Feeds:
Posts
Comments

Archive for the ‘Gene Therapy & Gene Editing Development’ Category


Articles on the Use of single cell analysis in COVID-19 research and A machine learning model that can Predict Base-editing Outcomes

 

Reporter: Aviva Lev-Ari, PhD, RN

 

From: Richard Lumb <contact@frontlinegenomics.com>

Date: July 1, 2020 at 6:05:55 AM EDT

To: avivalev-ari@alum.berkeley.edu

Subject: FLG Newsletter: Single cell analysis in COVID-19 research, a machine learning model that can predict base-editing outcomes & much more

Reply-To: contact@frontlinegenomics.com

BEGIN TEMPLATE //

BEGIN PREHEADER //

Front Line Genomics Newsletter

Email not displaying correctly?

View it in your browser.

// END PREHEADER

BEGIN HEADER //

// END HEADER

BEGIN BODY //

Dear Aviva,

First of all, a big thank you to everyone who attended yesterday’s webinar on a new approach for exploring the dark genome. If you missed it, you can still watch it ‘on demand’ here.

In the last week, we’ve also launched two more webinar series. Both are free to attend and available live or on-demand:

Single Cell Online: A series of 4 webinars in July, starting on the 9th, focusing on unleashing the full power of single cell technologies. The series includes contributors from Novartis, Merck, Sanofi, Roche, the University of Gothenburg, MGI and Partek. Find out more and register here.

Driving FAIR in BioPharma: A series of 3 webinars in July and August, starting on the 21st July, exploring various use cases of FAIR data implementation to enable the potential of AI and ML in R&D. The series features contributors from AstraZeneca, Roche, Novartis, University of Oxford, ONTOFORCE, FDA, Eurofins and CDD. Click here to find out more and register.

Finally, this week on the website we have some fantastic content for you, including articles on the use of single cell analysis in COVID-19 research and a machine learning model that can predict base-editing outcomes. There’s also the latest DNA Today Podcasts focusing on infertility, featuring insights from genetic counsellors and the writer and producer of an explosive genetics mystery sci-fi movie called ANYA (check it out, it’s very thought provoking).

Stay safe everyone. 

Kind Regards,

Rich

Richard Lumb PhD

Founder & CEO

Front Line Genomics

J202, The Biscuit Factory, 100 Drummond Rd, London, SE16 4DG.

T:  +44 (0)208 191 8810

M: +44 (0)7739 251 898

E:  richard@frontlinegenomics.com

W: www.frontlinegenomics.com

Read Full Post »


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

In-vitro fertilisation (IVF) is now regarded as a huge clinical success which has benefitted an estimated 16 million parents, at the time the development not only sparked moral outrage but led to political and legislative constraints. Patients undergoing IVF may be presented with numerous assisted reproductive treatments purportedly increasing the chances of pregnancy. Such commercialised “IVF add-ons” often come at high costs without clinical evidence of validity. Additionally, long-term studies of children born through IVF have historically been scarce and inconsistent in their data collection. This has meant that potential genetic predispositions, such as increased body fat composition and blood pressure, as well as congenital abnormalities long associated with IVF births, lack proof of causality.

 

With Preimplantation genetic testing mutated embryos are automatically discarded, whereas CRISPR could correct mutations to increase the number of viable embryos for implantation. Moreover, in instances where all embryos in a given cycle are destined to develop with severe or lethal mutations, CRISPR could bring success for otherwise doomed IVF treatments. Genetic screening programs offered to couples in hot-spot areas of carrier frequency of monogenic disorders have had huge success in alleviating regional disease burdens. Carried out since the 1970s these programs have altered the course of natural evolution, but few would dispute their benefits in preventing heritable disease transmission.

 

Mutations are as inevitable as death and taxes. Whilst age is considered one of the largest factors in de-novo mutation generation, it appears that these are inherited primarily from the paternal line. Thus, the paternal age of conception predominantly determines the mutation frequency inherited by children. Whereas advanced maternal age is not associated with mutagenic allele frequency but chromosomal abnormalities. The risk of aneuploidy rises steadily in mothers over the age of 26. Although embryos are screened for aneuploidy prior to implantation, with so many other factors simultaneously being screened the probability of having enough embryos remaining to allow for 50% rate of blastocyte development in-vitro are often fairly low.

 

Despite IVF being used routinely for over 40 years now, it’s not abundantly clear if, or how often, IVF may introduce genomic alternations or off-target affects in embryos. Likewise, scientists and clinicians are often unable to scrutinise changes produced through natural cellular processes including recombination and aging. So, it may be OK to do controlled experiments on using CRISPR to try and prevent multi-generational suffering. But, there has to be a long term investigation on the side effects of germline genome editing. Science has advanced a lot but still there are lot of things that are yet to be described or discovered by science. Trying to reduce human suffering should not give rise to new bigger sufferings and care must be taken not to create a Frankenstein.

 

References:

 

http://www.frontlinegenomics.com/news/29321/opinion-piece-morally-is-germline-genome-editing-all-that-different-to-ivf/

 

Read Full Post »


Injectable inclisiran (siRNA) as 3rd anti-PCSK9 behind mAbs Repatha and Praluent

 

Reporter: Aviva Lev-Ari, PhD, RN

Next stop, filing for approval. The Medicines Company has said it plans to submit inclisiran for FDA review by the end of 2019 and EMA review in the first quarter of 2020. If the drug’s approved it’ll be the third anti-PCSK9 behind mAbs Repatha and Praluent, and could try to compete on price to gain market share.

The company’s been very careful not to disclose its pricing plans for inclisiran, said ORION-10 principal investigator Dr. Scott Wright, professor and cardiologist at the Mayo Clinic. But, Wright said, The Medicines Co. and other companies he advises on clinical trial design “have learned the lesson from the sponsors of the monoclonal antibodies [against PCSK9], they’re not going to come in and price a drug that’s out of proportion to what the market will bear.” 

Because the anti-PCSK9 mAbs were initially priced beyond what patients and insurers were willing to pay, “now most of the physicians that I meet have a resistance to using them just because they’re fearful about the pre-approval process” with insurers, said Wright. “They’re much easier to get approved and paid for today than they’ve ever been, but that message is not out in the medical community yet.”

SOURCE

From: “STAT: AHA in 30 Seconds” <newsletter@statnews.com>

Reply-To: “STAT: AHA in 30 Seconds” <newsletter@statnews.com>

Date: Monday, November 18, 2019 at 2:59 PM

To: Aviva Lev-Ari <AvivaLev-Ari@alum.berkeley.edu>

Subject: Interim look at Amarin data, an inclisiran update, & Philly’s giant heart

Read Full Post »


Real Time Coverage @BIOConvention #BIO2019: Gene Therapy 2.0: No Longer Science Fiction 1:00-2:15 pm June 3 Philadelphia PA

Reporter: Stephen J. Williams Ph.D. @StephenJWillia2

kkjk

Other Articles on Gene Therapy on this Open Access Journal Include:

Read Full Post »


Human gene editing continues to hold a major fascination within a biomedical and biopharmaceutical industries. It’s extraordinary potential is now being realized but important questions as to who will be the beneficiaries of such breakthrough technologies remained to be answered. The session will discuss whether gene editing technologies can alleviate some of the most challenging unmet medical needs. We will discuss how research advances often never reach minority communities and how diverse patient populations will gain access to such breakthrough technologies. It is widely recognize that there are patient voids in the population and we will explore how community health centers might fill this void to ensure that state-of-the-art technologies can reach the forgotten patient groups . We also will touch ethical questions surrounding germline editing and how such research and development could impact the community at large.

Please follow LIVE on TWITTER using the following @ handles and # hashtags:

@Handles

@pharma_BI

@AVIVA1950

@BIOConvention

# Hashtags

#BIO2019 (official meeting hashtag)

Read Full Post »


Real Time Coverage @BIOConvention #BIO2019: Genome Editing and Regulatory Harmonization: Progress and Challenges

Reporter: Stephen J Williams, PhD @StephenJWillia2

 

Genome editing offers the potential of new and effective treatments for genetic diseases. As companies work to develop these treatments, regulators are focused on ensuring that any such products meet applicable safety and efficacy requirements. This panel will discuss how European Union and United States regulators are approaching therapeutic use of genome editing, issues in harmonization between these two – and other – jurisdictions, challenges faced by industry as regulatory positions evolve, and steps that organizations and companies can take to facilitate approval and continued efforts at harmonization.

 

CBER:  because of the nature of these gene therapies, which are mainly orphan, there is expedited review.  Since they started this division in 2015, they have received over 1500 applications.

Spark: Most of the issues were issues with the primary disease not the gene therapy so they had to make new endpoint tests so had talks with FDA before they entered phase III.   There has been great collaboration with FDA,  now they partnered with Novartis to get approval outside US.  You should be willing to partner with EU pharmas to expedite the regulatory process outside US.  In China the process is new and Brazil is behind on their gene therapy guidance.  However there is the new issue of repeat testing of your manufacturing process, as manufacturing of gene therapies had been small scale before. However he notes that problems with expedited review is tough because you don’t have alot of time to get data together.  They were lucky that they had already done a randomized trial.

Sidley Austin:  EU regulatory you make application with advance therapy you don’t have a national option, the regulation body assesses a committee to see if has applicability. Then it goes to a safety committee.  EU has been quicker to approve these advance therapies. Twenty five percent of their applications are gene therapies.  Companies having issues with manufacturing.  There can be issues when the final application is formalized after discussions as problems may arise between discussions, preliminary applications, and final applications.

Sarepta: They have a robust gene therapy program.  Their lead is a therapy for DMD (Duchenne’s Muscular Dystrophy) where affected males die by 25. Japan and EU have different regulatory applications and although they are similar and data can be transferred there is more paperwork required by EU.  The US uses an IND for application. Global feedback is very challenging, they have had multiple meetings around the world and takes a long time preparing a briefing package….. putting a strain on the small biotechs.  No company wants to be either just EU centric or US centric they just want to get out to market as fast as possible.

 

Please follow LIVE on TWITTER using the following @ handles and # hashtags:

@Handles

@pharma_BI

@AVIVA1950

@BIOConvention

# Hashtags

#BIO2019 (official meeting hashtag)

 

 

 

Read Full Post »


Real Time Coverage @BIOConvention #BIO2019: Chat with @FDA Commissioner, & Challenges in Biotech & Gene Therapy June 4 Philadelphia

Reporter: Stephen J. Williams, PhD @StephenJWillia2

 

  • taking patient concerns and voices from anecdotal to data driven system
  • talked about patient accrual hearing patient voice not only in ease of access but reporting toxicities
  • at FDA he wants to remove barriers to trial access and accrual; also talk earlier to co’s on how they should conduct a trial

Digital tech

  • software as medical device
  • regulatory path is mixed like next gen sequencing
  • wearables are concern for FDA (they need to recruit scientists who know this tech

Opioids

  • must address the crisis but in a way that does not harm cancer pain patients
  • smaller pain packs “blister packs” would be good idea

Clinical trial modernization

  • for Alzheimers disease problem is science
  • for diabetes problem is regulatory
  • different diseases calls for different trial design
  • have regulatory problems with rare diseases as can’t form control or placebo group, inhumane. for example ras tumors trials for MEK inhibitors were narrowly focused on certain ras mutants
Realizing the Promise of Gene Therapies for Patients Around the World

103ABC, Level 100

Speakers
Lots of promise, timeline is progressing faster but we need more education on use of the gene therapy
Regulatory issues: Cell and directly delivered gene based therapies have been now approved. Some challenges will be the ultrarare disease trials and how we address manufacturing issues.  Manufacturing is a big issue at CBER and scalability.  If we want to have global impact of these products we need to address the manufacturing issues
 of scalability.
Pfizer – clinical grade and scale is important.
Aventis – he knew manufacturing of biologics however gene therapy manufacturing has its separate issues and is more complicated especially for regulatory purposes for clinical grade as well as scalability.  Strategic decision: focusing on the QC on manufacturing was so important.  Had a major issue in manufacturing had to shut down and redesign the system.
Albert:  Manufacturing is the most important topic even to the investors.  Investors were really conservative especially seeing early problems but when academic centers figured out good efficacy then they investors felt better and market has exploded.  Now you can see investment into preclinical and startups but still want mature companies to focus on manufacturing.  About $10 billion investment in last 4 years.

How Early is Too Early? Valuing and De-Risking Preclinical Opportunities

109AB, Level 100

Speakers
Valuing early-stage opportunities is challenging. Modeling will often provide a false sense of accuracy but relying on comparable transactions is more art than science. With a long lead time to launch, even the most robust estimates can ultimately prove inaccurate. This interactive panel will feature venture capital investors and senior pharma and biotech executives who lead early-stage transactions as they discuss their approaches to valuing opportunities, and offer key learnings from both successful and not-so-successful experiences.
Dr. Schoenbeck, Pfizer:
  • global network of liaisons who are a dedicated team to research potential global startup partners or investments.  Pfizer has a separate team to evaluate academic laboratories.  In Most cases Pfizer does not initiate contact.  It is important to initiate the first discussion with them in order to get noticed.  Could be just a short chat or discussion on what their needs are for their portfolio.

Question: How early is too early?

Luc Marengere, TVM:  His company has early stage focus, on 1st in class molecules.  The sweet spot for their investment is a candidate selected compound, which should be 12-18 months from IND.  They will want to bring to phase II in less than 4 years for $15-17 million.  Their development model is bad for academic labs.  During this process free to talk to other partners.

Dr. Chaudhary, Biogen:  Never too early to initiate a conversation and sometimes that conversation has lasted 3+ years before a decision.  They like build to buy models, will do convertible note deals, candidate compound selection should be entering in GLP/Tox phase (sweet spot)

Merck: have MRL Venture Fund for pre series A funding.  Also reiterated it is never too early to have that initial discussion.  It will not put you in a throw away bin.  They will have suggestions and never like to throw out good ideas.

Michael Hostetler: Set expectations carefully ; data should be validated by a CRO.  If have a platform, they will look at the team first to see if strong then will look at the platform to see how robust it is.

All noted that you should be completely honest at this phase.  Do not overstate your results or data or overhype your compound(s).  Show them everything and don’t have a bias toward compounds you think are the best in your portfolio.  Sometimes the least developed are the ones they are interested in.  Also one firm may reject you however you may fit in others portfolios better so have a broad range of conversations with multiple players.

 

 

Read Full Post »


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

RNA plays various roles in determining how the information in our genes drives cell behavior. One of its roles is to carry information encoded by our genes from the cell nucleus to the rest of the cell where it can be acted on by other cell components. Rresearchers have now defined how RNA also participates in transmitting information outside cells, known as extracellular RNA or exRNA. This new role of RNA in cell-to-cell communication has led to new discoveries of potential disease biomarkers and therapeutic targets. Cells using RNA to talk to each other is a significant shift in the general thought process about RNA biology.

 

Researchers explored basic exRNA biology, including how exRNA molecules and their transport packages (or carriers) were made, how they were expelled by producer cells and taken up by target cells, and what the exRNA molecules did when they got to their destination. They encountered surprising complexity both in the types of carriers that transport exRNA molecules between cells and in the different types of exRNA molecules associated with the carriers. The researchers had to be exceptionally creative in developing molecular and data-centric tools to begin making sense of the complexity, and found that the type of carrier affected how exRNA messages were sent and received.

 

As couriers of information between cells, exRNA molecules and their carriers give researchers an opportunity to intercept exRNA messages to see if they are associated with disease. If scientists could change or engineer designer exRNA messages, it may be a new way to treat disease. The researchers identified potential exRNA biomarkers for nearly 30 diseases including cardiovascular disease, diseases of the brain and central nervous system, pregnancy complications, glaucoma, diabetes, autoimmune diseases and multiple types of cancer.

 

As for example some researchers found that exRNA in urine showed promise as a biomarker of muscular dystrophy where current studies rely on markers obtained through painful muscle biopsies. Some other researchers laid the groundwork for exRNA as therapeutics with preliminary studies demonstrating how researchers might load exRNA molecules into suitable carriers and target carriers to intended recipient cells, and determining whether engineered carriers could have adverse side effects. Scientists engineered carriers with designer RNA messages to target lab-grown breast cancer cells displaying a certain protein on their surface. In an animal model of breast cancer with the cell surface protein, the researchers showed a reduction in tumor growth after engineered carriers deposited their RNA cargo.

 

Other than the above research work the scientists also created a catalog of exRNA molecules found in human biofluids like plasma, saliva and urine. They analyzed over 50,000 samples from over 2000 donors, generating exRNA profiles for 13 biofluids. This included over 1000 exRNA profiles from healthy volunteers. The researchers found that exRNA profiles varied greatly among healthy individuals depending on characteristics like age and environmental factors like exercise. This means that exRNA profiles can give important and detailed information about health and disease, but careful comparisons need to be made with exRNA data generated from people with similar characteristics.

 

Next the researchers will develop tools to efficiently and reproducibly isolate, identify and analyze different carrier types and their exRNA cargos and allow analysis of one carrier and its cargo at a time. These tools will be shared with the research community to fill gaps in knowledge generated till now and to continue to move this field forward.

 

References:

 

https://www.nih.gov/news-events/news-releases/scientists-explore-new-roles-rna

 

https://www.cell.com/consortium/exRNA

 

https://www.sciencedaily.com/releases/2016/06/160606120230.htm

 

https://www.pasteur.fr/en/multiple-roles-rnas

 

https://www.nature.com/scitable/topicpage/rna-functions-352

 

https://www.umassmed.edu/rti/biology/role-of-rna-in-biology/

 

Read Full Post »


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Leigh syndrome is one of the hundreds of so-called mitochondrial diseases, which are caused by defects in the mitochondria that produce 90 percent of the body’s energy. These disorders are rare; about 1,000 to 4,000 babies in the United States are born with one every year. But they are devastating and can result in grave impairment of nearly any bodily system. They are largely untreatable, uniformly incurable and very difficult to screen.

 

Leigh syndrome is a terrible disease. It emerges shortly after birth and claims one major organ after another. Movement becomes difficult, and then impossible. A tracheotomy and feeding tube are often necessary by toddlerhood, and as the disease progresses, lungs frequently have to be suctioned manually. Most children with the condition die by the age of 5 or 6.

 

Scientists have devised a procedure called mitochondrial replacement therapy (M.R.T.) that involves transplanting the nucleus of an affected egg (mitochondrial diseases are passed down from the mother’s side) into an unaffected one whose nucleus has been removed. The procedure is sometimes called “three-parent in vitro fertilization”. Mitochondria contain a minuscule amount of DNA, any resulting embryo would have mitochondrial DNA from the donor egg and nuclear DNA from each of its parents.

 

After decades of careful study in cell and animal research M.R.T. is now finally being tested in human clinical trials by doctors in Britain (no births confirmed yet officially). In the United States, however, this procedure is effectively illegal. M.R.T. does not involve altering any genetic code. Defective mitochondria are swapped out for healthy ones.

 

Mitochondrial DNA governs only a handful of basic cellular functions. It is separate from nuclear DNA, which helps determine individual traits like physical appearance, intelligence and personality. That means M.R.T. cannot be used to produce the genetically enhanced “designer babies” and thus should be allowed in humans. But, there is no way to know how safe or effective M.R.T. is until doctors and scientists test it in humans.

 

References:

 

 

https://pharmaceuticalintelligence.com/2016/10/07/the-three-parent-technique-to-avoid-mitochondrial-disease-in-embryo/

 

 

 

 

Read Full Post »


Sickle Cell and Beta Thalassemia chosen for first human trial of the gene editing technology, CRISPR by sponsoring companies CRISPR Therapeutics and Vertex Pharmaceuticals, trial at a single site in Germany,

 

Reporter: Aviva Lev-Ari, PhD, RN

UPDATED on 3/09/2019

CRISPR Therapeutics share up on announcement of first dosing in the joint Vertex sponsored trial for their gene editing therapy CTX001 for patients with beta thalassemia.

from Zachs.com

CRISPR Therapeutics (CRSP – Free Report) and its partner Vertex Pharmaceuticals (VRTX – Free Report) announced the dosing of the first patient in a phase I/II study evaluating the CRISPR/Cas9 gene-editing therapy, CTX001, in patients with beta thalassemia, a form of anemia. This is the first in-human use of CTX001 in any clinical study.

The companies also enrolled first patients in another phase I/II study evaluating CTX001 in patients with severe sickle cell disease (“SCD”), a severe hereditary form of anemia. Dosing in the study is expected to start in mid-2019.

Shares of CRISPR Therapeutics surged more than 25% following the announcement of the progress made by the company in studies on CTX001. However, the stock has declined 14.3% in the past year.

We remind investors that last month, the FDA assigned Fast Track designation CTX001 for the treatment of SCD. With this designation, the drug is expected to be granted a priority review once the company files a new drug application.

Other than CRISPR Therapeutics, Intellia Therapeutics (NTLA – Free Report) and Editas Medicine, Inc (EDIT – Free Report) plan to carry out clinical studies using CRISPR Cas9 to cure diseases.

CRISPR Therapeutics also announced its fourth-quarter results in a separate press release.  The company reported revenues of $0.1 million, which came from collaborations, compared to $32.3 million in year-ago period. Reported loss was 92 cents per share in the fourth quarter. The company achieved breakeven results in the year-ago quarter.

The company remains on track to initiate an immuno-oncology study in the first half of 2019 on its CAR-T cell therapy candidate, CTX110, for treating CD19+ malignancies. The company is the sole owner of the candidate. Since September, the company has inked or modified several collaboration agreements with other pharma companies for pre-clinical development of its new CRISPR/Cas9 gene editing candidates.

 

UPDATED on 9/13/2018

 

September 13, 2018

NIH launches initiative to accelerate genetic therapies to cure sickle cell disease

“Our scientific investments have brought us to a point where we have many tools available to correct or compensate for the defective gene that causes sickle cell disease. We are now ready to use these tools to speed up our quest for a cure,” said Gary H. Gibbons, M.D., director of NIH’s National Heart, Lung, and Blood Institute (NHLBI), which is leading the effort.

SOURCE

https://www.nih.gov/news-events/news-releases/nih-launches-initiative-accelerate-genetic-therapies-cure-sickle-cell-disease

 

 

Vertex licensed CTX001, an autologous gene-edited hematopoietic stem cell therapy, from CRISPR in December. It was the first CRISPR-based treatment to come out of a four-year, $105 million deal the pair struck in 2015. At the time, Vertex paid up $75 million in cash and took a $30 million stake in CRISPR Therapeutics in exchange for the right to license up to six gene-editing programs. CTX001 is being developed for the blood disorders sickle cell disease and beta thalassemia.

Both disorders are caused by mutations in the beta-globin gene, which codes for a part of hemoglobin, the oxygen-carrying component of red blood cells. This results in missing or defective hemoglobin. CTX001 was developed on the knowledge that fetal hemoglobin—found in newborn babies but later replaced by adult hemoglobin—can be protective in adults who have blood disorders.

CTX001 uses CRISPR gene-editing ex vivo—that is, outside the body. A patient’s cells are harvested and edited to increase fetal hemoglobin levels in the patient’s blood cells. The edited cells are then infused back into the patient where they are expected to produce blood cells with fetal hemoglobin and compensate for defective adult hemoglobin.

SOURCE

https://www.fiercebiotech.com/biotech/crispr-therapeutics-vertex-start-first-company-backed-human-crispr-trial?mkt_tok=eyJpIjoiTm1FMllXTmtOMlkwWkRNdyIsInQiOiJLMUEyeGtsT0ZMTVBuM1RtbVFjRFdMQUdRcDZkXC9yVHlXTWxIQmlvc3M0XC9LVFArdlFuaVVYY0lQXC81ak9cL3h1VjFHYnprZ3dqVlNlaWFldWxcLzA3QUphdExpc0w0Vk1TSGR3WVl0YXNqQlFRVHdvZmNycVNEWE9qdWQ2QmdacklSIn0%3D&mrkid=993697

Other 339 articles on GENE EDITING were published in this Open Access Online Scientific Journal, including the following articles:

https://pharmaceuticalintelligence.com/?s=Gene+Editing

On CRISPR/Cas9, there are 141 articles in the Journal:

https://pharmaceuticalintelligence.com/?s=CRISPR%2FCas9

Gene Therapy, there are 11 articles in the Journal:

https://pharmaceuticalintelligence.com/category/genome-biology/gene-therapy-gene-editing-development/

Read Full Post »

Older Posts »