Advertisements
Feeds:
Posts
Comments

Archive for the ‘Gene Therapy & Gene Editing Development’ Category


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

A mutated gene called RAS gives rise to a signalling protein Ral which is involved in tumour growth in the bladder. Many researchers tried and failed to target and stop this wayward gene. Signalling proteins such as Ral usually shift between active and inactive states.

 

So, researchers next tried to stop Ral to get into active state. In inacvtive state Ral exposes a pocket which gets closed when active. After five years, the researchers found a small molecule dubbed BQU57 that can wedge itself into the pocket to prevent Ral from closing and becoming active. Now, BQU57 has been licensed for further development.

 

Researchers have a growing genetic data on bladder cancer, some of which threaten to overturn the supposed causes of bladder cancer. Genetics has also allowed bladder cancer to be reclassified from two categories into five distinct subtypes, each with different characteristics and weak spots. All these advances bode well for drug development and for improved diagnosis and prognosis.

 

Among the groups studying the genetics of bladder cancer are two large international teams: Uromol (named for urology and molecular biology), which is based at Aarhus University Hospital in Denmark, and The Cancer Genome Atlas (TCGA), based at institutions in Texas and Boston. Each team tackled a different type of cancer, based on the traditional classification of whether or not a tumour has grown into the muscle wall of the bladder. Uromol worked on the more common, earlier form, non-muscle-invasive bladder cancer, whereas TCGA is looking at muscle-invasive bladder cancer, which has a lower survival rate.

 

The Uromol team sought to identify people whose non-invasive tumours might return after treatment, becoming invasive or even metastatic. Bladder cancer has a high risk of recurrence, so people whose non-invasive cancer has been treated need to be monitored for many years, undergoing cystoscopy every few months. They looked for predictive genetic footprints in the transcriptome of the cancer, which contains all of a cell’s RNA and can tell researchers which genes are turned on or off.

 

They found three subgroups with distinct basal and luminal features, as proposed by other groups, each with different clinical outcomes in early-stage bladder cancer. These features sort bladder cancer into genetic categories that can help predict whether the cancer will return. The researchers also identified mutations that are linked to tumour progression. Mutations in the so-called APOBEC genes, which code for enzymes that modify RNA or DNA molecules. This effect could lead to cancer and cause it to be aggressive.

 

The second major research group, TCGA, led by the National Cancer Institute and the National Human Genome Research Institute, that involves thousands of researchers across USA. The project has already mapped genomic changes in 33 cancer types, including breast, skin and lung cancers. The TCGA researchers, who study muscle-invasive bladder cancer, have looked at tumours that were already identified as fast-growing and invasive.

 

The work by Uromol, TCGA and other labs has provided a clearer view of the genetic landscape of early- and late-stage bladder cancer. There are five subtypes for the muscle-invasive form: luminal, luminal–papillary, luminal–infiltrated, basal–squamous, and neuronal, each of which is genetically distinct and might require different therapeutic approaches.

 

Bladder cancer has the third-highest mutation rate of any cancer, behind only lung cancer and melanoma. The TCGA team has confirmed Uromol research showing that most bladder-cancer mutations occur in the APOBEC genes. It is not yet clear why APOBEC mutations are so common in bladder cancer, but studies of the mutations have yielded one startling implication. The APOBEC enzyme causes mutations early during the development of bladder cancer, and independent of cigarette smoke or other known exposures.

 

The TCGA researchers found a subset of bladder-cancer patients, those with the greatest number of APOBEC mutations, had an extremely high five-year survival rate of about 75%. Other patients with fewer APOBEC mutations fared less well which is pretty surprising.

 

This detailed knowledge of bladder-cancer genetics may help to pinpoint the specific vulnerabilities of cancer cells in different people. Over the past decade, Broad Institute researchers have identified more than 760 genes that cancer needs to grow and survive. Their genetic map might take another ten years to finish, but it will list every genetic vulnerability that can be exploited. The goal of cancer precision medicine is to take the patient’s tumour and decode the genetics, so the clinician can make a decision based on that information.

 

References:

 

https://www.ncbi.nlm.nih.gov/pubmed/29117162

 

https://www.ncbi.nlm.nih.gov/pubmed/27321955

 

https://www.ncbi.nlm.nih.gov/pubmed/28583312

 

https://www.ncbi.nlm.nih.gov/pubmed/24476821

 

https://www.ncbi.nlm.nih.gov/pubmed/28988769

 

https://www.ncbi.nlm.nih.gov/pubmed/28753430

 

Advertisements

Read Full Post »


Emerging STAR in Molecular Biology, Synthetic Virology and Genomics: Clodagh C. O’Shea: ChromEMT – Visualizing 3D chromatin structure

 

Curator: Aviva Lev-Ari, PhD, RN

 

On 8/28/2017, I attend and covered in REAL TIME the CHI’s 5th Immune Oncology Summit – Oncolytic Virus Immunotherapy, August 28-29, 2017 Sheraton Boston Hotel | Boston, MA

https://pharmaceuticalintelligence.com/2017/08/28/live-828-chis-5th-immune-oncology-summit-oncolytic-virus-immunotherapy-august-28-29-2017-sheraton-boston-hotel-boston-ma/

 

I covered in REAL TIME this event and Clodagh C. O’Shea talk at the conference.

On that evening, I e-mailed my team that

“I believe that Clodagh C. O’Shea will get the Nobel Prizebefore CRISPR

 

11:00 Synthetic Virology: Modular Assembly of Designer Viruses for Cancer Therapy

Clodagh_OShea

Clodagh O’Shea, Ph.D., Howard Hughes Medical Institute Faculty Scholar; Associate Professor, William Scandling Developmental Chair, Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies

Design is the ultimate test of understanding. For oncolytic therapies to achieve their potential, we need a deep mechanistic understanding of virus and tumor biology together with the ability to confer new properties.

To achieve this, we have developed

  • combinatorial modular genome assembly (ADsembly) platforms,
  • orthogonal capsid functionalization technologies (RapAd) and
  • replication assays that have enabled the rational design, directed evolution, systematic assembly and screening of powerful new vectors and oncolytic viruses.

 

Clodagh O’Shea’s Talk In Real Time:

  • Future Cancer therapies to be sophisticated as Cancer is
  • Targer suppresor pathways (Rb/p53)
  • OV are safe their efficacy ishas been limited
  • MOA: Specify Oncolytic Viral Replication in Tumor cells Attenuate – lack of potency
  • SOLUTIONS: Assembly: Assmble personalized V Tx fro libraries of functional parts
  • Adenovirus – natural & clinical advantages
  • Strategy: Technology for Assmbling Novel Adenovirus Genomes using Modular Genomic Parts
  • E1 module: Inactives Rb & p53
  • core module:
  • E3 Module Immune Evasion Tissue targeting
  • E4 Module Activates E2F (transcription factor TDP1/2), PI3K
  • Adenovirus promoters for Cellular viral replication — Tumor Selective Replication: Novel Viruses Selective Replicate in RB/p16
  • Engineering Viruses to overcome tumor heterogeneity
  • Target multiple & Specific Tumor Cel Receptors – RapAd Technology allows Re-targeting anti Rapamycin – induced targeting of adenovirus
  • Virus Genome: FKBP-fusion FRB-Fiber
  • Engineer Adenovirus Caspids that prevent Liver uptake and Sequestration – Natural Ad5 Therapies 
  • Solution: AdSyn335 Lead candidat AdSyn335 Viruses targeting multiple cells
  • Engineering Mutations that enhanced potency
  • Novel Vector: Homes and targets
  • Genetically engineered PDX1 – for Pancreatic Cancer Stroma: Early and Late Stage
On Twitter:

Engineer Adenovirus Caspids prevent Liver uptake and Sequestration – Natural Ad5 Therapies C. O’Shea, HHDI

Scientist’s Profile: Clodagh C. O’Shea

http://www.salk.edu/scientist/clodagh-oshea/

EDUCATION

BS, Biochemistry and Microbiology, University College Cork, Ireland
PhD, Imperial College London/Imperial Cancer Research Fund, U.K.
Postdoctoral Fellow, UCSF Comprehensive Cancer Center, San Francisco, U.S.A

VIDEOS

http://www.salk.edu/scientist/clodagh-oshea/videos/

O’Shea Lab @Salk

http://oshea.salk.edu/

AWARDS & HONORS

  • 2016 Howard Hughes Medical Institute Faculty Scholar
  • 2014 W. M. Keck Medical Research Program Award
  • 2014 Rose Hills Fellow
  • 2011Science/NSF International Science & Visualization Challenge, People’s Choice
  • 2011 Anna Fuller Award for Cancer Research
  • 2010, 2011, 2012 Kavli Frontiers Fellow, National Academy of Sciences
  • 2009 Sontag Distinguished Scientist Award
  • 2009 American Cancer Society Research Scholar Award
  • 2008 ACGT Young Investigator Award for Cancer Gene Therapy
  • 2008 Arnold and Mabel Beckman Young Investigator Award
  • 2008 William Scandling Assistant Professor, Developmental Chair
  • 2007 Emerald Foundation Schola

READ 

Clodagh C. O’Shea: ChromEMT: Visualizing 3D chromatin structure and compaction in interphase and mitotic cells | Science

http://science.sciencemag.org/content/357/6349/eaag0025

and 

https://www.readbyqxmd.com/keyword/93030

Clodagh C. O’Shea

In Press

Jul 27, 2017 – Salk scientists solve longstanding biological mystery of DNA organization

Sep 22, 2016 – Clodagh O’Shea named HHMI Faculty Scholar for groundbreaking work in designing synthetic viruses to destroy cancer

Oct 05, 2015 – Clodagh O’Shea awarded $3 million to unlock the “black box” of the nucleus

Aug 27, 2015 – The DNA damage response goes viral: a way in for new cancer treatments

Apr 12, 2013 – Salk Institute promotes three top scientists

Oct 16, 2012 – Cold viruses point the way to new cancer therapies

Aug 25, 2010 – Use the common cold virus to target and disrupt cancer cells?

Oct 22, 2009 – Salk scientist receives The Sontag Foundation’s Distinguished Scientist Award

May 15, 2008 – Salk scientist wins 2008 Beckman Young Investigator Award

Mar 24, 2008 – Salk scientist wins 2007 Young Investigator’s Award in Gene Therapy for Cancer

Read Full Post »


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Scientists think excessive population growth is a cause of scarcity and environmental degradation. A male pill could reduce the number of unintended pregnancies, which accounts for 40 percent of all pregnancies worldwide.

 

But, big drug companies long ago dropped out of the search for a male contraceptive pill which is able to chemically intercept millions of sperm before they reach a woman’s egg. Right now the chemical burden for contraception relies solely on the female. There’s not much activity in the male contraception field because an effective solution is available on the female side.

 

Presently, male contraception means a condom or a vasectomy. But researchers from Center for Drug Discovery at Baylor College of Medicine, USA are renewing the search for a better option—an easy-to-take pill that’s safe, fast-acting, and reversible.

 

The scientists began with lists of genes active in the testes for sperm production and motility and then created knockout mice that lack those genes. Using the gene-editing technology called CRISPR, in collaboration with Japanese scientists, they have so far made more than 75 of these “knockout” mice.

 

They allowed these mice to mate with normal (wild type) female mice, and if their female partners don’t get pregnant after three to six months, it means the gene might be a target for a contraceptive. Out of 2300 genes that are particularly active in the testes of mice, the researchers have identified 30 genes whose deletion makes the male infertile. Next the scientists are planning a novel screening approach to test whether any of about two billion chemicals can disable these genes in a test tube. Promising chemicals could then be fed to male mice to see if they cause infertility.

 

Female birth control pills use hormones to inhibit a woman’s ovaries from releasing eggs. But hormones have side effects like weight gain, mood changes, and headaches. A trial of one male contraceptive hormone was stopped early in 2011 after one participant committed suicide and others reported depression. Moreover, some drug candidates have made animals permanently sterile which is not the goal of the research. The challenge is to prevent sperm being made without permanently sterilizing the individual.

 

As a better way to test drugs, Scientists at University of Georgia, USA are investigating yet another high-tech approach. They are turning human skin cells into stem cells that look and act like the spermatogonial cells in the testes. Testing drugs on such cells might provide more accurate leads than tests on mice.

 

The male pill would also have to start working quickly, a lot sooner than the female pill, which takes about a week to function. Scientists from University of Dundee, U.K. admitted that there are lots of challenges. Because, a women’s ovary usually release one mature egg each month, while a man makes millions of sperm every day. So, the male pill has to be made 100 percent effective and act instantaneously.

 

References:

 

https://www.technologyreview.com/s/603676/the-search-for-a-perfect-male-birth-control-pill/

 

https://futurism.com/videos/the-perfect-male-birth-control-pill-is-coming-soon/?utm_source=Digest&utm_campaign=c42fc7b9b6-EMAIL_CAMPAIGN_2017_03_20&utm_medium=email&utm_term=0_03cd0a26cd-c42fc7b9b6-246845533

 

http://www.telegraph.co.uk/women/sex/the-male-pill-is-coming—and-its-going-to-change-everything/

 

http://www.mensfitness.com/women/sex-tips/male-birth-control-pill-making

 

http://health.howstuffworks.com/sexual-health/contraception/male-bc-pill.htm

 

http://europe.newsweek.com/male-contraception-side-effects-study-pill-injection-518237?rm=eu

 

http://edition.cnn.com/2016/01/07/health/male-birth-control-pill/index.html

 

http://www.nhs.uk/Conditions/contraception-guide/Pages/male-pill.aspx

Read Full Post »


Translation of whole human genome sequencing to clinical practice: The Joint Initiative for Metrology in Biology (JIMB) is a collaboration between the National Institute of Standards & Technology (NIST) and Stanford University.

Reporter: Aviva Lev-Ari, PhD, RN

 

JIMB’s mission is to advance the science of measuring biology (biometrology). JIMB is pursuing fundamental research, standards development, and the translation of products that support confidence in biological measurements and reliable reuse of materials and results. JIMB is particularly focused on measurements and technologies that impact, are related to, or enabled by ongoing advances in and associated with the reading and writing of DNA.

Stanford innovators and industry entrepreneurs have joined forces with the measurement experts from NIST to create a new engine powering the bioeconomy. It’s called JIMB — “Jim Bee” — the Joint Initiative for Metrology in Biology. JIMB unites people, platforms, and projects to underpin standards-based research and innovation in biometrology.

Genome in a Bottle
Authoritative Characterization of
Benchmark Human Genomes


The Genome in a Bottle Consortium is a public-private-academic consortium hosted by NIST to develop the technical infrastructure (reference standards, reference methods, and reference data) to enable translation of whole human genome sequencing to clinical practice. The priority of GIAB is authoritative characterization of human genomes for use in analytical validation and technology development, optimization, and demonstration. In 2015, NIST released the pilot genome Reference Material 8398, which is genomic DNA (NA12878) derived from a large batch of the Coriell cell line GM12878, characterized for high-confidence SNPs, indel, and homozygous reference regions (Zook, et al., Nature Biotechnology 2014).

There are four new GIAB reference materials available.  With the addition of these new reference materials (RMs) to a growing collection of “measuring sticks” for gene sequencing, we can now provide laboratories with even more capability to accurately “map” DNA for genetic testing, medical diagnoses and future customized drug therapies. The new tools feature sequenced genes from individuals in two genetically diverse groups, Asians and Ashkenazic Jews; a father-mother-child trio set from Ashkenazic Jews; and four microbes commonly used in research. For more information click here.  To purchase them, visit:

Data and analyses are publicly available (GIAB GitHub). A description of data generated by GIAB is published here. To standardize best practices for using GIAB genomes for benchmarking, we are working with the Global Alliance for Genomics and Health Benchmarking Team (benchmarking tools).

High-confidence small variant and homozygous reference calls are available for NA12878, the Ashkenazim trio, and the Chinese son with respect to GRCh37.  Preliminary high-confidence calls with respect to GRCh38 are also available for NA12878.   The latest version of these calls is under the latest directory for each genome on the GIAB FTP.

The consortium was initiated in a set of meetings in 2011 and 2012, and the consortium holds open, public workshops in January at Stanford University in Palo Alto, CA and in August/September at NIST in Gaithersburg, MD. Slides from workshops and conferences are available online. The consortium is open and welcomes new participants.

SOURCE

Stanford innovators and industry entrepreneurs have joined forces with the measurement experts from NIST to create a new engine powering the bioeconomy. It’s called JIMB — “Jim Bee” — the Joint Initiative for Metrology in Biology. JIMB unites people, platforms, and projects to underpin standards-based research and innovation in biometrology.

JIMB World Metrology Day Symposium

JIMB’s mission is to motivate standards-based measurement innovation to facilitate translation of basic science and technology development breakthroughs in genomics and synthetic biology.

By advancing biometrology, JIMB will push the boundaries of discovery science, accelerate technology development and dissemination, and generate reusable resources.

 SOURCE

VIEW VIDEO

https://player.vimeo.com/video/184956195?wmode=opaque&api=1″,”url”:”https://vimeo.com/184956195″,”width”:640,”height”:360,”providerName”:”Vimeo”,”thumbnailUrl”:”https://i.vimeocdn.com/video/594555038_640.jpg”,”resolvedBy”:”vimeo”}” data-block-type=”32″>

Other related articles published in this Open Access Online Scientific Journal include the following:

“Genome in a Bottle”: NIST’s new metrics for Clinical Human Genome Sequencing

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2012/09/06/genome-in-a-bottle-nists-new-metrics-for-clinical-human-genome-sequencing/

Read Full Post »


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

MicroRNAs (miRNAs) are a group of small non-coding RNA molecules that play a major role in posttranscriptional regulation of gene expression and are expressed in an organ-specific manner. One miRNA can potentially regulate the expression of several genes, depending on cell type and differentiation stage. They control every cellular process and their altered regulation is involved in human diseases. miRNAs are differentially expressed in the male and female gonads and have an organ-specific reproductive function. Exerting their affect through germ cells and gonadal somatic cells, miRNAs regulate key proteins necessary for gonad development. The role of miRNAs in the testes is only starting to emerge though they have been shown to be required for adequate spermatogenesis. In the ovary, miRNAs play a fundamental role in follicles’ assembly, growth, differentiation, and ovulation.

 

Deciphering the underlying causes of idiopathic male infertility is one of the main challenges in reproductive medicine. This is especially relevant in infertile patients displaying normal seminal parameters and no urogenital or genetic abnormalities. In these cases, the search for additional sperm biomarkers is of high interest. This study was aimed to determine the implications of the sperm miRNA expression profiles in the reproductive capacity of normozoospermic infertile individuals. The expression levels of 736 miRNAs were evaluated in spermatozoa from normozoospermic infertile males and normozoospermic fertile males analyzed under the same conditions. 57 miRNAs were differentially expressed between populations; 20 of them was regulated by a host gene promoter that in three cases comprised genes involved in fertility. The predicted targets of the differentially expressed miRNAs unveiled a significant enrichment of biological processes related to embryonic morphogenesis and chromatin modification. Normozoospermic infertile individuals exhibit a specific sperm miRNA expression profile clearly differentiated from normozoospermic fertile individuals. This miRNA cargo has potential implications in the individuals’ reproductive competence.

 

Circulating or “extracellular” miRNAs detected in biological fluids, could be used as potential diagnostic and prognostic biomarkers of several disease, such as cancer, gynecological and pregnancy disorders. However, their contributions in female infertility and in vitro fertilization (IVF) remain unknown. Polycystic ovary syndrome (PCOS) is a frequent endocrine disorder in women. PCOS is associated with altered features of androgen metabolism, increased insulin resistance and impaired fertility. Furthermore, PCOS, being a syndrome diagnosis, is heterogeneous and characterized by polycystic ovaries, chronic anovulation and evidence of hyperandrogenism, as well as being associated with chronic low-grade inflammation and an increased life time risk of type 2 diabetes. Altered miRNA levels have been associated with diabetes, insulin resistance, inflammation and various cancers. Studies have shown that circulating miRNAs are present in whole blood, serum, plasma and the follicular fluid of PCOS patients and that these might serve as potential biomarkers and a new approach for the diagnosis of PCOS. Presence of miRNA in mammalian follicular fluid has been demonstrated to be enclosed within microvesicles and exosomes or they can also be associated to protein complexes. The presence of microvesicles and exosomes carrying microRNAs in follicular fluid could represent an alternative mechanism of autocrine and paracrine communication inside the ovarian follicle. The investigation of the expression profiles of five circulating miRNAs (let-7b, miR-29a, miR-30a, miR-140 and miR-320a) in human follicular fluid from women with normal ovarian reserve and with polycystic ovary syndrome (PCOS) and their ability to predict IVF outcomes showed that these miRNAs could provide new helpful biomarkers to facilitate personalized medical care for oocyte quality in ART (Assisted Reproductive Treatment) and during IVF (In Vitro Fertilization).

 

References:

 

http://link.springer.com/chapter/10.1007%2F978-3-319-31973-5_12

 

http://onlinelibrary.wiley.com/doi/10.1111/andr.12276/abstract;jsessionid=F805A89DCC94BDBD42D6D60C40AD4AB0.f03t03

 

http://www.sciencedirect.com/science/article/pii/S0009279716302241

 

http://link.springer.com/article/10.1007%2Fs10815-016-0657-9

 

http://www.nature.com/articles/srep24976

 

 

Read Full Post »


LIVE – Day 1, OCTOBER 18 @The 16th annual EmTech MIT – A Place of Inspiration, October 18-20, 2016, Cambridge, MA

 

Leaders in Pharmaceutical Business Intelligence (LPBI) Group, Boston

pharma_bi-background0238

will cover in REAL TIME

The 16th annual EmTech MIT – A Place of Inspiration, October 18-20, 2016, Cambridge, MA

http://events.technologyreview.com/emtech/16/

In attendance, streaming LIVE using Social Media

Aviva Lev-Ari, PhD, RN

Editor-in-Chief

http://pharmaceuticalintelligence.com

@pharma_BI

@AVIVA1950

#emtechmit

 

TUESDAY, OCTOBER 18, 2016

SOURCE

http://events.technologyreview.com/emtech/16/#section-schedule

  • 8:00
    Registration & Breakfast
  • 9:00
    Opening Remarks
    Emerging technologies, including:

    – Rethinking Energy

    — Rewrite Biology

    – Virtual Reality, Augmented Life

    – Artificial intelligence

    – Global Connectivity

    – Engineering a Healthy Planet

    – Spotlight talks on the 10 Breakthrough Technologies

    – Celebration of the 2016 Innovators Under 35

  • 9:15
    Connecting for Greater Opportunity: Defining the Digital Era – from FaceBook 1.2 Billion customers around the World.
     – awareness affordability and infrastructure

    – 4G in US, Scandenavia, Japan, 3G in Europe, India 2G network, distribution of World population, Density of 1 sq Km, 1.6 Billion do not have mobile connections. Terragraph in Urban center to leapfrog UAVs to be used for connectivity. Terragraph Overview – ETHERNET CONNECTIVITY – GIGABIT – unlicensed 60GHz Spectrum, cloud computing, Open/R: IPv6 – Laser communication: comparable to fiber optics, 10s of Gbps per second, atmosphere absorbs and scatter: pointing and tracking system, Satellite. FACEBOOK Priorities: Density of Population, Gov’t will be favorable, population have not enough — #1 is INDIA, CHINA

 

  • 9:45

    Innovators Under 35 Introduction – Brian Bergstein, Editor of Technology Review

  • 10:00

    Meet Young Inventors

     – Blendoor – Stephanie Lampkin
    – MACH – Eshan Hoque Social Skills Trainer – My Automated Conversation Coach – ROCspeak.com
    – HandTalk – Ronaldo Tenorio – Deaf People 6 million people in Brazil, barrier between Hearing and Deaf people – sign language
    – Energy Systems Requires Water, Lake Mead by Kelly Sanders – energy vs bottle water
  • 10:30
    Break & Networking
  • 11:00 Antolio Regalado, Editor Biotech at MIT Technology Review

    Gene Therapy- A New Era of Medicine

    CEO & Founder, Intellia Therapeutics, Nessan Bermingham, PhD, 2018 there will be the product in Clinics
    – Gene Editing,
    – CRISPR Cas9 – immune system of Bacteria, using the mechanism in Bacteria for Human cells, Cellular level
    – cut DNA, coopting and shut down  – cut a piece of DNA convert a mutation,
    – injection of cRISPR protein – correction and the existing malformed is repaired no longer expressed
    – stem cells modifies and re-injected
    – KO: ATTR, AATD, HBV
    – Repair: AATD, HSCs
    – CAR-T cells
    – genetic engineering vs gene repair
    – equal access to therapy

    MGH – Cellular Immunotherapy Program – Marcella Maus, PhD on T-Cell research

    – blocking the checkpoints by antibo- dies, Use Tcells as drugs, scale the process, manufacturing process, recover T cell from Blood, from biopsy, who is responding and who does not respond? – Leukemia, CAR- T cells, multiple Myeloma, CURE is early to use but now it can be used COMBINATION of gen therapy follwoing gene editing and immunotherapy, CAR T- cell products for leukemia and lymphoma
  • Katheirne High, Spark Therapeutics

  • bring therapeutics to people – research to clinic
  • DNA defective, engineered from AAV: Vector, DNA, Target tissue to delivery
  • conjenetive blindness – investigational trial – get vector to retina by surgeon – clinical gain of function notices in 30 days group injected vs control group – impproved light sensitivity and mobility
  • first gene therapy for blindness
  • Himophilia – vector injected in the Liver where blood factors are produced
  • models of therapeuitcs: Bone marrow transplantation,
  • clinical cell therapy – low efficacy in adverse events – academic medical center and NIH interested vs Biotech
  • as Clinical Trials were successful Biotech and Pharma got interested
  • Access, pricing, reimbursement – How gene therapy is ONCE in a life time not an an infusion on a reccurent basis over many years – Hymophillia,  no pharmacological treatment to blindness
  • duration of expression 5 years and counting in UK, follwoing gene therapy
  • premature for cure

 

  • 2:00

    The Robots Among Us –

    Stephanie Tellex, Brown University
    – 35 cm lens – Robots Distributive Lab @MIT – movie
    Sangbae Kim – Robots at Work – Robotics Mobility of the Future @MIT Mechanical Engineering
    – Physical interaction – BMW i3 Factory – automotive production
    – Robot design paradigms: Manufacturing (lack of compliance) vs construction (lack of efficiency)
    – Robot design for mobility – a robot that runs – MIT Cheeta Model
    MIT  meche Biomimetic Robotics Lab – high torque, high impact mitigation
    – Hermes project:
    Karl Iagnemma – Intellignet Machines – nuTonomy – Singapore  – Autonomous machines deliver parcels and car is never distracted – driverless car
    – Robotics Lab at MIT – smart car, self driven cars, ability to learn from experience – 2017 – double fleet of drivers
  • 12:30

    Lunch & Networking

    Meet Young Inventors under 35

  • Jagdish Chaturvedi – ENTraview – device was licensed to Medtronic and to an Indian company, developed two more product InnAccel – Bangalor — product design company
  • Wei Gao – Wearable Tech – Wearable Human Sweat Sensors
  • Imaging Technologies by Muyinatu BiSI Bell Sounds – Amplitude vs Coherence
  • Heather Bowerman – Hormonal Disease: Endometriosis 10% of Woman – microRNA DotLab
  • 12:00

  • 3:00 Meet the 2016 Innovators Under 35

Jiawei Gu Ling Robotics – Intelligent life with Robots and AI inside – Life UnpluggedInfinite of robots, Intelligence of things,
Nora Ayanian, USC – Computer vision
Maithilee Kunda, Vanderbuilt University, CS – Computer vision
Oriol V. Google, AI & Machine Learning – Deep Natural Network
Machine Translation, Text to Speech,
3:30
  1. Break & Networking

4:00

A.I.’s Next Leap Forward – David Cox at Harvard University

  1. networks, computations and computers as metaphor for Neuro Science and Brain Science
  2. Brains are computational systems – Petaflops of computations
  3. Deep learning, Artificial neuronet works – NeuroNets
  4. Vision theory – ImageNet error rate in decrease tendency
  5. Machine Intelligence from Cortical – DARPA
  6. Genetics and microscopes – like wire tap in the brain
  7. Model of Brain mapped – set hypothesis on function and anatomy

 Big Data – Ruslan Salakhutdinov. Carnegie Mellon

  1. Natural language
  2. multimodal learning – nearest Images
  3. unsupervised learning – no labelled data, natural Story Telling
  4. Image understanding – deep learning
  5. Caption generation
  6. Semantic Relatedness: Recurrent Neural Network
  7. One shot learning
  8. Transfer learning
  9. Summary: Image tagging, Category hierarchy, Speech recognition

XPrize

  • Google Lunar
  • Qualcomm Tricorder
  • Casio Cardon
  • Shell Ocean Discovery

5:00

Lemelson-MIT Prize Honors & Reception

Ramesh Raskar, Associate Professor, MIT Media Lab Camera Culture Group

Making Invisible Visible: Matter

  1. Light to slow motion
  2. Multi-path analysis
  3. Published in Nature 2012
  4. DARPA REVEAL Program 2015
  5. Optical Brush Endoscope
  6. Optical matter – reading in spectrum THz Imaging
  7. wifi Camera – see through walls
  8. EyeNetra: Eyeglasses Perscription on Phone
  9. EyeSelfie
  10. Camera for the Visual Challenged
  11. Peer-to-Peer Invention – No upfront Team, Problem – Solution – REDX – sleep apnea
  12. Blood supply Chain
  13. Monitize garbage
  14. Informal Sector: Street address for all – $1 wearable
  15. The World is a Lab – REDX.io – Affordable Excellence

Lemelson Family FOundation based in Oregon is recognizing Ramesg Raskar for 2016 – MIT Prize. Inventors are recognized in the last 20 years – translation of ideas to products.

Read Full Post »


Multiple copies of the alpha tryptase gene drive Tryptase elevations may contribute to symptoms of dizziness and lightheadedness, skin flushing and itching, gastrointestinal complaints, chronic pain, and bone and joint problems

 

Reporter: Aviva Lev-Ari, PhD, RN

 

Monday, October 17, 2016

NIH scientists uncover genetic explanation for frustrating syndrome

Previously unexplained symptoms found associated with multiple copies of a single gene.

Other studies have indicated that four to six percent of the general public has high tryptase levels. While not all of these people experience symptoms, many do, raising the possibility that this mildly prevalent trait in some cases drives the symptoms, although how it does so remains unclear.

“This work suggests that multiple alpha tryptase gene copies might underlie health issues that affect a substantial number of people,” said NIAID Director Anthony S. Fauci, M.D. “Identifying one genetic cause for high tryptase opens the door for us to develop strategies for diagnosing and treating people carrying this genetic change.”

Previously,NIH’s National Institute of Allergy and Infectious Diseases (NIAID) researchers had observed that a combination of chronic and sometimes debilitating symptoms, such as hives, irritable bowel syndrome and overly flexible joints, runs in some families and is associated with high tryptase levels. Many affected family members with high tryptase also reported symptoms consistent with disorders of autonomic nervous system function (dysautonomia), including postural orthostatic tachycardia syndrome (POTS), which is characterized by dizziness, faintness and an elevated heartbeat when standing up.

SOURCE

https://www.nih.gov/news-events/news-releases/nih-scientists-uncover-genetic-explanation-frustrating-syndrome

Read Full Post »

Older Posts »