Feeds:
Posts
Comments

Archive for the ‘Population Health Management’ Category


Cryo-EM disclosed how the D614G mutation changes SARS-CoV-2 spike protein structure.

Reporter: Dr. Premalata Pati, Ph.D., Postdoc

SARS-CoV-2, the virus that causes COVID-19, has had a major impact on human health globally; infecting a massive quantity of people [ADD HERE the Global Number from John Hopkins University https://coronavirus.jhu.edu/data]; causing severe disease and associated long-term health sequelae; resulting in death and excess mortality, especially among older and prone populations; interrupting altering routine healthcare services; disruptions to travel, trade, education, and many other societal functions; and more broadly having a negative impact on peoples physical and mental health.

It’s need of the hour to answer the questions like what allows the variants of SARS-CoV-2 first detected in the UK, South Africa, and Brazil to spread so quickly? How can current COVID-19 vaccines better protect against them?

Scientists from the Harvard Medical School and the Boston Children’s Hospital help answer these urgent questions. The team reports its findings in the journal “Science a paper entitled Structural impact on SARS-CoV-2 spike protein by D614G substitution. The mutation rate of the SARS-CoV-2 virus has rapidly evolved over the past few months, especially at the Spike (S) protein region of the virus, where the maximum number of mutations have been observed by the virologists.

Bing Chen, HMS professor of pediatrics at Boston Children’s, and colleagues analyzed the changes in the structure of the spike proteins with the genetic change by D614G mutation by all three variants. Hence they assessed the structure of the coronavirus spike protein down to the atomic level and revealed the reason for the quick spreading of these variants.


This model shows the structure of the spike protein in its closed configuration, in its original D614 form (left) and its mutant form (G614). In the mutant spike protein, the 630 loop (in red) stabilizes the spike, preventing it from flipping open prematurely and rendering SARS-CoV-2 more infectious.

Fig. 2 Cryo-EM structures of the full-length SARS-CoV-2 S protein carrying G614.

(A) Three structures of the G614 S trimer, representing a closed, three RBD-down conformation, an RBD-intermediate conformation and a one RBD-up conformation, were modeled based on corresponding cryo-EM density maps at 3.1-3.5Å resolution. Three protomers (a, b, c) are colored in red, blue and green, respectively. RBD locations are indicated. (B) Top views of superposition of three structures of the G614 S in (A) in ribbon representation with the structure of the prefusion trimer of the D614 S (PDB ID: 6XR8), shown in yellow. NTD and RBD of each protomer are indicated. Side views of the superposition are shown in fig. S8.

IMAGE SOURCE: Bing Chen, Ph.D., Boston Children’s Hospital, https://science.sciencemag.org/content/early/2021/03/16/science.abf2303

The work

The mutant spikes were imaged by Cryo-Electron microscopy (cryo-EM), which has resolution down to the atomic level. They found that the D614G mutation (substitution of in a single amino acid “letter” in the genetic code for the spike protein) makes the spike more stable as compared with the original SARS-CoV-2 virus. As a result, more functional spikes are available to bind to our cells’ ACE2 receptors, making the virus more contagious.


Cryo-EM revealed how the D614G mutation changes SARS-CoV-2 spike protein structure.

IMAGE SOURCE:  Zhang J, et al., Science

Say the original virus has 100 spikes,” Chen explained. “Because of the shape instability, you may have just 50 percent of them functional. In the G614 variants, you may have 90 percent that is functional. So even though they don’t bind as well, the chances are greater and you will have an infection

Forthcoming directions by Bing Chen and Team

The findings suggest the current approved COVID-19 vaccines and any vaccines in the works should include the genetic code for this mutation. Chen has quoted:

Since most of the vaccines so far—including the Moderna, Pfizer–BioNTech, Johnson & Johnson, and AstraZeneca vaccines are based on the original spike protein, adding the D614G mutation could make the vaccines better able to elicit protective neutralizing antibodies against the viral variants

Chen proposes that redesigned vaccines incorporate the code for this mutant spike protein. He believes the more stable spike shape should make any vaccine based on the spike more likely to elicit protective antibodies. Chen also has his sights set on therapeutics. He and his colleagues are further applying structural biology to better understand how SARS-CoV-2 binds to the ACE2 receptor. That could point the way to drugs that would block the virus from gaining entry to our cells.

In January, the team showed that a structurally engineered “decoy” ACE2 protein binds to SARS-CoV-2 200 times more strongly than the body’s own ACE2. The decoy potently inhibited the virus in cell culture, suggesting it could be an anti-COVID-19 treatment. Chen is now working to advance this research into animal models.

Main Source:

Abstract

Substitution for aspartic acid by glycine at position 614 in the spike (S) protein of severe acute respiratory syndrome coronavirus 2 appears to facilitate rapid viral spread. The G614 strain and its recent variants are now the dominant circulating forms. We report here cryo-EM structures of a full-length G614 S trimer, which adopts three distinct prefusion conformations differing primarily by the position of one receptor-binding domain. A loop disordered in the D614 S trimer wedges between domains within a protomer in the G614 spike. This added interaction appears to prevent premature dissociation of the G614 trimer, effectively increasing the number of functional spikes and enhancing infectivity, and to modulate structural rearrangements for membrane fusion. These findings extend our understanding of viral entry and suggest an improved immunogen for vaccine development.

https://science.sciencemag.org/content/early/2021/03/16/science.abf2303?rss=1

Other Related Articles published in this Open Access Online Scientific Journal include the following:

COVID-19-vaccine rollout risks and challenges

Reporter : Irina Robu, PhD

https://pharmaceuticalintelligence.com/2021/02/17/covid-19-vaccine-rollout-risks-and-challenges/

COVID-19 Sequel: Neurological Impact of Social isolation been linked to poorer physical and mental health

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2021/03/30/covid-19-sequel-neurological-impact-of-social-isolation-been-linked-to-poorer-physical-and-mental-health/

Comparing COVID-19 Vaccine Schedule Combinations, or “Com-COV” – First-of-its-Kind Study will explore the Impact of using eight different Combinations of Doses and Dosing Intervals for Different COVID-19 Vaccines

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2021/02/08/comparing-covid-19-vaccine-schedule-combinations-or-com-cov-first-of-its-kind-study-will-explore-the-impact-of-using-eight-different-combinations-of-doses-and-dosing-intervals-for-diffe/

COVID-19 T-cell immune response map, immunoSEQ T-MAP COVID for research of T-cell response to SARS-CoV-2 infection

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2020/11/20/covid-19-t-cell-immune-response-map-immunoseq-t-map-covid-for-research-of-t-cell-response-to-sars-cov-2-infection/

Tiny biologic drug to fight COVID-19 show promise in animal models

Reporter : Irina Robu, PhD

https://pharmaceuticalintelligence.com/2020/10/11/tiny-biologic-drug-to-fight-covid-19-show-promise-in-animal-models/

Miniproteins against the COVID-19 Spike protein may be therapeutic

Reporter: Stephen J. Williams, PhD

https://pharmaceuticalintelligence.com/2020/09/30/miniproteins-against-the-covid-19-spike-protein-may-be-therapeutic/

Read Full Post »


COVID-19 Sequel: Neurological Impact of Social isolation been linked to poorer physical and mental health

Reporter: Aviva Lev-Ari, PhD, RN

UPDATED on 4/7/2021

‘Beyond a Reasonable Doubt’: COVID-19 Brain Health Fallout Is Real, Severe

Sarah Edmonds

April 07, 2021

Editor’s note: Find the latest COVID-19 news and guidance in Medscape’s Coronavirus Resource Center.

START QUOTE

COVID-19 survivors face a sharply elevated risk of developing psychiatric or neurologic disorders in the six months after they contract the virus — a danger that mounts with symptom severity, new research shows.

In what is purported to be the largest study of its kind to-date, results showed that among 236,379 COVID-19 patients, one third were diagnosed with at least one of 14 psychiatric or neurologic disorders within a 6-month span.

The rate of illnesses, which ranged from depression to stroke, rose sharply among those with COVID-19 symptoms acute enough to require hospitalization.  

“If we look at patients who were hospitalized, that rate increased to 39%, and then increased to about just under 1 in 2 patients who needed ICU admission at the time of the COVID-19 diagnosis,” Maxime Taquet, PhD, University of Oxford Department of Psychiatry, Oxford, United Kingdom, told a media briefing.

Incidence jumps to almost two thirds in patients with encephalopathy at the time of COVID-19 diagnosis, he added.

The study, which examined the brain health of 236,379 survivors of COVID-19 via a US database of 81 million electronic health records, was published online April 6 in The Lancet Psychiatry.

High Rate of Neurologic, Psychiatric Disorders

The research team looked at the first-time diagnosis or recurrence of 14 neurologic and psychiatric outcomes in patients with confirmed SARS-CoV-2 infections. They also compared the brain health of this cohort with a control group of those with influenza or with non-COVID respiratory infections over the same period. 

SOURCE

The Effects of Loneliness and Our Brain function: poorer physical and mental health

One review of the science of loneliness found that people with stronger social relationships have a 50 per cent increased likelihood of survival over a set period of time compared with those with weaker social connections. Other studies have linked loneliness to cardiovascular disease, inflammation, and depression.

For loneliness researchers the pandemic has provided an unprecedented natural experiment in the impact that social isolation might have on our brains. As millions of people across the world emerge from months of reduced social contact, a new neuroscience of loneliness is starting to figure out why social relationships are so crucial to our health.

Neural basis of Emotion

Desire for Social Interaction

Are there neurological differences between people who experience short-term isolation and those who have been isolated for long stretches of time? What kinds of social interactions satisfy our social cravings? Is a video call enough to quell our need for social contact, or do some people require an in-person connection to really feel satiated?

START QUOTE

Julianne Holt-Lunstad, a psychology professor at Brigham Young University in the US and the author of two major studies on social isolation and health. “We have a lot of data that very robustly shows that both isolation and loneliness put us at increased risk for premature mortality—and conversely, that being socially connected is protective and reduces our risk,” she says.

START QUOTE

“Trying to investigate isolation or loneliness is not as straightforward in humans. In humans, being lonely is not necessarily correlated with how many people are around you,” says Tomova. She is particularly interested in the impact that the pandemic might have had on young people whose cognitive and social skills are still developing. “I think we will see potentially some differences in how their social behavior developed or things like that,” she says. But as is always the case in the uncertain world of loneliness research, the opposite could be true. “It could also be that most people are fine, because maybe social media does fulfill our social needs really well.”

SOURCE

https://www.wired.co.uk/article/lockdown-loneliness-neuroscience

The Weird Science of Loneliness and Our Brains – Social isolation as been linked to poorer physical and mental health, but scientists are finally starting to understand its neurological impact

Read Full Post »


COVID-related financial losses at Mass General Brigham

Reporter: Aviva Lev-Ari, PhD, RN

Based on

Mass General Brigham reports COVID-related financial losses not as bad as expected

By Priyanka Dayal McCluskey Globe Staff,Updated December 11, 2020, 3:02 p.m.

START QUOTE

The state’s largest hospital system on Friday reported the worst financial loss in its history while fighting the COVID-19 pandemic — but still ended the fiscal year in better shape than expected.

Mass General Brigham, formerly known as Partners HealthCare, lost $351 million on operations in the fiscal year that ended Sept. 30. In 2019, the system recorded a gain of $382 million.

The loss, however, is not as great as projected, thanks in part to an infusion of federal aid and patients returning to hospitals in large numbers after the first COVID surge receded.

“2020 is like no other year,” said Peter Markell, chief financial officer at Mass General Brigham, which includes Massachusetts General Hospital, Brigham and Women’s Hospital, and several community hospitals. “At the end of the day, we came out of this better than we thought we might.”

Total revenue for the year remained relatively stable at about $14 billion.

When the pandemic first hit Massachusetts in March, hospitals across the state suddenly experienced sharp drops in revenue because they canceled so much non-COVID care to respond to the crisis at hand. They also faced new costs related to COVID, including the personal protective equipment needed to keep health care workers safe from infection.

Federal aid helped to make up much of the losses, including $546 million in grant money that went to Mass General Brigham. The nonprofit health system also slashed capital expenses in half, by about $550 million, and temporarily froze employee wages and cut their retirement benefits.

Among the unusual new costs for Mass General Brigham this year was the expense of building a field hospital, Boston Hope, at the Boston Convention and Exhibition Center. The project cost $15 million to $20 million, Markell said, and Mass General Brigham is working to recoup those costs from government agencies.

The second surge of COVID, now underway, could hit hospitals’ bottom lines again, though Markell expects a smaller impact this time. One reason is because hospitals are trying to treat most of the patients who need care for conditions other than COVID even while treating growing numbers of COVID patients. In the spring, hospitals canceled vastly more appointments and procedures in anticipation of the first wave of COVID.

Mass General Brigham hospitals were treating more than 300 COVID patients on Friday, among the more than 1,600 hospitalized across the state.

Steve Walsh, president of the Massachusetts Health & Hospital Association, said hospitals across the state will need more federal aid as they continue battling COVID into the new year.

“The financial toll of COVID-19 has been felt by every hospital and health care organization in the Commonwealth,” he said. “Those challenges will continue during 2021.”


Priyanka Dayal McCluskey can be reached at priyanka.mccluskey@globe.com. Follow her on Twitter @priyanka_dayal.

END QUOTE

SOURCE

https://www.bostonglobe.com/2020/12/11/business/mass-general-brigham-reports-covid-related-financial-losses-better-than-expected/?p1=Article_Inline_Related_Box

Integration of Mass General Hospital and Brigham Women’s Hospital was accelerated by the COVID-19 pandemic

Reporter: Aviva Lev-Ari, PhD, RN

BASED on

At Mass General Brigham, a sweeping effort to unify hospitals and shed old rivalries

Executives say greater cooperation is necessary to stay relevant in a dynamic and competitive health care industry. But the aggressive push to integrate is stirring tensions and sowing discontent among doctors and hospital leaders.

By Priyanka Dayal McCluskey and Larry Edelman Globe Staff and Globe Columnist,Updated March 27, 2021, 6:15 p.m.125

https://www.bostonglobe.com/2021/03/27/business/mass-general-brigham-sweeping-effort-unify-hospitals-shed-old-rivalries/?s_campaign=breakingnews:newsletter

START QUOTE

The work of integration was accelerated by the COVID-19 pandemic. As patients flooded hospitals last spring, Mass General Brigham — not each of its individual hospitals — set pandemic policies, from what kind of personal protective equipment health care providers should wear, to which visitors were allowed inside hospitals, to how employees would be paid if they were out sick with the virus.

During the winter surge of COVID, Mass General Brigham officials closely tracked beds across their system and transferred patients daily from one hospital to another to ensure that no one facility became overwhelmed.

And, in the early months of the pandemic, the company dropped the name Partners, which meant little to patients, and unveiled a new brand to reflect the strength of its greatest assets, MGH and the Brigham.

Officials at the nonprofit health system have instructeddepartment heads across their hospitals to coordinate better, so, for example, if a patient needs surgery at the Brigham but is facing a long wait, they can refer that patient to another site within Mass General Brigham.

Some executives want patients, eventually, to be able to go online and book appointments at any Mass General Brigham facility, as easily as they make reservations for dinner or a hotel.

Walls described it like this: “How do we put things together that make things better and easier for patients, and leave alone things that are better where they are?

“We’re not going to push things together that don’t fit together,” he said.

And yet the aggressive pursuit of “systemness,” as executives call it, is taking a toll. Physicians and hospital leaders are struggling with the loss of control over their institutions and worried that the new era of top-down management threatens to homogenize a group of hospitals with different cultures and identities.

Veteran physicians and leaders have been surprised and upset by the power shift that is stripping them of the ability to make key decisions and unhappy with abrupt changes they feel are occurring with little discussion. Most are uncomfortable sharing their concerns publicly.

“If you’re not on the train, you’re getting run over by the train,” said one former Mass General Brigham executive who requested anonymity in orderto speak openly. “It’s not an environment to invite debate.”

Amid the restructuring, senior executives are departing in droves. They include the CEO of the MGH physicians group, Dr. Timothy Ferris; Brigham and Women’s president Dr. Elizabeth Nabel; chief financial officer of the system, Peter Markell; Cooley Dickinson Hospital president Joanne Marqusee; and president of Spaulding Rehabilitation Network, David Storto.

Some also fear the internal discord could hinder Mass General Brigham’s ability to attract talented leaders.

Top executives acknowledge there is angst — “Change is hard,” Klibanski said — but are pushing ahead.

MORE

https://www.bostonglobe.com/2021/03/27/business/mass-general-brigham-sweeping-effort-unify-hospitals-shed-old-rivalries/?s_campaign=breakingnews:newsletter

Read Full Post »


The WHO team is expected to soon publish a 300-page final report on its investigation, after scrapping plans for an interim report on the origins of SARS-CoV-2 — the new coronavirus responsible for killing 2.7 million people globally

Reporter: Aviva Lev-Ari, PhD, RN

UPDATED on 4/1/2021

Coronavirus: More work needed to rule out China lab leak theory says WHO

START QUOTE

The head of the World Health Organization (WHO) has said further investigation is needed to conclusively rule out that Covid-19 emerged from a laboratory in China.

Tedros Adhanom Ghebreyesus said that although a lab leak was the least likely cause, more research was needed.

The US and other countries have criticised China for failing to provide the WHO with sufficient data.

Beijing has always dismissed the allegations of a virus leak.

A report by WHO and Chinese experts released on Tuesday, said the lab leak explanation was highly unlikely and the virus had probably jumped from bats to humans via another intermediary animal.

China has yet to respond to the WHO’s latest statement.

‘All hypothesis on the table’

However the theory that the virus might have come from a leak in a laboratory “requires further investigation, potential with additional missions involving specialist experts,” Dr Tedros said on Tuesday.

“Let me say clearly that as far as WHO is concerned, all hypothesis remain on the table,” he added.

The virus was first detected in Wuhan, in China’s Hubei province in late 2019. An international team of experts travelled to to the city in January to probe the origins of the virus.

The team investigated all possibilities, including one theory that the virus had originated at the Wuhan Institute of Virology. The institute is the world’s leading authority on the collection, storage and study of bat coronaviruses.

International criticism

In response to the WHO report, the US and 13 allies including South Korea, Australia and the UK voiced concern over the findings and urged China to provide “full access” to experts.

The statement said the mission to Wuhan was “significantly delayed and lacked access to complete, original data and samples”.

“Scientific missions like these should be able to do their work under conditions that produce independent and objective recommendations and findings.”

The group pledged to work together with the WHO.

Former US President Donald Trump was among those who supported the theory that the virus might have escaped from a lab.

WHO investigation team leader, Peter Ben Embarek said on Tuesday his team had felt under political pressure, including from outside China but said he was never pressed to remove anything from the team’s final report.

He also confirmed his team had found no evidence that any laboratories in Wuhan were involved in the outbreak.

MORE …

SOURCE

https://www.bbc.com/news/world-asia-china-56581246

@@@@

Ex-CDC Director Robert Redfield believes COVID-19 came from Wuhan lab

By Lia Eustachewich

March 26, 2021 | 10:03am | Updated

START QUOTE

The former director of the Centers for Disease Control and Prevention believes the virus that causes COVID-19 escaped from a lab in Wuhan, China, according to a new interview.

Robert Redfield told CNN on Friday that it was his “opinion” that SARS-CoV-2 — the new coronavirus responsible for killing 2.7 million people globally — did not evolve naturally.

“I’m of the point of view that I still think the most likely etiology of this pathology in Wuhan was from a laboratory — escaped,” said Redfield, who led the CDC during the height of the pandemic. “Other people don’t believe that. That’s fine. Science will eventually figure it out.”

Researchers believe the deadly and highly transmissible strain of coronavirus behind the global pandemic mutated from a virus that infects animals — namely, bats — to one that sickens humans.

But some believe the virus was somehow released from the Wuhan Institute of Virology — which is the only lab in China authorized to study the most dangerous known pathogens, according to Axios.

“It’s not unusual for respiratory pathogens that are being worked on in a laboratory to infect the laboratory worker. … That’s not implying any intentionality,” Redfield said. “It’s my opinion, right? But I am a virologist. I have spent my life in virology.

“I do not believe this somehow came from a bat to a human and at that moment in time, that the virus came to the human, became one of the most infectious viruses that we know in humanity for human-to-human transmission.”

Redfield said usually when a virus jumps from animals to humans, “it takes a while for it to figure out how to become more and more efficient in human-to-human transmission.”

SOURCE

START QUOTE

What they’re saying: “I’m of the point of view that I still think the most likely etiology of this pathology in Wuhan was from a laboratory. Escaped. Other people don’t believe that. That’s fine. Science will eventually figure it out,” Redfield told CNN’s Sanjay Gupta.

  • “It’s not unusual for respiratory pathogens that are being worked on in a laboratory to infect the laboratory worker. … That’s not implying any intentionality. It’s my opinion, right? But I am a virologist. I have spent my life in virology,” he continued.
  • “I do not believe this somehow came from a bat to a human and at that moment in time that the virus came to the human, became one of the most infectious viruses that we know in humanity for human-to-human transmission.”

Between the lines: Lab accidents in the U.S. are not especially rare, as USA Today’s Alison Young noted in a recent opinion piece arguing why the Wuhan lab theory cannot be ruled out. The CDC itself experienced a possible contamination in a lab where it was making COVID-19 test kits early in the pandemic.

What to watch: The WHO team is expected to soon publish a 300-page final report on its investigation, after scrapping plans for an interim report amid mounting tensions between the U.S. and China.

SOURCE

Read Full Post »


McKinsey experts on COVID-19: Implications for business

 

https://www.mckinsey.com/business-functions/risk/our-insights/covid-19-implications-for-business?cid=other-eml-alt-mip-mck

Reporter on Highlights: Joel T. Shertok, PhD

JTS – 11/17/20

 

  • COVID-19-vaccine trial: a leading candidate has an efficacy rate of about 90 percent.
  • The gap between incoming and outgoing Treasury funds may reach $30 trillion soon.
  • Our latest research shows a particularly effective bridge for governments to consider: real estate.
  • Many businesses will embrace sustainability; voluntary carbon markets can help them reach their goals.
  • China, the world’s growth engine for the past 25 years, has come back
  • Consumer behavior has changed, pockets of growth are shifting, and leadership and management practices are in flux
  • Likely Pandemic scenarios:
  • A muted recovery
  • A prolonged and insufficient recovery
  • As the unrelenting COVID-19 pandemic rolls on, the future isn’t what it used to be: what used to be a simple idea now comes freighted with caveats, assumptions, and speculations.
  • The auto industry is one of the world’s largest and has been devastated by the pandemic: sales may drop by 20 to 30 percent in 2020, and we estimate that profits will fall by $100 billion.
  • The US restaurant industry has given many iconic brands to the rest of the world. But today, the sector is in trouble.
  • People don’t order sides, appetizers, and desserts as frequently when they’re ordering for delivery—but as leaders know, those items are often the difference between profit and loss.
  • For banks, the pandemic has changed everything. Risk-management teams are running hard to catch up with cascades of credit risk, among other challenges.
  • Ethnic minority groups have made progress. But the COVID-19 crisis threatens that progress;
  • All ethnic-minority groups have higher age-adjusted COVID-19-related death rates than white people do.
  • In the middle of the deepest recession in memory, stock markets are reaching new highs. Why the disconnect?
  • Many investors still take a long-term perspective; they are looking ahead to the end of the pandemic.
  • Another factor: five big-tech companies now make up 21 percent of the S&P 500,
  • The overall stock market can do relatively well even when employment and GDP are severely depressed.
  • Companies can expect a disruption to their production lines of one to two months—a very long time.
  • The effects of the COVID-19 crisis have exacerbated gender disparities and their implications for women at work, especially for mothers, female senior leaders, and Black women across America.
  • The exodus might include as many as two million women. That would raise a significant barrier to achieving gender parity in leadership roles in years to come.
  • The global economic contractions resulting from the COVID-19 pandemic have far exceeded those of the Great Recession that ended in 2009 and have occurred at a much faster rate, hitting all sectors and many of the world’s largest employers.
  • Two important issues facing healthcare providers. First, similarities in flu and COVID-19 symptoms could lead to a threefold spike in demand for COVID-19 testing as flu season in the Northern Hemisphere approaches.
  • Second, the crisis has also led to a surgical backlog for elective procedures because of lack of hospital capacity, workforce shortages, and new safety protocols.

SOURCE

https://www.mckinsey.com/business-functions/risk/our-insights/covid-19-implications-for-business?cid=other-eml-alt-mip-mck

 

Read Full Post »


Approaches and Solutions for Management of the COVID Pandemic

Reporter: Aviva Lev- Ari, PhD, RN and Stephen J. Williams, PhD  
 
 
 
 
 
October 8, 2020 N Engl J Med 2020; 383:1479-1480 DOI: 10.1056/NEJMe2029812

 

Dying in a Leadership Vacuum

CONTINUE TO READ AT THE SOURCE N Engl J Med 2020; 383:1479-1480 DOI: 10.1056/NEJMe2029812   Janice Hopkins Tanne. (2020) Covid 19: NEJM and former CDC director launch stinging attacks on US response. BMJ, m3925. BMJ 2020;371:m3925

Covid 19: NEJM and former CDC director launch stinging attacks on US response

Janice Hopkins Tanne Author affiliations

The US is “dying in a leadership vacuum,” in responding to the covid-19 pandemic, the New England Journal of Medicine has said in an editorial.

“Our leaders have failed. They have taken a crisis and turned it into a tragedy,” the NEJM editors said. US leaders are “dangerously incompetent,” have undercut trust in science and in government,” and should be voted out,1 the journal said.

The intervention came as a former director of the Centers for Disease Control and Prevention (CDC) suggested the current CDC director should update staff in writing about the agency’s failings, apologise, and resign.23

The US leads the world in the death rate from covid-19, which is far higher than larger countries and those with less sophisticated technology and health services, the editors said.

“We have failed at almost every step,” they wrote, describing problems with supplies of personal protective equipment, delays in testing, and failure to employ quarantine, isolation, and social distancing appropriately and quickly. Government inaction has led to business losses and unemployment.

Earlier, William Foege, former director of the CDC and a leader in smallpox eradication, criticised the US response and the failure of the CDC. He sent a letter to Robert Redfield, the current CDC director, asking him to write to CDC employees describing the White House’s failure to put the CDC in charge of the covid-19 pandemic and then resign. A letter, he wrote, would be on the record.

Foege called the US response to the pandemic “a slaughter and not just a political dispute” that had turned the CDC’s reputation from “gold to tarnished brass.”

Foege is emeritus presidential distinguished professor of international health at Emory University. He was director of the Carter Center’s Task Force for Child Survival and senior medical advisor to the Bill and Melinda Gates Foundation. President Barack Obama awarded him the Presidential Medal of Freedom, the nation’s highest civilian honour, in 2012. His private letter, written on 23 September, was published by USA Today on 7 October.

Redfield, a virologist with expertise in HIV/AIDS and a clinician, served in the US Army’s medical corps. He co-founded the University of Maryland’s Institute of Human Virology and was chief of infectious diseases at the university’s medical school.

Foege wrote, “You don’t want to be seen, in the future, as forsaking your role as servant to the public in order to become a servant to a corrupt president. You could send a letter to all CDC employees (a letter leaves a record and avoids the chance of making a mistake with a speech) laying out the facts. The White House will, of course, respond with fury. But you will have right on your side. Like Martin Luther, you can say, ‘Here I stand, I cannot do otherwise.’”

Among the truths that need to be faced, Foege said, are that, despite White House spin attempts, the failure of the US public health system is because of “the incompetence and illogic of the White House programme.”

The White House failed to put the CDC in charge of the pandemic, violating rules of public health so that “people and the media go to the academic community for truth, rather than to CDC,” Foege’s letter says. Unlike former responses to health crises, there has been no federal plan, “resulting in 50 states developing their own plans, often in competition.”

The need to form coalitions to fight the pandemic “has been ignored as the president thrives instead on creating divisions, and the need for global cooperation has been squandered by an ‘America first’ policy. The best decisions are based on the best science while the best results are based on the best management. The White House has rejected both science and good management,” Foege wrote.

Foege, the CDC, Redfield, and the White House have not publicly commented on the letter.

References
  SOURCES for the NEJM https://www.nejm.org/doi/full/10.1056/NEJMe2029812?query=recirc_mostViewed_railB_article https://www.nejm.org/doi/full/10.1056/NEJMe2029812#.X39d2y9tN84.twitter Janice Hopkins Tanne. (2020) Covid 19: NEJM and former CDC director launch stinging attacks on US response. BMJ, m3925. BMJ 2020;371:m3925

Covid 19: NEJM and former CDC director launch stinging attacks on US response

BMJ 2020371 doi: https://doi.org/10.1136/bmj.m3925 (Published 08 October 2020) Cite this as: BMJ 2020;371:m3925   References
  1. Johns Hopkins University Coronavirus Resource Center. COVID-19 dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (https://coronavirus.jhu.edu/map.html. opens in new tab).

    Google Scholar. opens in new tab
  2. Total number of COVID-19 tests per confirmed case, September 14, 2020. Our World in Data (https://ourworldindata.org/grapher/number-of-covid-19-tests-per-confirmed-case. opens in new tab).

    Google Scholar. opens in new tab
  3. McGinley L, Abutaleb L, Johnson CY. Inside Trump’s pressure campaign on federal scientists over a Covid-19 treatment. Washington Post. August 302020 (https://www.washingtonpost.com/health/convalescent-plasma-treatment-covid19-fda/2020/08/29/e39a75ec-e935-11ea-bc79-834454439a44_story.html. opens in new tab).

    Google Scholar. opens in new tab
  4. Haberman M. Trump admits downplaying the virus knowing it was ‘deadly stuff.’ New York Times. September 92020 (https://www.nytimes.com/2020/09/09/us/politics/woodward-trump-book-virus.html. opens in new tab).

    Google Scholar
Related Articles

 

Other related articles published in this Open Access Online Scientific Journal include the following EIGHT topics we cover since March 14, 2020 on LPBI Group’s Coronavirus PORTAL

https://pharmaceuticalintelligence.com/coronavirus-portal/

Eight COVID-19 Topics Covered and Lead Curators are:

  1. Breakthrough News Corner
  2. Development of Medical Counter-measures for 2019-nCoV, CoVid19, Coronavirus
  3. An Epidemiological Approach Stephen J. Williams, PhD and Aviva Lev-Ari, PhD, RN Lead Curators – e–mail Contacts: sjwilliamspa@comcast.net and avivalev-ari@alum.berkeley.edu
  4. Community Impact Stephen J. Williams, PhD and Irina Robu, PhD Lead Curators – e–mail Contacts: irina.stefania@gmail.com and sjwilliamspa@comcast.net
  5. Economic Impact of The Coronavirus Pandemic Dr. Joel Shertok, PhD Lead Curator – e–mail Contact: jshertok@processindconsultants.com
  6. Voices of Global Citizens: Impact of The Coronavirus Pandemic, Gail S. Thornton, M.A. Lead Curator – e–mail Contact: gailsthornton@yahoo.com
  7. Diagnosis of Coronavirus Infection by Medical Imaging and Cardiovascular Impacts of Viral Infection, Aviva Lev-Ari, PhD, RN Lead Curator e-mail contact: avivalev-ari@alum.berkeley.edu
  8. Key Opinion Leaders Followed by LPBI Aviva Lev-Ari, PhD, RN and Dr. Ofer Markman, PhD Lead Curators e-mail contacts: oferm2015@gmail.com and avivalev-ari@alum.berkeley.edu

 

Read Full Post »


The lessons from the Covid-19 response, according to Anthony Fauci

Reporter : Irina Robu, PhD

 

UPDATED on 10/18/2020

 

 

Since COVID-19 was declared an international pandemic, the world has learned difficult lessons according to Dr. Anthony Fauci. They are as follows:

  • Don’t understand the impact of the pandemic. Don’t ever estimate [an outbreak] as it evolves and don’t try to look at the rosy side of things.
  • Always do scientifically sound research.
  • Adapt to new information. If you look at what we knew in February compared to what we know now [about Covid-19], there really are a lot of differences. The role of masks, the role of aerosol, the role of indoor vs. outdoors, closed spaces. You’ve just got to be humble enough to realize that we don’t know it all from the get-go and even as we get into it.
  • Address existing health care disparities. There is a high number of hospitalizations with COVID within African-American and Latin community.

SOURCE

https://www.statnews.com/2020/09/10/anthony-fauci-lessons-learned-covid19-pandemic

Read Full Post »


From AAAS Science News on COVID19: New CRISPR based diagnostic may shorten testing time to 5 minutes

Reporter: Stephen J. Williams, Ph.D.

 

 

 

 

 

 

 

 

 

A new CRISPR-based diagnostic could shorten wait times for coronavirus tests.

 

 

New test detects coronavirus in just 5 minutes

By Robert F. ServiceOct. 8, 2020 , 3:45 PM

Science’s COVID-19 reporting is supported by the Pulitzer Center and the Heising-Simons Foundation.

 

Researchers have used CRISPR gene-editing technology to come up with a test that detects the pandemic coronavirus in just 5 minutes. The diagnostic doesn’t require expensive lab equipment to run and could potentially be deployed at doctor’s offices, schools, and office buildings.

“It looks like they have a really rock-solid test,” says Max Wilson, a molecular biologist at the University of California (UC), Santa Barbara. “It’s really quite elegant.”

CRISPR diagnostics are just one way researchers are trying to speed coronavirus testing. The new test is the fastest CRISPR-based diagnostic yet. In May, for example, two teams reported creating CRISPR-based coronavirus tests that could detect the virus in about an hour, much faster than the 24 hours needed for conventional coronavirus diagnostic tests.CRISPR tests work by identifying a sequence of RNA—about 20 RNA bases long—that is unique to SARS-CoV-2. They do so by creating a “guide” RNA that is complementary to the target RNA sequence and, thus, will bind to it in solution. When the guide binds to its target, the CRISPR tool’s Cas13 “scissors” enzyme turns on and cuts apart any nearby single-stranded RNA. These cuts release a separately introduced fluorescent particle in the test solution. When the sample is then hit with a burst of laser light, the released fluorescent particles light up, signaling the presence of the virus. These initial CRISPR tests, however, required researchers to first amplify any potential viral RNA before running it through the diagnostic to increase their odds of spotting a signal. That added complexity, cost, and time, and put a strain on scarce chemical reagents. Now, researchers led by Jennifer Doudna, who won a share of this year’s Nobel Prize in Chemistry yesterday for her co-discovery of CRISPR, report creating a novel CRISPR diagnostic that doesn’t amplify coronavirus RNA. Instead, Doudna and her colleagues spent months testing hundreds of guide RNAs to find multiple guides that work in tandem to increase the sensitivity of the test.

In a new preprint, the researchers report that with a single guide RNA, they could detect as few as 100,000 viruses per microliter of solution. And if they add a second guide RNA, they can detect as few as 100 viruses per microliter.

That’s still not as good as the conventional coronavirus diagnostic setup, which uses expensive lab-based machines to track the virus down to one virus per microliter, says Melanie Ott, a virologist at UC San Francisco who helped lead the project with Doudna. However, she says, the new setup was able to accurately identify a batch of five positive clinical samples with perfect accuracy in just 5 minutes per test, whereas the standard test can take 1 day or more to return results.

The new test has another key advantage, Wilson says: quantifying a sample’s amount of virus. When standard coronavirus tests amplify the virus’ genetic material in order to detect it, this changes the amount of genetic material present—and thus wipes out any chance of precisely quantifying just how much virus is in the sample.

By contrast, Ott’s and Doudna’s team found that the strength of the fluorescent signal was proportional to the amount of virus in their sample. That revealed not just whether a sample was positive, but also how much virus a patient had. That information can help doctors tailor treatment decisions to each patient’s condition, Wilson says.

Doudna and Ott say they and their colleagues are now working to validate their test setup and are looking into how to commercialize it.

Posted in:

doi:10.1126/science.abf1752

Robert F. Service

Bob is a news reporter for Science in Portland, Oregon, covering chemistry, materials science, and energy stories.

 

Source: https://www.sciencemag.org/news/2020/10/new-test-detects-coronavirus-just-5-minutes

Other articles on CRISPR and COVID19 can be found on our Coronavirus Portal and the following articles:

The Nobel Prize in Chemistry 2020: Emmanuelle Charpentier & Jennifer A. Doudna
The University of California has a proud legacy of winning Nobel Prizes, 68 faculty and staff have been awarded 69 Nobel Prizes.
Toaster Sized Machine Detects COVID-19
Study with important implications when considering widespread serological testing, Ab protection against re-infection with SARS-CoV-2 and the durability of vaccine protection

Read Full Post »


Miniproteins against the COVID-19 Spike protein may be therapeutic

Reporter: Stephen J. Williams, PhD

Computer-designed proteins may protect against coronavirus

At a Glance

  • Researchers designed “miniproteins” that bound tightly to the SARS-CoV-2 spike protein and prevented the virus from infecting human cells in the lab.
  • More research is underway to test the most promising of the antiviral proteins.

 

 

 

 

 

 

 

An artist’s conception of computer-designed miniproteins (white) binding coronavirus spikes. UW Institute for Protein Design

The surface of SARS-CoV-2, the virus that causes COVID-19, is covered with spike proteins. These proteins latch onto human cells, allowing the virus to enter and infect them. The spike binds to ACE2 receptors on the cell surface. It then undergoes a structural change that allows it to fuse with the cell. Once inside, the virus can copy itself and produce more viruses.

Blocking entry of SARS-CoV-2 into human cells can prevent infection. Researchers are testing monoclonal antibody therapies that bind to the spike protein and neutralize the virus. But these antibodies, which are derived from immune system molecules, are large and not ideal for delivery through the nose. They’re also often not stable for long periods and usually require refrigeration.

Researchers led by Dr. David Baker of the University of Washington set out to design synthetic “miniproteins” that bind tightly to the coronavirus spike protein. Their study was funded in part by NIH’s National Institute of General Medical Sciences (NIGMS) and National Institute of Allergy and Infectious Diseases (NIAID). Findings appeared in Science on September 9, 2020.

The team used two strategies to create the antiviral miniproteins. First, they incorporated a segment of the ACE2 receptor into the small proteins. The researchers used a protein design tool they developed called Rosetta blueprint builder. This technology allowed them to custom build proteins and predict how they would bind to the receptor.

The second approach was to design miniproteins from scratch, which allowed for a greater range of possibilities. Using a large library of miniproteins, they identified designs that could potentially bind within a key part of the coronavirus spike called the receptor binding domain (RBD). In total, the team produced more than 100,000 miniproteins.

Next, the researchers tested how well the miniproteins bound to the RBD. The most promising candidates then underwent further testing and tweaking to improve binding.

Using cryo-electron microscopy, the team was able to build detailed pictures of how two of the miniproteins bound to the spike protein. The binding closely matched the predictions of the computational models.

Finally, the researchers tested whether three of the miniproteins could neutralize SARS-CoV-2. All protected lab-grown human cells from infection. Candidates LCB1 and LCB3 showed potent neutralizing ability. These were among the designs created from the miniprotein library. Tests suggested that these miniproteins may be more potent than the most effective antibody treatments reported to date.

“Although extensive clinical testing is still needed, we believe the best of these computer-generated antivirals are quite promising,” says Dr. Longxing Cao, the study’s first author. “They appear to block SARS-CoV-2 infection at least as well as monoclonal antibodies but are much easier to produce and far more stable, potentially eliminating the need for refrigeration.”

Notably, this study demonstrates the potential of computational models to quickly respond to future viral threats. With further development, researchers may be able to generate neutralizing designs within weeks of obtaining the genome of a new virus.

—by Erin Bryant

Source: https://www.nih.gov/news-events/nih-research-matters/computer-designed-proteins-may-protect-against-coronavirus

Original article in Science

De novo design of picomolar SARS-CoV-2 miniprotein inhibitors

 

  1. View ORCID ProfileLongxing Cao1,2
  2. Inna Goreshnik1,2
  3. View ORCID ProfileBrian Coventry1,2,3
  4. View ORCID ProfileJames Brett Case4
  5. View ORCID ProfileLauren Miller1,2
  6. Lisa Kozodoy1,2
  7. Rita E. Chen4,5
  8. View ORCID ProfileLauren Carter1,2
  9. View ORCID ProfileAlexandra C. Walls1
  10. Young-Jun Park1
  11. View ORCID ProfileEva-Maria Strauch6
  12. View ORCID ProfileLance Stewart1,2
  13. View ORCID ProfileMichael S. Diamond4,7
  14. View ORCID ProfileDavid Veesler1
  15. View ORCID ProfileDavid Baker1,2,8,*

See all authors and affiliations

Science  09 Sep 2020:
eabd9909
DOI: 10.1126/science.abd9909

Abstract

Targeting the interaction between the SARS-CoV-2 Spike protein and the human ACE2 receptor is a promising therapeutic strategy. We designed inhibitors using two de novo design approaches. Computer generated scaffolds were either built around an ACE2 helix that interacts with the Spike receptor binding domain (RBD), or docked against the RBD to identify new binding modes, and their amino acid sequences designed to optimize target binding, folding and stability. Ten designs bound the RBD with affinities ranging from 100pM to 10nM, and blocked ARS-CoV-2 infection of Vero E6 cells with IC 50 values between 24 pM and 35 nM; The most potent, with new binding modes, are 56 and 64 residue proteins (IC 50 ~ 0.16 ng/ml). Cryo-electron microscopy structures of these minibinders in complex with the SARS-CoV-2 spike ectodomain trimer with all three RBDs bound are nearly identical to the computational models. These hyperstable minibinders provide starting points for SARS-CoV-2 therapeutics.

 

RESEARCH ARTICLE

De novo design of picomolar SARS-CoV-2 miniprotein inhibitors

  1. View ORCID ProfileLongxing Cao1,2
  2. Inna Goreshnik1,2
  3. View ORCID ProfileBrian Coventry1,2,3
  4. View ORCID ProfileJames Brett Case4
  5. View ORCID ProfileLauren Miller1,2
  6. Lisa Kozodoy1,2
  7. Rita E. Chen4,5
  8. View ORCID ProfileLauren Carter1,2
  9. View ORCID ProfileAlexandra C. Walls1
  10. Young-Jun Park1
  11. View ORCID ProfileEva-Maria Strauch6
  12. View ORCID ProfileLance Stewart1,2
  13. View ORCID ProfileMichael S. Diamond4,7
  14. View ORCID ProfileDavid Veesler1
  15. View ORCID ProfileDavid Baker1,2,8,*

See all authors and affiliations

Science  09 Sep 2020:
eabd9909
DOI: 10.1126/science.abd9909

Abstract

Targeting the interaction between the SARS-CoV-2 Spike protein and the human ACE2 receptor is a promising therapeutic strategy. We designed inhibitors using two de novo design approaches. Computer generated scaffolds were either built around an ACE2 helix that interacts with the Spike receptor binding domain (RBD), or docked against the RBD to identify new binding modes, and their amino acid sequences designed to optimize target binding, folding and stability. Ten designs bound the RBD with affinities ranging from 100pM to 10nM, and blocked ARS-CoV-2 infection of Vero E6 cells with IC 50 values between 24 pM and 35 nM; The most potent, with new binding modes, are 56 and 64 residue proteins (IC 50 ~ 0.16 ng/ml). Cryo-electron microscopy structures of these minibinders in complex with the SARS-CoV-2 spike ectodomain trimer with all three RBDs bound are nearly identical to the computational models. These hyperstable minibinders provide starting points for SARS-CoV-2 therapeutics.

 

SARS-CoV-2 infection generally begins in the nasal cavity, with virus replicating there for several days before spreading to the lower respiratory tract (1). Delivery of a high concentration of a viral inhibitor into the nose and into the respiratory system generally might therefore provide prophylactic protection and/or therapeutic benefit for treatment of early infection, and could be particularly useful for healthcare workers and others coming into frequent contact with infected individuals. A number of monoclonal antibodies are in development as systemic treatments for COVID-19 (26), but these proteins are not ideal for intranasal delivery as antibodies are large and often not extremely stable molecules and the density of binding sites is low (two per 150 KDa. antibody); antibody-dependent disease enhancement (79) is also a potential issue. High-affinity Spike protein binders that block the interaction with the human cellular receptor angiotensin-converting enzyme 2 (ACE2) (10) with enhanced stability and smaller sizes to maximize the density of inhibitory domains could have advantages over antibodies for direct delivery into the respiratory system through intranasal administration, nebulization or dry powder aerosol. We found previously that intranasal delivery of small proteins designed to bind tightly to the influenza hemagglutinin can provide both prophylactic and therapeutic protection in rodent models of lethal influenza infection (11).

Design strategy

We set out to design high-affinity protein minibinders to the SARS-CoV-2 Spike RBD that compete with ACE2 binding. We explored two strategies: first we incorporated the alpha-helix from ACE2 which makes the majority of the interactions with the RBD into small designed proteins that make additional interactions with the RBD to attain higher affinity (Fig. 1A). Second, we designed binders completely from scratch without relying on known RBD-binding interactions (Fig. 1B). An advantage of the second approach is that the range of possibilities for design is much larger, and so potentially a greater diversity of high-affinity binding modes can be identified. For the first approach, we used the Rosetta blueprint builder to generate miniproteins which incorporate the ACE2 helix (human ACE2 residues 23 to 46). For the second approach, we used RIF docking (12) and design using large miniprotein libraries (11) to generate binders to distinct regions of the RBD surface surrounding the ACE2 binding site (Fig. 1 and fig. S1).

 

 

 

 

 

 

 

 

 

 

 

Download high-res image

Fig. 1 Overview of the computational design approaches.

(A) Design of helical proteins incorporating ACE2 helix. (B) Large scale de novo design of small helical scaffolds (top) followed by rotamer interaction field (RIF) docking to identify shape and chemically complementary binding modes.

For full article please  go to Science at https://science.sciencemag.org/content/early/2020/09/08/science.abd9909

 

Read Full Post »


The Impact of COVID-19 on the Human Heart

Reporters: Justin D. Pearlman, MD, PhD, FACC and Aviva Lev-Ari, PhD, RN

The Voice of Dr. Pearlman:

 

 

Editorial

September 22/29, 2020

The COVID-19 Pandemic and the JAMA Network

In 13 Viewpoints in this issue,214 JAMA Network editors reflect on the clinical, public health, operational, and workforce issues related to COVID-19 in each of their specialties. Questions and concerns they identify in their clinical communities include the following:

  • Benefits and harms of treatments and identifying mortality risk markers beyond age and comorbidities

  • Cardiovascular consequences of COVID-19 infection, including risks to those with comorbid hypertension and risks for myocardial injury

  • Risk for direct central nervous system invasion and COVID-19 encephalitis and for long-term neuropsychiatric manifestations in a post–COVID-19 syndrome

  • Risks related to SARS-CoV-2 infection for patients with compromised immunity, such as those receiving treatment for cancer

  • Challenges unique to patients with acute kidney injury and chronic kidney disease

  • Risks of viral transmission from aerosol-generating procedures, including most minimally invasive surgeries, and the need for eye protection as well as personal protective equipment as part of universal precautions

  • The prevalence and pathophysiology of skin findings in patients with COVID-19, determining if they are primary or secondary cutaneous manifestations of infection, and how best to manage them

  • The prevalence and significance of eye findings in patients with COVID-19 and the risk of transmission and infection through ocular surfaces

  • The role of anticoagulation for managing the endotheliopathy and coagulopathy characteristic of the infection in some patients

  • Developmental effects on children of the loss of family routines, finances, older loved ones, school and education, and social-based activities and milestone events

  • Effects of the pandemic, mitigation efforts, and economic downturn on the mental health of patients and frontline clinicians

  • Seasonality of transmission as the pandemic enters its third season

  • How to implement reliable seroprevalence surveys to document progression of the pandemic and effects of public health measures

  • Effects of the pandemic on access to care and the rise of telehealth

  • Consequences of COVID-19 for clinical capabilities, such as workforce availability in several specialties, delays in performing procedures and operations, and implications for medical education and resident recruitment.

Additional important questions that require careful observation and research include

  • Randomized evaluations of treatment: what is effective and safe, and what timing of which drug will reduce morbidity and mortality? Will a combination of therapies be more effective than any single drug?
  • Randomized evaluations of preventive interventions, including convalescent plasma, monoclonal antibodies, and vaccines. Which are effective and safe enough to prevent COVID-19 at a population level?
  • How can COVID-19 vaccines and therapeutics be distributed and paid for in ways that are fair and equitable?
  • Is immunity complete or partial, permanent or temporary, what is its mechanism, and how best is it measured? Can the virus mutate around host defenses?
  • How important are preadolescent children to the spread of infection to older family members and adult communities, and what are the implications for parent, caregiver, and teacher personal risk and disease transmission?
  • Is SARS-CoV-2 like influenza (continually circulating without or with seasonality), measles (transmissible but containable beneath threshold limits), or smallpox and polio (eradicable, or nearly so)?
  • Has the pandemic fundamentally altered the way health care is financed and delivered? By shining a spotlight on health inequities, can the pandemic motivate changes in health care finance, organization, and delivery to reduce those inequities?
  • Cardiology and COVID-19

Cardiology and COVID-19 – Original Article

Bonow  RO, O’Gara  PT, Yancy  CW.  Cardiology and COVID-19.   JAMA. Published online September 22, 2020. doi:10.1001/jama.2020.15088
Article Google Scholar

The initial reports on the epidemiology of coronavirus disease 2019 (COVID-19) emanating from Wuhan, China, offered an ominous forewarning of the risks of severe complications in elderly patients and those with underlying cardiovascular disease, including the development of acute respiratory distress syndrome, cardiogenic shock, thromboembolic events, and death. These observations have been confirmed subsequently in numerous reports from around the globe, including studies from Europe and the US. The mechanisms responsible for this vulnerability have not been fully elucidated, but there are several possibilities. Some of these adverse consequences could reflect the basic fragility of older individuals with chronic conditions subjected to the stress of severe pneumonia similar to influenza infections. In addition, development of type 2 myocardial infarction related to increased myocardial oxygen demand in the setting of hypoxia may be a predominant concern, and among patients with chronic coronary artery disease, an episode of acute systemic inflammation might also contribute to plaque instability, thus precipitating acute coronary syndromes, as has also been reported during influenza outbreaks.

However, in the brief timeline of the current pandemic, numerous publications highlighting the constellation of observed cardiovascular consequences have emphasized certain distinctions that appear unique to COVID-19.1 Although the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) gains entry via the upper respiratory tract, its affinity and selective binding to the angiotensin-converting enzyme 2 (ACE2) receptor, which is abundant in the endothelium of arteries and veins as well as in the respiratory tract epithelium, create a scenario in which COVID-19 is as much a vascular infection as it is a respiratory infection with the potential for serious vascular-related complications. This may explain why hypertension is one of the cardiovascular conditions associated with adverse outcomes. In the early stages of the pandemic, the involvement of the ACE2 receptor as the target for viral entry into cells created concerns regarding the initiation or continuation of treatment with ACE inhibitors and angiotensin receptor antagonists in patients with hypertension, left ventricular dysfunction, or other cardiac conditions. Subsequently, many studies have shown that these drugs do not increase susceptibility to infection or increase disease severity in those who contract the disease,2 thus supporting recommendations from academic societies that these drugs should not be discontinued in patients who develop COVID-19 infections.

Thrombosis, arterial or venous, is a hallmark of severe COVID-19 infections, related both to vascular injury and the prothrombotic cytokines released during the intense systemic inflammatory and immune responses.3 This sets the stage for serious thrombotic complications including acute coronary syndromes, ischemic strokes, pulmonary embolism, and ischemic damage to multiple other organ systems. Such events can complicate the course of any patient with COVID-19 but would be particularly devasting to individuals with preexisting cardiovascular disease.

Another unique aspect of COVID-19 infections that is not encountered by patients with influenza is myocardial injury, manifested by elevated levels of circulating troponin, creatinine kinase-MB, and myoglobin. Hospitalized patients with severe COVID-19 infections and consequent evidence of myocardial injury have a high risk of in-hospital mortality.4 Troponin elevations are most concerning, and when accompanied by elevations of brain natriuretic peptide, the risk is further accentuated. Although myocardial injury could reflect a COVID-19–related acute coronary event, most patients with troponin elevations who undergo angiography do not have epicardial coronary artery obstruction. Rather, those with myocardial injury have a high incidence of acute respiratory distress syndrome, elevation of D-dimer levels, and markedly elevated inflammatory biomarkers such as C-reactive protein and procalcitonin, suggesting that the combination of hypoxia, microvascular thrombosis, and systemic inflammation contributes to myocardial injury. Myocarditis is a candidate explanation for myocardial injury but has been difficult to confirm consistently. However, features of myocarditis have been reported in case reports5 based on clinical presentation and results of noninvasive imaging, but thus far confirmation of myocarditis based on myocardial biopsy or autopsy examinations has been a rare finding.6 Instead, myocardial tissue samples more typically show vascular or perivascular inflammation (endothelialitis) without leukocytic infiltration or myocyte damage.

There remain important unknowns regarding the intermediate and long-term sequelae of COVID-19 infection among hospital survivors. In an autopsy series of patients who died from confirmed COVID-19 without clinical or histological evidence of fulminant myocarditis,7 viral RNA was identified in myocardial tissue in 24 of 39 cases, with viral load of more than 1000 copies/μg of RNA in 16 cases. A cytokine response panel demonstrated upregulation of 6 proinflammatory genes (tumor necrosis factor, interferon γ, CCL4, and interleukin 6, 8, and 18) in the 16 myocardial samples with the high viral RNA levels.

Whether a subclinical viral load and associated cytokine response such as this in survivors of COVID-19 could translate into subsequent myocardial dysfunction and clinical heart failure require further investigation. However, the results of a recent biomarker and cardiac magnetic resonance (CMR) imaging study provide evidence to support this concern.6 Among 100 patients who were studied by CMR after recovery from confirmed COVID-19 infection, of whom 67 did not require hospitalization during the acute phase, left ventricular volume was greater and ejection fraction was lower than that of a control group. Furthermore, 78 patients had abnormal myocardial tissue characterization by CMR, with elevated T1 and T2 signals and myocardial hyperenhancement consistent with myocardial edema and inflammation, and 71 patients had elevated levels of high-sensitivity troponin T. Three patients with the most severe CMR abnormalities underwent myocardial biopsy, with evidence of active lymphocytic infiltration.6 It is noteworthy that all 100 patients in this series had negative COVID-19 test results at the time of CMR study (median, 71 days; interquartile range [IQR], 64-92 days after acute infection). The results of these relatively small series should be interpreted cautiously until confirmed by larger series with longer follow-up and with confirmed clinical outcomes. But the findings do underscore the uncertainty regarding the long-term cardiovascular consequences of COVID-19 in patients who have ostensibly recovered. Of note, a randomized clinical trial of anticoagulation to reduce the risk of thrombotic complications in the posthospital phase of COVID-19 infection is under development through the National Institutes of Health’s set of ACTIV (Accelerating COVID-19 Therapeutic Interventions and Vaccines) initiatives.

In addition, the indirect effects of COVID-19 have become a major concern. Multiple observations during the COVID-19 pandemic confirm a sudden and inexplicable decline in rates of hospital admissions for ST–segment elevation myocardial infarction and other acute coronary syndromes beginning in March and April 2020. This has been a universal experience, with similar findings reported from multiple countries around the world in single-center observations, multicenter registries, and national databases. A concerning increase in out-of-hospital cardiac arrests has also been reported.8 These data suggest that COVID-19 has influenced health care–seeking behavior resulting in fewer presentations of acute coronary syndromes in emergency departments and more out-of-hospital events. Failure to seek appropriate emergency cardiac care could contribute to the observations of increased number of deaths and cardiac arrests, more than the anticipated average during this period8,9 with worse outcomes among those who ultimately do seek care.10 Recent data suggest that admission rates for myocardial infarction may be returning to baseline,10 but outcomes will improve only if patients seek care promptly and hospital systems are not overwhelmed by COVID-19 surges.

Given the ongoing activity of COVID-19, very clear messaging to the public and patients should include the following: heed the warning signs of heart attack, act promptly to initiate emergency medical services, and seek immediate care in hospitals, which have taken every step needed to be safe places. And especially, the messaging should continuously underscore the most important considerations that have been extant since this crisis began—wear a mask and practice physical distancing. In the meantime, the generation of rigorous evidence to inform best practices for diagnosis and management of COVID-19–related cardiovascular disease is a global imperative.

Corresponding Author: Robert O. Bonow, MD, MS, Division of Cardiology, Northwestern University Feinberg School of Medicine, 676 N St Clair St, Ste 600, Chicago, IL 60611 (r-bonow@northwestern.edu)

SOURCE

https://jamanetwork.com/journals/jama/fullarticle/2770858

Read Full Post »

Older Posts »