Molecular Biologist, MGH
  • Professor of Genetics, HMS

Speakers: Bob Brown, PhD

  • CSO, EVP of R&D, Dicerna

Brett Monia, PhD

  • CEO, Ionis

Alfred Sandrock, MD, PhD

  • EVP, R&D and CMO, Biogen
  • Q&A 4:50 PM – 5:05 PM  

4:45 PM – 4:55 PM FIRST LOOK

RNA therapy for brain cancer

Pierpaolo Peruzzi, MD, PhD

  • Nuerosurgery, BWH
  • Assistant Professor of Neurosurgery, HMS
  • Q&A 4:55 PM – 5:15 PM  

Friday, May 21, 2021

8:30 AM – 8:55 AM

Venture Investing | Shaping GCT Translation

What is occurring in the GCT venture capital segment? Which elements are seeing the most activity? Which areas have cooled? How is the investment market segmented between gene therapy, cell therapy and gene editing? What makes a hot GCT company? How long will the market stay frothy? Some review of demographics — # of investments, sizes, etc. Why is the market hot and how long do we expect it to stay that way? Rank the top 5 geographic markets for GCT company creation and investing? Are there academic centers that have been especially adept at accelerating GCT outcomes? Do the business models for the rapid development of coronavirus vaccine have any lessons for how GCT technology can be brought to market more quickly? Moderator: Meredith Fisher, PhD

  • Partner, Mass General Brigham Innovation Fund

Speakers: David Berry, MD, PhD

  • CEO, Valo Health
  • General Partner, Flagship Pioneering

Robert Nelsen

  • Managing Director, Co-founder, ARCH Venture Partners

Kush Parmar, MD, PhD

  • Managing Partner, 5AM Ventures
  • Q&A 9:00 AM – 9:15 AM  

9:00 AM – 9:25 AM

Regenerative Medicine | Stem Cells

The promise of stem cells has been a highlight in the realm of regenerative medicine. Unfortunately, that promise remains largely in the future. Recent breakthroughs have accelerated these potential interventions in particular for treating neurological disease. Among the topics the panel will consider are:

  • Stem cell sourcing
  • Therapeutic indication growth
  • Genetic and other modification in cell production
  • Cell production to final product optimization and challenges
  • How to optimize the final product

Moderator: Ole Isacson, MD, PhD

  • Director, Neuroregeneration Research Institute, McLean
  • Professor, Neurology and Neuroscience, HMS

Speakers: Kapil Bharti, PhD

  • Senior Investigator, Ocular and Stem Cell Translational Research Section, NIH

Joe Burns, PhD

  • VP, Head of Biology, Decibel Therapeutics

Erin Kimbrel, PhD

  • Executive Director, Regenerative Medicine, Astellas

Nabiha Saklayen, PhD

  • CEO and Co-Founder, Cellino
  • Q&A 9:30 AM – 9:45 AM  

9:25 AM – 9:35 AM FIRST LOOK

Stem Cells

Bob Carter, MD, PhD

  • Chairman, Department of Neurosurgery, MGH
  • William and Elizabeth Sweet, Professor of Neurosurgery, HMS
  • Q&A 9:35 AM – 9:55 AM  

9:35 AM – 10:00 AM

Capital Formation ’21-30 | Investing Modes Driving GCT Technology and Timing

The dynamics of venture/PE investing and IPOs are fast evolving. What are the drivers – will the number of investors grow will the size of early rounds continue to grow? How is this reflected in GCT target areas, company design, and biotech overall? Do patients benefit from these trends? Is crossover investing a distinct class or a little of both? Why did it emerge and what are the characteristics of the players?  Will SPACs play a role in the growth of the gene and cell therapy industry. What is the role of corporate investment arms eg NVS, Bayer, GV, etc. – has a category killer emerged?  Are we nearing the limit of what the GCT market can absorb or will investment capital continue to grow unabated? Moderator: Roger Kitterman

  • VP, Venture, Mass General Brigham

Speakers: Ellen Hukkelhoven, PhD

  • Managing Director, Perceptive Advisors

Peter Kolchinsky, PhD

  • Founder and Managing Partner, RA Capital Management

Deep Nishar

  • Senior Managing Partner, SoftBank Investment Advisors

Oleg Nodelman

  • Founder & Managing Partner, EcoR1 Capital
  • Q&A 10:05 AM – 10:20 AM  

10:00 AM – 10:10 AM FIRST LOOK

New scientific and clinical developments for autologous stem cell therapy for Parkinson’s disease patients

Penelope Hallett, PhD

  • NRL, McLean
  • Assistant Professor Psychiatry, HMS
  • Q&A 10:10 AM – 10:30 AM  

10:10 AM – 10:35 AM HOT TOPICS

Neurodegenerative Clinical Outcomes | Achieving GCT Success

Can stem cell-based platforms become successful treatments for neurodegenerative diseases?

  •  What are the commonalities driving GCT success in neurodegenerative disease and non-neurologic disease, what are the key differences?
  • Overcoming treatment administration challenges
  • GCT impact on degenerative stage of disease
  • How difficult will it be to titrate the size of the cell therapy effect in different neurological disorders and for different patients?
  • Demonstrating clinical value to patients and payers
  • Revised clinical trial models to address issues and concerns specific to GCT

Moderator: Bob Carter, MD, PhD

  • Chairman, Department of Neurosurgery, MGH
  • William and Elizabeth Sweet, Professor of Neurosurgery, HMS

Speakers: Erwan Bezard, PhD

  • INSERM Research Director, Institute of Neurodegenerative Diseases

Nikola Kojic, PhD

  • CEO and Co-Founder, Oryon Cell Therapies

Geoff MacKay

  • President & CEO, AVROBIO

Viviane Tabar, MD

  • Founding Investigator, BlueRock Therapeutics
  • Chair of Neurosurgery, Memorial Sloan Kettering
  • Q&A 10:40 AM – 10:55 AM  

10:35 AM – 11:35 AM

Disruptive Dozen: 12 Technologies that Will Reinvent GCT

Nearly one hundred senior Mass General Brigham Harvard faculty contributed to the creation of this group of twelve GCT technologies that they believe will breakthrough in the next two years. The Disruptive Dozen identifies and ranks the GCT technologies that will be available on at least an experimental basis to have the chance of significantly improving health care. 11:35 AM – 11:45 AM

Concluding Remarks

Friday, May 21, 2021

Computer connection to the iCloud of WordPress.com FROZE completely at 10:30AM EST and no file update was possible. COVERAGE OF MAY 21, 2021 IS RECORDED BELOW FOLLOWING THE AGENDA BY COPY AN DPASTE OF ALL THE TWEETS I PRODUCED ON MAY 21, 2021 8:30 AM – 8:55 AM

Venture Investing | Shaping GCT Translation

What is occurring in the GCT venture capital segment? Which elements are seeing the most activity? Which areas have cooled? How is the investment market segmented between gene therapy, cell therapy and gene editing? What makes a hot GCT company? How long will the market stay frothy? Some review of demographics — # of investments, sizes, etc. Why is the market hot and how long do we expect it to stay that way? Rank the top 5 geographic markets for GCT company creation and investing? Are there academic centers that have been especially adept at accelerating GCT outcomes? Do the business models for the rapid development of coronavirus vaccine have any lessons for how GCT technology can be brought to market more quickly? Moderator: Meredith Fisher, PhD

  • Partner, Mass General Brigham Innovation Fund

Speakers: David Berry, MD, PhD

  • CEO, Valo Health
  • General Partner, Flagship Pioneering

Robert Nelsen

  • Managing Director, Co-founder, ARCH Venture Partners

Kush Parmar, MD, PhD

  • Managing Partner, 5AM Ventures
  • Q&A 9:00 AM – 9:15 AM  

9:00 AM – 9:25 AM

Regenerative Medicine | Stem Cells

The promise of stem cells has been a highlight in the realm of regenerative medicine. Unfortunately, that promise remains largely in the future. Recent breakthroughs have accelerated these potential interventions in particular for treating neurological disease. Among the topics the panel will consider are:

  • Stem cell sourcing
  • Therapeutic indication growth
  • Genetic and other modification in cell production
  • Cell production to final product optimization and challenges
  • How to optimize the final product

Moderator: Ole Isacson, MD, PhD

  • Director, Neuroregeneration Research Institute, McLean
  • Professor, Neurology and Neuroscience, HMS

Speakers: Kapil Bharti, PhD

  • Senior Investigator, Ocular and Stem Cell Translational Research Section, NIH

Joe Burns, PhD

  • VP, Head of Biology, Decibel Therapeutics

Erin Kimbrel, PhD

  • Executive Director, Regenerative Medicine, Astellas

Nabiha Saklayen, PhD

  • CEO and Co-Founder, Cellino
  • Q&A 9:30 AM – 9:45 AM  

9:25 AM – 9:35 AM FIRST LOOK

Stem Cells

Bob Carter, MD, PhD

  • Chairman, Department of Neurosurgery, MGH
  • William and Elizabeth Sweet, Professor of Neurosurgery, HMS
  • Q&A 9:35 AM – 9:55 AM  

9:35 AM – 10:00 AM

Capital Formation ’21-30 | Investing Modes Driving GCT Technology and Timing

The dynamics of venture/PE investing and IPOs are fast evolving. What are the drivers – will the number of investors grow will the size of early rounds continue to grow? How is this reflected in GCT target areas, company design, and biotech overall? Do patients benefit from these trends? Is crossover investing a distinct class or a little of both? Why did it emerge and what are the characteristics of the players?  Will SPACs play a role in the growth of the gene and cell therapy industry. What is the role of corporate investment arms eg NVS, Bayer, GV, etc. – has a category killer emerged?  Are we nearing the limit of what the GCT market can absorb or will investment capital continue to grow unabated? Moderator: Roger Kitterman

  • VP, Venture, Mass General Brigham

Speakers: Ellen Hukkelhoven, PhD

  • Managing Director, Perceptive Advisors

Peter Kolchinsky, PhD

  • Founder and Managing Partner, RA Capital Management

Deep Nishar

  • Senior Managing Partner, SoftBank Investment Advisors

Oleg Nodelman

  • Founder & Managing Partner, EcoR1 Capital
  • Q&A 10:05 AM – 10:20 AM  

10:00 AM – 10:10 AM FIRST LOOK

New scientific and clinical developments for autologous stem cell therapy for Parkinson’s disease patients

Penelope Hallett, PhD

  • NRL, McLean
  • Assistant Professor Psychiatry, HMS
  • Q&A 10:10 AM – 10:30 AM  

10:10 AM – 10:35 AM HOT TOPICS

Neurodegenerative Clinical Outcomes | Achieving GCT Success

Can stem cell-based platforms become successful treatments for neurodegenerative diseases?

  •  What are the commonalities driving GCT success in neurodegenerative disease and non-neurologic disease, what are the key differences?
  • Overcoming treatment administration challenges
  • GCT impact on degenerative stage of disease
  • How difficult will it be to titrate the size of the cell therapy effect in different neurological disorders and for different patients?
  • Demonstrating clinical value to patients and payers
  • Revised clinical trial models to address issues and concerns specific to GCT

Moderator: Bob Carter, MD, PhD

  • Chairman, Department of Neurosurgery, MGH
  • William and Elizabeth Sweet, Professor of Neurosurgery, HMS

Speakers: Erwan Bezard, PhD

  • INSERM Research Director, Institute of Neurodegenerative Diseases

Nikola Kojic, PhD

  • CEO and Co-Founder, Oryon Cell Therapies

Geoff MacKay

  • President & CEO, AVROBIO

Viviane Tabar, MD

  • Founding Investigator, BlueRock Therapeutics
  • Chair of Neurosurgery, Memorial Sloan Kettering
  • Q&A 10:40 AM – 10:55 AM  

10:35 AM – 11:35 AM

Disruptive Dozen: 12 Technologies that Will Reinvent GCT

Nearly one hundred senior Mass General Brigham Harvard faculty contributed to the creation of this group of twelve GCT technologies that they believe will breakthrough in the next two years. The Disruptive Dozen identifies and ranks the GCT technologies that will be available on at least an experimental basis to have the chance of significantly improving health care. 11:35 AM – 11:45 AM

Concluding Remarks

The co-chairs convene to reflect on the insights shared over the three days. They will discuss what to expect at the in-person GCT focused May 2-4, 2022 World Medical Innovation Forum.

 

The co-chairs convene to reflect on the insights shared over the three days. They will discuss what to expect at the in-person GCT focused May 2-4, 2022 World Medical Innovation Forum.Christine Seidman, MD

Hypertrophic and Dilated Cardiomyopaies ‘

10% receive heart transplant 12 years survival 

Mutation puterb function

TTN: contribute 20% of dilated cardiomyopaty

Silence gene 

pleuripotential cells deliver therapies 

  • Q&A 11:00 AM – 11:20 AM  

11:00 AM – 11:10 AM FIRST LOOK

Unlocking the secret lives of proteins in health and disease

Anna Greka, MD, PhD

  • Medicine, BWH
  • Associate Professor, Medicine, HMS

Cyprus Island, kidney disease by mutation causing MUC1 accumulation and death BRD4780 molecule that will clear the misfolding proteins from the kidney organoids: pleuripotent stem cells small molecule developed for applications in the other cell types in brain, eye, gene mutation build mechnism for therapy clinical models transition from Academia to biotech 

Q&A

  • 11:10 AM – 11:30 AM  

11:10 AM – 11:35 AM

Rare and Ultra Rare Diseases | GCT Breaks Through

One of the most innovative segments in all of healthcare is the development of GCT driven therapies for rare and ultra-rare diseases. Driven by a series of insights and tools and funded in part by disease focused foundations, philanthropists and abundant venture funding disease after disease is yielding to new GCT technology. These often become platforms to address more prevalent diseases. The goal of making these breakthroughs routine and affordable is challenged by a range of issues including clinical trial design and pricing.

  • What is driving the interest in rare diseases?
  • What are the biggest barriers to making breakthroughs ‘routine and affordable?’
  • What is the role of retrospective and prospective natural history studies in rare disease?  When does the expected value of retrospective disease history studies justify the cost?
  • Related to the first question, what is the FDA expecting as far as controls in clinical trials for rare diseases?  How does this impact the collection of natural history data?

Moderator: Susan Slaugenhaupt, PhD

  • Scientific Director and Elizabeth G. Riley and Daniel E. Smith Jr., Endowed Chair, Mass General Research Institute
  • Professor, Neurology, HMS

Speakers: Leah Bloom, PhD

  • SVP, External Innovation and Strategic Alliances, Novartis Gene Therapies

Ultra rare (less than 100) vs rare difficulty to recruit patients and to follow up after treatment Bobby Gaspar, MD, PhD

  • CEO, Orchard Therapeutics

Study of rare condition have transfer to other larger diseases – delivery of therapeutics genes, like immune disorders 

Patient testimonials just to hear what a treatment can make Emil Kakkis, MD, PhD

  • CEO, Ultragenyx

Do 100 patient study then have information on natural history to develop a clinical trial Stuart Peltz, PhD

  • CEO, PTC Therapeutics

Rare disease, challenge for FDA approval and after market commercialization follow ups

Justification of cost for Rare disease – demonstration of Change is IP in value patients advocacy is helpful

  • Q&A 11:40 AM – 11:55 AM  

11:40 AM – 12:00 PM FIRESIDE

Partnering Across the GCT Spectrum

  Moderator: Erin Harris

  • Chief Editor, Cell & Gene

Perspective & professional tenure

Partnership in manufacturing what are the recommendations?

Hospital systems: Partnership Challenges  Speaker: Marc Casper

  • CEO, ThermoFisher

25 years in Diagnostics last 20 years at ThermoFisher 

products used in the Lab for CAR-T research and manufacture 

CGT Innovations: FDA will have a high level of approval each year

How move from research to clinical trials to manufacturing Quicker process

Best practices in Partnerships: the root cause if acceleration to market service providers to deliver highest standards

Building capacity by acquisition to avoid the waiting time

Accelerate new products been manufactured 

Collaborations with Academic Medical center i.e., UCSF in CGT joint funding to accelerate CGT to clinics’

Customers are extremely knowledgable, scale the capital investment made investment

150MIL a year to improve the Workflow 

  • Q&A 12:05 PM – 12:20 PM  

12:05 PM – 12:30 PM

CEO Panel | Anticipating Disruption | Planning for Widespread GCT

The power of GCT to cure disease has the prospect of profoundly improving the lives of patients who respond. Planning for a disruption of this magnitude is complex and challenging as it will change care across the spectrum. Leading chief executives shares perspectives on how the industry will change and how this change should be anticipated. Moderator: Meg Tirrell

  • Senior Health and Science Reporter, CNBC

CGT becoming staple therapy what are the disruptors emerging Speakers: Lisa Dechamps

  • SVP & Chief Business Officer, Novartis Gene Therapies

Reimagine medicine with collaboration at MGH, MDM condition in children 

The Science is there, sustainable processes and systems impact is transformational

Value based pricing, risk sharing Payers and Pharma for one time therapy with life span effect

Collaboration with FDAKieran Murphy

  • CEO, GE Healthcare

Diagnosis of disease to be used in CGT

2021 investment in CAR-T platform 

Investment in several CGT frontier

Investment in AI, ML in system design new technologies 

GE: Scale and Global distributions, sponsor companies in software 

Waste in Industry – Healthcare % of GDP, work with MGH to smooth the workflow faster entry into hospital and out of Hospital

Telemedicine during is Pandemic: Radiologist needs to read remotely 

Supply chain disruptions slow down all ecosystem 

Production of ventilators by collaboration with GM – ingenuity 

Scan patients outside of hospital a scanner in a Box Christian Rommel, PhD

  • Head, Pharmaceuticals Research & Development, Bayer AG

CGT – 2016 and in 2020 new leadership and capability 

Disease Biology and therapeutics

Regenerative Medicine: CGT vs repair building pipeline in ophthalmology and cardiovascular 

During Pandemic: Deliver Medicines like Moderna, Pfizer – collaborations between competitors with Government Bayer entered into Vaccines in 5 days, all processes had to change access innovations developed over decades for medical solutions 

  • Q&A 12:35 PM – 12:50 PM  

12:35 PM – 12:55 PM FIRESIDE

Building a GCT Portfolio

GCT represents a large and growing market for novel therapeutics that has several segments. These include Cardiovascular Disease, Cancer, Neurological Diseases, Infectious Disease, Ophthalmology, Benign Blood Disorders, and many others; Manufacturing and Supply Chain including CDMO’s and CMO’s; Stem Cells and Regenerative Medicine; Tools and Platforms (viral vectors, nano delivery, gene editing, etc.). Bayer’s pharma business participates in virtually all of these segments. How does a Company like Bayer approach the development of a portfolio in a space as large and as diverse as this one? How does Bayer approach the support of the production infrastructure with unique demands and significant differences from its historical requirements? Moderator:

Shinichiro Fuse, PhD

  • Managing Partner, MPM Capital

Speaker: Wolfram Carius, PhD

  • EVP, Pharmaceuticals, Head of Cell & Gene Therapy, Bayer AG

CGT will bring treatment to cure, delivery of therapies 

Be a Leader repair, regenerate, cure

Technology and Science for CGT – building a portfolio vs single asset decision criteria development of IP market access patients access acceleration of new products

Bayer strategy: build platform for use by four domains  

Gener augmentation

Autologeneic therapy, analytics

Gene editing

Oncology Cell therapy tumor treatment: What kind of cells – the jury is out

Of 23 product launch at Bayer no prediction is possible some high some lows 

  • Q&A 1:00 PM – 1:15 PM  

12:55 PM – 1:35 PM

Lunch

  1:40 PM – 2:05 PM

GCT Delivery | Perfecting the Technology

Gene delivery uses physical, chemical, or viral means to introduce genetic material into cells. As more genetically modified therapies move closer to the market, challenges involving safety, efficacy, and manufacturing have emerged. Optimizing lipidic and polymer nanoparticles and exosomal delivery is a short-term priority. This panel will examine how the short-term and long-term challenges are being tackled particularly for non-viral delivery modalities. Moderator: Natalie Artzi, PhD

  • Assistant Professor, BWH

Speakers: Geoff McDonough, MD

  • CEO, Generation Bio

Sonya Montgomery

  • CMO, Evox Therapeutics

Laura Sepp-Lorenzino, PhD

  • Chief Scientific Officer, Executive Vice President, Intellia Therapeutics

Doug Williams, PhD

  • CEO, Codiak BioSciences
  • Q&A 2:10 PM – 2:25 PM  

2:05 PM – 2:10 PM

Invention Discovery Grant Announcement

  2:10 PM – 2:20 PM FIRST LOOK

Enhancing vesicles for therapeutic delivery of bioproducts

Xandra Breakefield, PhD

  • Geneticist, MGH, MGH
  • Professor, Neurology, HMS
  • Q&A 2:20 PM – 2:35 PM  

2:20 PM – 2:30 PM FIRST LOOK

Versatile polymer-based nanocarriers for targeted therapy and immunomodulation

Natalie Artzi, PhD

  • Assistant Professor, BWH
  • Q&A 2:30 PM – 2:45 PM  

2:55 PM – 3:20 PM HOT TOPICS

Gene Editing | Achieving Therapeutic Mainstream

Gene editing was recognized by the Nobel Committee as “one of gene technology’s sharpest tools, having a revolutionary impact on life sciences.” Introduced in 2011, gene editing is used to modify DNA. It has applications across almost all categories of disease and is also being used in agriculture and public health.

Today’s panel is made up of pioneers who represent foundational aspects of gene editing.  They will discuss the movement of the technology into the therapeutic mainstream.

  • Successes in gene editing – lessons learned from late-stage assets (sickle cell, ophthalmology)
  • When to use what editing tool – pros and cons of traditional gene-editing v. base editing.  Is prime editing the future? Specific use cases for epigenetic editing.
  • When we reach widespread clinical use – role of off-target editing – is the risk real?  How will we mitigate? How practical is patient-specific off-target evaluation?

Moderator: J. Keith Joung, MD, PhD

  • Robert B. Colvin, M.D. Endowed Chair in Pathology & Pathologist, MGH
  • Professor of Pathology, HMS

Speakers: John Evans

  • CEO, Beam Therapeutics

Lisa Michaels

  • EVP & CMO, Editas Medicine
  • Q&A 3:25 PM – 3:50 PM  

3:25 PM – 3:50 PM HOT TOPICS

Common Blood Disorders | Gene Therapy

There are several dozen companies working to develop gene or cell therapies for Sickle Cell Disease, Beta Thalassemia, and  Fanconi Anemia. In some cases, there are enzyme replacement therapies that are deemed effective and safe. In other cases, the disease is only managed at best. This panel will address a number of questions that are particular to this class of genetic diseases:

  • What are the pros and cons of various strategies for treatment? There are AAV-based editing, non-viral delivery even oligonucleotide recruitment of endogenous editing/repair mechanisms. Which approaches are most appropriate for which disease?
  • How can companies increase the speed of recruitment for clinical trials when other treatments are available? What is the best approach to educate patients on a novel therapeutic?
  • How do we best address ethnic and socio-economic diversity to be more representative of the target patient population?
  • How long do we have to follow up with the patients from the scientific, patient’s community, and payer points of view? What are the current FDA and EMA guidelines for long-term follow-up?
  • Where are we with regards to surrogate endpoints and their application to clinically meaningful endpoints?
  • What are the emerging ethical dilemmas in pediatric gene therapy research? Are there challenges with informed consent and pediatric assent for trial participation?
  • Are there differences in reimbursement policies for these different blood disorders? Clearly durability of response is a big factor. Are there other considerations?

Moderator: David Scadden, MD

  • Director, Center for Regenerative Medicine; Co-Director, Harvard Stem Cell Institute, Director, Hematologic Malignancies & Experimental Hematology, MGH
  • Jordan Professor of Medicine, HMS

Speakers: Samarth Kukarni, PhDNick Leschly

  • Chief Bluebird, Bluebird Bio

Mike McCune, MD, PhD

  • Head, HIV Frontiers, Global Health Innovative Technology Solutions, Bill & Melinda Gates Foundation
  • Q&A 3:55 PM – 4:15 PM  

3:50 PM – 4:00 PM FIRST LOOK

Gene Editing

J. Keith Joung, MD, PhD

  • Robert B. Colvin, M.D. Endowed Chair in Pathology & Pathologist, MGH
  • Professor of Pathology, HMS
  • Q&A 4:00 PM – 4:20 PM  

4:20 PM – 4:45 PM HOT TOPICS

Gene Expression | Modulating with Oligonucleotide-Based Therapies

Oligonucleotide drugs have recently come into their own with approvals from companies such as Biogen, Alnylam, Novartis and others. This panel will address several questions:

How important is the delivery challenge for oligonucleotides? Are technological advancements emerging that will improve the delivery of oligonucleotides to the CNS or skeletal muscle after systemic administration?

  • Will oligonucleotides improve as a class that will make them even more effective?   Are further advancements in backbone chemistry anticipated, for example.
  • Will oligonucleotide based therapies blaze trails for follow-on gene therapy products?
  • Are small molecules a threat to oligonucleotide-based therapies?
  • Beyond exon skipping and knock-down mechanisms, what other roles will oligonucleotide-based therapies take mechanistically — can genes be activating oligonucleotides?  Is there a place for multiple mechanism oligonucleotide medicines?
  • Are there any advantages of RNAi-based oligonucleotides over ASOs, and if so for what use?

Moderator: Jeannie Lee, MD, PhD

  • Molecular Biologist, MGH
  • Professor of Genetics, HMS

Speakers: Bob Brown, PhD

  • CSO, EVP of R&D, Dicerna

Brett Monia, PhD

  • CEO, Ionis

Alfred Sandrock, MD, PhD

  • EVP, R&D and CMO, Biogen
  • Q&A 4:50 PM – 5:05 PM  

4:45 PM – 4:55 PM FIRST LOOK

RNA therapy for brain cancer

Pierpaolo Peruzzi, MD, PhD

  • Nuerosurgery, BWH
  • Assistant Professor of Neurosurgery, HMS
  • Q&A 4:55 PM – 5:15 PM  

Friday, May 21, 2021

Computer connection to the iCloud of WordPress.com FROZE completely at 10:30AM EST and no file update was possible. COVERAGE OF MAY 21, 2021 IS RECORDED BELOW FOLLOWING THE AGENDA BY COPY AN DPASTE OF ALL THE TWEETS I PRODUCED ON MAY 21, 2021

8:30 AM – 8:55 AM

Venture Investing | Shaping GCT Translation

What is occurring in the GCT venture capital segment? Which elements are seeing the most activity? Which areas have cooled? How is the investment market segmented between gene therapy, cell therapy and gene editing? What makes a hot GCT company? How long will the market stay frothy? Some review of demographics — # of investments, sizes, etc. Why is the market hot and how long do we expect it to stay that way? Rank the top 5 geographic markets for GCT company creation and investing? Are there academic centers that have been especially adept at accelerating GCT outcomes? Do the business models for the rapid development of coronavirus vaccine have any lessons for how GCT technology can be brought to market more quickly? Moderator:   Meredith Fisher, PhD

  • Partner, Mass General Brigham Innovation Fund

Strategies, success what changes are needed in the drug discovery process   Speakers:  

Bring disruptive frontier as a platform with reliable delivery CGT double knock out disease cure all change efficiency and scope human centric vs mice centered right scale of data converted into therapeutics acceleratetion 

Innovation in drugs 60% fails in trial because of Toxicology system of the future deal with big diseases

Moderna is an example in unlocking what is inside us Microbiome and beyond discover new drugs epigenetics  

  • Robert Nelsen
    • Managing Director, Co-founder, ARCH Venture Partners

Manufacturing change is not a new clinical trial FDA need to be presented with new rethinking for big innovations Drug pricing cheaper requires systematization How to systematically scaling up systematize the discovery and the production regulatory innovations

Responsibility mismatch should be and what is “are”

Long term diseases Stack holders and modalities risk benefir for populations 

  • Q&A 9:00 AM – 9:15 AM  

9:00 AM – 9:25 AM

Regenerative Medicine | Stem Cells

The promise of stem cells has been a highlight in the realm of regenerative medicine. Unfortunately, that promise remains largely in the future. Recent breakthroughs have accelerated these potential interventions in particular for treating neurological disease. Among the topics the panel will consider are:

  • Stem cell sourcing
  • Therapeutic indication growth
  • Genetic and other modification in cell production
  • Cell production to final product optimization and challenges
  • How to optimize the final product
  • Moderator:
    • Ole Isacson, MD, PhD
      • Director, Neuroregeneration Research Institute, McLean
      • Professor, Neurology and Neuroscience, MGH, HMS

Opportunities in the next generation of the tactical level Welcome the oprimism and energy level of all Translational medicine funding stem cells enormous opportunities 

  • Speakers:
  • Kapil Bharti, PhD
    • Senior Investigator, Ocular and Stem Cell Translational Research Section, NIH
    • first drug required to establish the process for that innovations design of animal studies not done before
    • Off-th-shelf one time treatment becoming cure 
    •  Intact tissue in a dish is fragile to maintain metabolism
    Joe Burns, PhD
    • VP, Head of Biology, Decibel Therapeutics
    • Ear inside the scall compartments and receptors responsible for hearing highly differentiated tall ask to identify cell for anticipated differentiation
    • multiple cell types and tissue to follow
    Erin Kimbrel, PhD
    • Executive Director, Regenerative Medicine, Astellas
    • In the ocular space immunogenecity
    • regulatory communication
    • use gene editing for immunogenecity Cas1 and Cas2 autologous cells
    • gene editing and programming big opportunities 
    Nabiha Saklayen, PhD
    • CEO and Co-Founder, Cellino
    • scale production of autologous cells foundry using semiconductor process in building cassettes
    • solution for autologous cells
  • Q&A 9:30 AM – 9:45 AM  

9:25 AM – 9:35 AM FIRST LOOK

Stem Cells

Bob Carter, MD, PhD

  • Chairman, Department of Neurosurgery, MGH
  • William and Elizabeth Sweet, Professor of Neurosurgery, HMS
  • Cell therapy for Parkinson to replace dopamine producing cells lost ability to produce dopamin
  • skin cell to become autologous cells reprograms to become cells producing dopamine
  • transplantation fibroblast cells metabolic driven process lower mutation burden 
  • Quercetin inhibition elimination undifferentiated cells graft survival oxygenation increased 
  • Q&A 9:35 AM – 9:55 AM  

9:35 AM – 10:00 AM

Capital Formation ’21-30 | Investing Modes Driving GCT Technology and Timing

The dynamics of venture/PE investing and IPOs are fast evolving. What are the drivers – will the number of investors grow will the size of early rounds continue to grow? How is this reflected in GCT target areas, company design, and biotech overall? Do patients benefit from these trends? Is crossover investing a distinct class or a little of both? Why did it emerge and what are the characteristics of the players?  Will SPACs play a role in the growth of the gene and cell therapy industry. What is the role of corporate investment arms eg NVS, Bayer, GV, etc. – has a category killer emerged?  Are we nearing the limit of what the GCT market can absorb or will investment capital continue to grow unabated? Moderator: Roger Kitterman

  • VP, Venture, Mass General Brigham
  • Saturation reached or more investment is coming in CGT 

Speakers: Ellen Hukkelhoven, PhD

  • Managing Director, Perceptive Advisors
  • Cardiac area transduct cells
  • matching tools
  • 10% success of phase 1 in drug development next phase matters more 

Peter Kolchinsky, PhD

  • Founder and Managing Partner, RA Capital Management
  • Future proof for new comers disruptors 
  • Ex Vivo gene therapy to improve funding products what tool kit belongs to 
  • company insulation from next instability vs comapny stabilizing themselves along few years
  • Company interested in SPAC 
  • cross over investment vs SPAC
  • Multi Omics in cancer early screening metastatic diseas will be wiped out 

Deep Nishar

  • Senior Managing Partner, SoftBank Investment Advisors
  • Young field vs CGT started in the 80s 
  • high payloads is a challenge
  • cost effective fast delivery to large populations
  • Mission oriented by the team and management  
  • Multi Omics disease modality 

Oleg Nodelman

  • Founder & Managing Partner, EcoR1 Capital
  • Invest in company next round of investment will be IPO
  • Help company raise money cross over investment vs SPAC
  • Innovating ideas from academia in need for funding 
  • Q&A 10:05 AM – 10:20 AM  

10:00 AM – 10:10 AM FIRST LOOK

New scientific and clinical developments for autologous stem cell therapy for Parkinson’s disease patients

Penelope Hallett, PhD

  • NRL, McLean
  • Assistant Professor Psychiatry, HMS
  • Pharmacologic agent in existing cause another disorders locomo-movement related 
  • efficacy Autologous cell therapy transplantation approach program T cells into dopamine generating neurons greater than Allogeneic cell transplantation 
  • Q&A 10:10 AM – 10:30 AM  

10:10 AM – 10:35 AM HOT TOPICS

Neurodegenerative Clinical Outcomes | Achieving GCT Success

Can stem cell-based platforms become successful treatments for neurodegenerative diseases?

  •  What are the commonalities driving GCT success in neurodegenerative disease and non-neurologic disease, what are the key differences?
  • Overcoming treatment administration challenges
  • GCT impact on degenerative stage of disease
  • How difficult will it be to titrate the size of the cell therapy effect in different neurological disorders and for different patients?
  • Demonstrating clinical value to patients and payers
  • Revised clinical trial models to address issues and concerns specific to GCT

Moderator: Bob Carter, MD, PhD

  • Chairman, Department of Neurosurgery, MGH
  • William and Elizabeth Sweet, Professor of Neurosurgery, HMS
  • Neurogeneration REVERSAL or slowing down 

Speakers: Erwan Bezard, PhD

  • INSERM Research Director, Institute of Neurodegenerative Diseases
  • Cautious on reversal 
  • Early intervantion versus late

Nikola Kojic, PhD

  • CEO and Co-Founder, Oryon Cell Therapies
  • Autologus cell therapy placed focal replacing missing synapses reestablishment of neural circuitary

Geoff MacKay

  • President & CEO, AVROBIO
  • Prevent condition to be manifested in the first place 
  • clinical effect durable single infusion preventions of symptoms to manifest 
  • Cerebral edema – stabilization
  • Gene therapy know which is the abnormal gene grafting the corrected one 
  • More than biomarker as end point functional benefit not yet established  

Viviane Tabar, MD

  • Founding Investigator, BlueRock Therapeutics
  • Chair of Neurosurgery, Memorial Sloan Kettering
  • Current market does not have delivery mechanism that a drug-delivery is the solution Trials would fail on DELIVERY
  • Immune suppressed patients during one year to avoid graft rejection Autologous approach of Parkinson patient genetically mutated reprogramed as dopamine generating neuron – unknowns are present
  • Circuitry restoration
  • Microenvironment disease ameliorate symptoms – education of patients on the treatment 
  • Q&A 10:40 AM – 10:55 AM  

10:35 AM – 11:35 AM

Disruptive Dozen: 12 Technologies that Will Reinvent GCT

Nearly one hundred senior Mass General Brigham Harvard faculty contributed to the creation of this group of twelve GCT technologies that they believe will breakthrough in the next two years. The Disruptive Dozen identifies and ranks the GCT technologies that will be available on at least an experimental basis to have the chance of significantly improving health care. 11:35 AM – 11:45 AM

Concluding Remarks

The co-chairs convene to reflect on the insights shared over the three days. They will discuss what to expect at the in-person GCT focused May 2-4, 2022 World Medical Innovation Forum.

ALL THE TWEETS PRODUCED ON MAY 21, 2021 INCLUDE THE FOLLOWING:

Aviva Lev-Ari

@AVIVA1950

  • @AVIVA1950_PIcs

4h

#WMIF2021

@MGBInnovation

Erwan Bezard, PhD INSERM Research Director, Institute of Neurodegenerative Diseases Cautious on reversal

@pharma_BI

@AVIVA1950

Aviva Lev-Ari

@AVIVA1950

  • @AVIVA1950_PIcs

4h

#WMIF2021

@MGBInnovation

Nikola Kojic, PhD CEO and Co-Founder, Oryon Cell Therapies Autologus cell therapy placed focal replacing missing synapses reestablishment of neural circutary

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

4h

#WMIF2021

@MGBInnovation

Bob Carter, MD, PhD Chairman, Department of Neurosurgery, MGH William and Elizabeth Sweet, Professor of Neurosurgery, HMS Neurogeneration REVERSAL or slowing down? 

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

4h

#WMIF2021

@MGBInnovation

Penelope Hallett, PhD NRL, McLean Assistant Professor Psychiatry, HMS efficacy Autologous cell therapy transplantation approach program T cells into dopamine genetating cells greater than Allogeneic cell transplantation 

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

4h

#WMIF2021

@MGBInnovation

Penelope Hallett, PhD NRL, McLean Assistant Professor Psychiatry, HMS Pharmacologic agent in existing cause another disorders locomo-movement related 

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

@AVIVA1950_PIcs

4h

#WMIF2021

@MGBInnovation

Roger Kitterman VP, Venture, Mass General Brigham Saturation reached or more investment is coming in CGT Multi OMICS and academia originated innovations are the most attractive areas

@pharma_BI

@AVIVA1950

1

3

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

@AVIVA1950_PIcs

4h

#WMIF2021

@MGBInnovation

Roger Kitterman VP, Venture, Mass General Brigham Saturation reached or more investment is coming in CGT 

@pharma_BI

@AVIVA1950

1

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

4h

#WMIF2021

@MGBInnovation

Oleg Nodelman Founder & Managing Partner, EcoR1 Capital Invest in company next round of investment will be IPO 20% discount

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

@AVIVA1950_PIcs

4h

#WMIF2021

@MGBInnovation

Peter Kolchinsky, PhD Founder and Managing Partner, RA Capital Management Future proof for new comers disruptors  Ex Vivo gene therapy to improve funding products what tool kit belongs to 

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

4h

#WMIF2021

@MGBInnovation

Deep Nishar Senior Managing Partner, SoftBank Investment Advisors Young field vs CGT started in the 80s  high payloads is a challenge 

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

5h

#WMIF2021

@MGBInnovation

Bob Carter, MD, PhD MGH, HMS cells producing dopamine transplantation fibroblast cells metabolic driven process lower mutation burden  Quercetin inhibition elimination undifferentiated cells graft survival oxygenation increased 

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

5h

#WMIF2021

@MGBInnovation

Chairman, Department of Neurosurgery, MGH, Professor of Neurosurgery, HMS Cell therapy for Parkinson to replace dopamine producing cells lost ability to produce dopamine skin cell to become autologous cells reprogramed  

@pharma_BI

@AVIVA1950

#WMIF2021

@MGBInnovation

Kapil Bharti, PhD Senior Investigator, Ocular and Stem Cell Translational Research Section, NIH Off-th-shelf one time treatment becoming cure  Intact tissue in a dish is fragile to maintain metabolism to become like semiconductors

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

@AVIVA1950_PIcs

5h

#WMIF2021

@MGBInnovation

Ole Isacson, MD, PhD Director, Neuroregeneration Research Institute, McLean Professor, Neurology and Neuroscience, MGH, HMS Opportunities in the next generation of the tactical level Welcome the oprimism and energy level of all

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

5h

#WMIF2021

@MGBInnovation

Erin Kimbrel, PhD Executive Director, Regenerative Medicine, Astellas In the ocular space immunogenecity regulatory communication use gene editing for immunogenecity Cas1 and Cas2 autologous cells

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

5h

#WMIF2021

@MGBInnovation

Nabiha Saklayen, PhD CEO and Co-Founder, Cellino scale production of autologous cells foundry using semiconductor process in building cassettes by optic physicists

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

5h

#WMIF2021

@MGBInnovation

Joe Burns, PhD VP, Head of Biology, Decibel Therapeutics Ear inside the scall compartments and receptors responsible for hearing highly differentiated tall ask to identify cell for anticipated differentiation control by genomics

@pharma_BI

@AVIVA1950

Aviva Lev-Ari

@AVIVA1950

5h

#WMIF2021

@MGBInnovation

Kapil Bharti, PhD Senior Investigator, Ocular and Stem Cell Translational Research Section, NIH first drug required to establish the process for that innovations design of animal studies not done before 

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

5h

#WMIF2021

@MGBInnovation

Meredith Fisher, PhD Partner, Mass General Brigham Innovation Fund Strategies, success what changes are needed in the drug discovery process@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

5h

#WMIF2021

@MGBInnovation

Robert Nelsen Managing Director, Co-founder, ARCH Venture Partners Manufacturing change is not a new clinical trial FDA need to be presented with new rethinking for big innovations Drug pricing cheaper requires systematization

@pharma_BI

@AVIVA1950

1

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

5h

#WMIF2021

@MGBInnovation

Kush Parmar, MD, PhD Managing Partner, 5AM Ventures Responsibility mismatch should be and what is “are”

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

5h

#WMIF2021

@MGBInnovation

David Berry, MD, PhD CEO, Valo Health GP, Flagship Pioneering Bring disruptive frontier platform reliable delivery CGT double knockout disease cure all change efficiency scope human centric vs mice centered right scale acceleration

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

6h

#WMIF2021

@MGBInnovation

Kush Parmar, MD, PhD Managing Partner, 5AM Ventures build it yourself, benefit for patients FIrst Look at MGB shows MEE innovation on inner ear worthy investment  

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

6h

#WMIF2021

@MGBInnovation

Robert Nelsen Managing Director, Co-founder, ARCH Venture Partners Frustration with supply chain during the Pandemic, GMC anticipation in advance CGT rapidly prototype rethink and invest proactive investor .edu and Pharma

@pharma_BI

@AVIVA1950

Read Full Post »


Gene Therapy could be a Boon to Alzheimer’s disease (AD): A first-in-human clinical trial proposed

Reporter: Dr. Premalata Pati, Ph.D., Postdoc

A recent research work performed by the Researchers at the University of California San Diego School of Medicine has shared their first-in-human Phase I clinical trial to assess the safety and viability of gene therapy to deliver a key protein into the brains of persons with Alzheimer’s Disease (AD) or Mild Cognitive Impairment (MCI), a condition that often precedes full-blown dementia.  

Mark Tuszynski, M.D., Ph.D., Professor of Neuroscience and Director of the Translational Neuroscience Institute at UC San Diego and team predicted that Gene therapy could be a boon to potential treatments for the disorders like AD and MCI.

The study provides an insight into the genetic source of these mental diseases.

The roots of mental disorders have remained an enigma for so many years. Alzheimer’s disease (AD) is an irreversible, progressive brain disorder that slowly destroys memory and thinking skills and, eventually, the ability to carry out the simplest tasks. AD is a neurodegenerative condition. A buildup of plaques and tangles in the brain, along with cell death, causes memory loss and cognitive decline. In most people with the disease, those with the late-onset type – symptoms first appear in their mid-60s. Alzheimer’s disease is the mostly appearing type of dementia in patients.

Drawing comparing a normal aged brain (left) and the brain of a person with Alzheimer’s (right).
Image Source: https://en.wikipedia.org/wiki/Alzheimer%27s_disease

What the study impart?

Despite decades of effort and billions of dollars of research investment, there are just mere two symptomatic treatments for AD. There is no cure or approved way to slow or stop the progression of the neurological disorder that afflicts more than 5 million Americans and is the sixth leading cause of death in the United States.

Prof. Tuszynski said gene therapy has been tested on multiple diseases and conditions, represents a different approach to a disease that requires new ways of thinking about the disease and new attempts at treatments.

The research team found that delivering the BDNF to the part of the brain that is affected earliest in Alzheimer’s disease; the entorhinal cortex and hippocampus – was able to protect from ongoing cell degeneration by reversing the loss of connections. “These trials were observed in aged rats, amyloid mice, and aged monkeys.”

The protein, called Brain-Derived Neurotrophic Factor or BDNF, a family of growth factors found in the Brain and Central Nervous System that support the survival of existing neurons and promote growth and differentiation of new neurons and synapses. BDNF is especially important in brain regions susceptible to degeneration in AD. It is normally produced throughout life in the entorhinal cortex, an important memory center in the brain and one of the first places where the effects of AD typically appear in the form of short-term memory loss. Persons with AD have diminished levels of BDNF.

However, BDNF is a large molecule and cannot pass through the Blood-Brain Barrier. As a solution, researchers will use gene therapy in which a harmless Adeno-Associated Virus (AAV2) is modified to carry the BDNF gene and injected directly into targeted regions of the brain, where researchers hope it will prompt the production of therapeutic BDNF in nearby cells.

Precautions were taken precisely in injecting the patient to avoid exposure to surrounding degenerating neurons since freely circulating BDNF can cause adverse effects, such as seizures or epileptic conditions.

The recent research and study speculate a safe and feasible assessment of the AAV2-BDNF pathway in humans. A previous gene therapy trial from 2001 to 2012 using AAV2 and a different protein called Nerve Growth Factor (NGF) was carried out by Prof. Tuszynski and team where they observed immense growth, axonal sprouting, and activation of functional markers in the brains of participants.

He also shared that “The BDNF gene therapy trial in AD represents an advancement over the earlier NGF trial, BDNF is a more potent growth factor than NGF for neural circuits that degenerate in AD. Besides, new methods for delivering BDNF will more effectively deliver and distribute it into the entorhinal cortex and hippocampus.”

The research team hopes that the three-year-long trial will recruit 12 participants with either diagnosed AD or MCI to receive AAV2-BDNF treatment, with another 12 persons serving as comparative controls over that period.

The researchers have plans to build on recent successes of gene therapy in other diseases, including a breakthrough success in the treatment of congenital weakness in infants (spinal muscular atrophy) and blindness (Leber Hereditary Optic Neuropathy, a form of retinitis pigmentosa).”

Main Source

https://www.universityofcalifornia.edu/news/could-gene-therapy-halt-progression-alzheimers-disease-first-human-clinical-trial-will-seek?utm_source=fiat-lux

Related Articles

https://pharmaceuticalintelligence.com/2016/04/21/alzheimers-disease-and-dm/
https://pharmaceuticalintelligence.com/2016/03/21/role-of-infectious-agent-in-alzheimers-disease/
https://pharmaceuticalintelligence.com/2016/02/15/alzheimers-disease-tau-art-thou-or-amyloid/

Read Full Post »


Happy 80th Birthday: Radioiodine (RAI) Theranostics: Collaboration between Physics and Medicine, the Utilization of Radionuclides to Diagnose and Treat: Radiation Dosimetry by Discoverer Dr. Saul Hertz, the early history of RAI in diagnosing and treating Thyroid diseases and Theranostics

 

Guest Author: Barbara Hertz

 203-661-0777

htziev@aol.com

Celebrating eighty years of radionuclide therapy and the work of Saul Hertz

First published: 03 February 2021

Both authors contributed to the development, drafting and final editing of this manuscript and are responsible for its content.

Abstract

March 2021 will mark the eightieth anniversary of targeted radionuclide therapy, recognizing the first use of radioactive iodine to treat thyroid disease by Dr. Saul Hertz on March 31, 1941. The breakthrough of Dr. Hertz and collaborator physicist Arthur Roberts was made possible by rapid developments in the fields of physics and medicine in the early twentieth century. Although diseases of the thyroid gland had been described for centuries, the role of iodine in thyroid physiology had been elucidated only in the prior few decades. After the discovery of radioactivity by Henri Becquerel in 1897, rapid advancements in the field, including artificial production of radioactive isotopes, were made in the subsequent decades. Finally, the diagnostic and therapeutic use of radioactive iodine was based on the tracer principal that was developed by George de Hevesy. In the context of these advancements, Hertz was able to conceive the potential of using of radioactive iodine to treat thyroid diseases. Working with Dr. Roberts, he obtained the experimental data and implemented it in the clinical setting. Radioiodine therapy continues to be a mainstay of therapy for hyperthyroidism and thyroid cancer. However, Hertz struggled to gain recognition for his accomplishments and to continue his work and, with his early death in 1950, his contributions have often been overlooked until recently. The work of Hertz and others provided a foundation for the introduction of other radionuclide therapies and for the development of the concept of theranostics.

SOURCE

https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/acm2.13175

 

 

SOURCE

https://www.youtube.com/watch?v=34Qhm8CeMuc

 

http://www.wjnm.org/article.asp?issn=1450-1147;year=…

http://www.wjnm.org/text.asp?2019/18/1/8/250309

Abstract

Dr. Saul Hertz was Director of The Massachusetts General Hospital’s Thyroid Unit, when he heard about the development of artificial radioactivity. He conceived and brought from bench to bedside the successful use of radioiodine (RAI) to diagnose and treat thyroid diseases. Thus was born the science of theragnostics used today for neuroendocrine tumors and prostate cancer. Dr. Hertz’s work set the foundation of targeted precision medicine.

Keywords: Dr. Saul Hertz, nuclear medicine, radioiodine

 

How to cite this article:
Hertz B. A tribute to Dr. Saul Hertz: The discovery of the medical uses of radioiodine. World J Nucl Med 2019;18:8-12

 

How to cite this URL:
Hertz B. A tribute to Dr. Saul Hertz: The discovery of the medical uses of radioiodine. World J Nucl Med [serial online] 2019 [cited 2021 Mar 2];18:8-12. Available from: http://www.wjnm.org/text.asp?2019/18/1/8/250309

 

 

  • Dr Saul Hertz (1905-1950) discovers the medical uses of radioiodine

Barbara Hertz, Pushan Bharadwaj, Bennett Greenspan»

Abstract » PDF» doi: 10.24911/PJNMed.175-1582813482

 

SOURCE

http://saulhertzmd.com/home

 

  • Happy 80th Birthday: Radioiodine (RAI) Theranostics

Thyroid practitioners and patients are acutely aware of the enormous benefit nuclear medicine has made to mankind. This month we celebrate the 80th anniversary of the early use of radioiodine(RAI).

Dr. Saul Hertz predicted that radionuclides “…would hold the key to the larger problem of cancer in general,” and may just be the best hope for diagnosing and treating cancer successfully.  Yes, RAI has been used for decades to diagnose and treat disease.  Today’s “theranostics,” a term that is a combination of “therapy” and “diagnosis” is utilized in the treatment of thyroid disease and cancer. 

            This short note is to celebrate Dr. Saul Hertz who conceived and brought from bench to bedside the medical uses of RAI; then in the form of 25 minute iodine-128.  

On March 31st 1941, Massachusetts General Hospital’s Dr. Saul Hertz (1905-1950) administered the first therapeutic use of Massachusetts Institute of Technology (MIT) cyclotron produced RAI.  This landmark case was the first in Hertz’s clinical studies conducted with MIT, physicist Arthur Roberts, Ph.D.

[Photo – Courtesy of Dr Saul Hertz Archives ]

Dr Saul Hertz demonstrating RAI Uptake Testing

            Dr. Hertz’s research and successful utilization of radionuclides to diagnose and treat diseases and conditions, established the use of radiation dosimetry and the collaboration between physics and medicine and other significant practices.   Sadly, Saul Hertz (a WWII veteran) died at a very young age.  

 

About Dr. Saul Hertz

Dr. Saul Hertz (1905 – 1950) discovered the medical uses of radionuclides.  His breakthrough work with radioactive iodine (RAI) created a dynamic paradigym change integrating the sciences.  Radioactive iodine (RAI) is the first and Gold Standard of targeted cancer therapies.  Saul Hertz’s research documents Hertz as the first and foremost person to conceive and develop the experimental data on RAI and apply it in the clinical setting.

Dr. Hertz was born to Orthodox Jewish immigrant parents in Cleveland, Ohio on April 20, 1905. He received his A.B. from the University of Michigan in 1925 with Phi Beta Kappa honors. He graduated from Harvard Medical School in 1929 at a time of quotas for outsiders. He fulfilled his internship and residency at Mt. Sinai Hospital in Cleveland. He came back to Boston in 1931 as a volunteer to join The Massachusetts General Hospital serving as the Chief of the Thyroid Unit from 1931 – 1943.

Two years after the discovery of artifically radioactivity, on November 12, 1936 Dr. Karl Compton, president of the Massachusetts Institute of Technology (MIT), spoke at Harvard Medical School.  President Compton’s topic was What Physics can do for Biology and Medicine. After the presentation Dr. Hertz spontaneously asked Dr. Compton this seminal question, “Could iodine be made radioactive artificially?” Dr. Compton responded in writing on December 15, 1936 that in fact “iodine can be made artificially radioactive.”

Shortly thereafter, a collaboration between Dr. Hertz (MGH) and Dr. Arthur Roberts, a physicist of MIT, was established. In late 1937, Hertz and Roberts created and produced animal studies  involving 48 rabbits that demonstrated that the normal thyroid gland concentrated Iodine 128 (non cyclotron produced), and the hyperplastic thyroid gland took up even more Iodine.  This was a GIANT step for Nuclear Medicine.

In early 1941, Dr. Hertz administer the first therapeutic treatment of MIT Markle Cyclotron produced radioactive iodine (RAI) at the Massachusetts General Hospital.  This  led to the first series of twenty-nine patients with hyperthyroidism being treated successfully with RAI. ( see “Research” RADIOACTIVE IODINE IN THE STUDY OF THYROID PHYSIOLOGY VII The use of Radioactive Iodine Therapy in Hyperthyroidism, Saul Hertz and Arthur Roberts, JAMA Vol. 31 Number 2).

In 1937, at the time of the rabbit studies Dr Hertz conceived of RAI in therapeutic treatment of thyroid carsonoma.  In 1942 Dr Hertz gave clinical trials of RAI to patients with thyroid carcinoma.

After serving in the Navy during World War II, Dr. Hertz wrote to the director of the Mass General Hospital in Boston, Dr. Paxon on March 12, 1946, “it is a coincidence that my new research project is in Cancer of the Thyroid, which I believe holds the key to the larger problem of cancer in general.”

Dr. Hertz established the Radioactive Isotope Research Institute, in September, 1946 with a major focus on the use of fission products for the treatment of thyroid cancer, goiter, and other malignant tumors. Dr Samuel Seidlin was the Associate Director and managed the New York City facilities. Hertz also researched the influence of hormones on cancer.

Dr. Hertz’s use of radioactive iodine as a tracer in the diagnostic process, as a treatment for Graves’ disease and in the treatment of cancer of the thyroid remain preferred practices. Saul Hertz is the Father of Theranostics.

Saul Hertz passed at 45 years old from a sudden death heart attack as documented by an autopsy. He leaves an enduring legacy impacting countless generations of patients, numerous institutions worldwide and setting the cornerstone for the field of Nuclear Medicine. A cancer survivor emailed, The cure delivered on the wings of prayer was Dr Saul Hertz’s discovery, the miracle of radioactive iodine. Few can equal such a powerful and precious gift. 

To read and hear more about Dr. Hertz and the early history of RAI in diagnosing and treating thyroid diseases and theranostics see –

http://saulhertzmd.com/home

 

   References in https://www.wjnm.org/article.asp?issn=1450-1147;year=2019;volume=18;issue=1;spage=8;epage=12;aulast=Hertz

 

Top

 

1.
Hertz S, Roberts A. Radioactive iodine in the study of thyroid physiology. VII The use of radioactive iodine therapy in hyperthyroidism. J Am Med Assoc 1946;131:81-6.  Back to cited text no. 1
2.
Hertz S. A plan for analysis of the biologic factors involved in experimental carcinogenesis of the thyroid by means of radioactive isotopes. Bull New Engl Med Cent 1946;8:220-4.  Back to cited text no. 2
3.
Thrall J. The Story of Saul Hertz, Radioiodine and the Origins of Nuclear Medicine. Available from: http://www.youtube.com/watch?v=34Qhm8CeMuc. [Last accessed on 2018 Dec 01].  Back to cited text no. 3
4.
Braverman L. 131 Iodine Therapy: A Brief History. Available from: http://www.am2016.aace.com/presentations/friday/F12/hertz_braverman.pdf. [Last accessed on 2018 Dec 01].  Back to cited text no. 4
5.
Hofman MS, Violet J, Hicks RJ, Ferdinandus J, Thang SP, Akhurst T, et al. [177Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): A single-centre, single-arm, phase 2 study. Lancet Oncol 2018;19:825-33.  Back to cited text no. 5
6.
Krolicki L, Morgenstern A, Kunikowska J, Koiziar H, Krolicki B, Jackaniski M, et al. Glioma Tumors Grade II/III-Local Alpha Emitters Targeted Therapy with 213 Bi-DOTA-Substance P, Endocrine Abstracts. Vol. 57. Society of Nuclear Medicine and Molecular Imaging; 2016. p. 632.  Back to cited text no. 6
7.
Baum RP, Kulkarni HP. Duo PRRT of neuroendocrine tumours using concurrent and sequential administration of Y-90- and Lu-177-labeled somatostatin analogues. In: Hubalewska-Dydejczyk A, Signore A, de Jong M, Dierckx RA, Buscombe J, Van de Wiel CJ, editors. Somatostatin Analogues from Research to Clinical Practice. New York: Wiley; 2015.  Back to cited text no. 7

 

SOURCE

From: htziev@aol.com” <htziev@aol.com>

Reply-To: htziev@aol.com” <htziev@aol.com>

Date: Tuesday, March 2, 2021 at 11:04 AM

To: “Aviva Lev-Ari, PhD, RN” <AvivaLev-Ari@alum.berkeley.edu>

Subject: Dr Saul Hertz : Discovery for the Medical Uses of RADIOIODINE (RAI) MARCH 31ST: 80 Years

 

Other related articles published in this Open Access Online Scientific Journal include the following:

 

Experience with Thyroid Cancer

Author: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2015/11/23/my-experience-with-thyroid-cancer/

 

New Guidelines and Meeting Information on Advanced Thyroid Cancer as Reported by Cancer Network (Meeting Highlights)

Reporter: Stephen J. Williams, Ph.D.

https://pharmaceuticalintelligence.com/2015/10/20/new-guidelines-and-meeting-information-on-advanced-thyroid-cancer-as-reported-by-cancer-network-meeting-highlights/

The Experience of a Patient with Thyroid Cancer

Interviewer and Curator: Larry H Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2014/07/14/the-experience-of-a-patient-with-thyroid-cancer/

 

Parathyroids and Bone Metabolism

Writer and Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2015/02/10/parathyroids-and-bone-metabolism/

 

Thyroid Function and Disorders

Writer and Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2015/02/05/thyroid-function-and-disorders/

Summary and Perspectives: Impairments in Pathological States: Endocrine Disorders, Stress Hypermetabolism and Cancer

Author and Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2014/11/09/summary-and-perspectives-impairments-in-pathological-states-endocrine-disorders-stress-hypermetabolism-cancer/

Introduction to Impairments in Pathological States: Endocrine Disorders, Stress Hypermetabolism and Cancer

Author and Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2014/11/08/introduction-to-impairments-in-pathological-states-endocrine-disorders-stress-hypermetabolism-cancer/

Metformin, Thyroid-Pituitary Axis, Diabetes Mellitus, and Metabolism

Larry H, Bernstein, MD, FCAP, Author and Curator
and Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/9/27/2014/Metformin,_thyroid-pituitary_ axis,_diabetes_mellitus,_and_metabolism

Autophagy-Modulating Proteins and Small Molecules Candidate Targets for Cancer Therapy: Commentary of Bioinformatics Approaches

Author and Curator: Larry H Bernstein, MD, FCAP and Article Architect: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2014/09/18/autophagy-modulating-proteins-and-small-molecules-candidate-targets-for-cancer-therapy-commentary-of-bioinformatics-approaches/

 

Neural Activity Regulating Endocrine Response

Writer and Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2015/02/13/neural-activity-regulating-endocrine-response/

 

Pituitary Neuroendocrine Axis

Writer and Curator: Larry H. Bernstein, MD, FCA

https://pharmaceuticalintelligence.com/2015/02/04/pituitary-neuroendocrine-axis/

On the Influence of Hormones on Cancer

VOLUME 4: Human Reproductive System, Genomic Endocrinology and Cancer Types

(Series D: BioMedicine & Immunology) Kindle Edition. On Amazon.com  since February 2, 2021

http://www.amazon.com/dp/B08VTFWVKM

Read Full Post »


Miniproteins against the COVID-19 Spike protein may be therapeutic

Reporter: Stephen J. Williams, PhD

Computer-designed proteins may protect against coronavirus

At a Glance

  • Researchers designed “miniproteins” that bound tightly to the SARS-CoV-2 spike protein and prevented the virus from infecting human cells in the lab.
  • More research is underway to test the most promising of the antiviral proteins.

 

 

 

 

 

 

 

An artist’s conception of computer-designed miniproteins (white) binding coronavirus spikes. UW Institute for Protein Design

The surface of SARS-CoV-2, the virus that causes COVID-19, is covered with spike proteins. These proteins latch onto human cells, allowing the virus to enter and infect them. The spike binds to ACE2 receptors on the cell surface. It then undergoes a structural change that allows it to fuse with the cell. Once inside, the virus can copy itself and produce more viruses.

Blocking entry of SARS-CoV-2 into human cells can prevent infection. Researchers are testing monoclonal antibody therapies that bind to the spike protein and neutralize the virus. But these antibodies, which are derived from immune system molecules, are large and not ideal for delivery through the nose. They’re also often not stable for long periods and usually require refrigeration.

Researchers led by Dr. David Baker of the University of Washington set out to design synthetic “miniproteins” that bind tightly to the coronavirus spike protein. Their study was funded in part by NIH’s National Institute of General Medical Sciences (NIGMS) and National Institute of Allergy and Infectious Diseases (NIAID). Findings appeared in Science on September 9, 2020.

The team used two strategies to create the antiviral miniproteins. First, they incorporated a segment of the ACE2 receptor into the small proteins. The researchers used a protein design tool they developed called Rosetta blueprint builder. This technology allowed them to custom build proteins and predict how they would bind to the receptor.

The second approach was to design miniproteins from scratch, which allowed for a greater range of possibilities. Using a large library of miniproteins, they identified designs that could potentially bind within a key part of the coronavirus spike called the receptor binding domain (RBD). In total, the team produced more than 100,000 miniproteins.

Next, the researchers tested how well the miniproteins bound to the RBD. The most promising candidates then underwent further testing and tweaking to improve binding.

Using cryo-electron microscopy, the team was able to build detailed pictures of how two of the miniproteins bound to the spike protein. The binding closely matched the predictions of the computational models.

Finally, the researchers tested whether three of the miniproteins could neutralize SARS-CoV-2. All protected lab-grown human cells from infection. Candidates LCB1 and LCB3 showed potent neutralizing ability. These were among the designs created from the miniprotein library. Tests suggested that these miniproteins may be more potent than the most effective antibody treatments reported to date.

“Although extensive clinical testing is still needed, we believe the best of these computer-generated antivirals are quite promising,” says Dr. Longxing Cao, the study’s first author. “They appear to block SARS-CoV-2 infection at least as well as monoclonal antibodies but are much easier to produce and far more stable, potentially eliminating the need for refrigeration.”

Notably, this study demonstrates the potential of computational models to quickly respond to future viral threats. With further development, researchers may be able to generate neutralizing designs within weeks of obtaining the genome of a new virus.

—by Erin Bryant

Source: https://www.nih.gov/news-events/nih-research-matters/computer-designed-proteins-may-protect-against-coronavirus

Original article in Science

De novo design of picomolar SARS-CoV-2 miniprotein inhibitors

 

  1. View ORCID ProfileLongxing Cao1,2
  2. Inna Goreshnik1,2
  3. View ORCID ProfileBrian Coventry1,2,3
  4. View ORCID ProfileJames Brett Case4
  5. View ORCID ProfileLauren Miller1,2
  6. Lisa Kozodoy1,2
  7. Rita E. Chen4,5
  8. View ORCID ProfileLauren Carter1,2
  9. View ORCID ProfileAlexandra C. Walls1
  10. Young-Jun Park1
  11. View ORCID ProfileEva-Maria Strauch6
  12. View ORCID ProfileLance Stewart1,2
  13. View ORCID ProfileMichael S. Diamond4,7
  14. View ORCID ProfileDavid Veesler1
  15. View ORCID ProfileDavid Baker1,2,8,*

See all authors and affiliations

Science  09 Sep 2020:
eabd9909
DOI: 10.1126/science.abd9909

Abstract

Targeting the interaction between the SARS-CoV-2 Spike protein and the human ACE2 receptor is a promising therapeutic strategy. We designed inhibitors using two de novo design approaches. Computer generated scaffolds were either built around an ACE2 helix that interacts with the Spike receptor binding domain (RBD), or docked against the RBD to identify new binding modes, and their amino acid sequences designed to optimize target binding, folding and stability. Ten designs bound the RBD with affinities ranging from 100pM to 10nM, and blocked ARS-CoV-2 infection of Vero E6 cells with IC 50 values between 24 pM and 35 nM; The most potent, with new binding modes, are 56 and 64 residue proteins (IC 50 ~ 0.16 ng/ml). Cryo-electron microscopy structures of these minibinders in complex with the SARS-CoV-2 spike ectodomain trimer with all three RBDs bound are nearly identical to the computational models. These hyperstable minibinders provide starting points for SARS-CoV-2 therapeutics.

 

RESEARCH ARTICLE

De novo design of picomolar SARS-CoV-2 miniprotein inhibitors

  1. View ORCID ProfileLongxing Cao1,2
  2. Inna Goreshnik1,2
  3. View ORCID ProfileBrian Coventry1,2,3
  4. View ORCID ProfileJames Brett Case4
  5. View ORCID ProfileLauren Miller1,2
  6. Lisa Kozodoy1,2
  7. Rita E. Chen4,5
  8. View ORCID ProfileLauren Carter1,2
  9. View ORCID ProfileAlexandra C. Walls1
  10. Young-Jun Park1
  11. View ORCID ProfileEva-Maria Strauch6
  12. View ORCID ProfileLance Stewart1,2
  13. View ORCID ProfileMichael S. Diamond4,7
  14. View ORCID ProfileDavid Veesler1
  15. View ORCID ProfileDavid Baker1,2,8,*

See all authors and affiliations

Science  09 Sep 2020:
eabd9909
DOI: 10.1126/science.abd9909

Abstract

Targeting the interaction between the SARS-CoV-2 Spike protein and the human ACE2 receptor is a promising therapeutic strategy. We designed inhibitors using two de novo design approaches. Computer generated scaffolds were either built around an ACE2 helix that interacts with the Spike receptor binding domain (RBD), or docked against the RBD to identify new binding modes, and their amino acid sequences designed to optimize target binding, folding and stability. Ten designs bound the RBD with affinities ranging from 100pM to 10nM, and blocked ARS-CoV-2 infection of Vero E6 cells with IC 50 values between 24 pM and 35 nM; The most potent, with new binding modes, are 56 and 64 residue proteins (IC 50 ~ 0.16 ng/ml). Cryo-electron microscopy structures of these minibinders in complex with the SARS-CoV-2 spike ectodomain trimer with all three RBDs bound are nearly identical to the computational models. These hyperstable minibinders provide starting points for SARS-CoV-2 therapeutics.

 

SARS-CoV-2 infection generally begins in the nasal cavity, with virus replicating there for several days before spreading to the lower respiratory tract (1). Delivery of a high concentration of a viral inhibitor into the nose and into the respiratory system generally might therefore provide prophylactic protection and/or therapeutic benefit for treatment of early infection, and could be particularly useful for healthcare workers and others coming into frequent contact with infected individuals. A number of monoclonal antibodies are in development as systemic treatments for COVID-19 (26), but these proteins are not ideal for intranasal delivery as antibodies are large and often not extremely stable molecules and the density of binding sites is low (two per 150 KDa. antibody); antibody-dependent disease enhancement (79) is also a potential issue. High-affinity Spike protein binders that block the interaction with the human cellular receptor angiotensin-converting enzyme 2 (ACE2) (10) with enhanced stability and smaller sizes to maximize the density of inhibitory domains could have advantages over antibodies for direct delivery into the respiratory system through intranasal administration, nebulization or dry powder aerosol. We found previously that intranasal delivery of small proteins designed to bind tightly to the influenza hemagglutinin can provide both prophylactic and therapeutic protection in rodent models of lethal influenza infection (11).

Design strategy

We set out to design high-affinity protein minibinders to the SARS-CoV-2 Spike RBD that compete with ACE2 binding. We explored two strategies: first we incorporated the alpha-helix from ACE2 which makes the majority of the interactions with the RBD into small designed proteins that make additional interactions with the RBD to attain higher affinity (Fig. 1A). Second, we designed binders completely from scratch without relying on known RBD-binding interactions (Fig. 1B). An advantage of the second approach is that the range of possibilities for design is much larger, and so potentially a greater diversity of high-affinity binding modes can be identified. For the first approach, we used the Rosetta blueprint builder to generate miniproteins which incorporate the ACE2 helix (human ACE2 residues 23 to 46). For the second approach, we used RIF docking (12) and design using large miniprotein libraries (11) to generate binders to distinct regions of the RBD surface surrounding the ACE2 binding site (Fig. 1 and fig. S1).

 

 

 

 

 

 

 

 

 

 

 

Download high-res image

Fig. 1 Overview of the computational design approaches.

(A) Design of helical proteins incorporating ACE2 helix. (B) Large scale de novo design of small helical scaffolds (top) followed by rotamer interaction field (RIF) docking to identify shape and chemically complementary binding modes.

For full article please  go to Science at https://science.sciencemag.org/content/early/2020/09/08/science.abd9909

 

Read Full Post »


Did FDA Reverse Course on Convalescent Plasma Therapy for COVID-19?

Reporter: Stephen J. Williams, PhD

 

Starting with a timeline of recent announcements by the FDA on convalescent plasma therapy

April 16, 2020

FDA STATEMENT

Coronavirus (COVID-19) Update: FDA Encourages Recovered Patients to Donate Plasma for Development of Blood-Related Therapies

 

As part of the all-of-America approach to fighting the COVID-19 pandemic, the U.S. Food and Drug Administration has been working with partners across the U.S. government, academia and industry to expedite the development and availability of critical medical products to treat this novel virus. Today, we are providing an update on one potential treatment called convalescent plasma and encouraging those who have recovered from COVID-19 to donate plasma to help others fight this disease.

Convalescent plasma is an antibody-rich product made from blood donated by people who have recovered from the disease caused by the virus. Prior experience with respiratory viruses and limited data that have emerged from China suggest that convalescent plasma has the potential to lessen the severity or shorten the length of illness caused by COVID-19. It is important that we evaluate this potential therapy in the context of clinical trials, through expanded access, as well as facilitate emergency access for individual patients, as appropriate.

The response to the agency’s recently announced national efforts to facilitate the development of and access to convalescent plasma has been tremendous. More than 1,040 sites and 950 physician investigators nationwide have signed on to participate in the Mayo Clinic-led expanded access protocol. A number of clinical trials are also taking place to evaluate the safety and efficacy of convalescent plasma and the FDA has granted numerous single patient emergency investigational new drug (eIND) applications as well.

Source: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-encourages-recovered-patients-donate-plasma-development-blood

August 23, 2020

 

Recommendations for Investigational COVID-19 Convalescent Plasma

 

  • FDA issues guidelines on clinical trials and obtaining emergency enrollment concerning convalescent plasma

FDA has issued guidance to provide recommendations to health care providers and investigators on the administration and study of investigational convalescent plasma collected from individuals who have recovered from COVID-19 (COVID-19 convalescent plasma) during the public health emergency.

The guidance provides recommendations on the following:

Because COVID-19 convalescent plasma has not yet been approved for use by FDA, it is regulated as an investigational product.  A health care provider must participate in one of the pathways described below.  FDA does not collect COVID-19 convalescent plasma or provide COVID-19 convalescent plasma.  Health care providers or acute care facilities should instead obtain COVID-19 convalescent plasma from an FDA-registered blood establishment.

Excerpts from the guidance document are provided below.

Background

The Food and Drug Administration (FDA or Agency) plays a critical role in protecting the United States (U.S.) from threats including emerging infectious diseases, such as the Coronavirus Disease 2019 (COVID-19) pandemic.  FDA is committed to providing timely guidance to support response efforts to this pandemic.

One investigational treatment being explored for COVID-19 is the use of convalescent plasma collected from individuals who have recovered from COVID-19.  Convalescent plasma that contains antibodies to severe acute respiratory syndrome coronavirus 2 or SARS-CoV-2 (the virus that causes COVID-19) is being studied for administration to patients with COVID-19. Use of convalescent plasma has been studied in outbreaks of other respiratory infections, including the 2003 SARS-CoV-1 epidemic, the 2009-2010 H1N1 influenza virus pandemic, and the 2012 MERS-CoV epidemic.

Although promising, convalescent plasma has not yet been shown to be safe and effective as a treatment for COVID-19. Therefore, it is important to study the safety and efficacy of COVID-19 convalescent plasma in clinical trials.

Pathways for Use of Investigational COVID-19 Convalescent Plasma

The following pathways are available for administering or studying the use of COVID-19 convalescent plasma:

  1. Clinical Trials

Investigators wishing to study the use of convalescent plasma in a clinical trial should submit requests to FDA for investigational use under the traditional IND regulatory pathway (21 CFR Part 312). CBER’s Office of Blood Research and Review is committed to engaging with sponsors and reviewing such requests expeditiously. During the COVID-19 pandemic, INDs may be submitted via email to CBERDCC_eMailSub@fda.hhs.gov.

  1. Expanded Access

An IND application for expanded access is an alternative for use of COVID-19 convalescent plasma for patients with serious or immediately life-threatening COVID-19 disease who are not eligible or who are unable to participate in randomized clinical trials (21 CFR 312.305). FDA has worked with multiple federal partners and academia to open an expanded access protocol to facilitate access to COVID-19 convalescent plasma across the nation. Access to this investigational product may be available through participation of acute care facilities in an investigational expanded access protocol under an IND that is already in place.

Currently, the following protocol is in place: National Expanded Access Treatment Protocol

  1. Single Patient Emergency IND

Although participation in clinical trials or an expanded access program are ways for patients to obtain access to convalescent plasma, for various reasons these may not be readily available to all patients in potential need. Therefore, given the public health emergency that the COVID-19 pandemic presents, and while clinical trials are being conducted and a national expanded access protocol is available, FDA also is facilitating access to COVID-19 convalescent plasma for use in patients with serious or immediately life-threatening COVID-19 infections through the process of the patient’s physician requesting a single patient emergency IND (eIND) for the individual patient under 21 CFR 312.310. This process allows the use of an investigational drug for the treatment of an individual patient by a licensed physician upon FDA authorization, if the applicable regulatory criteria are met.  Note, in such case, a licensed physician seeking to administer COVID-19 convalescent plasma to an individual patient must request the eIND (see 21 CFR 312.310(b)).

To Obtain a Single Patient Emergency IND  

The requesting physician may contact FDA by completing Form FDA 3926 (https://www.fda.gov/media/98616/download) and submitting the form by email to CBER_eIND_Covid-19@FDA.HHS.gov.

FACT SHEET FOR PATIENTS AND PARENTS/CAREGIVERS EMERGENCY USE AUTHORIZATION (EUA) OF COVID-19 CONVALESCENT PLASMA FOR TREATMENT OF COVID-19 IN HOSPITALIZED PATIENTS

  • FDA issues fact sheet for patients on donating plasma

August 23, 2020

 

FDA Issues Emergency Use Authorization for Convalescent Plasma as Potential Promising COVID–19 Treatment, Another Achievement in Administration’s Fight Against Pandemic

 

Today, the U.S. Food and Drug Administration issued an emergency use authorization (EUA) for investigational convalescent plasma for the treatment of COVID-19 in hospitalized patients as part of the agency’s ongoing efforts to fight COVID-19. Based on scientific evidence available, the FDA concluded, as outlined in its decision memorandum, this product may be effective in treating COVID-19 and that the known and potential benefits of the product outweigh the known and potential risks of the product.

Today’s action follows the FDA’s extensive review of the science and data generated over the past several months stemming from efforts to facilitate emergency access to convalescent plasma for patients as clinical trials to definitively demonstrate safety and efficacy remain ongoing.

The EUA authorizes the distribution of COVID-19 convalescent plasma in the U.S. and its administration by health care providers, as appropriate, to treat suspected or laboratory-confirmed COVID-19 in hospitalized patients with COVID-19.

Alex Azar, Health and Human Services Secretary:
“The FDA’s emergency authorization for convalescent plasma is a milestone achievement in President Trump’s efforts to save lives from COVID-19,” said Secretary Azar. “The Trump Administration recognized the potential of convalescent plasma early on. Months ago, the FDA, BARDA, and private partners began work on making this product available across the country while continuing to evaluate data through clinical trials. Our work on convalescent plasma has delivered broader access to the product than is available in any other country and reached more than 70,000 American patients so far. We are deeply grateful to Americans who have already donated and encourage individuals who have recovered from COVID-19 to consider donating convalescent plasma.”

Stephen M. Hahn, M.D., FDA Commissioner:
“I am committed to releasing safe and potentially helpful treatments for COVID-19 as quickly as possible in order to save lives. We’re encouraged by the early promising data that we’ve seen about convalescent plasma. The data from studies conducted this year shows that plasma from patients who’ve recovered from COVID-19 has the potential to help treat those who are suffering from the effects of getting this terrible virus,” said Dr. Hahn. “At the same time, we will continue to work with researchers to continue randomized clinical trials to study the safety and effectiveness of convalescent plasma in treating patients infected with the novel coronavirus.”

Scientific Evidence on Convalescent Plasma

Based on an evaluation of the EUA criteria and the totality of the available scientific evidence, the FDA’s Center for Biologics Evaluation and Research determined that the statutory criteria for issuing an EUA criteria were met.

The FDA determined that it is reasonable to believe that COVID-19 convalescent plasma may be effective in lessening the severity or shortening the length of COVID-19 illness in some hospitalized patients. The agency also determined that the known and potential benefits of the product, when used to treat COVID-19, outweigh the known and potential risks of the product and that that there are no adequate, approved, and available alternative treatments.

 

August 24, 2020

Donate COVID-19 Plasma

 

  • FDA posts video and blog about how to donate plasms if you had been infected with COVID

 

https://youtu.be/PlX15rWdBbY

 

 

Please go to https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/donate-covid-19-plasma

to read more from FDA

 

 

August 25, 2020

 

CLINICAL MEMORANDUM From: , OBRR/DBCD/CRS To: , OBRR Through: , OBRR/DBCD , OBRR/DBCD , OBRR/DBCD/CRS Re: EUA 26382: Emergency Use Authorization (EUA) Request (original request 8/12/20; amended request 8/23/20) Product: COVID-19 Convalescent Plasma Items reviewed: EUA request Fact Sheet for Health Care Providers Fact Sheet for Recipients Sponsor: Robert Kadlec, M.D. Assistant Secretary for Preparedness and Response (ASPR) Office of Assistant Secretary for Preparedness and Response (ASPR) U.S. Department of Health and Human Services (HHS) EXECUTIVE SUMMARY COVID-19 Convalescent Plasma (CCP), an unapproved biological product, is proposed for use under an Emergency Use Authorization (EUA) under section 564 of the Federal Food, Drug, and Cosmetic Act (the Act),(21 USC 360bbb-3) as a passive immune therapy for the treatment of hospitalized patients with COVID-19, a serious or life-threatening disease. There currently is no adequate, approved, and available alternative to CCP for treating COVID-19. The sponsor has pointed to four lines of evidence to support that CCP may be effective in the treatment of hospitalized patients with COVID-19: 1) History of convalescent plasma for respiratory coronaviruses; 2) Evidence of preclinical safety and efficacy in animal models; 3) Published studies of the safety and efficacy of CCP; and 4) Data on safety and efficacy from the National Expanded Access Treatment Protocol (EAP) sponsored by the Mayo Clinic. Considering the totality of the scientific evidence presented in the EUA, I conclude that current data for the use of CCP in adult hospitalized patients with COVID-19 supports the conclusion that CCP meets the “may be effective” criterion for issuance of an EUA from section 564(c)(2)(A) of the Act. It is reasonable to conclude that the known and potential benefits of CCP outweigh the known and potential risks of CCP for the proposed EUA. Current data suggest the largest clinical benefit is associated with high-titer units of CCP administered early course of the disease.

Source: https://www.fda.gov/media/141480/download

 

And Today August 26, 2020

  • A letter, from Senator Warren, to Commissioner Hahn from Senate Committee asking for documentation for any communication between FDA and White House

August 25, 2020 Dr. Stephen M. Hahn, M.D. Commissioner of Food and Drugs U.S. Food and Drug Administration 10903 New Hampshire Avenue Silver Spring, MD 20993 Dear Commissioner Hahn: We write regarding the U.S. Food and Drug Administration’s (FDA) troubling decision earlier this week to issue an Emergency Use Authorization (EUA) for convalescent plasma as a treatment for coronavirus disease 2019 (COVID-19).1 Reports suggests that the FDA granted the EUA amid intense political pressure from President Trump and other Administration officials, despite limited evidence of convalescent plasma’s effectiveness as a COVID-19 treatment.2 To help us better understand whether the issuance of the blood plasma EUA was motivated by politics, we request copies of any and all communications between FDA and White House officials regarding the blood plasma EUA.

Source: https://www.warren.senate.gov/imo/media/doc/2020.08.25%20Letter%20to%20FDA%20re%20Blood%20Plasma%20EUA.pdf

…….. which may have been a response to this article

FDA chief walks back comments on effectiveness of coronavirus plasma treatment

 

From CNBC: https://www.cnbc.com/2020/08/25/fda-chief-walks-back-comments-on-effectiveness-of-coronavirus-plasma-treatment.html

PUBLISHED TUE, AUG 25 202010:45 AM EDTUPDATED TUE, AUG 25 20204:12 PM EDT

Berkeley Lovelace Jr.@BERKELEYJR

Will Feuer@WILLFOIA

KEY POINTS

  • The authorization will allow health-care providers in the U.S. to use the plasma to treat hospitalized patients with Covid-19.
  • The FDA’s emergency use authorization came a day after President Trump accused the agency of delaying enrollment in clinical trials for vaccines or therapeutics.
  • The criticism from Trump and action from the FDA led some scientists to believe the authorization, which came on the eve of the GOP national convention, was politically motivated.

FDA Commissioner Dr. Stephen Hahn is walking back comments on the benefits of convalescent plasma, saying he could have done a better job of explaining the data on its effectiveness against the coronavirus after authorizing it for emergency use over the weekend.

Commisioners responses over Twitter

https://twitter.com/SteveFDA/status/1298071603675373569?s=20

https://twitter.com/SteveFDA/status/1298071619236245504?s=20

August 26, 2020

In an interview with Bloomberg’s , FDA Commissioner Hahn reiterates that his decision was based on hard evidence and scientific fact, not political pressure.  The whole interview is at the link below:

https://www.bloomberg.com/news/articles/2020-08-25/fda-s-hahn-vows-to-stick-to-the-science-amid-vaccine-pressure?sref=yLCixKPR

Some key points:

  • Dr. Hahn corrected his initial statement about 35% of people would be cured by convalescent plasma. In the interview he stated:

I was trying to do what I do with patients, because patients often understand things in absolute terms versus relative terms. And I should’ve been more careful, there’s no question about it. What I was trying to get to is that if you look at a hundred patients who receive high titre, and a hundred patients who received low titre, the difference between those two particular subset of patients who had these specific criteria was a 35% reduction in mortality. So I frankly did not do a good job of explaining that.

  • FDA colleagues had frank discussion after the statement was made.  He is not asking for other people in HHS to retract their statements, only is concerned that FDA has correct information for physicians and patients
  • Hahn is worried that people will not enroll due to chance they may be given placebo
  • He gave no opinion when asked if FDA should be an independent agency

 

For more articles on COVID19 please go to our Coronavirus Portal at

https://pharmaceuticalintelligence.com/coronavirus-portal/

 

Read Full Post »


“Repurposing” Off-patent Drugs offers big hopes of New Treatments

Reporter: Irina Robu, PhD

Given the substantial costs and the slow pace of drug discovery and development, repurposing old drugs has become a practice, partly because it involves the use of already developed compounds. Yet, there is lack of clinical interest in repurposing off patent drugs.

However, the scale of the opportunity for drug repurposing is huge. Initially approved for one disease, these drugs went off-patent and now show potential in other diseases. Even so, many non-profit groups see promise in supporting trials into drug repurposing. There is a huge untapped medicine chest of generic drugs with unexploited uses. These generic drugs are often cheap, already approved, off-patent and relatively quick to develop, whereas new drugs can cost millions of dollars to develop, test and 45% of the drugs fail in clinical trials.

However, numerous non-profit groups see potential in supporting trials into drug repurposing. Epidemiological data can offer enticing leads. Yet, clinical trials for these drugs are costly, but the benefits can be huge. The Drugs for Neglected Diseases Initiative, a Swiss non-profit research group, supported research into fexinidazole, which was abandoned by a pharma at an early stage. The drug showed to have antiparasitic qualities. However, after years of work in January 2020, it was approved for sleeping sickness in the Democratic Republic of Congo. It is the first oral medicine for the disease, and works for all stages of it.

Up till now, when it comes to cancer the most promising generic pills are known. Cancer Research, a UK based charity is testing aspirin to see if can stop cancer from recurring; metformin in a large prostate-cancer trial; and an anti-fungal medication to treat bowel cancer. At the same time, the Anticancer Fund in Brussels hopes that propranolol in treating cancers of the inner lining of blood vessels and pancreatic cancer. Propranolol is a generic 1960s beta-blocker used for a wide range of ailments such as hypertension, anxiety and migraine. If approved for cancer, its cost would be negligible in comparison the tens of thousands of dollars a month usually charged for cancer medicines.

Money seems the crucial constraint with these drugs, in addition to the clinical trials needed to have these drugs updated and relabeled. Only the makers or original developers of a drug are permitted to adjust its label. Sanofi, based in Paris, was the firm that requested regulatory review of fexinidazole for sleeping sickness, while the research was a charitable effort. But drug firms are not forced to support non-commercial efforts to repurpose drugs. And outside the industry it is tough to find the legal expertise to be able to do the  necessary paperwork.

As non-profits make progress in repurposing, corporate interest may be rising. In terms of achieving new treatment options, this is good news. But it will not bring cheaper medicines in areas traditionally neglected by the drug industry. Firms will focus on finding ways to patent the new uses and charge high prices for the finished product.

If governments need cheaper drugs, non-profits will need financial incentives and a cooperative regulatory framework. They include making regulators give free advice and waive approval fees, and a public fund to support repurposing. Yet, when drugs are approved, investors are paid back by the public health service, which makes savings by using the newly approved generic drugs.

SOURCE

https://www.economist.com/international/2019/02/28/repurposing-off-patent-drugs-offers-big-hopes-of-new-treatments?fsrc=scn/tw/te/bl/ed/crosspurposesrepurposingoffpatentdrugsoffersbighopesofnewtreatmentsinternational

 

Other related articles published in this Online Scientific Open Access Journal include:

 

The Castleman Disease Research Network publishes Phase 1 Results of Drug Repurposing Database for COVID-19

Reporter: Stephen J. Williams, PhD

https://pharmaceuticalintelligence.com/2020/06/27/the-castleman-disease-research-network-publishes-phase-1-results-of-drug-repurposing-database-for-covid-19/

Read Full Post »


Live Conference Coverage AACR 2020 in Real Time: Monday June 22, 2020 Late Day Sessions

 

Reporter: Stephen J. Williams, PhD

 

Follow Live in Real Time using

#AACR20

@pharma_BI

@AACR

 

Register for FREE at https://www.aacr.org/

 

AACR VIRTUAL ANNUAL MEETING II

 

June 22-24: Free Registration for AACR Members, the Cancer Community, and the Public
This virtual meeting will feature more than 120 sessions and 4,000 e-posters, including sessions on cancer health disparities and the impact of COVID-19 on clinical trials

 

This Virtual Meeting is Part II of the AACR Annual Meeting.  Part I was held online in April and was centered only on clinical findings.  This Part II of the virtual meeting will contain all the Sessions and Abstracts pertaining to basic and translational cancer research as well as clinical trial findings.

 

REGISTER NOW

 

 

 

Virtual Educational Session

Prevention Research, Science Policy, Epidemiology, Survivorship

Carcinogens at Home: Science and Pathways to Prevention

Chemicals known to cause cancer are used and released to the environment in large volumes, exposing people where they live, work, play, and go to school. The science establishing an important role for such exposures in the development of cancers continues to strengthen, yet cancer prevention researchers are largely unfamiliar with the data drawn upon in identifying carcinogens and making decisions about their use. Characterizing and reducing harmful exposures and accelerating the devel

Julia Brody, Kathryn Z. Guyton, Polly J. Hoppin, Bill Walsh, Mary H. Ward

DETAILS

Monday, June 22

1:30 PM – 3:30 PM EDT

Virtual Educational Session

Tumor Biology, Molecular and Cellular Biology/Genetics, Clinical Research Excluding Trials

EMT Still Matters: Let’s Explore! – Dedicated to the Memory of Isaiah J. Fidler

During carcinoma progression, initially benign epithelial cells acquire the ability to invade locally and disseminate to distant tissues by activating epithelial-mesenchymal transition (EMT). EMT is a cellular process during which epithelial cells lose their epithelial features and acquire mesenchymal phenotypes and behavior. Growing evidence supports the notion that EMT programs during tumor progression are usually activated to various extents and often partial and reversible, thus pr

Jean-Paul Thiery, Heide L Ford, Jing Yang, Geert Berx

DETAILS

Monday, June 22

1:30 PM – 3:00 PM EDT

Virtual Educational Session

Tumor Biology, Experimental and Molecular Therapeutics, Molecular and Cellular Biology/Genetics

One of These Things Is Not Like the Other: The Many Faces of Senescence in Cancer

Cellular senescence is a stable cell growth arrest that is broadly recognized to act as a barrier against tumorigenesis. Senescent cells acquire a senescence-associated secretory phenotype (SASP), a transcriptional response involving the secretion of inflammatory cytokines, immune modulators, and proteases that can shape the tumor microenvironment. The SASP can initially stimulate tumor immune surveillance and reinforce growth arrest. However, if senescent cells are not removed by the

Clemens A Schmitt, Andrea Alimonti, René Bernards

DETAILS

Monday, June 22

1:30 PM – 3:00 PM EDT

Virtual Educational Session

Clinical Research Excluding Trials, Molecular and Cellular Biology/Genetics

Recent Advances in Applications of Cell-Free DNA

The focus of this educational session will be on recent developments in cell-free DNA (cfDNA) analysis that have the potential to impact the care of cancer patients. Tumors continually shed DNA into the circulation, where it can be detected as circulating tumor DNA (ctDNA). Analysis of ctDNA has become a routine part of care for a subset of patients with advanced malignancies. However, there are a number of exciting potential applications that have promising preliminary data but that h

Michael R Speicher, Maximilian Diehn, Aparna Parikh

DETAILS

Monday, June 22

1:30 PM – 3:30 PM EDT

Virtual Methods Workshop

Clinical Research Excluding Trials, Clinical Trials, Experimental and Molecular Therapeutics, Molecular and Cellular Biology/Genetics

Translating Genetics and Genomics to the Clinic and Population

This session will describe how advances in understanding cancer genomes and in genetic testing technologies are being translated to the clinic. The speakers will illustrate the clinical impact of genomic discoveries for diagnostics and treatment of common tumor types in adults and in children. Cutting-edge technologies for characterization of patient and tumor genomes will be described. New insights into the importance of patient factors for cancer risk and outcome, including predispos

Heather L. Hampel, Gordana Raca, Jaclyn Biegel, Jeffrey M Trent

DETAILS

Monday, June 22

1:30 PM – 3:22 PM EDT

Virtual Educational Session

Regulatory Science and Policy, Drug Development, Epidemiology

Under-representation in Clinical Trials and the Implications for Drug Development

The U.S. Food and Drug Administration relies on data from clinical trials to determine whether medical products are safe and effective. Ideally, patients enrolled in those trials are representative of the population in which the product will be used if approved, including people of different ages, races, ethnic groups, and genders. Unfortunately, with few patients enrolling in clinical trials, many groups are not well-represented in clinical trials. This session will explore challenges

Ajay K. Nooka, Nicole J. Gormley, Kenneth C Anderson, Ruben A. Mesa, Daniel J. George, Yelak Biru, RADM Richardae Araojo, Lola A. Fashoyin-Aje

DETAILS

Monday, June 22

3:45 PM – 5:45 PM EDT

Virtual Educational Session

Cancer Chemistry

Targeted Protein Degradation: Target Validation Tools and Therapeutic Opportunity

This educational session will cover the exciting emerging field of targeted protein degradation. Key learning topics will include: 1. an introduction to the technology and its relevance to oncology; 2. PROTACS, degraders, and CELMoDs; 3. enzymology and protein-protein interactions in targeted protein degraders; 4. examples of differentiated biology due to degradation vs. inhibition; 5. how to address questions of specificity; and 6. how the field is approaching challenges in optimizing therapies

George Burslem, Mary Matyskiela, Lyn H. Jones, Stewart L Fisher, Andrew J Phillips

DETAILS

Monday, June 22

3:45 PM – 5:45 PM EDT

Virtual Educational Session

Bioinformatics and Systems Biology, Experimental and Molecular Therapeutics, Drug Development, Molecular and Cellular Biology/Genetics

Obstacles and opportunities for protein degradation drug discovery

Lyn H. Jones
  • PROTACs ubiquitin mediated by E3 ligases;  first discovered by DeShaies and targeted to specific proteins
  • PROTACs used in drug discovery against a host of types of targets including kinases and membrane receptors
  • PROTACs can be modular but lack molecular structural activity relationships
  • can use chemical probes for target validation
  • four requirements: candidate exposure at site of action (for example lipophilicity for candidates needed to cross membranes and accumulate in lysosomes), target engagement (ternary occupancy as measured by FRET), functional pharmacology, relevant phenotype
  • PROTACs hijack the proteosomal degradation system

Proteolysis-targeting chimeras as therapeutics and tools for biological discovery

George Burslem
  • first PROTAC developed to coopt the VHL ubiquitin ligase system which degrades HIF1alpha but now modified for EREalpha
  • in screen for potential PROTACS there were compounds which bound high affinity but no degradation so phenotypic screening very important
  • when look at molecular dynamics can see where PROTAC can add additional protein protein interaction, verifed by site directed mutagenesis
  • able to target bcr-Abl
  • he says this is a rapidly expanding field because of all the new E3 ligase targets being discovered

Expanding the horizons of cereblon modulators

Mary Matyskiela

Translating cellular targeted protein degradation to in vivo models using an enzymology framework

Stewart L Fisher
  • new targeting compounds have an E3 ligase binding domain, a target binding domain and a linker domain
  • in vivo these compounds are very effective; BRD4 degraders good invitro and in vivo with little effect on body weight
  • degraders are essential activators of E3 ligases as these degraders bring targets in close proximity so activates a catalytic cycle of a multistep process (has now high turnover number)
  • in enzymatic pathway the degraders make a productive complex so instead of a kcat think of measuring a kprod or productivity of degraders linked up an E3 ligase
  • the degraders are also affecting the rebound protein synthesis; so Emax never to zero and see a small rebound of protein synthesis

 

Data-Driven Approaches for Choosing Combinatorial Therapies

Drug combinations remain the gold standard for treating cancer, as they significantly outperform single agents. However, due to the enormous size of drug combination space, it is virtually impossible to interrogate all possible combinations. This session will discuss approaches to identify novel combinations using both experimental and computational approaches. Speakers will discuss i) approaches to drug screening in cell lines, the impact of the microenvironment, and attempts to more

Bence Szalai, James E Korkola, Lisa Tucker-Kellogg, Jeffrey W Tyner

DETAILS

Monday, June 22

3:45 PM – 5:21 PM EDT

Virtual Educational Session

Tumor Biology

Cancer Stem Cells and Therapeutic Resistance

Cancer stem cells are a subpopulation of cells with a high capacity for self-renewal, differentiation and resistance to therapy. In this session, we will define cancer stem cells, discuss cellular plasticity, interactions between cancer stem cells and the tumor microenvironment, and mechanisms that contribute to therapeutic resistance.

Robert S Kerbel, Dolores Hambardzumyan, Jennifer S. Yu

DETAILS

Monday, June 22

3:45 PM – 5:45 PM EDT

Virtual Educational Session

Drug Development, Experimental and Molecular Therapeutics

Molecular Imaging in Cancer Research

This session will cover the fundamentals as well as the major advances made in the field of molecular imaging. Topics covered will include the basics for optical, nuclear, and ultrasound imaging; the pros and cons of each modality; and the recent translational advancements. Learning objectives include the fundamentals of each imaging modality, recent advances in the technology, the processes involved to translate an imaging agent from bench to bedside, and how molecular imaging can gui

Julie Sutcliffe, Summer L Gibbs, Mark D Pagel, Katherine W Ferrara

DETAILS

Monday, June 22

3:45 PM – 5:45 PM EDT

Virtual Educational Session

Tumor Biology, Immunology, Experimental and Molecular Therapeutics, Drug Development

Tumor Endothelium: The Gatekeepers of Tumor Immune Surveillance

Tumor-associated endothelium is a gatekeeper that coordinates the entry and egress of innate and adaptive immune cells within the tumor microenvironment. This is achieved, in part, via the coordinated expression of chemokines and cell adhesion molecules on the endothelial cell surface that attract and retain circulating leukocytes. Crosstalk between adaptive immune cells and the tumor endothelium is therefore essential for tumor immune surveillance and the success of immune-based thera

Dai Fukumura, Maria M Steele, Wen Jiang, Andrew C Dudley

DETAILS

Monday, June 22

3:45 PM – 5:45 PM EDT

Virtual Educational Session

Immunology, Experimental and Molecular Therapeutics

Novel Strategies in Cancer Immunotherapy: The Next Generation of Targets for Anticancer Immunotherapy

T-cell immunotherapy in the form of immune checkpoint blockade or cellular T-cell therapies has been tremendously successful in some types of cancer. This success has opened the door to consider what other modalities or types of immune cells can be harnessed for exert antitumor functions. In this session, experts in their respective fields will discuss topics including novel approaches in immunotherapy, including NK cells, macrophage, and viral oncotherapies.

Evanthia Galanis, Kerry S Campbell, Milan G Chheda, Jennifer L Guerriero

DETAILS

Monday, June 22

3:45 PM – 5:45 PM EDT

Virtual Educational Session

Tumor Biology, Drug Development, Immunology, Clinical Research Excluding Trials

Benign Cells as Drivers of Cancer Progression: Fat and Beyond

Carcinomas develop metastases and resistance to therapy as a result of interaction with tumor microenvironment, composed of various nonmalignant cell types. Understanding the complexity and origins of tumor stromal cells is a prerequisite for development of effective treatments. The link between obesity and cancer progression has revealed the engagement of adipose stromal cells (ASC) and adipocytes from adjacent fat tissue. However, the molecular mechanisms through which they stimulate

Guojun Wu, Matteo Ligorio, Mikhail Kolonin, Maria T Diaz-Meco

DETAILS

Monday, June 22

3:45 PM – 5:45 PM EDT

Virtual Educational Session

Clinical Research Excluding Trials, Experimental and Molecular Therapeutics, Tumor Biology

Dharma Master Jiantai Symposium on Lung Cancer: Know Thy Organ – Lessons Learned from Lung and Pancreatic Cancer Research

The term “cancer” encompasses hundreds of distinct disease entities involving almost every possible site in the human body. Effectively interrogating cancer, either in animals models or human specimens, requires a deep understanding of the involved organ. This includes both the normal cellular constituents of the affected tissue as well as unique aspects of tissue-specific tumorigenesis. It is critical to “Know Thy Organ” when studying cancer. This session will focus on two of the most

Trudy G Oliver, Hossein Borghaei, Laura Delong Wood, Howard C Crawford

DETAILS

Monday, June 22

3:45 PM – 5:45 PM EDT

Virtual Methods Workshop

Clinical Trials

Clinical Trial Design: Part 1: Novel Approaches and Methods in Clinical Trial Design

Good clinical trial design has always had to balance the competing interests of effectively and convincingly answering the question with the limitations imposed by scarce resources, complex logistics, and risks and potential benefits to participants. New targeted therapies, immuno-oncology, and novel combination treatments add new challenges on top of the old ones. This session will introduce these concerns and 1) suggest ways to consider what outcomes are relevant, 2) how we can best

Mary W. Redman, Nolan A. Wages, Susan G Hilsenbeck, Karyn A. Goodman

DETAILS

Monday, June 22

3:45 PM – 5:45 PM EDT

Virtual Methods Workshop

Tumor Biology, Drug Development

High-Throughput Screens for Drivers of Progression and Resistance

The sequencing of human cancers now provides a landscape of the genetic alterations that occur in human cancer, and increasingly knowledge of somatic genetic alterations is becoming part of the evaluation of cancer patients. In some cases, this information leads directly to the selection of particular therapeutic approaches; however, we still lack the ability to decipher the significance of genetic alterations in many cancers. This session will focus on recent developments that permit the identification of molecular targets in specific cancers. This information, coupled with genomic characterization of cancer, will facilitate the development of new therapeutic agents and provide a path to implement precision cancer medicine to all patients.

William C Hahn, Mark A Dawson, Mariella Filbin, Michael Bassik

DETAILS

Monday, June 22

3:45 PM – 5:15 PM EDT

Defining a cancer dependency map

William C Hahn

Introduction

William C Hahn

Genome-scale CRISPR screens in 3D spheroids identify cancer vulnerabilities

Michael Bassik

Utilizing single-cell RNAseq and CRISPR screens to target cancer stem cells in pediatric brain tumors

Mariella Filbin
  • many gliomas are defined by discreet mutational spectra that also discriminates based on age and site as well (for example many cortical tumors have mainly V600E Braf mutations while thalamus will be FGFR1
  • they did single cell RNAseq on needle biopsy from 7 gliomas which gave about 3500 high quality single cells; obtained full length RNA
  • tumors clustered mainly where the patient it came from but had stromal cell contamination probably so did a deconvolution?  Copy number variation showed which were tumor cells and did principle component analysis
  • it seems they used a human glioma model as training set
  • identified a stem cell like glioma cell so concentrated on the genes altered in these for translational studies
  • developed multiple PDX models from patients
  • PDX transcriptome closest to patient transcriptome but organoid grown in serum free very close while organoids grown in serum very distinct transcriptome
  • developed a CRISPR barcoded library to determine genes for survival genes
  • pulled out BMI1  and EZH2 (polycomb complex proteins) as good targets

Virtual Methods Workshop

Prevention Research, Survivorship, Clinical Research Excluding Trials, Epidemiology

Implementation Science Methods for Cancer Prevention and Control in Diverse Populations: Integration of Implementation Science Methods in Care Settings

Through this Education Session we will use examples from ongoing research to provide an overview of implementation science approaches to cancer prevention and control research. We draw on examples to highlight study design approaches, research methods, and real-world solutions when applying implementation science to achieve health equity. Approaches to defining change in the care setting and measuring sustained changes are also emphasized. Using real examples of patient navigation prog

Graham A Colditz, Sanja Percac-Lima, Nathalie Huguet

DETAILS

Monday, June 22

3:45 PM – 5:30 PM EDT

Virtual Educational Session

Regulatory Science and Policy, Epidemiology

COVID-19 and Cancer: Guidance for Clinical Trial Conduct and Considerations for RWE

This session will consider the use of real-world evidence in the context of oncology clinical trials affected by the COVID-19 pandemic. Key aspects of the FDA’s recent “Guidance on Conduct of Clinical Trials of Medical Products of Medical Products during COVID-19 Public Health Emergency” will be discussed, including telemedicine, accounting for missing data, obtaining laboratory tests and images locally, using remote informed consent procedures, and additional considerations for contin

Wendy Rubinstein, Paul G. Kluetz, Amy P. Abernethy, Jonathan Hirsch, C.K. Wang

 

 

Read Full Post »


Updates on the Oxford, AstraZeneca COVID-19 Vaccine

Reporter: Stephen J. Williams, PhD

AstraZeneca’s CEO states that their COVID-19 vaccine, codeveloped with Oxford University, should provide protection for a year.

AstraZeneca’s potential coronavirus vaccine is likely to provide protection against contracting Covid-19 for about a year, the company’s chief executive told a Belgian radio station on Tuesday.

The British drugmaker has already begun human trials of the vaccine developed by the University of Oxford, with a phase I trial in Britain due to end soon and a phase III trial already begun, Pascal Soriot told broadcaster Bel RTL.

“We think that it will protect for about a year,” Soriot said.

AstraZeneca said on Saturday that it had signed contracts with France, Germany, Italy and the Netherlands to supply the European Union with up to 400 million doses of the potential vaccine.

It has also agreed deals with Britain and the United States.

“If all goes well, we will have the results of the clinical trials in August/September. We are manufacturing in parallel. We will be ready to deliver from October if all goes well,” Soriot said.

Source: https://www.cnbc.com/2020/06/16/astrazeneca-covid-19-vaccine-likely-to-protect-for-a-year-ceo-says.html

 

 

From In The Pipeline (Derek Lowe’s regular column in Science)

Criticism of the Oxford Coronavirus Vaccine

By Derek Lowe 18 May, 2020

This piece at Forbes by Bill Haseltine has set off a lot of comment – it’s a look at the Oxford group’s vaccine candidate as compared to the SinoVac candidate, and you may recall (background here) that these are the two teams that have separately reported that their vaccines appear to protect rhesus monkeys from infection after exposure to the coronavirus. Haseltine has some criticisms of the Oxford data, and as you will see from that link to his name, his opinions deserve to be taken seriously. So what’s going on? Update: here’s the take on this at BioCentury.

Looking at the preprint on the Oxford results, Haseltine has a problem with the claim that the monkeys were protected from infection by a dose of ChAdOx1 nCoV-19. The key data are in the preprint’s Figure 3. The Oxford team checked for viral RNA several different ways. One was using bronchoaveolar lavage (BAL fluid), a sampling technique that involves running a bronchoscope down into the lungs and washing out aveolar spaces – a pretty darn invasive assay, which is why you don’t hear about it all that much compared to the still-not-so-nonivasive nose swabs. BAL fluid of the virus-exposed unvaccinated animals showed coronavirus genomic RNA throughout the study, and viral subgenomic RNA (more indicative of active replication) at days 3 and 5 after exposure. Meanwhile, the vaccinated animals showed the genomic RNA in only two monkeys, and no subgenomic RNA at all.

So far, so good. But both vaccinated and unvaccinated monkeys showed the same amount of viral genomic RNA from nose swab samples (Figure 3c). That’s the test that’s used out in the human population, and that means that the vaccinated animals would still be declared as positive for the coronavirus after being exposed to it. And the other thing that Haseltine notes is that the amount (the “titer”, in the lingo) of neutralizing antibodies in the blood of the vaccinated animals does not appear to be that high. You’d like to be able to dilute the blood antibody samples down by hundreds of times or even a thousandfold and still see antiviral activity in an in vitro assay, but in the Oxford case the activity started disappearing at about fortyfold dilution (Figure 2b).

On the positive side, 2/3 of the unvaccinated animals showed clear evidence of viral pneumonia at autopsy, but none of the vaccinated ones did. The conclusion is that the vaccinated animals were indeed infected – the vaccine did not protect against that – but that the disease was definitely less severe. But these results mean that the virus might well still be transmissible from people who had been so vaccinated, even if the disease course itself was not as deadly. You’d want to do better than that, if you can. Haseltine’s take is “Time will tell if this is the best approach. I wouldn’t bet on it.

Haseltine compares these results to the SinoVac inactivated virus vaccine, and finds that that one looks better – at its highest dose, no viral RNA was recovered from the tissues of the vaccinated animals, for example. This sort of “sterilizing immunity” is what you’d want to aim for – it gives the virus nowhere to go in the human population if you can vaccinate enough people. But it’s worth noting that the SinoVac results were from three doses of their vaccine (versus one of the Oxford candidate), and the viral exposure challenge was about half as strong (total viral particles) as what the Oxford paper used. The Oxford group also inoculated their monkeys in both the upper and lower respiratory tract, while the SinoVac team used a single inoculation in the trachea. So I agree with that tweet linked from AndyBiotech; I don’t think that a head-to-head comparison is fair. But Haseltine’s point stands, that the results as we have them from the ChAdOx1 nCoV-19 vaccine did not actually protect monkeys from infection.

Source: https://blogs.sciencemag.org/pipeline/archives/2020/05/18/criticism-of-the-oxford-coronavirus-vaccine

 

Please see other Articles on COVID-19 on our Coronavirus Portal Including Late Breaking News at:

https://pharmaceuticalintelligence.com/coronavirus-portal/

 

Read Full Post »


Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 27, 2020 Opening Remarks and Clinical Session 11:45am-1:15pm Advances in Cancer Drug Discovery

SESSION VMS.CH01.01 – Advances in Cancer Drug Design and Discovery

April 27, 2020, 11:45 AM – 1:15 PM
Virtual Meeting: All Session Times Are U.S. EDT
DESCRIPTIONAll session times are U.S. Eastern Daylight Time (EDT).

Session Type
Virtual Minisymposium
Track(s)
Cancer Chemistry
14 Presentations
11:45 AM – 11:45 AM
– ChairpersonZoran Rankovic. St. Jude Children’s Research Hospital, Memphis, TN

11:45 AM – 11:45 AM
– ChairpersonChristopher G. Nasveschuk. C4 Therapeutics, Watertown, MA

11:45 AM – 11:50 AM
– IntroductionZoran Rankovic. St. Jude Children’s Research Hospital, Memphis, TN

11:50 AM – 12:00 PM
1036 – Discovery of a highly potent, efficacious and orally active small-molecule inhibitor of embryonic ectoderm development (EED)Changwei Wang, Rohan Kalyan Rej, Jianfeng Lu, Mi Wang, Kaitlin P. Harvey, Chao-Yie Yang, Ester Fernandez-Salas, Jeanne Stuckey, Elyse Petrunak, Caroline Foster, Yunlong Zhou, Rubin Zhou, Guozhi Tang, Jianyong Chen, Shaomeng Wang. Rogel Cancer Center and Departments of Internal Medicine, Pharmacology, and Medicinal Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, MI, Ascentage Pharma Group, Taizhou, Jiangsu, China

12:00 PM – 12:05 PM
– Discussion

12:05 PM – 12:15 PM
1037 – Orally available small molecule CD73 inhibitor reverses immunosuppression through blocking of adenosine productionXiaohui Du, Brian Blank, Brenda Chan, Xi Chen, Yuping Chen, Frank Duong, Lori Friedman, Tom Huang, Melissa R. Junttila, Wayne Kong, Todd Metzger, Jared Moore, Daqing Sun, Jessica Sun, Dena Sutimantanapi, Natalie Yuen, Tatiana Zavorotinskaya. ORIC Pharmaceuticals, South San Francisco, CA, ORIC Pharmaceuticals, South San Francisco, CA, ORIC Pharmaceuticals, South San Francisco, CA, ORIC Pharmaceuticals, South San Francisco, CA

12:15 PM – 12:20 PM
– Discussion

12:20 PM – 12:30 PM
1038 – A potent and selective PARP14 inhibitor decreases pro-tumor macrophage function and elicits inflammatory responses in tumor explantsLaurie Schenkel, Jennifer Molina, Kerren Swinger, Ryan Abo, Danielle Blackwell, Anne Cheung, William Church, Kristy Kuplast-Barr, Alvin Lu, Elena Minissale, Mario Niepel, Melissa Vasbinder, Tim Wigle, Victoria Richon, Heike Keilhack, Kevin Kuntz. Ribon Therapeutics, Cambridge, MA

12:30 PM – 12:35 PM
– Discussion

12:35 PM – 12:45 PM
1039 – Fragment-based drug discovery to identify small molecule allosteric inhibitors of SHP2. Philip J. Day, Valerio Berdini, Juan Castro, Gianni Chessari, Thomas G. Davies, James E. H. Day, Satoshi Fukaya, Chris Hamlett, Keisha Hearn, Steve Hiscock, Rhian Holvey, Satoru Ito, Yasuo Kodama, Kenichi Matsuo, Yoko Nakatsuru, Nick Palmer, Amanda Price, Tadashi Shimamura, Jeffrey D. St. Denis, Nicola G. Wallis, Glyn Williams, Christopher N. Johnson. Astex Pharmaceuticals, Inc., Cambridge, United Kingdom, Taiho Pharmaceutical Co., Ltd, Tsukuba, Japan

Abstract: The ubiquitously expressed protein tyrosine phosphatase SHP2 is required for signalling downstream of receptor tyrosine kinases (RTKs) and plays a role in regulating many cellular processes. Recent advances have shown that genetic knockdown and pharmacological inhibition of SHP2 suppresses RAS/MAPK signalling and inhibits proliferation of RTK-driven cancer cell lines. SHP2 is now understood to act upstream of RAS and plays a role in KRAS-driven cancers, an area of research which is rapidly growing. Considering that RTK deregulation often leads to a wide range of cancers and the newly appreciated role of SHP2 in KRAS-driven cancers, SHP2 inhibitors are therefore a promising therapeutic approach.
SHP2 contains two N-terminal tandem SH2 domains (N-SH2, C-SH2), a catalytic phosphatase domain and a C-terminal tail. SHP2 switches between “open” active and “closed” inactive forms due to autoinhibitory interactions between the N-SH2 domain and the phosphatase domain. Historically, phosphatases were deemed undruggable as there had been no advancements with active site inhibitors. We hypothesised that fragment screening would be highly applicable and amenable to this target to enable alternative means of inhibition through identification of allosteric binding sites. Here we describe the first reported fragment screen against SHP2.
Using our fragment-based PyramidTM approach, screening was carried out on two constructs of SHP2; a closed autoinhibited C-terminal truncated form (phosphatase and both SH2 domains), as well as the phosphatase-only domain. A combination of screening methods such as X-ray crystallography and NMR were employed to identify fragment hits at multiple sites on SHP2, including the tunnel-like allosteric site reported by Chen et al, 2016. Initial fragment hits had affinities for SHP2 in the range of 1mM as measured by ITC. Binding of these hits was improved using structure-guided design to generate compounds which inhibit SHP2 phosphatase activity and are promising starting points for further optimization.

  • anti estrogen receptor therapy: ER degraders is one class
  • AZ9833 enhances degradation of ER alpha
  • worked in preclinical mouse model (however very specific)
  • PK parameters were good for orally available in rodents;  also in vitro and in vivo correlation correlated in rats but not in dogs so they were not sure if good to go in humans
  • they were below Km in rats but already at saturated in dogs, dogs were high clearance
  • predicted human bioavailability at 40%

 

12:45 PM – 12:50 PM
– Discussion

12:50 PM – 1:00 PM
1042 – Preclinical pharmacokinetic and metabolic characterization of the next generation oral SERD AZD9833Eric T. Gangl, Roshini Markandu, Pradeep Sharma, Andy Sykes, Petar Pop-Damkov, Pablo Morentin Gutierrez, James S. Scott, Dermot F. McGinnity, Adrian J. Fretland, Teresa Klinowska. AstraZeneca, Waltham, MA

1:00 PM – 1:05 PM
– Discussion

1:05 PM – 1:15 PM
– Closing RemarksChristopher G. Nasveschuk. MA

Follow on Twitter at:

@pharma_BI

@AACR

@GenomeInstitute

@CureCancerNow

@UCLAJCCC

#AACR20

#AACR2020

#curecancernow

#pharmanews

Read Full Post »


Self-propelled Liposomes as a Drug Delivery System

Reporter: Irina Robu, PhD

Liposomes are small artificial vesicles of spherical shape that can be created from cholesterol and natural non-toxic phospholipids. As a result of their size and hydrophobic and hydrophilic character, liposomes are promising systems for drug delivery. Liposome properties diverge considerably with lipid composition, surface charge, size, and the method of preparation. Scientists at Penn State developed self-propelled liposomes that migrate away and/or towards chemical signals, making it possible for self-directed drug delivery vehicles that can actively target a specific area of the body. Besides, the choice of bilayer components controls the ‘rigidity’ or ‘fluidity’ and the charge of the bilayer. Countless liposomes proposed for drug delivery are tissue-specific, since of antibodies on their surface bind to the target tissue when they encounter it. The technology may help to enhance efficacy and reduce side-effects of drugs in a variation of applications.

Yet, the key to drug delivery is enhancing the specificity and affinity of a drug delivery vehicle for its target tissue. As the drawbacks of conventional drug therapies, scientists are developing an extensive variability of drug delivery vehicles including nanoparticles, biomaterials, and implantable devices, to increase drug accumulation at a target site in the body and reduce side-effects elsewhere. To address the drawbacks, these researchers developed a type of liposome that can actively propel itself near a chemical signal in the body, such as a chemical attractant released by a target tissue.

The liposomes proposed by Penn researchers are covered in enzymes that react with specific substrates to produce energy, which can help to push the liposomes along, through a phenomenon called chemotaxis. By changing the enzymes coating the liposomes, the investigators can tune this chemotaxis and permit the particles to either move towards or away the chemical signal. This could aid the particles to gravitate near certain tissues, and possibly avoid others in the body.
Currently, the are still developing the liposomes, and hope that they will be able to use them for drug delivery soon
SOURCE
https://www.sciencedaily.com/releases/2019/11/191118110928.htm

Read Full Post »

Older Posts »