Advertisements
Feeds:
Posts
Comments

Archive for the ‘Innovation in Immunology Diagnostics’ Category


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Scientists at the Stanford University School of Medicine have completed the first-ever characterization of the meticulously timed immune system changes in women that occur during pregnancy. The findings were published in Science Immunology revealed that there is an immune clock of pregnancy and suggest it may help doctors predict preterm birth.

 

The timing of immune system changes follows a precise and predictable pattern in normal pregnancy. Although physicians have long known that the expectant mother’s immune system adjusts to prevent her body from rejecting the fetus, no one had investigated the full scope of these changes, nor asked if their timing was tightly controlled.

 

Nearly 10 percent of U.S. infants are born prematurely, arriving three or more weeks early, but physicians lack a reliable way to predict premature deliveries. Previous research at Stanford and other places suggested that inflammatory immune responses may help in triggering early labor. It suggested that if scientists identify an immune signature of impending preterm birth, they should be able to design a blood test to detect it.

 

The researchers used mass cytometry, a technique developed at Stanford, to simultaneously measure up to 50 properties of each immune cell in the blood samples. They counted the types of immune cells, assessed what signaling pathways were most active in each cell, and determined how the cells reacted to being stimulated with compounds that mimic infection with viruses and bacteria.

 

The researchers developed an algorithm that captures the immunological timeline during pregnancy that both validates previous findings and sheds new light on immune cell interaction during gestation. By defining this immunological chronology during normal term pregnancy, they can now begin to determine which alterations associate with pregnancy-related pathologies.

 

With an advanced statistical modeling technique, introduced for the first time in this study, the scientists then described in detail how the immune system changes throughout pregnancy. Instead of grouping the women’s blood samples by trimester for analysis, the model treated gestational age as a continuous variable, allowing the researchers to account for the exact time during pregnancy at which each sample was taken. The mathematical model also incorporated knowledge from the existing scientific literature of how immune cells behave in nonpregnant individuals to help determine which findings were most likely to be important.

 

The study confirmed immune features of pregnancy that were already known. Such as the scientists saw that natural killer cells and neutrophils have enhanced action during pregnancy. The researchers also uncovered several previously unappreciated features of how the immune system changes, such as the finding that activity of the STAT5 signaling pathway in CD4+T cells progressively increases throughout pregnancy on a precise schedule, ultimately reaching levels much higher than in nonpregnant individuals. The STAT5 pathway is involved in helping another group of immune cells, regulatory T cells, to differentiate. Interestingly, prior research in animals has indicated that regulatory T cells are important for maintaining pregnancy.

 

The next step will be to conduct similar research using blood samples from women who deliver their babies prematurely to see where their trajectories of immune function differ from normal.

 

This study revealed a precisely timed chronology of immune adaptations in peripheral blood over the course of a term pregnancy. This finding was enabled by high-content, single-cell mass cytometry coupled with a csEN algorithm accounting for the modular structure of the immune system and previous knowledge. The study provided the conceptual backbone and the analytical framework to examine whether disruption of this chronology is a diagnostically useful characteristic of preterm birth and other pregnancy-related pathologies.

 

References:

 

http://immunology.sciencemag.org/content/2/15/eaan2946.full

 

http://med.stanford.edu/news/all-news/2017/09/immune-system-changes-during-pregnancy-are-precisely-timed.html

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3078586/

 

http://www.nature.com/nm/journal/v19/n5/full/nm.3160.html?foxtrotcallback=true

 

https://www.ncbi.nlm.nih.gov/pubmed/14758358

Advertisements

Read Full Post »


Announcing our 10th e-Book on Amazon.com – 1st day, 9/4/2017

Editor-in-Chief: Aviva Lev-Ari, PhD, RN

 

On our Book Shelf on Amazon.com

WE ARE ON AMAZON.COM

https://www.amazon.com/s/ref=dp_byline_sr_ebooks_9?ie=UTF8&text=Aviva+Lev-Ari&search-alias=digital-text&field-author=Aviva+Lev-Ari&sort=relevancerank

http://www.amazon.com/dp/B00DINFFYC

http://www.amazon.com/dp/B018Q5MCN8

http://www.amazon.com/dp/B018PNHJ84

http://www.amazon.com/dp/B018DHBUO6

http://www.amazon.com/dp/B013RVYR2K

http://www.amazon.com/dp/B012BB0ZF0

http://www.amazon.com/dp/B019UM909A

http://www.amazon.com/dp/B019VH97LU

http://www.amazon.com/dp/B071VQ6YYK

https://www.amazon.com/dp/B075CXHY1B

 

The Immune System, Stress Signaling, Infectious Diseases and Therapeutic Implications: VOLUME 2: Infectious Diseases and Therapeutics and VOLUME 3: The Immune System and Therapeutics (Series D: BioMedicine & Immunology) Kindle Edition – on Amazon.com since 9/4/2017

by Larry H. Bernstein (Author), Aviva Lev-Ari (Author), Stephen J. Williams (Author), Demet Sag (Author), Irina Robu (Author), Tilda Barliya (Author), David Orchard-Webb (Author), Alan F. Kaul (Author), Danut Dragoi (Author), Sudipta Saha (Editor)

https://www.amazon.com/dp/B075CXHY1B

 

Product details

  • File Size:21832 KB
  • Print Length:3747 pages
  • Publisher:Leaders in Pharmaceutical Business Intelligence (LPBI) Group; 1 edition (September 4, 2017)
  • Publication Date:September 4, 2017
  • Sold by:Amazon Digital Services LLC
  • Language:English
  • ASIN:B075CXHY1B
  • Text-to-Speech: Enabled 
  • X-Ray: Not Enabled 
  • Word Wise:Not Enabled
  • Lending:Enabled
  • Enhanced Typesetting:Not Enabled 

Read Full Post »


CHI’s 5th ImmunoModulatory Therapeutic Antibodies for Cancer Conference, August 28-29, 2017 Sheraton Boston Hotel | Boston, MA

Reporter: Aviva Lev-Ari, PhD, RN

ANNOUNCEMENT

Leaders in Pharmaceutical Business Intelligence (LPBI) Group will cover the event in

REAL TIME

Aviva Lev-Ari, PhD, RN will be streaming live from the floor of the Sheraton Hotel in Boston on August 28 and August 29, 2017

@pharma_BI

@AVIVA1950

 

Cambridge Healthtech Institute’s 5th Annual

Immunomodulatory Therapeutic Antibodies for Cancer

Scientific Strategies for Discovering and Developing Novel Immunotherapies and Agents to Improve the Efficacy and Toxicology Profiles of T Cell-Targeted Biotherapeutics
August 28-29, 2017 Sheraton Boston Hotel | Boston, MA

http://www.immuno-oncologysummit.com/Immunomodulatory-Antibodies-Cancer/

 

MONDAY, AUGUST 28

7:30 am Registration & Morning Coffee

8:25 Chairperson’s Opening Remarks

Yan Qu, Ph.D., Senior Principal Scientist, Pfizer

 

8:30 KEYNOTE PRESENTATION: Enabling Effective Immuno-Oncology

Greg_AdamsGregory Adams, Ph.D., CSO, Eleven Biotherapeutics

Checkpoint inhibitors and other immune-oncology agents have shown significant promise in the treatment of a variety of cancers. However, many of these agents are only effective when an existing host immune response has already been induced by other therapeutic approaches. I will discuss strategies that may be used to effectively set the stage for immune-oncology treatments including Eleven BioTherapeutics’ Targeted Protein Therapeutics.

9:00 Immunomodulatory Antibodies – Potentiation by Fc Receptor Engagement

Rony_DahanRony Dahan, Ph.D., Principal Investigator, Immunology, Weizmann Institute of Science, Israel

Immunomodulatory mAbs are revolutionizing cancer treatment due to their clinical effective stimulation of therapeutic anti-cancer immunity. Recent studies demonstrated the importance of the Fc domain of these types of mAbs. Their optimal activity can be critically depended on their ability to engage defined FcgR pathways. I will discuss our recent characterization of these FcgR-dependent mechanisms, and how they can be exploited for introducing second generation Fc-optimized immunomodulatory mAbs.

TD2 tagline9:30 Coffee Break

 

MECHANISMS OF ACTION

10:00 The Role of Metabolism in Immune Response in Tumors: Merging the Past and the Present of Tumor Microenvironment

Allison_BetofAllison S. Betof, M.D., Ph.D., Medical Oncology Fellow, Memorial Sloan Kettering Cancer Center

Tumors are not simply collections of cancer cells that arise in a vacuum; they are instead complex structures composed of blood vessels, immune cells, and other supporting structures that interact, consume oxygen and other nutrients, and produce waste. Tumor metabolism has long been viewed as a therapeutic target. I will discuss recent data on how metabolism influences immunobiology and our group’s approach to harness these interactions to improve therapeutic outcomes.

10:30 PI3Kgamma Is a Molecular Switch that Controls Immune Suppression

Megan_KanedaMegan M. Kaneda, Ph.D., Assistant Project Scientist, University of California, San Diego

Macrophages play critical but opposite roles in inflammation and cancer. We have found that the predominant isoform of PI3K in myeloid cells, PI3Kgamma, controls the switch between immune stimulation and immune suppression. Inhibition of macrophage PI3Kgamma activity promotes an immunostimulatory transcriptional program that restores CD8+ T cell activation and cytotoxicity and synergizes with checkpoint inhibitor therapy to promote tumor regression and extend survival in mouse models of cancer.

11:00 Avelumab (hIgG1 Anti-human PD-L1) Mediates the anti-Tumor Efficacy via Multiple Pathways in Preclinical Models

Yan_QuYan Qu, Ph.D., Senior Principal Scientist, Pfizer

Analysis of PD-L1 expression on various immune subpopulations in human patient samples showed that PD-L1 is enriched on non-T cells. In tumor-bearing mice, the percentage of splenic NK cells was increased with WT avelumab treatment but not with the Fc isotype variant. Avelumab-induced tumor shrinkage, tumor-infiltrating CD8+ T cell increase, and tumor PD-L1+ immature myeloid cell decrease appear to require NK cells, as such changes were abolished upon NK depletion.

ProImmune11:30 Epitope Identification and Clinical Immune Monitoring in Immune Oncology Programs

Emilee KnowltonEmilee Knowlton, Ph.D., Immunology Sales Specialist, ProImmune

 

12:00 pm Luncheon Presentation (Sponsorship Opportunity Available) or Enjoy Lunch on Your Own

12:30 Session Break

TARGET DISCOVERY FOR NEXT GENERATION IMMUNOTHERAPIES

1:25 Chairperson’s Remarks

Stephen Beers, Ph.D., Associate Professor, Cancer Immunology and Immunotherapy, University of Southampton, United Kingdom

1:30 Functional Characterization of Macaque Fcr and IgG Subtypes

Margie Ackerman, Ph.D., Assistant Professor, Engineering, Dartmouth College

A number of antibody therapies rely on Fc receptor (FcR)-mediated effector functions for optimal activity, prompting the need to understand how native and IgG domains engineered to differentially bind to the human receptors translate in non-human primate (NHP) models. We report characterization of the affinity between an IgG Fc variant panel (including subclass, Fc mutants and glycosylation) and major human and rhesus FcR allotypic variants.

2:00 Utilizing Patient-Derived Organoids and High-Content Imaging for Screening and Characterization of Bispecific Antibodies

Mark_ThrosbyMark Throsby, Ph.D., EVP & CSO, Merus N.V., The Netherlands

This presentation will provide a case study on how panels of patient-derived organoids grown ex-vivo in 3D culture combined with high-content imaging can be applied to bispecific antibody screening. Lead candidate bispecifics were selected targeting the wnt pathway with novel modes of action including immunomodulation.

 

2:30 Discovery and Development Strategies for New Small Molecule Immunotherapies

Nicola_WallisNicola Wallis, Ph.D., Senior Director, Biology, Astex Therapeutics, Ltd.

Small molecules are of interest as immunotherapies as both single agent and combinations, offering the possibility of modulating different aspects of the immune system to biologics. We are exploring targeting a number of different immunomodulatory mechanisms with small molecules derived using fragment-based drug design and will describe examples in this presentation.

TD2 tagline3:00 Refreshment Break

 

IMMUNE SYSTEM PRIMING AND ACTIVATION

3:30 STING Adjuvants for Immune System Priming for Antibody Therapy

Stephen_BeersStephen Beers, Ph.D., Associate Professor, Cancer Immunology and Immunotherapy, University of Southampton, United Kingdom

Successful tumor-targeting antibody approaches appear to rely predominantly on the effector function of Fcγ receptor (FcγR) expressing macrophages. Unfortunately, tumor-associated macrophages (TAM) are frequently poorly cytotoxic, contribute to immune suppression and have suboptimal FcγR expression making treatment less effective. Here we show that STING agonists are able to overcome immunosuppression in the tumour microenvironment effectively reversing the TAM inhibitory FcγR profile and provided strong adjuvant effects to antibody therapy.

4:00 Next-Generation Cancer Vaccines

Daniel_LeveyDaniel L. Levey, Ph.D., Senior Director, Vaccine Research, Agenus

Agenus is advancing two fully synthetic cancer vaccine platforms. The first is based on identification of mutations encoded in the tumor genome while the second relates to a novel class of tumor specific neo-epitopes arising from inappropriate phosphorylation of various proteins in malignant cells. The platforms support the manufacture of both individualized and off-the-shelf cancer vaccines against a range of tumor antigens, increasing the likelihood of immune recognition of tumors.

4:30 Oral T Cell Vaccines Targeting Immune Organs of the Gut for Generating Systemic Antigen Specific T Cells

Marc_MansourMarc Mansour, Ph.D., Chief Business Officer, Vaximm AG

We use attenuated Salmonella typhi Ty21 as a vector to deliver a plasmid encoding antigens of interest via the oral route to Peyer’s patches. The bacteria have built in adjuvant properties and induce cross presentation to produce a systemic T cell response. Monotherapy with a candidate targeting VEGFR2 produced clinical responses in GBM, highlighting the unique properties of this T cell vaccine approach.

5:00 End of Day

 

 

TUESDAY, AUGUST 29

7:25 am Breakout Discussion Groups with Continental Breakfast

Join a breakout discussion group. These are informal, moderated discussions with brainstorming and interactive problem solving, allowing participants from diverse backgrounds to exchange ideas and experiences and develop future collaborations around a focused topic. Details on the topics and moderators are below.

New Understandings of the Mechanisms of Action for Immunomodulatory Antibodies

Moderator: Stephen Beers, Ph.D., Associate Professor, Cancer Immunology and Immunotherapy, University of Southampton, United Kingdom

  • What are we learning about MOA from clinical trial data?
  • Optimizing MOA in next generation immunomodulators
  • The role of effector and receptor engagement
  • MOA and bispecific antibody design
  • Overcoming resistance mechanisms

Target Discovery for Next Generation Immunotherapies

Marc Mansour, Ph.D., Chief Business Officer, Vaximm AG

  • Tumor antigen identification: strengths and weaknesses of different methodologies
  • Drugable IO targets- using macromolecules versus small molecule
  • Novel targets in the tumor microenvironment

NON-RESPONDERS, SIDE EFFECTS AND TOXICOLOGY

8:25 Chairperson’s Opening Remarks

Adam J. Adler, Ph.D., Professor, Immunology, University of Connecticut

8:30 Cancer Immunotherapy with Live-attenuated, Double Deleted Listeria Monocytogenes (LADD) Combination Strategies for the Treatment of Malignant Pleural Mesothelioma

Chan_WhitingChan C. Whiting, Ph.D., Director, Immune Monitoring and Biomarker Development, Aduro Biotech

We are advancing CRS-207, a clinical LADD strain engineered to express mesothelin, in combinations with various modalities for the treatment of malignant pleural mesothelioma.  Data from a Phase 1b study combining CRS-207 with standard chemotherapy demonstrating encouraging clinical and immune responses will be discussed.  An overview of the Phase 2 study design and progress of the CRS-207/Pembrolizumab combination study will also be highlighted.

9:00 Tumor and Class-Specific Patterns of Immune-Related Adverse Events of Immune Checkpoint Inhibitors: A Systematic Review

Aaron_HansenAaron Hansen, M.D., Ph.D., Assistant Professor, Department of Medicine, University of Toronto; Medical Oncologist, Princess Margaret Cancer Center

Through a systematic review, we identified distinct immune related adverse event (irAE) profiles based on tumor type and immune checkpoint inhibitor class (CTLA-4 and PD-1). CTLA-4 inhibitors have a higher frequency of grade 3/4 irAEs. Furthermore, for patients treated with PD-1 inhibitors, those with melanoma had a higher frequency of gastrointestinal and skin irAEs, and lower rate of pneumonitis compared with patients with NSCLC and RCC. Different immune microenvironments may drive histology-specific irAE patterns.

PROTEIN ENGINEERING

9:30 Combination Therapy with PD-1 Blockade Enhances the Antitumor Potency of T Cells Redirected by Novel Bispecific Antibodies

Ken_ChangKen Chang, Ph.D., Vice President, Research and Development, Immunomedics

Novel bispecific antibodies that bind bivalently to tumor antigens and monovalently to CD3 can redirect T cells to kill Trop-2- or CEACAM5-expressing solid cancer cells grown in monolayer cultures at low picomolar concentrations. The antitumor efficacy was demonstrated also in a humanized mouse model and in 3D spheroids generated with cells from TNBC and colonic cancers. Combining anti-PD-1 increased cell death in 3D spheroids and prolonged survival of tumor-bearing animals.

MaxCyte no tagline10:00 Accelerated Production of Immunomodulatory Therapeutic Antibodies & Bispecific Molecules Using Scalable Cell Engineering

James_BradyJames Brady, Ph.D., Vice President, Technical Applications & Customer Support, MaxCyte

Antibodies and antibody-like molecules are a proven means of modulating effective anti-tumor immune responses. MaxCyte’s delivery platform facilitates rapid, fully scalable, high quality transient protein production in the cell line-of-choice, as well as streamlined stable pool and cell line generation enabling accelerated development of relevant immunomodulatory candidates. Case studies will illustrate the identification and development of antibodies, tribodies & bi-specific T cell engaging molecules (BiTEs) using the MaxCyte platform.

10:30 Grand Opening Coffee Break in the Exhibit Hall with Poster Viewing

11:15 A Novel, Dual-Specific Antibody Conjugate Targeting CD134 and CD137 Costimulates T Cells and Elicits Antitumor Immunity

Adam_AdlerAdam J. Adler, Ph.D., Professor, Immunology, University of Connecticut

Combining agonists to different costimulatory receptors can be more effective in controlling tumors compared to individual agonists, but presents logistical challenges and increases the potential for adverse events. We developed a novel immunotherapeutic agent by fusing agonists to CD134 and CD137 into a single biologic, OrthomAb, that potentiates cytokine secretion from TCR-stimulated T cells more potently than non-conjugated CD134 + CD137 agonists in vitro, and reduces tumor growth in vivo.

11:45 Targeted Tissue Delivery Using Caveolae Technology Improves Drug Efficacy

Ruchi_GuptaRuchi Gupta, Ph.D., Team Lead Scientist, MedImmune

Current biotherapeutics focus on the molecular targets expressed on cells/tumors. However, less than 10% of the IV administrated biologics can reach the diseased tissues. Tissue targeting using caveolae proteins can allow for specific delivery to organs of interest. This talk will focus on caveolae technology that shows specific delivery to lungs and kidneys and improves drug efficacy. This targeting holds potential for several diseases including fibrosis, COPD, Infections as well as tumors.

12:15 pm Close of Immunomodulatory Therapeutic Antibodies for Cancer

 

Read Full Post »


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

During pregnancy, the baby is mostly protected from harmful microorganisms by the amniotic sac, but recent research suggests the baby could be exposed to small quantities of microbes from the placenta, amniotic fluid, umbilical cord blood and fetal membranes. One theory is that any possible prenatal exposure could ‘pre-seed’ the infant microbiome. In other words, to set the right conditions for the ‘main seeding event’ for founding the infant microbiome.

When a mother gives birth vaginally and if she breastfeeds, she passes on colonies of essential microbes to her baby. This continues a chain of maternal heritage that stretches through female ancestry for thousands of generations, if all have been vaginally born and breastfed. This means a child’s microbiome, that is the trillions of microorganisms that live on and in him or her, will resemble the microbiome of his/her mother, the grandmother, the great-grandmother and so on, if all have been vaginally born and breastfed.

As soon as the mother’s waters break, suddenly the baby is exposed to a wave of the mother’s vaginal microbes that wash over the baby in the birth canal. They coat the baby’s skin, and enter the baby’s eyes, ears, nose and some are swallowed to be sent down into the gut. More microbes form of the mother’s gut microbes join the colonization through contact with the mother’s faecal matter. Many more microbes come from every breath, from every touch including skin-to-skin contact with the mother and of course, from breastfeeding.

With formula feeding, the baby won’t receive the 700 species of microbes found in breast milk. Inside breast milk, there are special sugars called human milk oligosaccharides (HMO’s) that are indigestible by the baby. These sugars are designed to feed the mother’s microbes newly arrived in the baby’s gut. By multiplying quickly, the ‘good’ bacteria crowd out any potentially harmful pathogens. These ‘good’ bacteria help train the baby’s naive immune system, teaching it to identify what is to be tolerated and what is pathogen to be attacked. This leads to the optimal training of the infant immune system resulting in a child’s best possible lifelong health.

With C-section birth and formula feeding, the baby is not likely to acquire the full complement of the mother’s vaginal, gut and breast milk microbes. Therefore, the baby’s microbiome is not likely to closely resemble the mother’s microbiome. A baby born by C-section is likely to have a different microbiome from its mother, its grandmother, its great-grandmother and so on. C-section breaks the chain of maternal heritage and this break can never be restored.

The long term effect of an altered microbiome for a child’s lifelong health is still to be proven, but many studies link C-section with a significantly increased risk for developing asthma, Type 1 diabetes, celiac disease and obesity. Scientists might not yet have all the answers, but the picture that is forming is that C-section and formula feeding could be significantly impacting the health of the next generation. Through the transgenerational aspect to birth, it could even be impacting the health of future generations.

References:

https://blogs.scientificamerican.com/guest-blog/shortchanging-a-babys-microbiome/

https://www.ncbi.nlm.nih.gov/pubmed/23926244

https://www.ncbi.nlm.nih.gov/pubmed/26412384

https://www.ncbi.nlm.nih.gov/pubmed/25290507

https://www.ncbi.nlm.nih.gov/pubmed/25974306

https://www.ncbi.nlm.nih.gov/pubmed/24637604

https://www.ncbi.nlm.nih.gov/pubmed/22911969

https://www.ncbi.nlm.nih.gov/pubmed/25650398

https://www.ncbi.nlm.nih.gov/pubmed/27362264

https://www.ncbi.nlm.nih.gov/pubmed/27306663

http://www.mdpi.com/1099-4300/14/11/2036

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4464665/

https://www.ncbi.nlm.nih.gov/pubmed/24848255

https://www.ncbi.nlm.nih.gov/pubmed/26412384

https://www.ncbi.nlm.nih.gov/pubmed/28112736

http://ndnr.com/gastrointestinal/the-infant-microbiome-how-environmental-maternal-factors-influence-its-development/

Read Full Post »


FDA cleared Clever Culture Systems’ artificial intelligence tech for automated imaging, analysis and interpretation of microbiology culture plates speeding up Diagnostics

Reporter: Aviva Lev-Ari, PhD, RN

 

 

FDA clears automated imaging AI that speeds up infectious disease Dx

Read Full Post »


LIVE 9/21 3:20PM to 6:40PM KINASE INHIBITORS FOR CANCER IMMUNOTHERAPY COMBINATIONS & KINASE INHIBITORS FOR AUTOIMMUNE AND INFLAMMATORY DISEASES at CHI’s 14th  Discovery On Target, 9/19 – 9/22/2016, Westin Boston Waterfront, Boston

http://www.discoveryontarget.com/

http://www.discoveryontarget.com/crispr-therapies/

Leaders in Pharmaceutical Business Intelligence (LPBI) Group is a

Media Partner of CHI for CHI’s 14th Annual Discovery on Target taking place September 19 – 22, 2016 in Boston.

In Attendance, streaming LIVE using Social Media

Aviva Lev-Ari, PhD, RN

Editor-in-Chief

http://pharmaceuticalintelligence.com

#BostonDOT16

@BostonDOT

 

KINASE INHIBITORS FOR CANCER IMMUNOTHERAPY COMBINATIONS

3:20 Chairperson’s Opening Remarks

Guido J.R. Zaman, Ph.D., Managing Director & Head of Biology, Netherlands Translational Research Center B.V. (NTRC)

3:25 FEATURED PRESENTATION: Inhibition of PI3K and Tubulin

Doriano_Fabbro

Doriano Fabbro, Ph.D., CSO, PIQUR Therapeutics

The PI3K signaling pathway is frequently activated in tumors. PQR309 is a selective dual inhibitor of PI3K and mTOR (currently in Phase I) in cancer patients. The preclinical pharmacology and toxicology of PQR309 is presented, including its activity in lymphoma preclinical models. In addition, we elucidate structural factors defining the PI3K inhibitory activity and tubulin-binding of PQR309 derivatives.

  • PQR309 & GDC0941 arrest cells i G1/S (typical for PI3K/mTOR Inhibitor)
  • What drives Antiproliferative Activity of BKM120: PI3K or MT or both?
  • BKM120 Binds to beta-Tubulin/alpha -Tubulin Interfere
  • T2R-TTL complex
  • Orientation of BKM120 in PI3K
  • PQR309 – is a brain penetrating, PK and BAV by PO, good metabolic stability
  • PQR309 ANti-proliferative in Lymphoma
  • Clinical efficacy – Now in Phase II

4:05 Design and Development of a Novel PI3K-p110β/δ Inhibitor, KA2237 with Combined Tumor Immunotherapeutic, Growth Inhibition and Anti-Metastatic Activity

Stephen_Shuttleworth

Stephen Shuttleworth, Ph.D., FRSC, CChem, CSO, Karus Therapeutics Ltd.

The design and development of KA2237, a novel and selective inhibitor of PI3K-p110β/δ, will be described. This molecule has clinical potential in the treatment of solid and hematological malignancies, through its direct inhibition of tumor growth and metastatic spread, and through immunotherapeutic mechanisms. Phase I studies for KA2237 are scheduled to commence in Q2 2016 at the MD Anderson Cancer Center.

  • Design & Development of Novel, Oral, selective PI3K enzyme family: CLass I,II, III, IV based upon:
  • Class I IA IB
  • KA2237: DUal PI3K – p110beta/delta-selective inhibitor: CTL, Treg, p1 106 T sell response
  • Molecular signature in the tumor
  • WT p110delta, WT 1 10beta+, Mutant p1 10Beta+, PTEN-null, Ibrutinib-resistance, Growth inhibition; suppression of metastesis (p110beta
  • small molecule combination agents: potential aided by selectivity over p110
  • KA2237: clinical Pi3K-p110beta/delta Inhibitor- ATP -comtetitive
  • Doxorubicin -cytotoxic control
  • KA2237 superior activity to Idelasib
  • KA2237 – suppression of micro-metastasis in 4T1 synergenic model
  • Tumor Growth inhibition Pre-Surgery
  • Tumor Re-Growth Inhibition Post-Surgery
  • metastasis post surgery
  • Tumor-free mice post-surgery
  • CHemistry: IHC -pAKT; IHC – FOxp3+
  • KA2237 inhibits HGF-stimulated 4T1 tumor
  • 2004 – Preclinical develpemnt PI3K is reported
  • 2006 First PI#K is enter Clinical Trials
  • Targeting p1110Beta (PIKeCB) mutations in cancer with KA2237
  • DIscovery of the mutations lead drug discovery
  • KA@@#&: Potential in treatment of B-Cell Lymphom AS IN TARGETING IBRUTINIB RESISTENCE
  • GROWTH INHIBITION IN HEMATOLOGICAL CANCERS TUMOE CELL LINE PANEL
  • KA2237 – differentiated from competing Pi3K is Superior efficacy cf. p110delta
  • Combination: Not histone deacetylase but a tubulin deacetylase – Hsp90 ans Hsp70
  • T cell exhausion: Tumor growth inhibition vs Suppression of lung metastasis
  • Tumor BiologyRationale vs Clinical Agents
  • Oncogenic mutants, solid tumor supression magrophage, combination PD-1, CTLA$
  • FDA -approved kinase inhibitors

Summary

  1. phase I clinical study commenced in pathients with B cell Lymphoma
  2. Potential for treatment of solid and hematological malignancies

4:35 InCELL Pulse: A Novel Cellular Target Engagement Assay Platform for Drug Discovery

Treiber_Daniel

Daniel Treiber, Ph.D., Vice President, KINOMEscan, DiscoverX Corporation

InCELL Pulse is a quantitative and rapid method for measuring cellular target engagement potencies for small molecule inhibitors. InCELL Pulse capitalizes on two novel DiscoverX technologies, Enzyme Fragment Complementation (EFC) and Pulse Denaturation, which overcome the limitations of related target engagement methods. Examples across multiple target classes will be described.

  • InCELL Pulse – cellular Target ENgagement Assays
  • cellular thermal stabilization-based approach
  • simple, rapid and generig cellular alternative to CETSa
  • Thermal melting Curves vs Isothermal Inhibitor EC50 curves
  • Pulse Denaturation compound binding, or not binding
  • ABL1 Tyrosine Kinase – dose response curve – allosteric Inhibitor
  • MTH1 Hydrolase: InCELL Pulseassay validated for multiple substrate-competitive inhibitors
  • Validated InCELL Pulse Assays for Diverse Kinases
  • Kinase targets; BRAF, MEC1

Summary

  1. validation across proteins

TTP Labtech4:50 Potential Application of Fluorescence Lifetime Assays to Enable Robust, Rapid Protein Binding Assays

Wylie_Paul

Paul Wylie, Ph.D., Head, Applications, TTP Labtech

Current methods to screen protein binding interactions often have limitations due to the reliance on antibodies, but also interference from fluorescent molecules. Fluorescence lifetime has the potential to overcome these problems through directly labelled proteins and lifetime measurements that are independent of total fluorescence intensity.

  • Protein binding as a target class
  • protein-protein interactions (PPIs)
  1. FRET/HTRF
  2. FP
  3. AlphaScreen

What new in FLT?

  • long lifetime fluorophores, economical reagent platform
  • directly labelled reagents – no antibodies
  • independent of total intensity – reduced interference
  • robustness screen vs nuisance screen – caspase-3
  • productive; reduction false positives: FRET
  • protein-binding assays & FLT formats:
  1. protein – small molecule binding – CECR2
  2. protein – peptide binding: long and sholt lifetime
  3. Site-specific labelling vs Non-selective labelling
  4. Toolbox for PoC
  5. Detection reagents
  6. Further develop technology

5:05 Refreshment Break in the Exhibit Hall with Poster Viewing

 

6:40 End of Day

 

Read Full Post »

Milestones in Physiology & Discoveries in Medicine and Genomics: Request for Book Review Writing on Amazon.com


physiology-cover-seriese-vol-3individualsaddlebrown-page2

Milestones in Physiology

Discoveries in Medicine, Genomics and Therapeutics

Patient-centric Perspective 

http://www.amazon.com/dp/B019VH97LU 

2015

 

 

Author, Curator and Editor

Larry H Bernstein, MD, FCAP

Chief Scientific Officer

Leaders in Pharmaceutical Business Intelligence

Larry.bernstein@gmail.com

Preface

Introduction 

Chapter 1: Evolution of the Foundation for Diagnostics and Pharmaceuticals Industries

1.1  Outline of Medical Discoveries between 1880 and 1980

1.2 The History of Infectious Diseases and Epidemiology in the late 19th and 20th Century

1.3 The Classification of Microbiota

1.4 Selected Contributions to Chemistry from 1880 to 1980

1.5 The Evolution of Clinical Chemistry in the 20th Century

1.6 Milestones in the Evolution of Diagnostics in the US HealthCare System: 1920s to Pre-Genomics

 

Chapter 2. The search for the evolution of function of proteins, enzymes and metal catalysts in life processes

2.1 The life and work of Allan Wilson
2.2  The  evolution of myoglobin and hemoglobin
2.3  More complexity in proteins evolution
2.4  Life on earth is traced to oxygen binding
2.5  The colors of life function
2.6  The colors of respiration and electron transport
2.7  Highlights of a green evolution

 

Chapter 3. Evolution of New Relationships in Neuroendocrine States
3.1 Pituitary endocrine axis
3.2 Thyroid function
3.3 Sex hormones
3.4 Adrenal Cortex
3.5 Pancreatic Islets
3.6 Parathyroids
3.7 Gastointestinal hormones
3.8 Endocrine action on midbrain
3.9 Neural activity regulating endocrine response

3.10 Genomic Promise for Neurodegenerative Diseases, Dementias, Autism Spectrum, Schizophrenia, and Serious Depression

 

Chapter 4.  Problems of the Circulation, Altitude, and Immunity

4.1 Innervation of Heart and Heart Rate
4.2 Action of hormones on the circulation
4.3 Allogeneic Transfusion Reactions
4.4 Graft-versus Host reaction
4.5 Unique problems of perinatal period
4.6. High altitude sickness
4.7 Deep water adaptation
4.8 Heart-Lung-and Kidney
4.9 Acute Lung Injury

4.10 Reconstruction of Life Processes requires both Genomics and Metabolomics to explain Phenotypes and Phylogenetics

 

Chapter 5. Problems of Diets and Lifestyle Changes

5.1 Anorexia nervosa
5.2 Voluntary and Involuntary S-insufficiency
5.3 Diarrheas – bacterial and nonbacterial
5.4 Gluten-free diets
5.5 Diet and cholesterol
5.6 Diet and Type 2 diabetes mellitus
5.7 Diet and exercise
5.8 Anxiety and quality of Life
5.9 Nutritional Supplements

 

Chapter 6. Advances in Genomics, Therapeutics and Pharmacogenomics

6.1 Natural Products Chemistry

6.2 The Challenge of Antimicrobial Resistance

6.3 Viruses, Vaccines and immunotherapy

6.4 Genomics and Metabolomics Advances in Cancer

6.5 Proteomics – Protein Interaction

6.6 Pharmacogenomics

6.7 Biomarker Guided Therapy

6.8 The Emergence of a Pharmaceutical Industry in the 20th Century: Diagnostics Industry and Drug Development in the Genomics Era: Mid 80s to Present

6.09 The Union of Biomarkers and Drug Development

6.10 Proteomics and Biomarker Discovery

6.11 Epigenomics and Companion Diagnostics

 

Chapter  7

Integration of Physiology, Genomics and Pharmacotherapy

7.1 Richard Lifton, MD, PhD of Yale University and Howard Hughes Medical Institute: Recipient of 2014 Breakthrough Prizes Awarded in Life Sciences for the Discovery of Genes and Biochemical Mechanisms that cause Hypertension

7.2 Calcium Cycling (ATPase Pump) in Cardiac Gene Therapy: Inhalable Gene Therapy for Pulmonary Arterial Hypertension and Percutaneous Intra-coronary Artery Infusion for Heart Failure: Contributions by Roger J. Hajjar, MD

7.3 Diagnostics and Biomarkers: Novel Genomics Industry Trends vs Present Market Conditions and Historical Scientific Leaders Memoirs

7.4 Synthetic Biology: On Advanced Genome Interpretation for Gene Variants and Pathways: What is the Genetic Base of Atherosclerosis and Loss of Arterial Elasticity with Aging

7.5 Diagnosing Diseases & Gene Therapy: Precision Genome Editing and Cost-effective microRNA Profiling

7.6 Imaging Biomarker for Arterial Stiffness: Pathways in Pharmacotherapy for Hypertension and Hypercholesterolemia Management

7.7 Neuroprotective Therapies: Pharmacogenomics vs Psychotropic drugs and Cholinesterase Inhibitors

7.8 Metabolite Identification Combining Genetic and Metabolic Information: Genetic association links unknown metabolites to functionally related genes

7.9 Preserved vs Reduced Ejection Fraction: Available and Needed Therapies

7.10 Biosimilars: Intellectual Property Creation and Protection by Pioneer and by

7.11 Demonstrate Biosimilarity: New FDA Biosimilar Guidelines

 

Chapter 7.  Biopharma Today

8.1 A Great University engaged in Drug Discovery: University of Pittsburgh

8.2 Introduction – The Evolution of Cancer Therapy and Cancer Research: How We Got Here?

8.3 Predicting Tumor Response, Progression, and Time to Recurrence

8.4 Targeting Untargetable Proto-Oncogenes

8.5 Innovation: Drug Discovery, Medical Devices and Digital Health

8.6 Cardiotoxicity and Cardiomyopathy Related to Drugs Adverse Effects

8.7 Nanotechnology and Ocular Drug Delivery: Part I

8.8 Transdermal drug delivery (TDD) system and nanotechnology: Part II

8.9 The Delicate Connection: IDO (Indolamine 2, 3 dehydrogenase) and Cancer Immunology

8.10 Natural Drug Target Discovery and Translational Medicine in Human Microbiome

8.11 From Genomics of Microorganisms to Translational Medicine

8.12 Confined Indolamine 2, 3 dioxygenase (IDO) Controls the Homeostasis of Immune Responses for Good and Bad

 

Chapter 9. BioPharma – Future Trends

9.1 Artificial Intelligence Versus the Scientist: Who Will Win?

9.2 The Vibrant Philly Biotech Scene: Focus on KannaLife Sciences and the Discipline and Potential of Pharmacognosy

9.3 The Vibrant Philly Biotech Scene: Focus on Computer-Aided Drug Design and Gfree Bio, LLC

9.4 Heroes in Medical Research: The Postdoctoral Fellow

9.5 NIH Considers Guidelines for CAR-T therapy: Report from Recombinant DNA Advisory Committee

9.6 1st Pitch Life Science- Philadelphia- What VCs Really Think of your Pitch

9.7 Multiple Lung Cancer Genomic Projects Suggest New Targets, Research Directions for Non-Small Cell Lung Cancer

9.8 Heroes in Medical Research: Green Fluorescent Protein and the Rough Road in Science

9.9 Issues in Personalized Medicine in Cancer: Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing

9.10 The SCID Pig II: Researchers Develop Another SCID Pig, And Another Great Model For Cancer Research

Epilogue

Read Full Post »

Older Posts »