Feeds:
Posts
Comments

Archive for the ‘Variation in human protein-coding regions’ Category


RNA from the SARS-CoV-2 virus taking over the cells it infects: Virulence – Pathogen’s ability to infect a Resistant Host: The Imbalance between Controlling Virus Replication versus Activation of the Adaptive Immune Response

Curator: Aviva Lev-Ari, PhD, RN – I added colors and bold face

 

UPDATED on 6/29/2020

Another duality and paradox in the Treatment of COVID-19 Patients in ICUs was expressed by Mike Yoffe, MD, PhD, David H. Koch Professor of Biology and Biological Engineering, Massachusetts Institute of Technology. Dr. Yaffe has a joint appointment in Acute Care Surgery, Trauma, and Surgical Critical Care, and in Surgical Oncology @BIDMC

on 6/29 at SOLUTIONS with/in/sight at Koch Institute @MIT

How Are Cancer Researchers Fighting COVID-19? (Part II)” Jun 29, 2020 11:30 AM EST

Mike Yoffe, MD, PhD 

In COVID-19 patients: two life threatening conditions are seen in ICUs:

  • Blood Clotting – Hypercoagulability or Thrombophilia
  • Cytokine Storm – immuno-inflammatory response
  • The coexistence of 1 and 2 – HINDERS the ability to use effectively tPA as an anti-clotting agent while the cytokine storm is present.

Mike Yoffe’s related domain of expertise:

Signaling pathways and networks that control cytokine responses and inflammation

Misregulation of cytokine feedback loops, along with inappropriate activation of the blood clotting cascade causes dysregulation of cell signaling pathways in innate immune cells (neutrophils and macrophages), resulting in tissue damage and multiple organ failure following trauma or sepsis. Our research is focused on understanding the role of the p38-MK2 pathway in cytokine control and innate immune function, and on cross-talk between cytokines, clotting factors, and neutrophil NADPH oxidase-derived ROS in tissue damage, coagulopathy, and inflammation, using biochemistry, cell biology, and mouse knock-out/knock-in models.  We recently discovered a particularly important link between abnormal blood clotting and the complement pathway cytokine C5a which causes excessive production of extracellular ROS and organ damage by neutrophils after traumatic injury.

SOURCE

https://www.bidmc.org/research/research-by-department/surgery/acute-care-surgery-trauma-and-surgical-critical-care/michael-b-yaffe

 

See

The Genome Structure of CORONAVIRUS, SARS-CoV-2

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2020/05/04/the-genome-structure-of-coronavirus-sars-cov-2-i-awaited-for-this-article-for-60-days/

 

Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19

Open Access Published:May 15, 2020DOI:https://doi.org/10.1016/j.cell.2020.04.026

Highlights

  • SARS-CoV-2 infection induces low IFN-I and -III levels with a moderate ISG response
  • Strong chemokine expression is consistent across in vitroex vivo, and in vivo models
  • Low innate antiviral defenses and high pro-inflammatory cues contribute to COVID-19

Summary

Viral pandemics, such as the one caused by SARS-CoV-2, pose an imminent threat to humanity. Because of its recent emergence, there is a paucity of information regarding viral behavior and host response following SARS-CoV-2 infection. Here we offer an in-depth analysis of the transcriptional response to SARS-CoV-2 compared with other respiratory viruses. Cell and animal models of SARS-CoV-2 infection, in addition to transcriptional and serum profiling of COVID-19 patients, consistently revealed a unique and inappropriate inflammatory response. This response is defined by low levels of type I and III interferons juxtaposed to elevated chemokines and high expression of IL-6. We propose that reduced innate antiviral defenses coupled with exuberant inflammatory cytokine production are the defining and driving features of COVID-19.

Graphical Abstract

Keywords

Results

Defining the Transcriptional Response to SARS-CoV-2 Relative to Other Respiratory Viruses

To compare the transcriptional response of SARS-CoV-2 with other respiratory viruses, including MERS-CoV, SARS-CoV-1, human parainfluenza virus 3 (HPIV3), respiratory syncytial virus (RSV), and IAV, we first chose to focus on infection in a variety of respiratory cell lines (Figure 1). To this end, we collected poly(A) RNA from infected cells and performed RNA sequencing (RNA-seq) to estimate viral load. These data show that virus infection levels ranged from 0.1% to more than 50% of total RNA reads (Figure 1A).

Discussion

In the present study, we focus on defining the host response to SARS-CoV-2 and other human respiratory viruses in cell lines, primary cell cultures, ferrets, and COVID-19 patients. In general, our data show that the overall transcriptional footprint of SARS-CoV-2 infection was distinct in comparison with other highly pathogenic coronaviruses and common respiratory viruses such as IAV, HPIV3, and RSV. It is noteworthy that, despite a reduced IFN-I and -III response to SARS-CoV-2, we observed a consistent chemokine signature. One exception to this observation is the response to high-MOI infection in A549-ACE2 and Calu-3 cells, where replication was robust and an IFN-I and -III signature could be observed. In both of these examples, cells were infected at a rate to theoretically deliver two functional virions per cell in addition to any defective interfering particles within the virus stock that were not accounted for by plaque assays. Under these conditions, the threshold for PAMP may be achieved prior to the ability of the virus to evade detection through production of a viral antagonist. Alternatively, addition of multiple genomes to a single cell may disrupt the stoichiometry of viral components, which, in turn, may itself generate PAMPs that would not form otherwise. These ideas are supported by the fact that, at a low-MOI infection in A549-ACE2 cells, high levels of replication could also be achieved, but in the absence of IFN-I and -III induction. Taken together, these data suggest that, at low MOIs, the virus is not a strong inducer of the IFN-I and -III system, as opposed to conditions where the MOI is high.
Taken together, the data presented here suggest that the response to SARS-CoV-2 is imbalanced with regard to controlling virus replication versus activation of the adaptive immune response. Given this dynamic, treatments for COVID-19 have less to do with the IFN response and more to do with controlling inflammation. Because our data suggest that numerous chemokines and ILs are elevated in COVID-19 patients, future efforts should focus on U.S. Food and Drug Administration (FDA)-approved drugs that can be rapidly deployed and have immunomodulating properties.

SOURCE

https://www.cell.com/cell/fulltext/S0092-8674(20)30489-X

SARS-CoV-2 ORF3b is a potent interferon antagonist whose activity is further increased by a naturally occurring elongation variant

Yoriyuki KonnoIzumi KimuraKeiya UriuMasaya FukushiTakashi IrieYoshio KoyanagiSo NakagawaKei Sato

Abstract

One of the features distinguishing SARS-CoV-2 from its more pathogenic counterpart SARS-CoV is the presence of premature stop codons in its ORF3b gene. Here, we show that SARS-CoV-2 ORF3b is a potent interferon antagonist, suppressing the induction of type I interferon more efficiently than its SARS-CoV ortholog. Phylogenetic analyses and functional assays revealed that SARS-CoV-2-related viruses from bats and pangolins also encode truncated ORF3b gene products with strong anti-interferon activity. Furthermore, analyses of more than 15,000 SARS-CoV-2 sequences identified a natural variant, in which a longer ORF3b reading frame was reconstituted. This variant was isolated from two patients with severe disease and further increased the ability of ORF3b to suppress interferon induction. Thus, our findings not only help to explain the poor interferon response in COVID-19 patients, but also describe a possibility of the emergence of natural SARS-CoV-2 quasi-species with extended ORF3b that may exacerbate COVID-19 symptoms.

Highlights

  • ORF3b of SARS-CoV-2 and related bat and pangolin viruses is a potent IFN antagonist

  • SARS-CoV-2 ORF3b suppresses IFN induction more efficiently than SARS-CoV ortholog

  • The anti-IFN activity of ORF3b depends on the length of its C-terminus

  • An ORF3b with increased IFN antagonism was isolated from two severe COVID-19 cases

Competing Interest Statement

The authors have declared no competing interest.

Paper in collection COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv

 

SOURCE

https://www.biorxiv.org/content/10.1101/2020.05.11.088179v1

 

 

A deep dive into how the new coronavirus infects cells has found that it orchestrates a hostile takeover of their genes unlike any other known viruses do, producing what one leading scientist calls “unique” and “aberrant” changes.Recent studies show that in seizing control of genes in the human cells it invades, the virus changes how segments of DNA are read, doing so in a way that might explain why the elderly are more likely to die of Covid-19 and why antiviral drugs might not only save sick patients’ lives but also prevent severe disease if taken before infection.“It’s something I have never seen in my 20 years of” studying viruses, said virologist Benjamin tenOever of the Icahn School of Medicine at Mount Sinai, referring to how SARS-CoV-2, the virus that causes Covid-19, hijacks cells’ genomes.The “something” he and his colleagues saw is how SARS-CoV-2 blocks one virus-fighting set of genes but allows another set to launch, a pattern never seen with other viruses. Influenza and the original SARS virus (in the early 2000s), for instance, interfere with both arms of the body’s immune response — what tenOever dubs “call to arms” genes and “call for reinforcement” genes.The first group of genes produces interferons. These proteins, which infected cells release, are biological semaphores, signaling to neighboring cells to activate some 500 of their own genes that will slow down the virus’ ability to make millions of copies of itself if it invades them. This lasts seven to 10 days, tenOever said, controlling virus replication and thereby buying time for the second group of genes to act.

This second set of genes produce their own secreted proteins, called chemokines, that emit a biochemical “come here!” alarm. When far-flung antibody-making B cells and virus-killing T cells sense the alarm, they race to its source. If all goes well, the first set of genes holds the virus at bay long enough for the lethal professional killers to arrive and start eradicating viruses.

“Most other viruses interfere with some aspect of both the call to arms and the call for reinforcements,” tenOever said. “If they didn’t, no one would ever get a viral illness”: The one-two punch would pummel any incipient infection into submission.

SARS-CoV-2, however, uniquely blocks one cellular defense but activates the other, he and his colleagues reported in a study published last week in Cell. They studied healthy human lung cells growing in lab dishes, ferrets (which the virus infects easily), and lung cells from Covid-19 patients. In all three, they found that within three days of infection, the virus induces cells’ call-for-reinforcement genes to produce cytokines. But it blocks their call-to-arms genes — the interferons that dampen the virus’ replication.

The result is essentially no brakes on the virus’s replication, but a storm of inflammatory molecules in the lungs, which is what tenOever calls an “unique” and “aberrant” consequence of how SARS-CoV-2 manipulates the genome of its target.

In another new study, scientists in Japan last week identified how SARS-CoV-2 accomplishes that genetic manipulation. Its ORF3b gene produces a protein called a transcription factor that has “strong anti-interferon activity,” Kei Sato of the University of Tokyo and colleagues found — stronger than the original SARS virus or influenza viruses. The protein basically blocks the cell from recognizing that a virus is present, in a way that prevents interferon genes from being expressed.

In fact, the Icahn School team found no interferons in the lung cells of Covid-19 patients. Without interferons, tenOever said, “there is nothing to stop the virus from replicating and festering in the lungs forever.”

That causes lung cells to emit even more “call-for-reinforcement” genes, summoning more and more immune cells. Now the lungs have macrophages and neutrophils and other immune cells “everywhere,” tenOever said, causing such runaway inflammation “that you start having inflammation that induces more inflammation.”

At the same time, unchecked viral replication kills lung cells involved in oxygen exchange. “And suddenly you’re in the hospital in severe respiratory distress,” he said.

In elderly people, as well as those with diabetes, heart disease, and other underlying conditions, the call-to-arms part of the immune system is weaker than in younger, healthier people, even before the coronavirus arrives. That reduces even further the cells’ ability to knock down virus replication with interferons, and imbalances the immune system toward the dangerous inflammatory response.

The discovery that SARS-CoV-2 strongly suppresses infected cells’ production of interferons has raised an intriguing possibility: that taking interferons might prevent severe Covid-19 or even prevent it in the first place, said Vineet Menachery of the University of Texas Medical Branch.

In a study of human cells growing in lab dishes, described in a preprint (not peer-reviewed or published in a journal yet), he and his colleagues also found that SARS-CoV-2 “prevents the vast amount” of interferon genes from turning on. But when cells growing in lab dishes received the interferon IFN-1 before exposure to the coronavirus, “the virus has a difficult time replicating.”

After a few days, the amount of virus in infected but interferon-treated cells was 1,000- to 10,000-fold lower than in infected cells not pre-treated with interferon. (The original SARS virus, in contrast, is insensitive to interferon.)

Ending the pandemic and preventing its return is assumed to require an effective vaccine to prevent infectionand antiviral drugs such as remdesivir to treat the very sick, but the genetic studies suggest a third strategy: preventive drugs.

It’s possible that treatment with so-called type-1 interferon “could stop the virus before it could get established,” Menachery said.

Giving drugs to healthy people is always a dicey proposition, since all drugs have side effects — something considered less acceptable than when a drug is used to treat an illness. “Interferon treatment is rife with complications,” Menachery warned. The various interferons, which are prescribed for hepatitis, cancers, and many other diseases, can cause flu-like symptoms.

But the risk-benefit equation might shift, both for individuals and for society, if interferons or antivirals or other medications are shown to reduce the risk of developing serious Covid-19 or even make any infection nearly asymptomatic.

Interferon “would be warning the cells the virus is coming,” Menachery said, so such pretreatment might “allow treated cells to fend off the virus better and limit its spread.” Determining that will of course require clinical trials, which are underway.

Read Full Post »


Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on Evaluating Cancer Genomics from Normal Tissues Through Metastatic Disease 3:50 PM

Reporter: Stephen J. Williams, PhD

 Minisymposium: Evaluating Cancer Genomics from Normal Tissues through Evolution to Metastatic Disease

Oncologic therapy shapes the fitness landscape of clonal hematopoiesis

April 28, 2020, 4:10 PM – 4:20 PM

Presenter/Authors
Kelly L. Bolton, Ryan N. Ptashkin, Teng Gao, Lior Braunstein, Sean M. Devlin, Minal Patel, Antonin Berthon, Aijazuddin Syed, Mariko Yabe, Catherine Coombs, Nicole M. Caltabellotta, Mike Walsh, Ken Offit, Zsofia Stadler, Choonsik Lee, Paul Pharoah, Konrad H. Stopsack, Barbara Spitzer, Simon Mantha, James Fagin, Laura Boucai, Christopher J. Gibson, Benjamin Ebert, Andrew L. Young, Todd Druley, Koichi Takahashi, Nancy Gillis, Markus Ball, Eric Padron, David Hyman, Jose Baselga, Larry Norton, Stuart Gardos, Virginia Klimek, Howard Scher, Dean Bajorin, Eder Paraiso, Ryma Benayed, Maria Arcilla, Marc Ladanyi, David Solit, Michael Berger, Martin Tallman, Montserrat Garcia-Closas, Nilanjan Chatterjee, Luis Diaz, Ross Levine, Lindsay Morton, Ahmet Zehir, Elli Papaemmanuil. Memorial Sloan Kettering Cancer Center, New York, NY, University of North Carolina at Chapel Hill, Chapel Hill, NC, University of Cambridge, Cambridge, United Kingdom, Dana-Farber Cancer Institute, Boston, MA, Washington University, St Louis, MO, The University of Texas MD Anderson Cancer Center, Houston, TX, Moffitt Cancer Center, Tampa, FL, National Cancer Institute, Bethesda, MD

Abstract
Recent studies among healthy individuals show evidence of somatic mutations in leukemia-associated genes, referred to as clonal hematopoiesis (CH). To determine the relationship between CH and oncologic therapy we collected sequential blood samples from 525 cancer patients (median sampling interval time = 23 months, range: 6-53 months) of whom 61% received cytotoxic therapy or external beam radiation therapy and 39% received either targeted/immunotherapy or were untreated. Samples were sequenced using deep targeted capture-based platforms. To determine whether CH mutational features were associated with tMN risk, we performed Cox proportional hazards regression on 9,549 cancer patients exposed to oncologic therapy of whom 75 cases developed tMN (median time to transformation=26 months). To further compare the genetic and clonal relationships between tMN and the proceeding CH, we analyzed 35 cases for which paired samples were available. We compared the growth rate of the variant allele fraction (VAF) of CH clones across treatment modalities and in untreated patients. A significant increase in the growth rate of CH mutations was seen in DDR genes among those receiving cytotoxic (p=0.03) or radiation therapy (p=0.02) during the follow-up period compared to patients who did not receive therapy. Similar growth rates among treated and untreated patients were seen for non-DDR CH genes such as DNMT3A. Increasing cumulative exposure to cytotoxic therapy (p=0.01) and external beam radiation therapy (2×10-8) resulted in higher growth rates for DDR CH mutations. Among 34 subjects with at least two CH mutations in which one mutation was in a DDR gene and one in a non-DDR gene, we studied competing clonal dynamics for multiple gene mutations within the same patient. The risk of tMN was positively associated with CH in a known myeloid neoplasm driver mutation (HR=6.9, p<10-6), and increased with the total number of mutations and clone size. The strongest associations were observed for mutations in TP53 and for CH with mutations in spliceosome genes (SRSF2, U2AF1 and SF3B1). Lower hemoglobin, lower platelet counts, lower neutrophil counts, higher red cell distribution width and higher mean corpuscular volume were all positively associated with increased tMN risk. Among 35 cases for which paired samples were available, in 19 patients (59%), we found evidence of at least one of these mutations at the time of pre-tMN sequencing and in 13 (41%), we identified two or more in the pre-tMN sample. In all cases the dominant clone at tMN transformation was defined by a mutation seen at CH Our serial sampling data provide clear evidence that oncologic therapy strongly selects for clones with mutations in the DDR genes and that these clones have limited competitive fitness, in the absence of cytotoxic or radiation therapy. We further validate the relevance of CH as a predictor and precursor of tMN in cancer patients. We show that CH mutations detected prior to tMN diagnosis were consistently part of the dominant clone at tMN diagnosis and demonstrate that oncologic therapy directly promotes clones with mutations in genes associated with chemo-resistant disease such as TP53.

  • therapy resulted also in clonal evolution and saw changes in splice variants and spliceosome
  • therapy promotes current DDR mutations
  • clonal hematopoeisis due to selective pressures
  • mutations, variants number all predictive of myeloid disease
  • deferring adjuvant therapy for breast cancer patients with patients in highest MDS risk group based on biomarkers, greatly reduced their risk for MDS

5704 – Pan-cancer genomic characterization of patient-matched primary, extracranial, and brain metastases

Presenter/AuthorsOlivia W. Lee, Akash Mitra, Won-Chul Lee, Kazutaka Fukumura, Hannah Beird, Miles Andrews, Grant Fischer, John N. Weinstein, Michael A. Davies, Jason Huse, P. Andrew Futreal. The University of Texas MD Anderson Cancer Center, TX, The University of Texas MD Anderson Cancer Center, TX, Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, AustraliaDisclosures O.W. Lee: None. A. Mitra: None. W. Lee: None. K. Fukumura: None. H. Beird: None. M. Andrews: ; Merck Sharp and Dohme. G. Fischer: None. J.N. Weinstein: None. M.A. Davies: ; Bristol-Myers Squibb. ; Novartis. ; Array BioPharma. ; Roche and Genentech. ; GlaxoSmithKline. ; Sanofi-Aventis. ; AstraZeneca. ; Myriad Genetics. ; Oncothyreon. J. Huse: None. P. Futreal: None.

Abstract: Brain metastases (BM) occur in 10-30% of patients with cancer. Approximately 200,000 new cases of brain metastases are diagnosed in the United States annually, with median survival after diagnosis ranging from 3 to 27 months. Recently, studies have identified significant genetic differences between BM and their corresponding primary tumors. It has been shown that BM harbor clinically actionable mutations that are distinct from those in the primary tumor samples. Additional genomic profiling of BM will provide deeper understanding of the pathogenesis of BM and suggest new therapeutic approaches.
We performed whole-exome sequencing of BM and matched tumors from 41 patients collected from renal cell carcinoma (RCC), breast cancer, lung cancer, and melanoma, which are known to be more likely to develop BM. We profiled total 126 fresh-frozen tumor samples and performed subsequent analyses of BM in comparison to paired primary tumor and extracranial metastases (ECM). We found that lung cancer shared the largest number of mutations between BM and matched tumors (83%), followed by melanoma (74%), RCC (51%), and Breast (26%), indicating that cancer type with high tumor mutational burden share more mutations with BM. Mutational signatures displayed limited differences, suggesting a lack of mutagenic processes specific to BM. However, point-mutation heterogeneity revealed that BM evolve separately into different subclones from their paired tumors regardless of cancer type, and some cancer driver genes were found in BM-specific subclones. These models and findings suggest that these driver genes may drive prometastatic subclones that lead to BM. 32 curated cancer gene mutations were detected and 71% of them were shared between BM and primary tumors or ECM. 29% of mutations were specific to BM, implying that BM often accumulate additional cancer gene mutations that are not present in primary tumors or ECM. Co-mutation analysis revealed a high frequency of TP53 nonsense mutation in BM, mostly in the DNA binding domain, suggesting TP53 nonsense mutation as a possible prerequisite for the development of BM. Copy number alteration analysis showed statistically significant differences between BM and their paired tumor samples in each cancer type (Wilcoxon test, p < 0.0385 for all). Both copy number gains and losses were consistently higher in BM for breast cancer (Wilcoxon test, p =1.307e-5) and lung cancer (Wilcoxon test, p =1.942e-5), implying greater genomic instability during the evolution of BM.
Our findings highlight that there are more unique mutations in BM, with significantly higher copy number alterations and tumor mutational burden. These genomic analyses could provide an opportunity for more reliable diagnostic decision-making, and these findings will be further tested with additional transcriptomic and epigenetic profiling for better characterization of BM-specific tumor microenvironments.

  • are there genomic signatures different in brain mets versus non metastatic or normal?
  • 32 genes from curated databases were different between brain mets and primary tumor
  • frequent nonsense mutations in TP53
  • divergent clonal evolution of drivers in BMets from primary
  • they were able to match BM with other mutational signatures like smokers and lung cancer signatures

5707 – A standard operating procedure for the interpretation of oncogenicity/pathogenicity of somatic mutations

Presenter/AuthorsPeter Horak, Malachi Griffith, Arpad Danos, Beth A. Pitel, Subha Madhavan, Xuelu Liu, Jennifer Lee, Gordana Raca, Shirley Li, Alex H. Wagner, Shashikant Kulkarni, Obi L. Griffith, Debyani Chakravarty, Dmitriy Sonkin. National Center for Tumor Diseases, Heidelberg, Germany, Washington University School of Medicine, St. Louis, MO, Mayo Clinic, Rochester, MN, Georgetown University Medical Center, Washington, DC, Dana-Farber Cancer Institute, Boston, MA, Frederick National Laboratory for Cancer Research, Rockville, MD, University of Southern California, Los Angeles, CA, Sunquest, Boston, MA, Baylor College of Medicine, Houston, TX, Memorial Sloan Kettering Cancer Center, New York, NY, National Cancer Institute, Rockville, MDDisclosures P. Horak: None. M. Griffith: None. A. Danos: None. B.A. Pitel: None. S. Madhavan: ; Perthera Inc. X. Liu: None. J. Lee: None. G. Raca: None. S. Li: ; Sunquest Information Systems, Inc. A.H. Wagner: None. S. Kulkarni: ; Baylor Genetics. O.L. Griffith: None. D. Chakravarty: None. D. Sonkin: None.AbstractSomatic variants in cancer-relevant genes are interpreted from multiple partially overlapping perspectives. When considered in discovery and translational research endeavors, it is important to determine if a particular variant observed in a gene of interest is oncogenic/pathogenic or not, as such knowledge provides the foundation on which targeted cancer treatment research is based. In contrast, clinical applications are dominated by diagnostic, prognostic, or therapeutic interpretations which in part also depends on underlying variant oncogenicity/pathogenicity. The Association for Molecular Pathology, the American Society of Clinical Oncology, and the College of American Pathologists (AMP/ASCO/CAP) have published structured somatic variant clinical interpretation guidelines which specifically address diagnostic, prognostic, and therapeutic implications. These guidelines have been well-received by the oncology community. Many variant knowledgebases, clinical laboratories/centers have adopted or are in the process of adopting these guidelines. The AMP/ASCO/CAP guidelines also describe different data types which are used to determine oncogenicity/pathogenicity of a variant, such as: population frequency, functional data, computational predictions, segregation, and somatic frequency. A second collaborative effort created the European Society for Medical Oncology (ESMO) Scale for Clinical Actionability of molecular Targets to provide a harmonized vocabulary that provides an evidence-based ranking system of molecular targets that supports their value as clinical targets. However, neither of these clinical guideline systems provide systematic and comprehensive procedures for aggregating population frequency, functional data, computational predictions, segregation, and somatic frequency to consistently interpret variant oncogenicity/pathogenicity, as has been published in the ACMG/AMP guidelines for interpretation of pathogenicity of germline variants. In order to address this unmet need for somatic variant oncogenicity/pathogenicity interpretation procedures, the Variant Interpretation for Cancer Consortium (VICC, a GA4GH driver project) Knowledge Curation and Interpretation Standards (KCIS) working group (WG) has developed a Standard Operating Procedure (SOP) with contributions from members of ClinGen Somatic Clinical Domain WG, and ClinGen Somatic/Germline variant curation WG using an approach similar to the ACMG/AMP germline pathogenicity guidelines to categorize evidence of oncogenicity/pathogenicity as very strong, strong, moderate or supporting. This SOP enables consistent and comprehensive assessment of oncogenicity/pathogenicity of somatic variants and latest version of an SOP can be found at https://cancervariants.org/wg/kcis/.

  • best to use this SOP for somatic mutations and not rearangements
  • variants based on oncogenicity as strong to weak
  • useful variant knowledge on pathogenicity curated from known databases
  • the recommendations would provide some guideline on curating unknown somatic variants versus known variants of hereditary diseases
  • they have not curated RB1 mutations or variants (or for other RBs like RB2? p130?)

 

Follow on Twitter at:

@pharma_BI

@AACR

@CureCancerNow

@pharmanews

@BiotechWorld

#AACR20

 

Read Full Post »


Medicine in 2045 – Perspectives by World Thought Leaders in the Life Sciences & Medicine

Reporter: Aviva Lev-Ari, PhD, RN

 

This report is based on an article in Nature Medicine | VOL 25 | December 2019 | 1800–1809 | http://www.nature.com/naturemedicine

Looking forward 25 years: the future of medicine.

Nat Med 25, 1804–1807 (2019) doi:10.1038/s41591-019-0693-y

 

Aviv Regev, PhD

Core member and chair of the faculty, Broad Institute of MIT and Harvard; director, Klarman Cell Observatory, Broad Institute of MIT and Harvard; professor of biology, MIT; investigator, Howard Hughes Medical Institute; founding co-chair, Human Cell Atlas.

  • millions of genome variants, tens of thousands of disease-associated genes, thousands of cell types and an almost unimaginable number of ways they can combine, we had to approximate a best starting point—choose one target, guess the cell, simplify the experiment.
  • In 2020, advances in polygenic risk scores, in understanding the cell and modules of action of genes through genome-wide association studies (GWAS), and in predicting the impact of combinations of interventions.
  • we need algorithms to make better computational predictions of experiments we have never performed in the lab or in clinical trials.
  • Human Cell Atlas and the International Common Disease Alliance—and in new experimental platforms: data platforms and algorithms. But we also need a broader ecosystem of partnerships in medicine that engages interaction between clinical experts and mathematicians, computer scientists and engineers

Feng Zhang, PhD

investigator, Howard Hughes Medical Institute; core member, Broad Institute of MIT and Harvard; James and Patricia Poitras Professor of Neuroscience, McGovern Institute for Brain Research, MIT.

  • fundamental shift in medicine away from treating symptoms of disease and toward treating disease at its genetic roots.
  • Gene therapy with clinical feasibility, improved delivery methods and the development of robust molecular technologies for gene editing in human cells, affordable genome sequencing has accelerated our ability to identify the genetic causes of disease.
  • 1,000 clinical trials testing gene therapies are ongoing, and the pace of clinical development is likely to accelerate.
  • refine molecular technologies for gene editing, to push our understanding of gene function in health and disease forward, and to engage with all members of society

Elizabeth Jaffee, PhD

Dana and Albert “Cubby” Broccoli Professor of Oncology, Johns Hopkins School of Medicine; deputy director, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins.

  • a single blood test could inform individuals of the diseases they are at risk of (diabetes, cancer, heart disease, etc.) and that safe interventions will be available.
  • developing cancer vaccines. Vaccines targeting the causative agents of cervical and hepatocellular cancers have already proven to be effective. With these technologies and the wealth of data that will become available as precision medicine becomes more routine, new discoveries identifying the earliest genetic and inflammatory changes occurring within a cell as it transitions into a pre-cancer can be expected. With these discoveries, the opportunities to develop vaccine approaches preventing cancers development will grow.

Jeremy Farrar, OBE FRCP FRS FMedSci

Director, Wellcome Trust.

  • shape how the culture of research will develop over the next 25 years, a culture that cares more about what is achieved than how it is achieved.
  • building a creative, inclusive and open research culture will unleash greater discoveries with greater impact.

John Nkengasong, PhD

Director, Africa Centres for Disease Control and Prevention.

  • To meet its health challenges by 2050, the continent will have to be innovative in order to leapfrog toward solutions in public health.
  • Precision medicine will need to take center stage in a new public health order— whereby a more precise and targeted approach to screening, diagnosis, treatment and, potentially, cure is based on each patient’s unique genetic and biologic make-up.

Eric Topol, MD

Executive vice-president, Scripps Research Institute; founder and director, Scripps Research Translational Institute.

  • In 2045, a planetary health infrastructure based on deep, longitudinal, multimodal human data, ideally collected from and accessible to as many as possible of the 9+ billion people projected to then inhabit the Earth.
  • enhanced capabilities to perform functions that are not feasible now.
  • AI machines’ ability to ingest and process biomedical text at scale—such as the corpus of the up-to-date medical literature—will be used routinely by physicians and patients.
  • the concept of a learning health system will be redefined by AI.

Linda Partridge, PhD

Professor, Max Planck Institute for Biology of Ageing.

  • Geroprotective drugs, which target the underlying molecular mechanisms of ageing, are coming over the scientific and clinical horizons, and may help to prevent the most intractable age-related disease, dementia.

Trevor Mundel, MD

President of Global Health, Bill & Melinda Gates Foundation.

  • finding new ways to share clinical data that are as open as possible and as closed as necessary.
  • moving beyond drug donations toward a new era of corporate social responsibility that encourages biotechnology and pharmaceutical companies to offer their best minds and their most promising platforms.
  • working with governments and multilateral organizations much earlier in the product life cycle to finance the introduction of new interventions and to ensure the sustainable development of the health systems that will deliver them.
  • deliver on the promise of global health equity.

Josep Tabernero, MD, PhD

Vall d’Hebron Institute of Oncology (VHIO); president, European Society for Medical Oncology (2018–2019).

  • genomic-driven analysis will continue to broaden the impact of personalized medicine in healthcare globally.
  • Precision medicine will continue to deliver its new paradigm in cancer care and reach more patients.
  • Immunotherapy will deliver on its promise to dismantle cancer’s armory across tumor types.
  • AI will help guide the development of individually matched
  • genetic patient screenings
  • the promise of liquid biopsy policing of disease?

Pardis Sabeti, PhD

Professor, Harvard University & Harvard T.H. Chan School of Public Health and Broad Institute of MIT and Harvard; investigator, Howard Hughes Medical Institute.

  • the development and integration of tools into an early-warning system embedded into healthcare systems around the world could revolutionize infectious disease detection and response.
  • But this will only happen with a commitment from the global community.

Els Toreele, PhD

Executive director, Médecins Sans Frontières Access Campaign

  • we need a paradigm shift such that medicines are no longer lucrative market commodities but are global public health goods—available to all those who need them.
  • This will require members of the scientific community to go beyond their role as researchers and actively engage in R&D policy reform mandating health research in the public interest and ensuring that the results of their work benefit many more people.
  • The global research community can lead the way toward public-interest driven health innovation, by undertaking collaborative open science and piloting not-for-profit R&D strategies that positively impact people’s lives globally.

Read Full Post »


Evolution of the Human Cell Genome Biology Field of Gene Expression, Gene Regulation, Gene Regulatory Networks and Application of Machine Learning Algorithms in Large-Scale Biological Data Analysis

Curator & Reporter: Aviva Lev-Ari, PhD, RN

 

Subjects:

The Scientific Frontier is presented in Deciphering eukaryotic gene-regulatory logic with 100 million random promoters

Boer, C.G., Vaishnav, E.D., Sadeh, R. et al. Deciphering eukaryotic gene-regulatory logic with 100 million random promotersNat Biotechnol (2019) doi:10.1038/s41587-019-0315-8

Abstract

How transcription factors (TFs) interpret cis-regulatory DNA sequence to control gene expression remains unclear, largely because past studies using native and engineered sequences had insufficient scale. Here, we measure the expression output of >100 million synthetic yeast promoter sequences that are fully random. These sequences yield diverse, reproducible expression levels that can be explained by their chance inclusion of functional TF binding sites. We use machine learning to build interpretable models of transcriptional regulation that predict ~94% of the expression driven from independent test promoters and ~89% of the expression driven from native yeast promoter fragments. These models allow us to characterize each TF’s specificity, activity and interactions with chromatin. TF activity depends on binding-site strand, position, DNA helical face and chromatin context. Notably, expression level is influenced by weak regulatory interactions, which confound designed-sequence studies. Our analyses show that massive-throughput assays of fully random DNA can provide the big data necessary to develop complex, predictive models of gene regulation.

The Evolution of the Human Cell Genome Biology Field of Gene Expression, Gene Regulation, Gene Regulatory Networks and Application of Machine Learning Algorithms in Large-Scale Biological Data Analysis is presented in the following Table

 

50 Liu, X., Li, Y. I. & Pritchard, J. K. Trans effects on gene expression can drive omnigenic inheritance. Cell 177, 1022–1034 e1026 (2019).
5 Muerdter, F. et al. Resolving systematic errors in widely used enhancer activity assays in human cells. Nat. Methods 15, 141–149 (2018).
6 Wang, X. et al. High-resolution genome-wide functional dissection of transcriptional regulatory regions and nucleotides in human. Nat. Commun. 9, 5380 (2018).
15 Yona, A. H., Alm, E. J. & Gore, J. Random sequences rapidly evolve into de novo promoters. Nat. Commun. 9, 1530 (2018).
4 van Arensbergen, J. et al. Genome-wide mapping of autonomous promoter activity in human cells. Nat. Biotechnol. 35, 145–153 (2017).
14 Cuperus, J. T. et al. Deep learning of the regulatory grammar of yeast 5’ untranslated regions from 500,000 random sequences. Genome Res. 27, 2015–2024 (2017).
31 Levo, M. et al. Systematic investigation of transcription factor activity in the context of chromatin using massively parallel binding and expression assays. Mol. Cell 65, 604–617 e606 (2017).
49 Boyle, E. A., Li, Y. I. & Pritchard, J. K. An expanded view of complex traits: from polygenic to omnigenic. Cell 169, 1177–1186 (2017).
54 de Boer, C. High-efficiency S. cerevisiae lithium acetate transformation. protocols.io https://doi.org/10.17504/protocols.io.j4tcqwn (2017).
59 Abadi, M. et al. TensorFlow: large-scale machine learning on heterogeneous systems. arXiv 1603.04467 (2016).
20 Shalem, O. et al. Systematic dissection of the sequence determinants of gene 3’ end mediated expression control. PLoS Genet. 11, e1005147 (2015).
55 Deng, C., Daley, T. & Smith, A. D. Applications of species accumulation curves in large-scale biological data analysis. Quant. Biol. 3, 135–144 (2015).
9 Hughes, T. R. & de Boer, C. G. Mapping yeast transcriptional networks. Genetics 195, 9–36 (2013).
10 Jolma, A. et al. DNA-binding specificities of human transcription factors. Cell 152, 327–339 (2013).
19 Kosuri, S. et al. Composability of regulatory sequences controlling transcription and translation in Escherichia coli. Proc. Natl Acad. Sci. USA 110, 14024–14029 (2013).
7 Sharon, E. et al. Inferring gene regulatory logic from high-throughput measurements of thousands of systematically designed promoters. Nat. Biotechnol. 30, 521–530 (2012).
18 de Boer, C. G. & Hughes, T. R. YeTFaSCo: a database of evaluated yeast transcription factor sequence specificities. Nucleic Acids Res. 40, D169–D179 (2012).
56 Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
61 Cherry, J. M. et al. Saccharomyces Genome Database: the genomics resource of budding yeast. Nucleic Acids Res. 40, D700–D705 (2012).
11 Nutiu, R. et al. Direct measurement of DNA affinity landscapes on a high-throughput sequencing instrument. Nat. Biotechnol. 29, 659–664 (2011).
26 Zhang, Z. et al. A packing mechanism for nucleosome organization reconstituted across a eukaryotic genome. Science 332, 977–980 (2011).
30 Ganapathi, M. et al. Extensive role of the general regulatory factors, Abf1 and Rap1, in determining genome-wide chromatin structure in budding yeast. Nucleic Acids Res. 39, 2032–2044 (2011).
52 Erb, I. & van Nimwegen, E. Transcription factor binding site positioning in yeast: proximal promoter motifs characterize TATA-less promoters. PloS One 6, e24279 (2011).
3 Kinney, J. B., Murugan, A., Callan, C. G. Jr. & Cox, E. C. Using deep sequencing to characterize the biophysical mechanism of a transcriptional regulatory sequence. Proc. Natl Acad. Sci. USA107, 9158–9163 (2010).
8 Gertz, J., Siggia, E. D. & Cohen, B. A. Analysis of combinatorial cis-regulation in synthetic and genomic promoters. Nature 457, 215–218 (2009).
16 Wunderlich, Z. & Mirny, L. A. Different gene regulation strategies revealed by analysis of binding motifs. Trends Genet. 25, 434–440 (2009).
27 Hesselberth, J. R. et al. Global mapping of protein–DNA interactions in vivo by digital genomic footprinting. Nat. Methods 6, 283–289 (2009).
29 Hartley, P. D. & Madhani, H. D. Mechanisms that specify promoter nucleosome location and identity. Cell 137, 445–458 (2009).
51 Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).
58 Segal, E. & Widom, J. From DNA sequence to transcriptional behaviour: a quantitative approach. Nat. Rev. Genet. 10, 443–456 (2009).
2 Yuan, Y., Guo, L., Shen, L. & Liu, J. S. Predicting gene expression from sequence: a reexamination. PLoS Comput. Biol. 3, e243 (2007).
46 Hibbs, M. A. et al. Exploring the functional landscape of gene expression: directed search of large microarray compendia. Bioinformatics 23, 2692–2699 (2007).
25 Liu, X., Lee, C. K., Granek, J. A., Clarke, N. D. & Lieb, J. D. Whole-genome comparison of Leu3 binding in vitro and in vivo reveals the importance of nucleosome occupancy in target site selection. Genome Res. 16, 1517–1528 (2006).
34 Roberts, G. G. & Hudson, A. P. Transcriptome profiling of Saccharomyces cerevisiae during a transition from fermentative to glycerol-based respiratory growth reveals extensive metabolic and structural remodeling. Mol. Genet. Genomics 276, 170–186 (2006).
48 Tanay, A. Extensive low-affinity transcriptional interactions in the yeast genome. Gen. Res. 16, 962–972 (2006).
53 Tong, A. H. & Boone, C. Synthetic genetic array analysis in Saccharomyces cerevisiae. Methods Mol. Biol. 313, 171–192 (2006).
57 Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).
62 Chua, G. et al. Identifying transcription factor functions and targets by phenotypic activation. Proc. Natl Acad. Sci. USA 103, 12045–12050 (2006).
17 Arnosti, D. N. & Kulkarni, M. M. Transcriptional enhancers: intelligent enhanceosomes or flexible billboards? J. Cell. Biochem. 94, 890–898 (2005).
21 Granek, J. A. & Clarke, N. D. Explicit equilibrium modeling of transcription-factor binding and gene regulation. Genome Biol. 6, R87 (2005).
1 Beer, M. A. & Tavazoie, S. Predicting gene expression from sequence. Cell 117, 185–198 (2004).
28 Bernstein, B. E., Liu, C. L., Humphrey, E. L., Perlstein, E. O. & Schreiber, S. L. Global nucleosome occupancy in yeast. Genome Biol. 5, R62 (2004).
44 Kim, T. S., Kim, H. Y., Yoon, J. H. & Kang, H. S. Recruitment of the Swi/Snf complex by Ste12-Tec1 promotes Flo8-Mss11-mediated activation of STA1 expression. Mol. Cell. Biol. 24, 9542–9556 (2004).
45 Harbison, C. T. et al. Transcriptional regulatory code of a eukaryotic genome. Nature 431, 99–104 (2004).
60 Kent, N. A., Eibert, S. M. & Mellor, J. Cbf1p is required for chromatin remodeling at promoter-proximal CACGTG motifs in yeast. J. Biol. Chem. 279, 27116–27123 (2004).
22 Kulkarni, M. M. & Arnosti, D. N. Information display by transcriptional enhancers. Development 130, 6569–6575 (2003).
24 Conlon, E. M., Liu, X. S., Lieb, J. D. & Liu, J. S. Integrating regulatory motif discovery and genome-wide expression analysis. Proc. Natl Acad. Sci. USA 100, 3339–3344 (2003).
43 Neely, K. E., Hassan, A. H., Brown, C. E., Howe, L. & Workman, J. L. Transcription activator interactions with multiple SWI/SNF subunits. Mol. Cell. Biol. 22, 1615–1625 (2002).
23 Bussemaker, H. J., Li, H. & Siggia, E. D. Regulatory element detection using correlation with expression. Nat. Genet. 27, 167–171 (2001).
37 Haurie, V. et al. The transcriptional activator Cat8p provides a major contribution to the reprogramming of carbon metabolism during the diauxic shift in Saccharomyces cerevisiae. J. Biol. Chem. 276, 76–85 (2001).
39 Grauslund, M. & Ronnow, B. Carbon source-dependent transcriptional regulation of the mitochondrial glycerol-3-phosphate dehydrogenase gene, GUT2, from Saccharomyces cerevisiae. Can. J. Microbiol. 46, 1096–1100 (2000).
42 Cullen, P. J. & Sprague, G. F. Jr. Glucose depletion causes haploid invasive growth in yeast. Proc. Natl Acad. Sci. USA 97, 13619–13624 (2000).
38 Sato, T. et al. TheE-box DNA binding protein Sgc1p suppresses the gcr2 mutation, which is involved in transcriptional activation of glycolytic genes in Saccharomyces cerevisiae. FEBS Lett. 463, 307–311 (1999).
40 Madhani, H. D. & Fink, G. R. Combinatorial control required for the specificity of yeast MAPK signaling. Science 275, 1314–1317 (1997).
41 Gavrias, V., Andrianopoulos, A., Gimeno, C. J. & Timberlake, W. E. Saccharomyces cerevisiae TEC1 is required for pseudohyphal growth. Mol. Microbiol. 19, 1255–1263 (1996).
36 Hedges, D., Proft, M. & Entian, K. D. CAT8, a new zinc cluster-encoding gene necessary for derepression of gluconeogenic enzymes in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 15, 1915–1922 (1995).
47 Bednar, J. et al. Determination of DNA persistence length by cryo-electron microscopy. Separation of the static and dynamic contributions to the apparent persistence length of DNA. J. Mol. Biol. 254, 579–594 (1995).
32 Axelrod, J. D., Reagan, M. S. & Majors, J. GAL4 disrupts a repressing nucleosome during activation of GAL1 transcription in vivo. Genes Dev. 7, 857–869 (1993).
33 Morse, R. H. Nucleosome disruption by transcription factor binding in yeast. Science 262, 1563–1566 (1993).
12 Oliphant, A. R., Brandl, C. J. & Struhl, K. Defining the sequence specificity of DNA-binding proteins by selecting binding sites from random-sequence oligonucleotides: analysis of yeast GCN4 protein. Mol. Cell. Biol. 9, 2944–2949 (1989).
35 Forsburg, S. L. & Guarente, L. Identification and characterization of HAP4: a third component of the CCAAT-bound HAP2/HAP3 heteromer. Genes Dev. 3, 1166–1178 (1989).
13 Horwitz, M. S. & Loeb, L. A. Promoters selected from random DNA sequences. Proc. Natl Acad. Sci. USA 83, 7405–7409 (1986).

 

To access each reference as a live link, go to the number in the first column in the Table and look it up in the List of References in the Link, below

https://www.nature.com/articles/s41587-019-0315-8

Author information

C.G.D. and A.R. drafted the manuscript, with all authors contributing. C.G.D. analyzed the data. C.G.D., E.D.V., E.L.A. and R.S. performed the experiments. A.R. and N.F. supervised the research.

Correspondence to Carl G. de Boer or Aviv Regev.

Ethics declarations

Competing interests

A.R. is an SAB member of Thermo Fisher Scientific, Neogene Therapeutics, Asimov, and Syros Pharmaceuticals, an equity holder of Immunitas, and a founder of and equity holder in Celsius Therapeutics. All other authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Cite this article

Boer, C.G., Vaishnav, E.D., Sadeh, R. et al. Deciphering eukaryotic gene-regulatory logic with 100 million random promoters. Nat Biotechnol (2019) doi:10.1038/s41587-019-0315-8

Download citation

Read Full Post »


NSPR1 and DEC2 genes: Survival on 4.5 hours of Sleep per night: A mutation in the β1-adrenergic receptor gene in humans who require fewer hours of sleep than most, ADRB1 + neurons are active during rapid eye movement (REM) sleep and wakefulness

 

Reporter: Aviva Lev-Ari, PhD, RN

 

10/2019 RESEARCH ARTICLE SLEEP

Mutant neuropeptide S receptor reduces sleep duration with preserved memory consolidation

 See all authors and affiliations

Science Translational Medicine  16 Oct 2019:
Vol. 11, Issue 514, eaax2014
DOI: 10.1126/scitranslmed.aax2014

Abstract

Sleep is a crucial physiological process for our survival and cognitive performance, yet the factors controlling human sleep regulation remain poorly understood. Here, we identified a missense mutation in a G protein–coupled neuropeptide S receptor 1 (NPSR1) that is associated with a natural short sleep phenotype in humans. Mice carrying the homologous mutation exhibited less sleep time despite increased sleep pressure. These animals were also resistant to contextual memory deficits associated with sleep deprivation. In vivo, the mutant receptors showed increased sensitivity to neuropeptide S exogenous activation. These results suggest that the NPS/NPSR1 pathway might play a critical role in regulating human sleep duration and in the link between sleep homeostasis and memory consolidation.

It is possible that drugs could be developed to target either the NSPR1 or DEC2 genes, as a treatment for insomnia or other sleep disorders. However, further understanding of exactly how these genes function would be required before this stage. Both are involved in brain function, so targeting them could lead to negative neural side effects.

 

Neuron

Volume 103, Issue 6, 25 September 2019, Pages 1044-1055.e7

A Rare Mutation of β1-Adrenergic Receptor Affects Sleep/Wake Behaviors

Highlights

  • A mutation in ADRB1 leads to natural short sleep trait in humans
  • Mice engineered with same mutation have similar short sleep behavior as humans
  • Activity of dorsal pons ADRB1 + neurons associates with REM sleep and wakefulness
  • Mutation increases the population activity of dorsal pons ADRB1 + neurons

Summary

Sleep is crucial for our survival, and many diseases are linked to long-term poor sleep quality. Before we can use sleep to enhance our health and performance and alleviate diseases associated with poor sleep, a greater understanding of sleep regulation is necessary. We have identified a mutation in the β 1-adrenergic receptor gene in humans who require fewer hours of sleep than most. In vitro, this mutation leads to decreased protein stability and dampened signaling in response to agonist treatment. In vivo, the mice carrying the same mutation demonstrated short sleep behavior. We found that this receptor is highly expressed in the dorsal pons and that these ADRB1 + neurons are active during rapid eye movement (REM) sleep and wakefulness. Activating these neurons can lead to wakefulness, and the activity of these neurons is affected by the mutation. These results highlight the important role of β 1-adrenergic receptors in sleep/wake regulation.

Keywords

Additional SOURCES

Second Gene Mutation that Lets People Survive on Less Sleep

 

Other related articles on Circadian Rhythm and Sleep published in this Open Access Online Scientific Journal include the following:

 

2017 Nobel Prize in Physiology or Medicine jointly to Jeffrey C. Hall (ex-Brandeis, University of Maine), Michael Rosbash (Brandeis University) and Michael W. Young (Rockefeller University in New York) for their discoveries of molecular mechanisms controlling the circadian rhythm

Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2017/10/02/2017-nobel-prize-in-physiology-or-medicine-jointly-to-jeffrey-c-hall-michael-rosbash-and-michael-w-young-for-their-discoveries-of-molecular-mechanisms-controlling-the-circadian-rhythm/

 

Patient-Reported Outcomes Study, Presented at SLEEP 2018, Provides Confirmatory Real-World Evidence of the Previously Presented 7-hour Action of REMfresh®, the First Continuous Release and Absorption Melatonin™

Reporter: Gail S. Thornton, PhD(c)

https://pharmaceuticalintelligence.com/2018/06/10/patient-reported-outcomes-study-presented-at-sleep-2018-provides-confirmatory-real-world-evidence-of-the-previously-presented-7-hour-action-of-remfresh-the-first-continuous-release-and-absorp/

 

Clinically Studied, Continuous Release and Absorption Melatonin, REMfresh, Designed to Give Patients Up to 7 Hours of Sleep Support

Reporter: Gail S. Thornton, M.A.

https://pharmaceuticalintelligence.com/2019/06/19/clinically-studied-continuous-release-and-absorption-melatonin-remfresh-designed-to-give-patients-up-to-7-hours-of-sleep-support/

 

2017 award recipients including Thomas S. Kilduff, PhD, Director, Center for Neuroscience at SRI International in Menlo Park, California

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2017/04/28/sleep-research-society-announces-2017-award-recipients-including-thomas-s-kilduff-phd-director-center-for-neuroscience-at-sri-international-in-menlo-park-california/

 

Sleep and Memory

Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2016/03/26/sleep-and-memory/

 

Sleep Science

Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2016/03/16/sleep-science/

 

Genetic Link to Sleep and Mood Disorders

Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2016/02/27/genetic-link-to-sleep-and-mood-disorders/

 

Sleep Apnea Insular Glutamate and GABA Levels

Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2016/02/12/sleep-apnea-insular-glutamate-and-gaba-levels/

 

Fat, Sleep and the Gut

Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2016/02/06/fat-sleep-and-the-gut/

 

23andMe Genome-Wide Association Study on Human propensity to Get up early or Sleep in the Morning

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/02/02/23andme-genome-wide-association-study-on-human-propensity-to-get-up-early-or-sleep-in-the-morning/

 

Sleep Quality, Amyloid and Cognitive Decline

Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2015/10/31/sleep-quality-amyloid-and-cognitive-decline/

 

Study Shows Learning Is Best Enhanced During Sleep – Jewish Business News

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2014/09/02/study-shows-learning-is-best-enhanced-during-sleep-jewish-business-news/

 

Beta-Blockers Cause Lack Of Restful Sleep – Life Extension

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2014/08/04/beta-blockers-cause-lack-of-restful-sleep-life-extension/

 

Topical Antispasmodics conducive for Uninterrupted Sleep – A Potential Cardiovascular Chrono-therapeutics

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2014/02/13/topical-antispasmodics-conducive-for-uninterrupted-sleep-a-potential-cardiovascular-chrono-therapeutics/

 

Prolonged Wakefulness: Lack of Sufficient Duration of Sleep as a Risk Factor for Cardiovascular Diseases – Indications for Cardiovascular Chrono-therapeutics

Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2014/02/02/prolonged-wakefulness-lack-of-sufficient-duration-of-sleep-as-a-risk-factor-for-cardiovascular-diseases-indications-for-cardiovascular-chrono-therapeutics/

 

Sleep Apnea and Non-invasive positive Pressure Breathing

Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2013/06/11/sleep-apnea-and-non-invasive-positive-pressure-breathing/

 

How Might Sleep Apnea Lead to Serious Health Concerns like Cardiac and Cancer?

Author: Larry H Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2013/03/20/how-might-sleep-apnea-lead-to-serious-health-concerns-like-cardiac-and-cancers/

 

2019 Warren Alpert Foundation Award goes to Four Scientists for Seminal Discoveries in OptoGenetics – Illuminating the Human Brain

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2019/07/18/2019-warren-alpert-foundation-award-goes-to-four-scientists-for-seminal-discoveries-in-optogenetics-illuminating-the-human-brain/

 

 

 

 

 

Read Full Post »


Featuring Computational and Systems Biology Program at Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute (SKI), The Dana Pe’er Lab

 

Reporter: Aviva Lev-Ari, PhD, RN

A lecture by Dana Pe’er is included, below in the eProceedings which I generated in Real Time on 6/14/2019 @MIT

eProceeding 2019 Koch Institute Symposium – 18th Annual Cancer Research Symposium – Machine Learning and Cancer, June 14, 2019, 8:00 AM-5:00 PM ET MIT Kresge Auditorium, 48 Massachusetts Ave, Cambridge, MA

https://pharmaceuticalintelligence.com/2019/03/12/2019-koch-institute-symposium-machine-learning-and-cancer-june-14-2019-800-am-500-pmet-mit-kresge-auditorium-48-massachusetts-ave-cambridge-ma/

 

 

Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute (SKI

https://www.mskcc.org/research/ski/about

 

Research Programs

Cancer Biology & Genetics Program

Our scientists study the molecular and genetic determinants of cancer predisposition, tumor development, and metastasis.

Cell Biology Program

Our researchers explore the molecular mechanisms that control normal cell behavior and how these mechanisms are disrupted in cancer.

Chemical Biology Program

Our scientists use chemical principles to investigate cutting-edge topics in biology and medicine.

Computational & Systems Biology Program

The goal of our research is to build computer models that simulate biological processes, from the molecular level up to the organism as a whole.

Developmental Biology Program

Our investigators study the mechanisms that control cell proliferation, cell differentiation, tissue patterning, and tissue morphogenesis.

Immunology Program

Our research is geared toward understanding how the immune system functions in all its complexity and how it can be harnessed to fight disease.

Molecular Biology Program

Our research is directed at understanding how cell growth is regulated and how the integrity of the genome is maintained.

Molecular Pharmacology Program

Our research program serves as a conduit for bringing basic science discoveries to preclinical and clinical evaluation.

Structural Biology Program

Our researchers are dedicated to understanding biology at the structural and mechanistic levels, and aiding the development of new cancer therapies.

Book traversal links for Research

 

The Dana Pe’er Lab

 

The Dana Pe'er Lab

The Pe’er lab combines single cell technologies, genomic datasets and machine learning algorithms to address fundamental questions in biomedical science. Empowered by recent breakthrough technologies like massive parallel single cell RNA-sequencing, we ask questions such as: How do multi-cellular organisms develop from a single cell, resulting in the vast diversity of progenitor and terminal cell types? How does a cell’s regulatory circuit control the dynamics of signal processing and how do these circuits rewire over the course of development? How does an ensemble of cells function together to execute a multi-cellular response, such as an immune response to pathogen or cancer? We will also address more medically oriented questions such as: How do regulatory circuits go awry in disease? What is the consequence of intra-tumor heterogeneity? Can we characterize the tumor immune eco-system to gain a better understanding of when or why immunotherapy works or does not work? A key goal is to use this characterization of the tumor immune eco-system to personalize immunotherapy.

Dana Pe'er, PhD

Dana Pe’er, PhD

Chair, Computational and Systems Biology Program, SKI; Scientific Director, Metastasis & Tumor Ecosystems Center

Research Focus

Computational Biologist Dana Pe’er combines single cell technologies, genomic datasets and machine learning techniques to address fundamental questions addressing regulatory cell circuits, cellular development, tumor immune eco-system, genotype to phenotype relations and precision medicine.

Education

PhD, Hebrew University, Jerusalem Israel

 

The Dana Pe’er Lab: Publications

View a full listing of Dana Pe’er’s journal articles.


Palantir characterizes cell fate continuities in human hematopoiesis. Setty M, Kiseliovas V, Levine J, Gayoso A, Mazutis L, Pe’er D. 2019, in press. Nature Biotechnology.

Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Azizi E, Carr AJ, Plitas G, Cornish AE, Konopacki C, Prabhakaran S, Nainys J, Wu K, Kiseliovas V, Setty M, Choi K, Fromme RM, Dao P, McKenney PT, Wasti RC, Kadaveru K, Mazutis L, Rudensky AY, Pe’er D. Cell. 2018 Aug 23;174(5):1293-1308.e36. doi: 10.1016/j.cell.2018.05.060. PMID: 29961579

Recovering gene interactions from single-cell data using data diffusion. van Dijk D, Sharma R, Nainys J, Yim K, Kathail P, Carr AJ, Burdziak C, Moon KR, Chaffer CL, Pattabiraman D, Bierie B, Mazutis L, Wolf G, Krishnaswamy S, Pe’er D. Cell. 2018 Jul 26;174(3):716-729.e27. doi: 10.1016/j.cell.2018.05.061. PubMed PMID: 29961576

The Human Cell Atlas. Regev A et al. Elife. 2017 Dec 5;6. pii: e27041. doi: 10.7554/eLife.27041. PubMed PMID: 29206104

Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Wei SC, Levine JH, Cogdill AP, Zhao Y, Anang NAS, Andrews MC, Sharma P, Wang J, Wargo JA, Pe’er D, Allison JP. Cell. 2017 Sep 7;170(6):1120-1133.e17. doi: 10.1016/j.cell.2017.07.024. PMID: 28803728

Wishbone identifies bifurcating developmental trajectories from single-cell data. Setty M, Tadmor MD, Reich-Zeliger S, Angel O, Salame TM, Kathail P, Choi K, Bendall S, Friedman N, Pe’er D. Nat Biotechnol. 2016 Jun;34(6):637-45. doi: 10.1038/nbt.3569. PMID: 27136076

Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Levine JH, Simonds EF, Bendall SC, Davis KL, Amir el-AD, Tadmor MD, Litvin O, Fienberg HG, Jager A, Zunder ER, Finck R, Gedman AL, Radtke I, Downing JR, Pe’er D, Nolan GP. Cell. 2015 Jul 2;162(1):184-97. doi: 10.1016/j.cell.2015.05.047. PMID: 26095251

Interferon α/β enhances the cytotoxic response of MEK inhibition in melanoma. Litvin O, Schwartz S, Wan Z, Schild T, Rocco M, Oh NL, Chen BJ, Goddard N, Pratilas C, Pe’er D. Mol Cell. 2015 Mar 5;57(5):784-796. doi: 10.1016/j.molcel.2014.12.030. PMID: 25684207

Integration of genomic data enables selective discovery of breast cancer drivers. Sanchez-Garcia F, Villagrasa P, Matsui J, Kotliar D, Castro V, Akavia UD, Chen BJ, Saucedo-Cuevas L, Rodriguez Barrueco R, Llobet-Navas D, Silva JM, Pe’er D. Cell. 2014 Dec 4;159(6):1461-75. doi: 10.1016/j.cell.2014.10.048. PMID: 25433701

Conditional density-based analysis of T cell signaling in single-cell data. Krishnaswamy S, Spitzer MH, Mingueneau M, Bendall SC, Litvin O, Stone E, Pe’er D, Nolan GP. Systems biology. Science. 2014 Nov 28;346(6213):1250689. doi: 10.1126/science.1250689. PMID: 25342659

Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Bendall SC, Davis KL, Amir el-AD, Tadmor MD, Simonds EF, Chen TJ, Shenfeld DK, Nolan GP, Pe’er D. Cell. 2014 Apr 24;157(3):714-25. doi: 10.1016/j.cell.2014.04.005. PMID: 24766814

Book traversal links for The Dana Pe’er Lab

SOURCE

https://www.mskcc.org/research/ski/labs/dana-pe-er/publications

The Dana Pe’er Lab is one of four Labs of the Computational & Systems Biology Program

Computational biologists combine findings in biology with computer algorithms and databases to conduct biological research on powerful computers, using sophisticated software — so-called “dry” laboratories — in ways that complement and strengthen traditional laboratory and clinical research. The aim is to build computer models that simulate biological processes from the molecular level up to the organism as a whole and to use these models to make useful predictions.

 

Computational biology can help interpret detailed molecular profiles of cancerous and noncancerous cells, molecular response profiles of therapeutic agents, and a person’s genetic profile to assist in the development of better diagnostics and prognostics, as well as improved therapies. Intelligent use of computational methods using detailed molecular and genomic data is expected to reduce the trial and error of drug development and possibly lead to shorter, more accurate clinical trials.

 

The Christina Leslie Lab

The John Chodera Lab

The Dana Pe'er Lab

The Joao Xavier Lab

 

Read Full Post »


SINGLE CELL GENOMICS 2019, September 24-26, 2019, Djurönäset, Stockholm, Sweden

Reporter: Aviva Lev-Ari, PhD, RN

 

http://www.weizmann.ac.il/conferences/SCG2019/single-cell-genomics-2019

 

Organizing committee

  • Ido Amit
  • Amos Tanay
  • Sten Linnarsson
  • Rickard Sandberg
  • Aviv Regev
  • John Marioni
  • Alexander van Oudenaarden

Sponsored by:


Single cell genomics has emerged as a revolutionary technology transforming nearly every field of biomedical research. Through its many applications (single cell genome sequencing, single cell transcriptomics, various single cell epigenetic profiling approaches, and spatially resolved methods), researchers can characterize the genetic and functional properties of individual cells in their native conditions, leading to numerous experimental and clinical opportunities. As technology is leaping forward, many critical questions are arising:

• How can the behavior of groups of thousands or tens of thousands of single cells be analyzed and modeled?

• How can samples of precise single-cell-states be converted to inferred cellular behaviour, in space and time?

• How can multimodal single-cell datasets be integrated?

• What can we learn about cell-cell interactions?

• What are the immediate implications to fields like neuroscience, immunology, cancer research and stem cells?

• What will the longer-term impacts be for clinical research and practice?

The conference will bring together many of the pioneers and leading experts in the field to three days of extensive, interdisciplinary and informal discussion. Our goal is to create a forum where knowledge is shared, hoping to define together the agenda of this new community. The meeting will include presentations from invited leaders and several selected abstracts, a poster session and many opportunities for interaction. We encourage students and postdocs to participate by presenting abstracts.

Speakers

  • Ed Boyden, MIT
  • Long Cai, CalTech
  • Joe Ecker, Salk Institute
  • Guoji Guo, Zhejiang University
  • Shalev Itzkovitz, Weizmann Institute of Science
  • Maria Kasper, Karolinska Institutet
  • Job Kind, Hubrecht institute
  • Allon Klein, Harvard
  • Keren Leeat, Standford
  • Ed Lein, Allen Institute
  • Evan Macosko, Broad Institute
  • Dana Pe’er, MSKCC
  • Nikolaus Rajewsky, Max Delbrück
  • Alex Shalek, MIT
  • Fabian Theis, Helmholtz Munich
  • Barbara Treutlein, Max Planck Institute
  • Hongkui Zeng, Allen Institute
  • Xiaowei Zhuang, Harvard

Program – pending

Read Full Post »


The second annual PureTech Health BIG (Brain-Immune-Gut) Summit 2019 – By invitation only –

Selected Tweets from  #BIGAxisSummit

by @pharma_BI @AVIVA1950

for @pharmaceuticalintelligence.com

Reporter: Aviva Lev-Ari, PhD, RN

 

January 30 – February 1, 2019

The second annual PureTech Health BIG Summit brings together an elite ensemble of leading scientific researchers, investors, and CEOs and R&D leaders from major pharmaceutical, technology, and biotech companies.

The BIG Summit is designed to stimulate ideas that will have an impact on existing pipelines and catalyze future interactions among a group of delegates that represent leaders and innovators in their fields.

Please follow the discussion on Twitter using #BIGAxisSummit

By invitation only; registration is non-transferable.

For more information, please contact PureTechHealthSummit@PureTechHealth.com

 

HOST COMMITTEE

Participants

 

BIG SUMMIT AGENDA

(Subject to Change)

PureTech Health BIG Summit 2019 Agenda_FINALv2_WEBSITE.jpg

“Almost starting to understand immunology at this thought-provoking @PureTechh #BIGAxisSummit. Great Speakers.”

-tweet by Simone Fishburn, BioCentury @SimoneFishburn

SOURCE

https://bigsummit2019.com/agenda/

 

Selected Tweets from  #BIGAxisSummit

by @pharma_BI @AVIVA1950

for @pharmaceuticalintelligence.com

Gail S. Thornton Selections

Luke Timmerman‏ @ldtimmerman 7h7 hours ago

Back for final sessions at #BIGAxisSummit. @PureTechH Jim Harper of Sonde Health talking about how voice data — pacing, fine motor articulation, oscillation — can point the way to objective, quantitative measures for detecting and monitoring depression.

 

Eddie Martucci

 @EddieMartucci 5h5 hours ago

Paul Biondi at #BIGAxisSummit : What makes big deals happen is financial, and *deep conviction* of a big future fit. Disproportionate valuation from bidders is expected.

Love this. We often reduce everything to mathematical analyses to champion or ridicule deals. Not that simple

 

PureTech Health Plc‏ @PureTechH Jan 31

Bob Langer (@MIT) asks how #lymphatics affected by #aging. Santambrogio: typically blame aging #immune cells for increased disease, but aging affects lymphatics too (less efficient trafficking shown). Rejuvenating these could affect several aging-related diseases #BigAxisSummit

 

PureTech Health Plc‏ @PureTechH Jan 31

Viviane Labrie (@VAInstitute) discusses why the appendix has been identified as a potential starting point for #parkinsons #BIGAxisSummit

 

PureTech Health Plc‏ @PureTechH Jan 31

Chris Porter (@MIPS_Australia) notes #lymphatics is major route for trafficking #immune cells that surveil gut and respond to immune & #autoimmune stimuli. This is key in #BIGAxis interactions and why lymphatics-targeted therapies could enhance #immunomodulation #BIGAxisSummit

 

Dr. Stephen J. Williams Selections

1.

2.

3.

4.

5.

Dr. Irina Robu Selection

1.

2.

3.

4.

5.

Dr. Sudipta Saha Selection

1.

2.

3.

4.

5.

 

 

Read Full Post »


Single-cell Genomics: Directions in Computational and Systems Biology – Contributions of Prof. Aviv Regev @Broad Institute of MIT and Harvard, Cochair, the Human Cell Atlas Organizing Committee with Sarah Teichmann of the Wellcome Trust Sanger Institute

 

Curator: Aviva Lev-Ari, PhD, RN

 

Dana Pe’er, PhD, now chair of computational and systems biology at the Sloan Kettering Institute at the Memorial Sloan Kettering Cancer Center and a member of the Human Cell Atlas Organizing Committee,

what really sets Regev apart is the elegance of her work. Regev, says Pe’er, “has a rare, innate ability of seeing complex biology and simplifying it and formalizing it into beautiful, abstract, describable principles.”

Dr. Aviv Regev, an MIT biology professor who is also chair of the faculty of the Broad and director of its Klarman Cell Observatory and Cell Circuits Program, was reviewing a newly published white paper detailing how the Human Cell Atlas is expected to change the way we diagnose, monitor, and treat disease at a gathering of international scientists at Israel’s Weizmann Institute of Science, 10/2017.

For Regev, the importance of the Human Cell Atlas goes beyond its promise to revolutionize biology and medicine. As she once put it, without an atlas of our cells, “we don’t really know what we’re made of.”

Regev, turned to a technique known as RNA interference (she now uses CRISPR), which allowed her to systematically shut genes down. Then she looked at which genes were expressed to determine how the cells’ response changed in each case. Her team singled out 100 different genes that were involved in regulating the response to the pathogens—some of which weren’t previously known to be involved in immune function. The study, published in Science, generated headlines.

The project, the Human Cell Atlas, aims to create a reference map that categorizes all the approximately 37 trillion cells that make up a human. The Human Cell Atlas is often compared to the Human Genome Project, the monumental scientific collaboration that gave us a complete readout of human DNA, or what might be considered the unabridged cookbook for human life. In a sense, the atlas is a continuation of that project’s work. But while the same DNA cookbook is found in every cell, each cell type reads only some of the recipes—that is, it expresses only certain genes, following their DNA instructions to produce the proteins that carry out a cell’s activities. The promise of the Human Cell Atlas is to reveal which specific genes are expressed in every cell type, and where the cells expressing those genes can be found.

Regev says,

The final product, will amount to nothing less than a “periodic table of our cells,” a tool that is designed not to answer one specific question but to make countless new discoveries possible.

Sequencing the RNA of the cells she’s studying can tell her only so much. To understand how the circuits change under different circumstances, Regev subjects cells to different stimuli, such as hormones or pathogens, to see how the resulting protein signals change.

“the modeling step”—creating algorithms that try to decipher the most likely sequence of molecular events following a stimulus. And just as someone might study a computer by cutting out circuits and seeing how that changes the machine’s operation, Regev tests her model by seeing if it can predict what will happen when she silences specific genes and then exposes the cells to the same stimulus.

By sequencing the RNA of individual cancer cells in recent years—“Every cell is an experiment now,” she says—she has found remarkable differences between the cells of a single tumor, even when they have the same mutations. (Last year that work led to Memorial Sloan Kettering’s Paul Marks Prize for Cancer Research.) She found that while some cancers are thought to develop resistance to therapy, a subset of melanoma cells were resistant from the start. And she discovered that two types of brain cancer, oligodendroglioma and astrocytoma, harbor the same cancer stem cells, which could have important implications for how they’re treated.

As a 2017 overview of the Human Cell Atlas by the project’s organizing committee noted, an atlas “is a map that aims to show the relationships among its elements.” Just as corresponding coastlines seen in an atlas of Earth offer visual evidence of continental drift, compiling all the data about our cells in one place could reveal relationships among cells, tissues, and organs, including some that are entirely unexpected. And just as the periodic table made it possible to predict the existence of elements yet to be observed, the Human Cell Atlas, Regev says, could help us predict the existence of cells that haven’t been found.

This year alone it will fund 85 Human Cell Atlas grants. Early results are already pouring in.

  • In March, Swedish researchers working on cells related to human development announced they had sequenced 250,000 individual cells.
  • In May, a team at the Broad made a data set of more than 500,000 immune cells available on a preview site.

The goal, Regev says, is for researchers everywhere to be able to use the open-source platform of the Human Cell Atlas to perform joint analyses.

Eric Lander, PhDthe founding director and president of the Broad Institute and a member of the Human Cell Atlas Organizing Committee, likens it to genomics.

“People thought at the beginning they might use genomics for this application or that application,” he says. “Nothing has failed to be transformed by genomics, and nothing will fail to be transformed by having a cell atlas.”

“How did we ever imagine we were going to solve a problem without single-cell resolution?”

SOURCE

https://www.technologyreview.com/s/611786/the-cartographer-of-cells/?utm_source=MIT+Technology+Review&utm_campaign=Alumni-Newsletter_Sep-Oct-2018&utm_medium=email

Other related articles published in this Open Access Online Scientific Journal include the following:

 

University of California Santa Cruz’s Genomics Institute will create a Map of Human Genetic Variations

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2015/01/13/university-of-california-santa-cruzs-genomics-institute-will-create-a-map-of-human-genetic-variations/

 

Recognitions for Contributions in Genomics by Dan David Prize Awards

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2017/07/31/recognitions-for-contributions-in-genomics-by-dan-david-prize-awards/

 

ENCODE (Encyclopedia of DNA Elements) program: ‘Tragic’ Sequestration Impact on NHGRI Programs

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2013/09/18/encode-encyclopedia-of-dna-elements-program-tragic-sequestration-impact-on-nhgri-programs/

 

Single-cell Sequencing

Genomic Diagnostics: Three Techniques to Perform Single Cell Gene Expression and Genome Sequencing Single Molecule DNA Sequencing

Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2017/07/04/genomic-diagnostics-three-techniques-to-perform-single-cell-gene-expression-and-genome-sequencing-single-molecule-dna-sequencing/

 

LIVE – Real Time – 16th Annual Cancer Research Symposium, Koch Institute, Friday, June 16, 9AM – 5PM, Kresge Auditorium, MIT – See, Aviv Regev

REAL TIME PRESS COVERAGE & Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2017/03/13/16th-annual-cancer-research-symposium-koch-institute-friday-june-16-9am-5pm-kresge-auditorium-mit/

 

LIVE 11/3/2015 1:30PM @The 15th Annual EmTech MIT – MIT Media Lab: Top 10 Breakthrough Technologies & 2015 Innovators Under 35 – See, Gilead Evrony

REAL TIME PRESS COVERAGE & Reporter: Aviva Lev-Ari, PhD, RN
https://pharmaceuticalintelligence.com/2015/11/03/live-1132015-130pm-the-15th-annual-emtech-mit-mit-media-lab-top-10-breakthrough-technologies-2015-innovators-under-35/

 

Cellular Guillotine Created for Studying Single-Cell Wound Repair

Reporter: Irina Robu, PhD

https://pharmaceuticalintelligence.com/2017/06/29/cellular-guillotine-created-for-studying-single-cell-wound-repair/

 

New subgroups of ILC immune cells discovered through single-cell RNA sequencing

Reporter: Stephen J Williams, PhD

https://pharmaceuticalintelligence.com/2016/02/17/new-subgroups-of-ilc-immune-cells-discovered-through-single-cell-rna-sequencing-from-karolinska-institute/

 

#JPM16: Illumina’s CEO on new genotyping array called Infinium XT and Bio-Rad Partnership for single-cell sequencing workflow

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/01/12/jpm16-illuminas-ceo-on-new-genotyping-array-called-infinium-xt-and-bio-rad-partnership-for-single-cell-sequencing-workflow/

 

Juno Acquires AbVitro for $125M: high-throughput and single-cell sequencing capabilities for Immune-Oncology Drug Discovery

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/01/12/juno-acquires-abvitro-for-125m-high-throughput-and-single-cell-sequencing-capabilities-for-immune-oncology-drug-discovery/

 

NIH to Award Up to $12M to Fund DNA, RNA Sequencing Research: single-cell genomics,  sample preparation,  transcriptomics and epigenomics, and  genome-wide functional analysis.

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2015/10/27/nih-to-award-up-to-12m-to-fund-dna-rna-sequencing-research-single-cell-genomics-sample-preparation-transcriptomics-and-epigenomics-and-genome-wide-functional-analysis/

 

Genome-wide Single-Cell Analysis of Recombination Activity and De Novo Mutation Rates in Human Sperm

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

https://pharmaceuticalintelligence.com/2012/08/07/genome-wide-single-cell-analysis-of-recombination-activity-and-de-novo-mutation-rates-in-human-sperm/

REFERENCES to Original studies

In Science, 2018

Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors

 See all authors and affiliations

Science  21 Apr 2017:
Vol. 356, Issue 6335, eaah4573
DOI: 10.1126/science.aah4573
Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis

See all authors and affiliations

Science  26 Apr 2018:
eaar3131
DOI: 10.1126/science.aar3131

In Nature, 2018 and 2017

How to build a human cell atlas

Aviv Regev is a maven of hard-core biological analyses. Now she is part of an effort to map every cell in the human body.

  1. Research | 

  2. Research | 

  3. Research | 

  4. Research | 

  5. Research | 

  6. Amendments and Corrections | 

  7. Research |  | OPEN

  8. Research | 

  9. Amendments and Corrections | 

  10. Comments and Opinion | 

  11. Research | 

Read Full Post »


Emerging STAR in Molecular Biology, Synthetic Virology and Genomics: Clodagh C. O’Shea: ChromEMT – Visualizing 3D chromatin structure

 

Curator: Aviva Lev-Ari, PhD, RN

 

On 8/28/2017, I attend and covered in REAL TIME the CHI’s 5th Immune Oncology Summit – Oncolytic Virus Immunotherapy, August 28-29, 2017 Sheraton Boston Hotel | Boston, MA

https://pharmaceuticalintelligence.com/2017/08/28/live-828-chis-5th-immune-oncology-summit-oncolytic-virus-immunotherapy-august-28-29-2017-sheraton-boston-hotel-boston-ma/

 

I covered in REAL TIME this event and Clodagh C. O’Shea talk at the conference.

On that evening, I e-mailed my team that

“I believe that Clodagh C. O’Shea will get the Nobel Prizebefore CRISPR

 

11:00 Synthetic Virology: Modular Assembly of Designer Viruses for Cancer Therapy

Clodagh_OShea

Clodagh O’Shea, Ph.D., Howard Hughes Medical Institute Faculty Scholar; Associate Professor, William Scandling Developmental Chair, Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies

Design is the ultimate test of understanding. For oncolytic therapies to achieve their potential, we need a deep mechanistic understanding of virus and tumor biology together with the ability to confer new properties.

To achieve this, we have developed

  • combinatorial modular genome assembly (ADsembly) platforms,
  • orthogonal capsid functionalization technologies (RapAd) and
  • replication assays that have enabled the rational design, directed evolution, systematic assembly and screening of powerful new vectors and oncolytic viruses.

 

Clodagh O’Shea’s Talk In Real Time:

  • Future Cancer therapies to be sophisticated as Cancer is
  • Targer suppresor pathways (Rb/p53)
  • OV are safe their efficacy ishas been limited
  • MOA: Specify Oncolytic Viral Replication in Tumor cells Attenuate – lack of potency
  • SOLUTIONS: Assembly: Assmble personalized V Tx fro libraries of functional parts
  • Adenovirus – natural & clinical advantages
  • Strategy: Technology for Assmbling Novel Adenovirus Genomes using Modular Genomic Parts
  • E1 module: Inactives Rb & p53
  • core module:
  • E3 Module Immune Evasion Tissue targeting
  • E4 Module Activates E2F (transcription factor TDP1/2), PI3K
  • Adenovirus promoters for Cellular viral replication — Tumor Selective Replication: Novel Viruses Selective Replicate in RB/p16
  • Engineering Viruses to overcome tumor heterogeneity
  • Target multiple & Specific Tumor Cel Receptors – RapAd Technology allows Re-targeting anti Rapamycin – induced targeting of adenovirus
  • Virus Genome: FKBP-fusion FRB-Fiber
  • Engineer Adenovirus Caspids that prevent Liver uptake and Sequestration – Natural Ad5 Therapies 
  • Solution: AdSyn335 Lead candidat AdSyn335 Viruses targeting multiple cells
  • Engineering Mutations that enhanced potency
  • Novel Vector: Homes and targets
  • Genetically engineered PDX1 – for Pancreatic Cancer Stroma: Early and Late Stage
On Twitter:

Engineer Adenovirus Caspids prevent Liver uptake and Sequestration – Natural Ad5 Therapies C. O’Shea, HHDI

Scientist’s Profile: Clodagh C. O’Shea

http://www.salk.edu/scientist/clodagh-oshea/

EDUCATION

BS, Biochemistry and Microbiology, University College Cork, Ireland
PhD, Imperial College London/Imperial Cancer Research Fund, U.K.
Postdoctoral Fellow, UCSF Comprehensive Cancer Center, San Francisco, U.S.A

VIDEOS

http://www.salk.edu/scientist/clodagh-oshea/videos/

O’Shea Lab @Salk

http://oshea.salk.edu/

AWARDS & HONORS

  • 2016 Howard Hughes Medical Institute Faculty Scholar
  • 2014 W. M. Keck Medical Research Program Award
  • 2014 Rose Hills Fellow
  • 2011Science/NSF International Science & Visualization Challenge, People’s Choice
  • 2011 Anna Fuller Award for Cancer Research
  • 2010, 2011, 2012 Kavli Frontiers Fellow, National Academy of Sciences
  • 2009 Sontag Distinguished Scientist Award
  • 2009 American Cancer Society Research Scholar Award
  • 2008 ACGT Young Investigator Award for Cancer Gene Therapy
  • 2008 Arnold and Mabel Beckman Young Investigator Award
  • 2008 William Scandling Assistant Professor, Developmental Chair
  • 2007 Emerald Foundation Schola

READ 

Clodagh C. O’Shea: ChromEMT: Visualizing 3D chromatin structure and compaction in interphase and mitotic cells | Science

http://science.sciencemag.org/content/357/6349/eaag0025

and 

https://www.readbyqxmd.com/keyword/93030

Clodagh C. O’Shea

In Press

Jul 27, 2017 – Salk scientists solve longstanding biological mystery of DNA organization

Sep 22, 2016 – Clodagh O’Shea named HHMI Faculty Scholar for groundbreaking work in designing synthetic viruses to destroy cancer

Oct 05, 2015 – Clodagh O’Shea awarded $3 million to unlock the “black box” of the nucleus

Aug 27, 2015 – The DNA damage response goes viral: a way in for new cancer treatments

Apr 12, 2013 – Salk Institute promotes three top scientists

Oct 16, 2012 – Cold viruses point the way to new cancer therapies

Aug 25, 2010 – Use the common cold virus to target and disrupt cancer cells?

Oct 22, 2009 – Salk scientist receives The Sontag Foundation’s Distinguished Scientist Award

May 15, 2008 – Salk scientist wins 2008 Beckman Young Investigator Award

Mar 24, 2008 – Salk scientist wins 2007 Young Investigator’s Award in Gene Therapy for Cancer

Read Full Post »

Older Posts »