Advertisements
Feeds:
Posts
Comments

Archive for the ‘MHC Repertoires for Antigen Prediction’ Category


Record Innovations in Drug Discovery by Koch Institute @MIT Members and Affiliates

Reporter: Aviva Lev-Ari, PhD, RN

 

 

In Good Company

Trovagene announced a new patent for the use of the drug onvansertib in combination with other anti-androgen drugs for the treatment of prostate cancer. Last fall, Trovagene secured exclusive rights to develop combination therapies and clinical biomarkers for prostate cancer based in part on Bridge Project-funded research. Read more.

Lyndra Therapeutics, co-founded by KI member Bob Langer, raised $55 million in its Series B round, with new investors including the Bill and Melinda Gates Foundation and Gilead Sciences. Phase 2 trials for its ultra long-acting drug delivery capsule are expected to begin next year. Read more.

Dragonfly Therapeutics, co-founded by KI director Tyler Jacks, has committed $10 million to launch the first clinical studies of its TriNKETs (Tri-specific, NK cell Engager Therapies) platform for both solid tumor and hematological cancers. Read more.

Following its record-breaking IPO, Moderna Therapeutics (co-founded by KI member Bob Langer) published preclinical data in Science Translational Medicine demonstrating the promise of its mRNA-2752 program in several cancers. Read more.

Dewpoint Therapeutics launched with a $60 million Series A, aims to translate recent insights into biomolecular condensates from the laboratory of co-founder and KI member Rick Young to drug discovery. Read more.

KI member Bob Langer and collaborator Omid Farokhzad co-founded Seer— combining nanotechnology, protein chemistry, and machine learning—to develop liquid biopsy tests for the early detection of cancer and other diseases. Read more.

Epizyme, co-founded by KI member Bob Horvitz, is submitting a New Drug Application to gain accelerated approval of tazemetostat for patients with relapsed or refractory follicular lymphoma. Read more.

Ribon Therapeutics, founded by former KI member Paul Chang, launched with $65 million in a Series B funding round with Victoria Richon, a veteran of Sanofi and Epizyme, at the helm. Ribon focuses on developing PARP7 inhibitors for cancer treatment. Read more.

SOURCE

From: MIT Koch Institute for Integrative Cancer Research <cancersolutions=mit.edu@cmail19.com> on behalf of MIT Koch Institute for Integrative Cancer Research <cancersolutions@mit.edu>

Reply-To: <ki-communications@mit.edu>

Date: Wednesday, February 6, 2019 at 3:15 PM

To: Aviva Lev-Ari <AvivaLev-Ari@alum.berkeley.edu>

Subject: Lung Microbiome Corrupted in Cancer; Angelika Amon wins 2019 Vilcek Award; Lunch Lines of Inquiry

Advertisements

Read Full Post »


TWEETS by @pharma_BI and @AVIVA1950 at #IESYMPOSIUM – @kochinstitute 2019 #Immune #Engineering #Symposium, 1/28/2019 – 1/29/2019

 

Real Time Press Coverage: Aviva Lev-Ari, PhD, RN

 

eProceedings for Day 1 and Day 2

LIVE Day One – Koch Institute 2019 Immune Engineering Symposium, January 28, 2019, Kresge Auditorium, MIT

https://pharmaceuticalintelligence.com/2019/01/28/live-day-one-koch-institute-2019-immune-engineering-symposium-january-28-2019-kresge-auditorium-mit/

 

LIVE Day Two – Koch Institute 2019 Immune Engineering Symposium, January 29, 2019, Kresge Auditorium, MIT

https://pharmaceuticalintelligence.com/2019/01/29/live-day-two-koch-institute-2019-immune-engineering-symposium-january-29-2019-kresge-auditorium-mit/

 

 

  1. AMAZING Conference I covered in Real Time

  2. Aviv Regev Melanoma: malignant cells with resistance in cold niches in situ cells express the resistance program pre-treatment: resistance UP – cold Predict checkpoint immunotherapy outcomes CDK4/6 abemaciclib in cell lines

  3. Aviv Regev, a cell-cell interactions from variations across individuals Most UC-risk genes are cell type specificVariation – epithelial cell signature – organize US GWAS into cell type spec

  4. Diane Mathis Age-dependent Treg and mSC changes – Linear with increase in age Sex-dependent Treg and mSC changes – Female Treg loss in cases of Obesity leading to fibrosis Treg keep IL-33-Producing mSCs under rein Lean tissue/Obese tissue

  5. Martin LaFleur Loss of Ptpn2 enhances CD8+ T cell responses to LCMV and Tumors PTpn2 deletion in the immune system enhanced tumor immunity CHIME enables in vivo screening

  6. Alex Shalek Identifying and rationally modulating cellular drivers of enhanced immunity T Cells, Clusters Expression of Peak and Memory Immunotherapy- Identifying Dendritic cells enhanced in HIV-1 Elite Controllers

  7.   Retweeted

    Onward: our own Michael Birnbaum, who assures us that if you feel like you’re an immunoengineer, then you ARE one!

  8. Glenn Dranoff Adenosine level in blood or tissue very difficult to measure in blood even more than in tissue – NIR178 + PDR 001 Monotherapy (NIR178) combine with PD receptor blockage (PDR) show benefit A alone vs A+B in Clinical trial

  9. Glenn Dranoff PD-L1 blockade elicits responses in some patients: soft part sarcoma LAG-3 combined with PD-1 – human peripheral blood tumor TIM-3 key regulator of T cell and Myeloid cell function: correlates in the TCGA DB myeloid

  10. Glenn Dranoff Institute for Biomedical Research of Neurologic toxicities of CART t IL-6 activation AML – complete response – weekly dose of XmAb CD123X CD3 bispecific antibody anti tumor effect

  11. of protective HLA-DR4 effects outside of “peptide anchor” residues Class I MHC – HLA-E down regulate T and NK cells Receptor Binding: Positional preferences noted for NKG2A

  12. Yvonne Chen Activation of t Cell use CAR t Engineer CAR-T to respond to soluble form of antigens: CD19 CAR Responds to soluble CD19 GFP MCAR responds to Dimeric GFP “Tumor microenvironment is a scary place”

  13. Yvonne Chen Do we need a ligand to be a dimers? Co-expressed second-generation TGF-beta signaling

  14. Yvonne Chen “Engineering smarter and stronger T cells for cancer immunotherapy” OR-Gate cause no relapse – Probing limits of modularity in CAR Design Bispecific CARs are superior to DualCAR: One vs DualCAR (some remained single CAR)

  15.   Retweeted

    Ending the 1st session is Cathy Wu of detailing some amazing work on vaccination strategies for melanoma and glioblastoma patients. They use long peptides engineered from tumor sequencing data.

  16.   Retweeted

    Some fancy imaging: Duggan gives a nice demo of how dSTORM imaging works using a micropatterend image of Kennedy Institute for Rheumatology! yay!

  17.   Retweeted

    Lots of interesting talks in the second session of the – effects of lymphoangiogenesis on anti-tumor immune responses, nanoparticle based strategies to improve bNAbs titers/affinity for HIV therapy, and IAPi cancer immunotherapy

  18.   Retweeted

    Looking forward to another day of the . One more highlight from yesterday – from our own lab showcased her work developing cytokine fusions that bind to collagen, boosting efficacy while drastically reducing toxicities

  19.   Retweeted

    Members of our cell therapy team were down the street today at neighboring for the presented by .

  20.   Retweeted

    He could have fooled me that he is, in fact, an immunologist!

  21.  
  22.   Retweeted

    Come and say Hi! ACIR will be back tomorrow at the Immune Engineering Symposium at MIT. Learn more at . . And stay tuned to read our summary of the talks on Feb 6.

  23. Facundo Batista @MGH # in BG18 Germline Heavy CHain (BG18-gH) High-mannose patch – mice exhibit normal B cell development B cells from naive human germline BG18-gH bind to GT2 immunogen

  24. Preeti Sharma, U Illinois T cell receptor and CAR-T engineering TCR engineering for Targeting glycosylated cancer antigens Nornal glycosylation vs Aberrant Engineering 237-CARs libraries with conjugated (Tn-OTS8) against Tn-antigend In vitro

  25. Bryan Bryson Loss of polarization potential: scRNAseq reveals transcriptional differences Thioredoxin facilitates immune response to Mtb is a marker of an inflammatory macrophage state functional spectrum of human microphages

  26. Bryan Bryson macrophage axis in Mycobacterium tuberculosis Building “libraries” – surface marker analysis of Microphages Polarized macrophages are functionally different quant and qual differences History of GM-CSF suppresses IL-10

  27. Jamie Spangler John Hopkins University “Reprogramming anti-cancer immunity RESPONSE through molecular engineering” De novo IL-2 potetiator in therapeutic superior to the natural cytokine by molecular engineering mimicking other cytokines

  28. Jamie Spangler JES6-1 Immunocytokine – inhibiting melanoma Engineering a Treg cell-biased immunocytokine double mutant immunocytokine shows enhanced IL-2Ralpha exchange Affinity De Novo design of a hyper-stable, effector biased IL-2

  29. , Volume Five: in of Cardiovascular Diseases. On com since 12/23/2018

  30. Michael Dustin ESCRT pathway associated with synaptic ectosomes Locatization, Microscopy Cytotoxic T cell granules CTLs release extracellular vescicles similar to T Helper with perforin and granzyme – CTL vesicles kill targets

  31. Michael Dustin Delivery of T cell Effector function through extracellular vesicles Synaptic ectosome biogenisis Model: T cells: DOpamine cascade in germinal cell delivered to synaptic cleft – Effector CD40 – Transfer is cooperative

  32. Michael Dustin Delivery of T cell Effector function through extracellular vesicles Laterally mobile ligands track receptor interaction ICAM-1 Signaling of synapse – Sustain signaling by transient in microclusters TCR related Invadipodia

  33. Mikael Pittet @MGH Myeloid Cells in Cancer Indirect mechanism AFTER a-PD-1 Treatment IFN-gamma Sensing Fosters IL-12 & therapeutic Responses aPD-1-Mediated Activation of Tumor Immunity – Direct activation and the ‘Licensing’ Model

  34. Stefani Spranger KI Response to checkpoint blockade Non-T cell-inflamed – is LACK OF T CELL INFILTRATION Tumor CD103 dendritic cells – Tumor-residing Batf3-drivenCD103 Tumor-intrinsic Beta-catenin mediates lack of T cell infiltration

  35. Max Krummel Gene expression association between two genes: and numbers are tightly linked to response to checkpoint blockage IMMUNE “ACCOMODATION” ARCHYTYPES: MYELOID TUNING OF ARCHITYPES Myeloid function and composition

  36. Noor Momin, MIT Lumican-cytokines improve control of distant lesions – Lumican-fusion potentiates systemic anti-tumor immunity

    Translate Tweet

  37. Noor Momin, MIT Lumican fusion to IL-2 improves treatment efficacy reduce toxicity – Anti-TAA mAb – TA99 vs IL-2 Best efficacy and least toxicity in Lumican-MSA-IL-2 vs MSA-IL2 Lumican synergy with CAR-T

  38.   Retweeted

    excited to attend the immune engineering symposium this week! find me there to chat about and whether your paper could be a good fit for us! 🦠🧬🔬🧫📖

  39.   Retweeted

    Bob Schreiber and Tyler Jacks kicked off the with 2 great talks on the role of Class I and Class II neo-Ag in tumor immunogenicity and how the tumor microenvironment alters T cell responsiveness to tumors in vivo

  40.   Retweeted

    Scott Wilson from gave a fantastic talk on glycopolymer conjugation to antigens to improve trafficking to HAPCs and enhanced tolerization in autoimmunity models. Excited to learn more about his work at his faculty talk!

  41. AMAZING Symposinm

  42.   Retweeted

    Immune Engineering Symposium at MIT is underway!

  43.   Retweeted

    ACIR is excited to be covering the Immune Engineering Symposium at MIT on January 28-29. Learn more at .

  44. Tyler Jacks talk was outstanding, Needs be delivered A@TED TALKs, needs become contents in the curriculum of Cell Biology graduate seminar as an Online class. BRAVO

  45.   Retweeted

    Here we go!! Today and tomorrow the tippity top immunologists converge at

  46.   Retweeted

    Exciting start to this year’s Immune Engineering Symposium put on by at . A few highlights from the first section…

  47. Stephanie Dougan (Dana-Farber Cancer Institute) Dept. Virology IAPi outperforms checkpoint blockade in T cell cold tumors reduction of tumor burden gencitabine cross-presenting DCs and CD8 T cells – T cell low 6694c2

  48. Darrell Irvine (MIT, Koch Institute; HHMI) Engineering follicle delivery through synthetic glycans: eOD-60mer nanoparticles vs Ferritin-trimer 8-mer (density dependent)

  49. Darrell Irvine (MIT, Koch Institute; HHMI) GC targeting is dependent on complement component CIQ – activation: Mannose-binding lectins recognize eOD-60mer but not eOD monomer or trimers

  50. Melody Swartz (University of Chicago) Lymphangiogenesis attractive to Native T cells, in VEGF-C tumors T cell homing inhibitors vs block T cell egress inhibitors – Immunotherapy induces T cell killing

  51. Cathy Wu @MGH breakthrough for Brain Tumor based neoantigen-specific T cell at intracranial site Single cells brain tissue vs single cells from neoantigen specific T cells – intratumoral neoantigen-specific T cells: mutARGAP35-spacific

  52. Cathy Wu (Massachusetts General Hospital) – CoFounder of NEON Enduring complete radiographic responses after + alpha-PD-1 treatment (anti-PD-1) NeoVax vs IVAC Mutanome for melanoma and Glioblastoma clinical trials

  53. , U of Chicago IV INJECTION: OVAALBUMIN OVA-P(GALINAC), P(GLCNAC), SUPRESS T CELL RESPONSE Abate T cells response – Reduced cytokine production & increased -regs

  54. Interrogating markers of T cell dysfunction – chance biology of cells by CRISPR – EGR2 at 2 weeks dysfuntioning is reduced presence of EDR2 mutant class plays role in cell metabolism cell becomes functional regulator CD8 T cell

  55. Bob Schreiber (Wash University of St. Louis) Optimal CD8+ T cells mediated to T3 require CD4+ T help

Read Full Post »


LIVE Day Two – Koch Institute 2019 Immune Engineering Symposium, January 29, 2019, Kresge Auditorium, MIT

 

Real Time Press Coverage: Aviva Lev-Ari, PhD, RN

#IESYMPOSIUM @pharma_BI @AVIVA1950

 

MISSION The mission of the Koch Institute (KI) is to apply the tools of science and technology to improve the way cancer is detected, monitored, treated and prevented.

APPROACH We bring together scientists and engineers – in collaboration with clinicians and industry partners – to solve the most intractable problems in cancer. Leveraging MIT’s strengths in technology, the life sciences and interdisciplinary research, the KI is pursuing scientific excellence while also directly promoting innovative ways to diagnose, monitor, and treat cancer through advanced technology.

HISTORY The Koch Institute facility was made possible through a $100 million gift from MIT alumnus David H. Koch. Our new building opened in March 2011, coinciding with MIT’s 150th anniversary. Our community has grown out of the MIT Center for Cancer Research (CCR), which was founded in 1974 by Nobel Laureate and MIT Professor Salvador Luria, and is one of seven National Cancer Institute-designated basic (non-clinical) research centers in the U.S.

https://ki.mit.edu/files/ki/cfile/news/presskit/KI_Fact_Sheet_-_February_2018.pdf

January 28-29, 2019
Kresge Auditorium, MIT

Biological, chemical, and materials engineers are engaged at the forefront of immunology research. At their disposal is an analytical toolkit honed to solve problems in the petrochemical and materials industries, which share the presence of complex reaction networks, and convective and diffusive molecular transport. Powerful synthetic capabilities have also been crafted: binding proteins can be engineered with effectively arbitrary specificity and affinity, and multifunctional nanoparticles and gels have been designed to interact in highly specific fashions with cells and tissues. Fearless pursuit of knowledge and solutions across disciplinary boundaries characterizes this nascent discipline of immune engineering, synergizing with immunologists and clinicians to put immunotherapy into practice.

The 2019 symposium will include two poster sessions and four abstract-selected talks. Abstracts should be uploaded on the registration page. Abstract submission deadline is November 15, 2018. Registration closes December 14.

Featuring on Day 2, 1/29, 2019:

Session IV

Moderator: Michael Birnbaum, Koch Institute, MIT

 

Jamie Spangler (John Hopkins University)

“Reprogramming anti-cancer immunity through molecular engineering”

  • Reprogramming anti-cancer immunity response through molecular engineering”
  • Cytokines induce receptor dimerization
  • Clinical Use of cytokines: Pleiotropy, expression and stability isssues
  • poor pharmacological properties
  • cytokine therapy: New de novo protein using computational methods
  • IL-2 signals through a dimeric nad a trimeric receptor complex
  • IL-2 pleiotropy hinders its therapeutic efficacy
  • IL-2 activate immunosuppression
  • potentiation of cytokine activity by anti-IL-2 antibody selectivity
  • Cytokine binding – Antibodies compete with IL-2 receptor subunits
  • IL-2Ralpha, IL-2 Rbeta: S4B6 mimickry of alpha allosterically enhances beta
  • stimulates both Effectors and T-regs
  • JES6-1 immunocomplex selectively stimulates IL-2Ralpha cells
  • Engineering translational single-chain cytokine/antibody fusion
  • Engineering an EFFECTOR cell-based immunocytokine (602)
  • JES6-1 Immunocytokine – inhibiting melanoma
  • Engineering a Treg cell-biased immunocytokine
  • double mutant immunocytokine shows enhanced IL-2Ralpha exchange
  • Affinity  – molecular eng De Novo design of a hyper-stable, effector biased IL-2
  • De novo IL-2 poteniator in therapeutic superior to the natural cytokine by molecular engineering

 

Bryan Bryson (MIT, Department of Biological Engineering)

“Exploiting the macrophage axis in Mycobacterium tuberculosis (Mtb) infection”

  • TB  – who develop Active and why?
  • Immunological life cycle of Mtb
  • Global disease Mtb infection outcome varies within individual host
  • lesion are found by single bacteria
  • What are the cellular players in immune success
  • MACROPHAGES – molecular signals enhancing Mtb control of macrophages
  • modeling the host- macrophages are plastic and polarize
  • Building “libraries” – surface marker analysis of Microphages
  • Polarized macrophages are functionally different
  • quant and qual differences
  • History of GM-CSF suppresses IL-10
  • Loss of polarization potential: scRNAseq reveals transcriptional differences Thioredoxin facilitates immune response to Mtb is a marker of an inflammatory macrophage state
  • functional spectrum of human microphages

 

Facundo Batista (Ragon Institute (HIV Research) @MGH, MIT and Harvard)

“Vaccine evaluation in rapidly produced custom humanized mouse models”

  • Effective B cell activation requires 2 signals Antigen and binding to T cell
  • VDJ UCA (Unmutated common Ancestor)
  • B Cell Receptor (BCR) co-receptors and cytoskeleton
  • 44% in Women age 24-44
  • Prototype HIV broadly neutralizing Antibodies (bnAb) do not bind to Env protein – Immunogen design and validation
  • Target Identification –>> Immunogen Design –>>> Immunogen Validation
  • Human Ig Knock-ins [Light variable 5′ chain length vs 7′ length] decisive to inform immunogenicity – One-Step CRISPR approach does not require ES cell work
  • Proof of principle with BG18 Germline Heavy Chain (BG18-gH) High-mannose patch – mice exhibit normal B cell development
  • B cells from naive human germline BG18-gH bind to GT2 immunogen
  • GT2-nanoparticle 9NP) induces robust BG18-gH-500 cells: CD45.2 GL7 IgD
  • Interrogate immune response for HIV, Malaria, Zika, Flu

 

Session V

Moderator: Dane Wittrup, Koch Institute, MIT

 

Yvonne Chen (University of California, Los Angeles)

“Engineering smarter and stronger T cells for cancer immunotherapy”

  • Adoptive T-Cell Therapy
  • Tx for Leukemia – Tumor Antigen escape fro CAR T-cell therapy, CD19/CD20 OR-Gate CARs for prevention of antigen escape – 15 month of development
  • reduce probability of antigen escape due to two antigen CD19/CD20: Probing limits of modularity in CAR design
  • In vivo model: 75% wild type & 25% CD19 – relapse occur in the long term, early vs late vs no relapse: Tx with CAR t had no relapse
  • OR-Gate cause no relapse – Probing limits of modularity in CAR Design
  • Bispecific CARs are superior to DualCAR: One vs DualCAR (some remained single CAR)
  • Bispecific CARs exhibit superior antigen-stimulation capacity – OR-Gate CAR Outperforms Single-Input CARs
  • Lymphoma and Leukemia are 10% of all Cancers
  • TGF-gamma Rewiring T Cell Response
  • Activation of t Cell use CAR t
  • Engineer CAR-T to respond to soluble form of antigens: CD19 CAR Responds to soluble CD19
  • GFP MCAR responds to Dimeric GFP
  • “Tumor microenvironment is a scary place”

 

Michael Birnbaum, MIT, Koch Institute

“A repertoire of protective tumor immunity”

  • Decoding T and NK cell recognition – understanding immune recognition and signaling function for reprogramming the Immune system – Neoantigen vaccine pipeline
  • Personal neoantigen vax improve immunotherapy
  • CLASS I and CLASS II epitomes: MHC prediction performance – more accurate for CLASS I HLA polymorphisms
  • Immune Epitope DB and Analysis Resources 448,630 Peptide Epitomes
  • B cell assay: 413,000
  • T cell assays: 313,000
  • peptide sequence relationships – naturally occurring antigen predictions
  • Cleavable pMHC yeast display to determine peptide loading
  • HLA-DR4 libraries enrich a large collection of peptides: 96000 1/5 of entire peptide DB: Enriched motif, prediction algorithms
  • Algorithmic false negatives vs peptide concentration(nM)
  • HLA-DR4 effects outside of “peptide anchor” residues
  • Class I MHC – HLA-E down regulate T and NK cells
  • Receptor Binding: Positional preferences noted for NKG2A
  • Training data vs Algorithmic approach
  • Globally oriented –
  • TCR sequencing – TCR pairings – Multicell-per-well sequencing
  • MAD-HYPE algorithm

 

Glenn Dranoff, Novartis Institute for Biomedical Research

“Mechnism of protective tumor immunity”

  • Immune checkpoint blockade elicit 10 years survival in melanoma
  • PD-1 blockage esophageal carcinoma effective showing survival
  • renal cells, bladder
  • 20% benefit from Immuno therapy – CTLA-4 toxicity is high small % patient benefit
  • PD-1/PD-L1 anti CLTA-4 mAbs
  • solid tumors challenging
  • Requirement for effective IO – Tumor receptivity to immune infiltration
  • modulation
  • Novartis IO in the clinic: multiple tumor immune escape – complexity
  • Approach: focus trials aimed to learn immune response complementation groups manipulate into response
  • work with Engineering for delivery nimble to generate new data
  • Translational research in the clinic
  • CAR T cells
  • B cell malignancies are ideal targets for CAR T cells
  • Relapsed/Refractory – pediatric ALL refractory advanced to no relapse – complete response 80% – 6 years response
  • Antigen loss CD19 – targeting with combinatorial approach to avoid relapse
  • Large B cell lymphoma
  • Neurologic toxicities of CART t IL-6 activation
  • AML – complete response – weekly dose of XmAb CD123X CD3 bispecific antibody – protein engineering – anti tumor effect in refractory Leukemia
  • anaplastic thyroid carcinoma
  • PD-L1 blockade elicits responses in some patients: soft part sarcoma
  • LAG-3 combined with PD-1 – human peripheral blood tumor
  • TIM-3 key regulator of T cell and Myeloid cell function: correlates in the TCGA DB with myeloid
  • Adenosine level in blood or tissue very difficult to measure in blood even more than in tissue – NIR178 + PDR 001 Mono-therapy (NIR178) combine with PD receptor blockage (PDR) – shows benefit
  • A alone vs A+B in Clinical trial

 

Session VI

Moderator: Stefani Spranger, Koch Institute, MIT

 

Tim Springer, Boston Children’s Hospital, HMS

The Milieu Model for TGF-Betta Activation”

  • Protein Science – Genomics with Protein
  • Antibody Initiative – new type of antibodies not a monoclonal antibody – a different type
  • Pro TGF-beta
  • TGF-beta – not a typical cytokine it is a prodamine for Mature growth factor — 33 genes mono and heterogeneous dimers
  • Latent TGF-Beta1 crystal structure: prodomaine shields the Growth Factor
  • Mechanism od activation of pro-TGF-beta – integrin alphaVBeta 6: pro-beta1:2
  • Simulation in vivo: actin cytoskeleton cytoplasmic domain
  • LIFE CYCLE OF PROTGF-BETA
  • LRRC33 – GARP class relative
  • microglia and macrophage – link TGF-beta phenotype knock outs
  • TGF compartments of microglia separated myelination loss
  • Inhibition of TGF-beta enhances immune checkpoint
  • Loss of LRRC33-dependent TGF-beta signaling would counteract immune suppression in tumor and in slow tumor growth
  • lung metastasis of B16 in melanoma
  • immuno-histo-chemistry: LRRC33 tumor-associated myeloid cell lack cell surface proTGF-beta1
  • blocking antibodies LRRC33 mitigate toxicity on PD-L1 treatment

 

Alex Shalek, MIT, Department of Chemistry, Koch Institute

“Identifying and rationally modulating cellular drivers of enhanced immunity”

  • Balance in the Immune system
  • Profiling Granulomas  using Seq-Well 2.0
  • lung tissue in South Africa of TB patients
  • Granulomas, linking cell type abundance with burden
  • Exploring T cells Phenotypes
  • Cytotoxic & Effector ST@+ Regulatory
  • Vaccine against TB – 19% effective, only 0 IV BCG vaccination can elicit sterilizing Immunity
  • Profiling cellular response to vaccination
  • T cell gene modules across vaccine routes
  • T Cells, Clusters
  • Expression of Peak and Memory
  • Immunotherapy- Identifying Dendritic cells enhanced in HIV-1 Elite Controllers
  • moving from Observing to Engineering
  • Cellular signature: NK-kB Signaling
  • Identifying and testing Cellular Correlates of TB Protection
  • Beyond Biology: Translation research: Data sets: dosen

 

Session VII

Moderator: Stefani Spranger, Koch Institute, MIT

 

Diane Mathis, Harvard Medical School

“Tissue T-regs”

  • T reg populations in Lymphoid Non–lymphoid Tissues
  • 2009 – Treg tissue homeostasis status – sensitivity to insulin, 5-15% CD4+ T compartment
  •  transcriptome
  • expanded repertoires TCRs
  • viceral adipose tissue (VAT) –  Insulin
  • Dependencies: Taget IL-33 its I/1r/1 – encoded Receptor ST2
  • VAT up-regulate I/1r/1:ST2 Signaling
  • IL-33 – CD45 negative CD31 negative
  • mSC Production of IL-33 is Important to Treg
  • The mesenchyme develops into the tissues of the lymphatic and circulatory systems, as well as the musculoskeletal system. This latter system is characterized as connective tissues throughout the body, such as bone, muscle and cartilage. A malignant cancer of mesenchymal cells is a type of sarcoma.
  • mesenchymal Stromal Cells – mSC – some not all, VAT mSCs express IL-33
  • development of a mAb Panel for sorting the mSC Subtypes
  • Deeper transcriptome for Phenotyping of VAT mSCs
  • physiologic & pathologic perturbation
  1. Age-dependent Treg and mSC changes – Linear with increase in age
  2. Sex-dependent Treg and mSC changes – Female
  • Treg loss in cases of Obesity leading to fibrosis
  • Treg keep IL-33-Producing mSCs under rein
  • Lean tissue vs Obese tissue
  • Aged mice show poor skeletal muscle repair – it is reverses by IL-33 Injection
  • Immuno-response: target tissues systemic T reg
  • Treg and mSC

 

Aviv Regev, Broad Institute; Koch Institute

“Cell atlases as roadmaps to understand Cancer”

  • Colon disease UC – genetic underlining risk, – A single cell atlas of healthy and UC colonic mucosa inflammed and non-inflammed: Epithelial, stromal, Immune – fibroblast not observed in UC colon IAFs; IL13RA2 + IL11
  • Anti TNF responders – epithelial cells
  • Anti TNF non-responders – inflammatory monocytes fibroblasts
  • RESISTANCE to anti-cancer therapy: OSM (Inflammatory monocytes-OSMR (IAF)
  • cell-cell interactions from variations across individuals
  • Most UC-risk genes are cell type specific
  • Variation within a cell type helps predict GWAS gene functions – epithelial cell signature – organize US GWAS into cell type specific – genes in associated regions: UC and IBD

 

  • Melanoma
  • malignant cells with resistance in cold niches in situ
  • cells express the resistance program pre-treatment: resistance UP – cold
  • Predict checkpoint immunotherapy outcomes
  • CDK4/6 – computational search predict as program regulators: abemaciclib in cell lines

 

 

 

Poster Presenters

Preeti Sharma, University of Illinois

T cell receptor and CAR-T engineering – T cell therapy

  • TCR Complex: Vbeta Cbeta P2A Valpha Calpha
  • CAR-T Aga2 HA scTCR/scFv c-myc
  • Directed elovution to isolate optimal TCR or CAR
  • Eng TCR and CARt cell therapy
  • Use of TCRs against pep/MHC allows targeting a n array of cancer antigens
  • TCRs are isolated from T cell clones
  • Conventional TCR identification method vs In Vitro TCR Eng directed evolution
  • T1 and RD1 TCRs drive activity against MART-1 in CD4+ T cells
  • CD8+
  • TCR engineering for Targeting glycosylated cancer antigens
  • Normal glycosylation vs Aberrant glycosylation
  • Engineering 237-CARs  libraries with conjugated (Tn-OTS8) against multiple human Tn-antigend
  • In vitro engineering: broaden specificity to multiple peptide backbone
  • CAR engineering collaborations with U Chicago, U Wash, UPenn, Copenhagen, Germany

 

Martin LaFleur, HMS

CRISPR- Cas9 Bone marrow stem cells for Cancer Immunotherapy

  • CHIME: CHimeric IMmune Editing system
  • sgRNA-Vex
  • CHIME can be used to KO genes in multiple immune lineages
  • identify T cell intrinsic effects in the LCMV model Spleen-depleted, Spleen enhanced
  • Loss of Ptpn2 enhances CD8+ T cell responses to LCMV and Tumors
  • Ptpn2 deletion in the immune system enhanced tumor immunity
  • CHIME enables in vivo screening

 

 

Read Full Post »


LIVE Day One – Koch Institute 2019 Immune Engineering Symposium, January 28, 2019, Kresge Auditorium, MIT

 

Real Time Press Coverage: Aviva Lev-Ari, PhD, RN

#IESYMPOSIUM @pharma_BI @AVIVA1950

MISSION The mission of the Koch Institute (KI) is to apply the tools of science and technology to improve the way cancer is detected, monitored, treated and prevented.

APPROACH We bring together scientists and engineers – in collaboration with clinicians and industry partners – to solve the most intractable problems in cancer. Leveraging MIT’s strengths in technology, the life sciences and interdisciplinary research, the KI is pursuing scientific excellence while also directly promoting innovative ways to diagnose, monitor, and treat cancer through advanced technology.

HISTORY The Koch Institute facility was made possible through a $100 million gift from MIT alumnus David H. Koch. Our new building opened in March 2011, coinciding with MIT’s 150th anniversary. Our community has grown out of the MIT Center for Cancer Research (CCR), which was founded in 1974 by Nobel Laureate and MIT Professor Salvador Luria, and is one of seven National Cancer Institute-designated basic (non-clinical) research centers in the U.S.

https://ki.mit.edu/files/ki/cfile/news/presskit/KI_Fact_Sheet_-_February_2018.pdf

January 28-29, 2019
Kresge Auditorium, MIT

Biological, chemical, and materials engineers are engaged at the forefront of immunology research. At their disposal is an analytical toolkit honed to solve problems in the petrochemical and materials industries, which share the presence of complex reaction networks, and convective and diffusive molecular transport. Powerful synthetic capabilities have also been crafted: binding proteins can be engineered with effectively arbitrary specificity and affinity, and multifunctional nanoparticles and gels have been designed to interact in highly specific fashions with cells and tissues. Fearless pursuit of knowledge and solutions across disciplinary boundaries characterizes this nascent discipline of immune engineering, synergizing with immunologists and clinicians to put immunotherapy into practice.

The 2019 symposium will include two poster sessions and four abstract-selected talks. Abstracts should be uploaded on the registration page. Abstract submission deadline is November 15, 2018. Registration closes December 14.

Featuring on Day 1, 1/28, 2019:

Dane Wittrup,, Koch Institute, MIT

IMMUNE BIOLOGY,

 

7 — Stephanie Dougan (Dana-Farber Cancer Institute) HMS, Department of Virology

  • Shared antigens may be the only option for many patients
  • Pathogens, self-antigens, tumor neoantigens, shared coexpressed
  • T cell affinity low or high TCRs – Augment priming
  • Radiation plus anti-CD40 induces vigorous T cell priming
  • TNF family co-stimulatory receptor signaling can be mimicked by IAP antagonists
  • SMACK – c-IAP12 – IAPi enhances function of many immune cells: B Cells, Dendritic cells,
  • Pancreatic cancer cell immunologic memory : Primary challenge, re-challenge
  • IAPi outperforms checkpoint blockade in T cell cold tumors
  • reduction of tumor burden gencitabine cross-presenting DCs and CD8 T cells – T cell low 6694c2
  • IAPi is a T cell-dependent immunotherapy in pancreatic cancer: MHC class I and IFN gemma sensing by tumor cells are critical for endogenous anti-tumor immunity and response to checkpoint blockade
  • T cells are catalytic, they can kill some tumors not all – Genes deleted in tumor cells
  • Intratumoral phagocytes are critical for endogenous: IAP antagonism increases phagocytosis in vivo
  • Model: T cells provide antigen specificity for sustained innate immune response
  • Antigen and adjuvants

12 — Michael Dustin (University of Oxford)

Delivery of T cell Effector function through extracellular vesicles

  • Laterally mobile ligands track receptor interaction
  • ICAM-1
  • Signaling of synapse – Sustain signaling by transient in microclusters TCR related to Invadipodia
  • Synaptic ectosome biogenisis Model: T cells: DOpamine cascade in germinal cell delivered to synaptic cleft – Effector CD40 – Transfer is cooperative
  • Synaptic ectosome composition
  • ESCRT pathway associated with synaptic ectosomes
  • Locatization, Microscopy (STORM, PALM, GSD)
  • Updated Model T cells Exosome transport Cytotoxic T cell granules CTLs release extracellular vescicles similar to T Helper with perforin and granzyme – CTL vesicles kill targets

6 — Darrell Irvine (MIT, Koch Institute; HHMI)

Innate immune recognition of glycosylation in nano particle vaccines

  • HIV Vaccines: Why is it such a challenge
  • HIV vaccine – Immunogen design – CD4 binding site-targeting
  • rational for nanoparticles forms of env immunogens
  • eOD-60mer nanoparticles vs Ferritin-trimer 8-mer
  • Nanoparticle delivery increases anti-Env titers substantially
  • Nanoparticles delivery accelerate the lymphatic system drainage
  • Immunogens drives to lymph nodes: nanoparticles changes environment in the lumph nodes
  • kidney medula – lymphatic system drainage
  • Liposome conjugate allows SOSIP – the germinal center:m training ground for immune response
  • nanoparticle – mechanism of germinal center targeting
  • GC targeting is dependent on complement component CIQ – activation: Mannose-binding lectins recognize eOD-60mer but not eOD monomer or trimers
  • Engineering follicle delivery through synthetic glycans: eOD-60mer nanoparticles vs Ferritin-trimer 8-mer (density dependent)
  • SUMMARY – HIV env nanopartices activate a bridge between innate and adaptive immunity
  • Multiple formulations of nanoparticles shows rapid immune response, comparison with influenza vaccine

 

2 — Tyler Jacks (MIT, Koch Institute; HHMI) – Tumor Biology Lab

Exploring tumor-immune interactions with genetically engineered Cancer Models – A case of Lung Cancer

  • Factors controlling tumor progression – genetically-engineered model of lung adenocarcinoma, metastasis causing death
  • Infiltration of cells: SEQUENCE EXOME – NO TUMOR BURDEN,
  • Exome sequencing reveals few mutations in KP model
  • Programmed neoantogen expression in the KP model: Kras, p53 – both are well researched in Lung cancer – immune cell dependent – tumors escape immune response due to immunosuppression – regulatory T cells most important in this model system
  • tissue specific responses to antigens
  • Lung Cancer – late stage — Programmed neo-antigen expression
  • Single cell mRNA sequencing of CD* T cell over time – sort cells, 8 weeks, 12 weeks, 20 weeks – progression of single cell similarity lymph cells vs lungs cells – cell identities  – transcription activation of dysfunction in cells
  • SIIN+ CD8 T cells show markers of dysfunction over time – up regulated signs of exhaustion,
  • T cells becomes exhausted, checkpoint inhibitors beyond a certain point – has no capacity  –
  • Interrogating markers of T cell dysfunction – chance biology of cells by CRISPR Cas9 – EGR2 at 2 weeks dysfunctioning is reduced – presence of EDR2 mutant class plays a role in cell metabolism – cell becomes more functional by modification protocols
  • Effects of CRISPR-mediated vs Combinatorial effects of CRISPR-mediated mutation of inhibitory models

 

8 — Max Krummel (University of California, San Francisco)

Dynamic Emergent behavior in Immune Systems

 

  • T cells are captured on tumor margins (without desired cytotoxicity)
  • Myeloid cells Underlie Intratumoral T cell capture
  • Anti tumor (CD4 CD8) vs Pro-tumor (CD9)
  • If many cells predicting Outcome more favorable – cellular abundance
  • Alternative T Cell reactions in Tissue: T-Helper 1, T-Helper 2
  • Gene expression association between two genes:
  • NK and cDC1 numbers are tightly linked and correlated with response to checkpoint blockage
  • A CD4-Enhaced Class of Melanoma Patients Also can be Checkpoint
  • CD4 T cells in Cancer – control tumors on their on
  • If high ICOS and CD4
  • Stimulate CD4: pull out of lymph nodes cells mCD301B
  • CD4 T cell proliferation but they don’t make PD1 ICOS CD4T
  • CD4 – required: Regulatory T Cells control CS4-dependent Tumor control via Lymph Node depletion (dLN)
  • If CD4 depleted, Lymph Node (LN) connected
  • Regulatory of PD1 ICOS CD4T
  • CD8 CD4 Tumor Affinity
  • Melanoma – T-reg hi or low – Responders are T-reg hi they have CD8
  • Existing Paired presence of T-reg, together with cDC2 number classifies Pt with better CD4
  • In Head and Neck: DC needed to stimulate immune response by CD4
  • Architypes of Immune systems in Tumors – Generally
  • CLASS I, II, III, IV – phynotypic
  • IMMUNE “ACCOMODATION” ARCHYTYPES: MYELOID TUNING OF ARCHITYPES
  • Myeloid function and composition

 

11 — Mikael Pittet (Massachusetts General Hospital)

Myeloid Cells in Cancer

  • complexity of Myeloid
  • Myeloid cells for cancer therapy: Outcomes good and bad: Tumor suppressing vs Tumor Promoting
  • Myeloid and immunotherapy
  • aPD-1 mAbs do not bind IL-12+DCs (scRNAseq): DC Classical and PlasmaCytoid (Allon Klein)
  • Indirect mechanism AFTER a-PD-1 Treatment
  • IFN-gamma Sensing Fosters IL-12 & therapeutic Responses
  • a PD-1-Mediated Activation of Tumor Immunity – Direct activation and the ‘Licensing’ Model

 

1 — Bob Schreiber (Wash University of St. Louis)

Neoantigens and the molecular basis of Cancer Immnutherapy

 

NeoAntigens (NEON Therapeutics, Co-Founder

  • MHC- I, MCH-II, tumor specific vaccine, if BOTH present THEN Clinical therapeutic efficacy is enhanced
  • Cancer Immunoediting to Personalized Cancer Vaccines
  • neoedited Tumors,
  • Tumor vaccines: Tumor Associated Antigens vs Tumor Specific Neoantigens
  • MCH Class II Immune responses to Cancer
  • CD4+
  • Immune Checkpoint Blockade Therapy eliminates T3 Sarcomas via a CD4+ CD8+ T cell dependent Mechanism
  • Control mAb vs (alphaPD-1 CTLA-4) vs (alphaPD-1 CTLA-4) + alpha CD8
  • Mutant Class II Neoepitopes: mltgb1 is the best peptide found
  • Cell Response CD4+ to T3
  • T3 – Median Mutant Affinity Value vs Affinity + Abundance: Prediction N711Y Mutant
  • MHC-II
  • Oncogene-Driven (Kras – G12D-p53 -/- =KP
  • KP Sarcomas  – do not Prime for their own rejection upon re-Challenge: Average Tumor Diameter
  • KP Sarcomas lack Strong Class I Neoepitopes MCA Sarcoma vs KP Sarcomas: Mutant Affinity
  • KP Sarcomas: Kras – G12D-p53
  • MHC Class I and Class II: Promotes PRIMING of mLama4-Specific CD8+ T Cells when KP.mLama4 Tumors express the mltgb1
  • mltgb1 enhances generation of mLama4-Specific CTL
  • controls: (alpha-PD-1), (PD-1 + CD4+)
  • Vaccine protects against T3 Outgrowth
  • CONCLUSIONS: Optimal CD8+ T cells mediated immune responses to T3 sarcomas require CD4+ T cell help

 

9 — Stefani Spranger (MIT, Koch Institute)

The role of Tumor-resident Dendritic Cells for productive anti-tumor immune response

  • CD8+ T cell T cell-inflamed Tumor vs Non-T cell inflamed Tumor
  • Tumor cell intrinsic – Workflow to identify oncogenic pathways differentially activated between T cell-inflamed
  • T cell infiltration (Braf PTEN CD3 T cells/total living cells
  • Response to checkpoint blockade
  • Non-T cell-inflamed – is LACK OF T CELL INFILTRATION – do not accumulate in Tumor,
  • Tumor-intrinsic Beta-catenin signaling mediates lack of T cell infiltration
  • Adoptive transfer of effector CT cells fails to control Beta – T cells remain motile and migrate in a directional fashion after tumor eradication
  • CD103 dendritic cells – Tumor-residing Braf3-driven CD103
  • Cross-presenting cDC1 are essential for effector T cells
  • How can we raise the curve and increase the number of long-term survivors
  • Understanding the role of tumor-resident DC
  • Accumulation of CD103 DC independent of T cells
  • Regression tumor mount T cell response independent of DC1 DC
  • Induction of anti-tumor immunity is independent of the canonical
  • Single cell RNA-Seq reveal new subset to regressiong tumors and stimulate T cells via non-conventional
  • Working hypothesis: productive anti-tumor immunity depends on multiple tumor-resident DC subsets

 

 

5 — Melody Swartz (University of Chicago)

Lymphangiogenesis and immunomodulation

  • Lymphangiogenesisfor in Inflammation
  • Immunosuppression drives metastasis
  • promotion of resolution in disease progression
  • Tumors uses lymphatic system vessels
  • Tumor VEGF-C enhances immune cell interactions with lymphatic system
  • Lymphangiogenesis promore immune suppression in the tumor microenvironment
  • Recruitment of immune cells system: Dendritic Cells,
  • Lymphangiogenesis melanomas – highly responsive to immunotherapy : Vaccination
  • Lymphangiogenesis promote antigen spreading
  • Lymphangiogenesis potentiation: CCL21, CCR7
  • Lymphangiogenesis attractive to Native T cells, in VEGF-C tumors
  • T cell homing inhibitors vs block T cell egress inhibitors – Immunotherapy induces T cell killing
  • Allergic airway inflammation is driven lung and lymph node Lymphangiogenesis
  • Innate Immune cell infiltration reduced
  • Memory recall responses reflect adaptive immunity
  •  pathology exacerbated with VEGFR-3 blockade response of memory recall cell is enhanced
  • VEGFR-3 signaling shifts T call balance, and CCL@1, from Lymph nodes to Lung
  • Differential changes in T cell balance between lung vs adaptive immune response to allergic airway inflammation
  • Lymphangiogenesis in the lung, competition with adaptive immune response to allergic airway inflammation in the lung

 

4 — Cathy Wu, Dana Farber Cancer Institute, HMS – CoFounder of NEON

Building better personal cancer vaccines

  • Vaccine: up to 20 personalized neoantigens as SLPs with adjuvant (polyICLC)
  • high risk melanoma – RESULTS: new immune responses – new responses mutiple immune responses CD4 & CD8: mutated vs Wild type  differences
  • Enduring complete radiographic responses after Neovax + alpha-PD-1 treatment (anti-PD-1)
  • NeoVax vs IVAC MutaNOME
  • Ex vivo responses to assay peptide pools – immune response identified
  • NeoVax: ‘warming’ a cold tumor
  • immune cell infiltration – not studied in Glioblastoma which is a pooled tumor: TCR repertoire and MHC. Available materials: PBMC vs Fresh frozen and FFPE tumor material: Blood va FF brain tissue sequencing
  • Pt 8 neoantigen-specific clonotypesID’s – reactive T cells track to the brain after vaccination
  • Single cells from brain tissue vs single cells from neoantigen specific T cells – intratumoral neoantigen-specific T cells: mutARGAP35-specific T cell identified at site of disease – breakthrough for Brain Tumor #vaccine based neoantigen-specific T cell at intracranial site
  • VAX steering the Immune system
  • commission at Dana Farber – Prediction algorithms of denovo neoantigen targets: Newly profiled peptides to train a model vs peptide in the DB – Single vs Multi-allele HLA peptide sequencing by MassSpectroscopy
  • Mono-allelic MS data reveals novel motifs and sub-motifs
  • Endogenous signals contribution to predictive power
  • NeuroNets Algoriths : Integrative models identify tumor-presented epitopes more accurately than models without training like NeuroNets
  • 5778 class I peptides from 4 cancers class I allele
  • CONCLUSIONS: proteosomal processing endogenous signals transcriptome

 

Poster Presenters

3 — Scott Wilson,  U of Chicago

Antigen-specific Tolerance: A Cure for Autoimmunity

  • Activation of auto-reactive T cell
  • Leveraging the Liver’s Tolerogenic Environment for the Induction of Antigen-specific Tolerance
  • Design Criteria for HAPC- Targeting Platform – Target Antigens to HAPCs
  • Minimal biomaterial footprint
  • Deliver system Hepatic APC-targeting Glycosylations
  • IV INJECTION: OVAALBUMIN OVA-P(GALINAC), P(GLCNAC), SUPRESS T CELL RESPONSE
  • Glyco-conjucates Abate T cells response – Reduced cytokine production &  increased T-regs

 

1- — Noor Momin, MIT, Prof. K. Dane Wittrup Lab

The role of Collagen and Cytokines in Immunotherapy drug development

 

  • Cytokine therapies have poor therapeutic windows
  • Intratumoral Cytokine Delivery: Expectation vs Reality
  • Anchor intratumorally adm cytokines to collagen and protein
  • collagen abundent (toxicity) and long-lived (maximize efficacy)
  • Lumican – homology model – mediate collagen-anchoring? How to mediate anchoring
  • Lumican fusion to IL-2 improves treatment efficacy however toxic – Anti-TAA mAb – TA99 vs IL-2
  • Best efficacy in Lumican-MSA-IL-2 vs MSA-IL2
  • Lumican-cytokines improve control of distant lesions – Lumican-fusion potentiates systemic anti-tumor immunity
  • Lumican-cytokines efficacious in Braf/Pten GEMM
  • Lumican fusion cytokine IL-2 IL-12 Binds collagen

 

 

 

 

Read Full Post »


Image Source:Koch Institute

LIVE – OCTOBER 17 – DAY 2- Koch Institute Immune Engineering Symposium 2017, MIT, Kresge Auditorium

Koch Institute Immune Engineering Symposium 2017

http://kochinstituteevents.cvent.com/events/koch-institute-immune-engineering-symposium-2017/agenda-64e5d3f55b964ff2a0643bd320b8e60d.aspx

Image Source: Leaders in Pharmaceutical Business Intelligence (LPBI) Group

Aviva Lev-Ari, PhD, RN will be in attendance covering the event in REAL TIME

@pharma_BI

@AVIVA1950

#IESYMPOSIUM

@KOCHINSTITUTE

  • The Immune System, Stress Signaling, Infectious Diseases and Therapeutic Implications: VOLUME 2: Infectious Diseases and Therapeutics and VOLUME 3: The Immune System and Therapeutics (Series D: BioMedicine & Immunology) Kindle Edition – on Amazon.com since September 4, 2017

https://www.amazon.com/dp/B075CXHY1B

SYMPOSIUM SCHEDULE

OCTOBER 17 – DAY 2

8:30 – 9:45 Session V
Moderator: Stefani Spranger | MIT, Koch Institute

K. Christopher Garcia – Stanford University
Exploiting T Cell and Cytokine Receptor Structure and Mechanism to Develop New Immunotherapeutic Strategies

  • T Cell Receptor, peptide-MHC, 10 to the power of 10 is combinatorics – Library for selection to determine enrichment possibilities
  • Ligand identification for orphan TCRs
  1. Industrializing process
  2. use pMHC
  • IL-2 – Receptor Signaling Complex
  • Effector cells (NK, T)
  • Engineered  T Cell – Tunable expansion, ligand-Receptor interface
  • Randomize IL-2RBeta interface: Orthogonal receptor vs wild type
  • In Vivo adoptive transfer model: to quantify orthogonality ratio
  • CD4, CD8, Treg,C57BL/6J
  • Ligand discovery
  • Orthogonal IL-2

Stefani Spranger – MIT, Koch Institute
Batf3-DC as Mediators of the T Cell-Inflamed Tumor Microenvironment

  • Melanoma – solid cancer and other types, Immune inhibitory regulatory pathway patient with Immune response present
  • T cell-inflamed Tumor vs Non-T cell-inflamed Tumor
  • identify oncogenic pathways differentially activated between T cell-inflamed and non-Tcell-inflamed infiltration
  • If on Tumor:
  1. Braf/PTEN
  2. Braf/CAT
  3. Braf/PTEN/CAT
  • The role of T cell priming – lack of initial
  • Beta-catenin-expressing tumors fail to prime 2C TCR-transgenic T cells
  • Deficiency in number of CD8+ and CD103+ dendritic cells
  • CD103+ DC are essential for T cell Priming and T cell-inflammation #StefaniSpranger
  • Adoptive transfer of effector 2C T cells fails to control Beta-catenin+ tumors
  • Vaccination induced anti-gen specific T cell memory fails to control Beta-catenin+ tumors
  • What cell type in tumor microenvironment effect monilization of T cell
  • CD103+ Dendritic cellsare source chymokine
  • Recruitment of effector T cells: Reconstitution od Beta-catenin-expressing SIY+
  • Are Batf3-DC within the tumor required for the recruitment of effector T cells?
  • Tumor-residing Batf3-drive CD103+ DC are required for the recruitment of effector T cells
  • Gene spore for correlation with recturment of effector cells
  • T cell Priming – CD103+ DC are essential for effector T cells

George Georgiou – University of Texas at Austin
The Human Circulating Antibody Repertoire in Infection, Vaccination or Cancer

  • Serological Antibody Repertoire: in blood or in secretions
  • Antibody in serum – is difficult sequence identity
  • Serum IgG – 7-17 mg/ml if less immune deficient if more hyper globular
  • antibodies produced in long lived plasma cells in the bone marrow — experimentally inaccessible
  • Discovery of antibodies from the serological repertoire – not B cells
  • BM-PCs
  • Serum antibodies function via Fc effector mechanism – complement activation
  • Ig-SEQ – BCR-SEQ
  • Repertoire-wide computational modelling of antibody structures
  • En masse analysis & Mining of the Human Native Antibody Repertoire
  • hypervariable – High-Throughput Single B Cell VH:VL (or TCRalpha, beta) sequencing
  • EBOV Vaccinee Peak ASCs (day 8) mining: Neutralization
  • Features of the Serum Antibody Repertoire to Vaccine ANtigens:The Serum IgG Repertoire is Highly Polarized
  • Each bar represents a distinct antibody lineage
  • Serum IgG Repertoire becomes increasingly polarized with AGE >50 – may be predictive of tumor development process
  • Human Norovirus – explosive Diarreha, chromically infected – HuNoV BNAb Discovery – Takeda 214 bivalent Vaccine – Binding antibodies binding to avccine antigen VLP
  • HuNoV causes 800 death in the US per year of immune deficient
  • Influenza Trivalent Vaccine: Antibodies to hemaggiutinin: H1, H3, and B COmponenet
  • Abundant H1 +H3 Serum IgGs do not neutralize but confer Protection toInfluenza challenge with Live Virus #GeorgeGeorgiou
  • Non-Neutralizing Antibodies: The role of Complement in Protection

9:45 – 10:15 Break

10:15 – 11:30 Session VI
Moderator: K. Dane Wittrup | MIT, Koch Institute

Harvey Lodish – Whitehead Institute and Koch Institute
Engineered Erythrocytes Covalently Linked to Antigenic Peptides Can Protect Against Autoimmune Disease

  • Modified Red blood cells are microparticles for introducing therapeutics & diagnostics into the human body
  • Bool transfusion is widely used therapeutics
  • Covalently linking unique functional modalities to mouse or human red cells produced in cell culture:
  • PRODUCTION OF HUMAN RED BLOD CELLS EXPRESSING A FOREIN PROTEIN: CD34+ stem/progenitor cells that generates normal enucleated RBC.
  • PPAR-alpha and glucocorticoticoid receptor
  • Norman morphology: Sortase A is a bactrial transpeptidase that covalently links a “donor”
  • Engineering Normal Human RBC biotin-LPETG
  • Covelantely – Glycophorin A with camelid VHHs specific for Botulinum toxin A or B
  • Generation of immuno tolerance: SOruggable Mature RBCs: CRISPR mice expressing Kell-LPETG
  • Ovalbumin as Model Antigens:
  1. OBI B,
  2. OTI CD8 T cells
  3. OTII CD4 T cells
  4. OT-1
  5. OT-2
  • RBC induced peptides challenged and experiences apoptosis
  • Type I Diabetes in NOD mice
  • RBCs bearing InsB9-23 – prevented development of diabetes

Multiple sclerosis

  • MOG – Myelin Oligodend

Sai Reddy – ETH Zurich
Molecular Convergence Patterns in Antibody Responses Predict Antigen Exposure

  • Clonal diversity – estimating the size of antibody repertoire: 10 to power of 18 or 10 to 13
  • Clonal selection in antibody repertoire
  • Convergent selection in antibody repertoire
  • Convergent selection in TCR repertoire complex have restriction with MCH interactions
  • How molecular abundance of convergence predicts antigen exposure identify antigen-associated clusters #SaiReddy
  • molecular convergence 0 gene expression analysis, immunization scheme molecular bar coding to correct errors
  • Recoding antibody repertoire sequence space: Cross correlation reveals different clusters
  • Building a classifier model based on cluster frequency: Clones from immunized mice
  • epitope specificity is driving antibody repertoire response
  • deep learning,

K. Dane Wittrup – MIT, Koch Institute
Temporal Programming of Synergistic Innate and Adaptive Immunotherapy

  • Innate effector functions of anti-tumor antibodies
  • Innate & adaptive Immunotherapy
  • Innate mAb –>> tumor cell; adaptive CD8+ T cells
  • Chemokines Antigens
  • Cytokines Chemokines – back and forth innate Adaptive –> <— neutrophils impact
  • AIPV vaccine:
  • How anti-TAA mAbs helping T cell Immune response
  • Anti-TAA mAbs drive vaccinal T cell responses: NK cells
  • antibody drives T cells responses: alpha-TAA mAbs potentiate T cell therapies: ACT +MSA-IL-2 vs alphaPD-1 + vaccine
  • CD8+ T cells required for alpha TAA mAb efficacy- In absence of T cells Treatment does not work
  • Anti-TAA mAb +Fc/IL-2 induces intramural cytokine storm #KDaneWittrup
  • How to simplify and improve AIPV? Hypothesis: ALign dose schedule
  • Immune response to infection follwos a temporal progression: Innate … Adaptive
  • Antigenic material kill cells: Chemo, cell death Antigen presentation, T cell priming, T cell recirculation, Lymphocyte tumor infiltrate, TCR
  • IFN alpha 2 dys after mAb +Il-2: Curative: days post tumor injection
  • Necessary components: CD8+ T cells & DC, Macrophages,
  • Optimal IFNalpha coincides with max innate response vs Mature DCs after antigen loading #KDaneWittrup
  • Optimal timing od agent administration effect on Therapy Outcome: IL-2, IFNalpha, TAAmAb
  • Cytkine timing can be better than protein engineering #KDaneWittrup

11:30 – 1:00 Lunch Break

1:00 – 2:15 Session VII
Moderator: Michael Birnbaum | MIT, Koch Institute

Kai Wucherpfennig – Dana-Farber Cancer Institute
Discovery of Novel Targets for Cancer Immunotherapy

  • POSITIVE STRESS SIGNAL during malignant Transformation
  • NKG2G=D Receptor: MICA/B Results in Immune escape – Proteolytic cleavage  shedding of MICA/B present in serum, indication of tumor progression
  • Shed MICA vs Surface MICA/B – restore NK cell cytotoxicity and IFNgamma Production
  • Human NK cells express NKG2D and Fc Receptors
  • Synergistic NKG2D and CD16 signaling enhances NK cell cytootxicity: Control IgG vs Anti NKG2D
  • MICA Antibody induces Immunity Against Lung Metastases
  • NK cells are required to inhibit Growth of metastases: Anti-CD8beta,
  • Contribution to Therapeutic Efficacy: NKG2D and CD16 Receptors #KaiWucherpfennig
  • Strategy to analyze Pulmonary NK cells: Activation and expression
  • Single cell RNA-seq of lung NK cells Revealed higher infiltration of activated NK cells: Isotype vs 7C6-migG2a
  • Cytokines and Chemokines produce NK cells
  • MICA/B increaces NK
  •  Induction of Tumor cell Apoptosis
  • Xenotransplant Model with Human Melanoma Cel Line A2058
  • Lung metastasis, liver metastasis
  • Inhibition of human melanoma Metastases in NSG Mice Reconstitute with Human NK
  • Liver metastases are controlled by Myeloid Cells that include Kupffer cells

Michael Birnbaum – MIT, Koch Institute
An Unbiased Determination of pMHC Repertoires for Better Antigen Prediction

  • Vaccines TCR gene therapy adoptive T cel therapy
  • Tumor genone – Tumor pMHC repertoire = Tumor TCR repertoire T cell repertoire
  • Neoantigen vaccines as a personalized anti-cancer therapy
  • Tumor procurement – Target selection – personal vaccine production – vaccine administration
  • Prediction of neoantigen-MHC Binding due to polimorphism affecting recognition, rare in MHC Allells #Michael Birnbaum
  • Antigenicity – Chaperones HLA-DM sculp the peptide binding repertoire of MHC
  • Identification of loaded peptide ligands: pMHC mass spectroscopy of tissue
  • TCR recognition, pMHC yeast display: Cleave peptide-MHC linker, catalyze peptide exchange
  • HLA-DR4 library design and selection to enrich HLA-DM: Amino Acid vs Peptide position: Depleted vs Enriched – relative to expected for NNK codon
  •  6852 _ predicted to bind vs 220 Non-binding peptides
  • HLA polymorphism: repertoire differences caused by
  • Antigen – T cell-driven antigen discovery: engaging Innate and Adaptive Immune response
  • Sorting TIL and select: FOcus of T cell-driven antigen discovery
  • T cell-driven antigen discovery: TCR

Jennifer R. Cochran – Stanford University
Innate and Adaptive Integrin-targeted Combination Immunotherapy

  • alpa-TAA
  • Targeting Integrin = universal target involved in binding to several receptors: brest, lung, pancreatic, brain tumors arising by mutations – used as a handle for binding to agents
  • NOD201 Peptide-Fc Fusion: A Psudo Ab
  • Handle the therapeutics: NOD201 + alphaPD1
  • NOD201 effectively combines with alphaPD-L1, alphaCTLA-4, and alpha4-1BB/CD137
  • Corresponding monotherapies vs ComboTherapy invoking Innate and Adaptive Immune System
  • Microphages, CD8+ are critical vs CD4+ Neutrophils, NK cells, B cells #JenniferR. Cochran
  • Macrophages activation is critical – Day 4, 4 and 5
  • NOD201 + alphaPD1 combo increases M1 macrophages
  • Who are the best responders to PD1 – genes that are differentially expressed
  • NOD201 deives T cells reaponses through a “vaccinal” effect
  • CAncer Immune CYcle
  • Integrin – localization
  • Prelim NOD201 toxicity studies: no significant effects
  • Targeting multiple integrins vs antibodies RJ9 – minimal effect
  • NOD201 – manufacturability – NEW AGENT in Preclinical stage

2:15 – 2:45 Break

2:45 – 3:35 Session VIII
Moderator: Jianzhu Chen | MIT, Koch Institute

Jennifer Wargo – MD Anderson Cancer Center
Understanding Responses to Cancer Therapy: The Tissue is the Issue, but the Scoop is in the Poop

  • Optimize Targeted Treatment response
  • Translational research in patients on targeted therapy revealed molecular and immune mechanisms of response and resistance
  • Molecular mechanisms – T cell infiltrate after one week of therapy
  • Role of tumor stroma in mediating resistance to targeted therapy
  • Tumor microenvironment
  • Intra-tumoral bacteria identified in patients with Pancreatic Cancer
  • Translational research in patients on immune checkpoint blockade revealed molecualr and immune mechanism of response and resistance
  • Biomarkers not found
  • SYstemic Immunity and environment (temperature) on response to checkpoint blockade – what is the role?
  • Role of mIcrobiome in shaping response to checkpoint blockade in Melanoma
  • Microbime and GI Cancer
  • Diversity of the gut microbiome is associated with differential outcomes in the setting of stem cell transplant in AML
  • Oral and gut fecal microbiome in large cohort patient with metastatic melanoma undergoing systemic therapy
  • Repeat oral & gut AFTER chemo
  • WGSeq – Diversity of microbiome and response (responders vs non-responders to anti PD-1 – High diversity of microbiome have prolonged survival to PD-1 blockade
  • Anti tumor Immunity and composition of gut microbiome in patient on anti-PD-1 favorable AND higher survival #JenniferWargo
  • Enhance therapeutic responses in lang and renal carcinoma: If on antibiotic – poorer survival
  • sharing data important across institutions

Jianzhu Chen – MIT, Koch Institute
Modulating Macrophages in Cancer Immunotherapy

  • Humanized mouth vs de novo human cancer
  • B cell hyperplasia
  • double hit lymphoma
  • AML
  • Overexpression of Bcl-2 & Myc in B cells leads to double-hit lymphoma
  • antiCD52 – CLL
  • Spleen, Bone marrow, Brain
  • Microphages are required to kill Ab-bound lymphoma cells in vivo #JianzhuChen
  • COmbinatorial chemo-Immunotherapy works for solid tumors: treating breast cancer in humanized mice
  • Infiltration of monocytic cells in the bone marrow
  • Cyclophosphophamide-antibody synergy extending to solid tumor and different antibodies #JianzhuChen
  • Polarization of macrophages it is dosage-dependent M1 and M2
  • Antibiotic induces expression of M1 polarizing supresses development and function of tumor-associated macrophages (TAM)
  • Antibiotic inhibits melanoma growth by activating macrophages in vivo #JianzhuChen

 

Read Full Post »