Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on Early Detection and ctDNA 1:35 – 3:55 PM
Reporter: Stephen J. Williams, PhD
Introduction
Alberto Bardelli
- circulating tumor DNA has been around but with NGS now we can have more specificity in analyzing ctDNA
- interest lately in using liquid biopsy to gain insight on tumor heterogeneity versus single needle biopsy of the solid tumor
- these talks will however be on ctDNA as a diagnostic and therapeutic monitoring modality
Prediction of cancer and tissue of origin in individuals with suspicion of cancer using a cell-free DNA multi-cancer early detection test
David Thiel
@MayoClinic
- test has a specificity over 90% and intended to used along with guideline
- The Circulating Cell-free Genome Atlas Study (clinical trial NCT02889978) (CCGA) study divided into three substudies: highest performing assay, refining assay, validation of assays
- methylation based assays worked better than sequencing (bisulfite sequencing)
- used a machine learning algorithm to help refine assay
- prediction was >90%; subgroup for high clinical suspicion of cancer
- HCS sensitivity was 100% and specificity very high; but sensitivity on training set was 40% and results may have been confounded by including kidney cancer
- TOO tissue of origin was predicted in greater than 99% in both training and validation sets
A first-of-its-kind prospective study of a multi-cancer blood test to screen and manage 10,000 women with no history of cancer
- DETECT-A study: prospective interventional study; can multi blood test be used prospectively and can lead to a personalized care; can the screen be used to complement current therapy?
- 10,000 women aged 65-75; these women could not have previous cancer and conducted through Geisinger Health Network; multi test detects DNA and protein and standard of care screening
- the study focused on safety so a committee was consulted on each case, and used a diagnostic PET-CT
- blood test alone not good but combined with protein and CT scans much higher (5 fold increase) detection for breast cancer
Nickolas Papadopoulos
@HopkinsMedicine
Discussant
David Huntsman
- there are mutiple opportunities yet at same time there are still challenges to utilize these cell free tests in therapeutic monitoring, diagnostic, and screening however sensitivities for some cancers are still too low to use in large scale screening however can supplement current screening guidelines
- we have to ask about false positive rate and need to concentrate on prospective studies
- we must consider how tests will be used, population health studies will need to show improved survival
Phylogenetic tracking and minimal residual disease detection using ctDNA in early-stage NSCLC: A lung TRACERx study
Chris Abbosh @ucl
- TRACERx study in collaboration with Charles Swanton.
- multiplex PCR to track 200 SNVs: correlate tumor tissue biopsy with ctDNA
- spike in assay shows very good sensitivity and specificity for SNVs variants tracked, did over 400 TRACERx libraries
- sensitivity increases when tracking more variants but specificity does go down a bit
- tracking variants can show evidence of subclonal dynamics and evolution and copy number deletion events; they also show neoantigen editing or changing of their neoantigens
- this assay can detect low variants in a reproducible manner
The TRACERx (TRAcking Cancer Evolution through therapy (Rx)) lung study is a multi-million pound research project taking place over nine years, which will transform our understanding of non-small cell lung cancer (NSCLC) and take a practical step towards an era of precision medicine. The study will uncover mechanisms of cancer evolution by analysing the intratumour heterogeneity in lung tumours from approximately 850 patients and tracking its evolutionary trajectory from diagnosis through to relapse. At £14 million, it’s the biggest single investment in lung cancer research by Cancer Research UK, and the start of a strategic UK-wide focus on the disease, aimed at making real progress for patients.
Led by Professor Charles Swanton at UCL, the study will bring together a network of experts from different disciplines to help integrate clinical and genomic data and identify patients who could benefit from trials of new, targeted treatments. In addition, it will use a whole suite of cutting edge analytical techniques on these patients’ tumour samples, giving unprecedented insight into the genomic landscape of primary and metastatic tumours and the impact of treatment upon this landscape.
In future, TRACERx will enable us to define how intratumour heterogeneity impacts upon cancer immunity throughout tumour evolution and therapy. Such studies will help define how the clinical evaluation of intratumour heterogeneity can inform patient stratification and the development of combinatorial therapies incorporating conventional, targeted and immune based therapeutics.

Intratumour heterogeneity is increasingly recognised as a major hurdle to achieve improvements in therapeutic outcome and biomarker validation. Intratumour genetic diversity provides a substrate for tumour adaptation and evolution. However, the evolutionary genomic landscape of non-small cell lung cancer (NSCLC) and how it changes through the disease course has not been studied in detail. TRACERx is a prospective observational study with the following objectives:
Primary Objectives
- Define the relationship between intratumour heterogeneity and clinical outcome following surgery and adjuvant therapy (including relationships between intratumour heterogeneity and clinical disease stage and histological subtypes of NSCLC).
- Establish the impact of adjuvant platinum-containing regimens upon intratumour heterogeneity in relapsed disease compared to primary resected tumour.
Key Secondary Objectives
- Develop and validate an intratumour heterogeneity (ITH) ratio index as a prognostic and predictive biomarker in relation to disease-free survival and overall survival.
- Infer a complete picture of NSCLC evolutionary dynamics – define drivers of genomic instability, metastatic progression and drug resistance by identifying and tracking the dynamics of somatic mutational heterogeneity, and chromosomal structural and numerical instability present in the primary tumour and at metastatic sites. Individual tumour phylogenetic tree analysis will:
- Establish the order of somatic events in relation to genomic instability onset and metastatic progression
- Decipher genetic “bottlenecking” events following metastasis and drug therapy
- Establish dynamics of tumour evolution during the disease course from early to late stage NSCLC.
- Initiate a longitudinal biobank of circulating tumour cells (CTCs) and circulating-free tumour DNA (cfDNA) to develop analytical methods for the early detection and monitoring of tumour evolution over time.
- Develop a longitudinal tissue resource to serve as a platform to assess the relationship between genetic intratumour heterogeneity and the host immune response.
- Define relationships between intratumour heterogeneity and targeted/cytotoxic therapeutic outcome.
- Use a lung cancer specific gene panel in a certified Good Clinical Practice (GCP) laboratory environment to define clonally dominant disease drivers to address the role of clonal driver dominance in targeted therapeutic response and to guide stratification of lung cancer treatment and future clinical study inclusion (paired primary-metastatic site comparisons in at least 270 patients with relapsed disease).
Utility of longitudinal circulating tumor DNA (ctDNA) modeling to predict RECIST-defined progression in first-line patients with epidermal growth factor receptor mutation-positive (EGFRm) advanced non-small cell lung cancer (NSCLC)
Martin Johnson
Impact of the EML4-ALK fusion variant on the efficacy of lorlatinib in patients (pts) with ALK-positive advanced non-small cell lung cancer (NSCLC)
Todd Bauer
From an interview with Dr. Bauer at https://www.lungcancernews.org/2019/08/14/making-headway-with-lorlatinib/
Lorlatinib, a smallmolecule inhibitor of ALK and ROS1, was granted accelerated U.S. Food and Drug Administration approval in November 2018 for patients with ALK-positive metastatic NSCLC whose disease has progressed on crizotinib and at least one other ALK inhibitor or whose disease has progressed on alectinib or ceritinib as the first ALK inhibitor therapy for metastatic disease. Todd M. Bauer, MD, a medical oncologist and senior investigator at Sarah Cannon Research Institute/Tennessee Oncology, PLLC, in Nashville, has been very involved with the development of lorlatinib since the beginning. In the following interview, Dr. Bauer discusses some of lorlatinib’s unique toxicities, as well as his first-hand experiences with the drug.
For further reading: Solomon B, Besse B, Bauer T, et al. Lorlatinib in Patients with ALK-positive non-small-cell lung cancer: results from a global phase 2 study. Lancet. 2018;19(12):P1654-1667.
Abstract
BACKGROUND: Lorlatinib is a potent, brain-penetrant, third-generation inhibitor of ALK and ROS1 tyrosine kinases with broad coverage of ALK mutations. In a phase 1 study, activity was seen in patients with ALK-positive non-small-cell lung cancer, most of whom had CNS metastases and progression after ALK-directed therapy. We aimed to analyse the overall and intracranial antitumour activity of lorlatinib in patients with ALK-positive, advanced non-small-cell lung cancer.
METHODS: In this phase 2 study, patients with histologically or cytologically ALK-positive or ROS1-positive, advanced, non-small-cell lung cancer, with or without CNS metastases, with an Eastern Cooperative Oncology Group performance status of 0, 1, or 2, and adequate end-organ function were eligible. Patients were enrolled into six different expansion cohorts (EXP1-6) on the basis of ALK and ROS1 status and previous therapy, and were given lorlatinib 100 mg orally once daily continuously in 21-day cycles. The primary endpoint was overall and intracranial tumour response by independent central review, assessed in pooled subgroups of ALK-positive patients. Analyses of activity and safety were based on the safety analysis set (ie, all patients who received at least one dose of lorlatinib) as assessed by independent central review. Patients with measurable CNS metastases at baseline by independent central review were included in the intracranial activity analyses. In this report, we present lorlatinib activity data for the ALK-positive patients (EXP1-5 only), and safety data for all treated patients (EXP1-6). This study is ongoing and is registered with ClinicalTrials.gov, number NCT01970865.
FINDINGS: Between Sept 15, 2015, and Oct 3, 2016, 276 patients were enrolled: 30 who were ALK positive and treatment naive (EXP1); 59 who were ALK positive and received previous crizotinib without (n=27; EXP2) or with (n=32; EXP3A) previous chemotherapy; 28 who were ALK positive and received one previous non-crizotinib ALK tyrosine kinase inhibitor, with or without chemotherapy (EXP3B); 112 who were ALK positive with two (n=66; EXP4) or three (n=46; EXP5) previous ALK tyrosine kinase inhibitors with or without chemotherapy; and 47 who were ROS1 positive with any previous treatment (EXP6). One patient in EXP4 died before receiving lorlatinib and was excluded from the safety analysis set. In treatment-naive patients (EXP1), an objective response was achieved in 27 (90·0%; 95% CI 73·5-97·9) of 30 patients. Three patients in EXP1 had measurable baseline CNS lesions per independent central review, and objective intracranial responses were observed in two (66·7%; 95% CI 9·4-99·2). In ALK-positive patients with at least one previous ALK tyrosine kinase inhibitor (EXP2-5), objective responses were achieved in 93 (47·0%; 39·9-54·2) of 198 patients and objective intracranial response in those with measurable baseline CNS lesions in 51 (63·0%; 51·5-73·4) of 81 patients. Objective response was achieved in 41 (69·5%; 95% CI 56·1-80·8) of 59 patients who had only received previous crizotinib (EXP2-3A), nine (32·1%; 15·9-52·4) of 28 patients with one previous non-crizotinib ALK tyrosine kinase inhibitor (EXP3B), and 43 (38·7%; 29·6-48·5) of 111 patients with two or more previous ALK tyrosine kinase inhibitors (EXP4-5). Objective intracranial response was achieved in 20 (87·0%; 95% CI 66·4-97·2) of 23 patients with measurable baseline CNS lesions in EXP2-3A, five (55·6%; 21·2-86·3) of nine patients in EXP3B, and 26 (53·1%; 38·3-67·5) of 49 patients in EXP4-5. The most common treatment-related adverse events across all patients were hypercholesterolaemia (224 [81%] of 275 patients overall and 43 [16%] grade 3-4) and hypertriglyceridaemia (166 [60%] overall and 43 [16%] grade 3-4). Serious treatment-related adverse events occurred in 19 (7%) of 275 patients and seven patients (3%) permanently discontinued treatment because of treatment-related adverse events. No treatment-related deaths were reported.
INTERPRETATION: Consistent with its broad ALK mutational coverage and CNS penetration, lorlatinib showed substantial overall and intracranial activity both in treatment-naive patients with ALK-positive non-small-cell lung cancer, and in those who had progressed on crizotinib, second-generation ALK tyrosine kinase inhibitors, or after up to three previous ALK tyrosine kinase inhibitors. Thus, lorlatinib could represent an effective treatment option for patients with ALK-positive non-small-cell lung cancer in first-line or subsequent therapy.
- loratinib could be used for crizotanib resistant tumors based on EML4-ALK variants present in ctDNA
Reference:
1. Updated efficacy and safety data from the global phase III ALEX study of alectinib (ALC) vs crizotinib (CZ) in untreated advanced ALK+ NSCLC. J Clin Oncol 36, 2018 (suppl; abstr 9043).
Discussion
Corey Langer
Follow on Twitter at:
@pharma_BI
@AACR
@CureCancerNow
@pharmanews
@BiotechWorld
@HopkinsMedicine
#AACR20
Like this:
Like Loading...
Read Full Post »