Feeds:
Posts
Comments

Archive for the ‘Population Health Management’ Category


50,008 views
Apr 22, 2020

496K subscribers

Dmitry Korkin is a professor of bioinformatics and computational biology at Worcester Polytechnic Institute, where he specializes in bioinformatics of complex disease, computational genomics, systems biology, and biomedical data analytics. I came across Dmitry’s work when in February his group used the viral genome of the COVID-19 to reconstruct the 3D structure of its major viral proteins and their interactions with human proteins, in effect creating a structural genomics map of the coronavirus and making this data open and available to researchers everywhere. We talked about the biology of COVID-19, SARS, and viruses in general, and how computational methods can help us understand their structure and function in order to develop antiviral drugs and vaccines.
This conversation is part of the Artificial Intelligence podcast.
Support this podcast by signing up with these sponsors: – Cash App – use code “LexPodcast” and download: – Cash App (App Store): https://apple.co/2sPrUHe – Cash App (Google Play): https://bit.ly/2MlvP5w
EPISODE LINKS: Dmitry’s Website: http://korkinlab.org/ Dmitry’s Twitter: https://twitter.com/dmkorkin
Dmitry’s Paper that we discuss: https://bit.ly/3eKghEM
INFO:
Podcast website: https://lexfridman.com/ai
Apple Podcasts: https://apple.co/2lwqZIr
OUTLINE: 0:00 – Introduction 2:33 – Viruses are terrifying and fascinating 6:02 – How hard is it to engineer a virus? 10:48 – What makes a virus contagious? 29:52 – Figuring out the function of a protein 53:27 – Functional regions of viral proteins 1:19:09 – Biology of a coronavirus treatment 1:34:46 – Is a virus alive? 1:37:05 – Epidemiological modeling 1:55:27 – Russia 2:02:31 – Science bobbleheads 2:06:31 – Meaning of life
CONNECT: – Subscribe to this YouTube channel
– Support on Patreon: https://www.patreon.com/lexfridman
SOURCE

Read Full Post »


 

Contagious

We are in the midst of a pandemic that is impacting people and society in ways that are hard to grasp. The most apparent impact is on physical health. It also effects our attitudes in society, our economy and our cultural life. Throughout history, humanity has had to face the challenge of understanding, managing and fighting viruses.

In the exhibition Contagious we are highlighting Nobel Prize-awarded researchers who have expanded our knowledge about viruses, mapped our immune system and developed vaccines. We also examine the perspectives from Literature and Economics Laureates about the impact of epidemics on life and society. Visit us at the museum or on these pages.

Museums have an important role to play in times of crisis, since they can help people tackle existential questions and provide a broader context. The Nobel Museum is about ideas that have changed the world. The Nobel Prize points to the ability of humans to find solutions to difficult challenges that we face time and time again. It is a source of hope, even in the midst of the crisis.

SOURCE

Nobel Prize Museum

https://nobelprizemuseum.se/en/whats-on/contagious/?utm_content=contagious_text

Coronavirus

On March 11 this year, the World Health Organization announced that the spread of the coronavirus should be classified as a pandemic, that is “an infectious disease that spreads to large parts of the world and affects a large proportion of the population of each country”. Today, nobody knows how many will die in this pandemic, or when, or if, we can have a vaccine against the disease.

SARS-CoV-2, or Severe acute respiratory syndrome coronavirus 2, is an RNA virus from the family coronavirus that causes the respiratory disease covid-19.

The virus was detected at the end of last year in the Wuhan sub-province of China, and in most cases causes milder disease symptoms that disappear within two weeks. But sometimes, especially in certain groups such as the elderly and people with certain other underlying illnesses, the infection becomes more severe and can in some cases lead to death.

The virus is believed to have zoonotic origin, that is, it has been transmitted to humans from another animal. Where the origin of the disease comes from, that is to say from which host animal the virus originates, is still unknown. However, the virus has close genetic similarity to a corona virus carried by some bats, which might indicate where the virus comes from.

This model shows the SARS-CoV-2 virus, which causes the illness covid-19. The globe-shaped envelope has a membrane of fat-like substances. Inside the envelope are proteins bound to RNA molecules, that contain the virus’s genes. Short spikes of proteins and longer spikes of glycoprotein stick out of the envelope and attach to receptors on the surface of attacked cells. The spikes, which are bigger at the top, give the virus its appearance reminiscent of the Sun’s corona. This where the coronavirus’s name comes from.

Testing is an important tool for tracking and preventing the spread of infection during an epidemic.

One type of test looks at if a person is infected by looking for traces of the virus’s RNA genetic material. The test is taken using a swab stick inserted into the throat. The small amounts of RNA or DNA that attach to the swab are analyzed using the PCR technique, which was invented by Kary Mullis in 1983. Ten years later he was awarded the Nobel Prize in Chemistry.

Another type of test looks for antibodies to the virus in the blood. This indicates that the person has had the disease.

https://nobelprizemuseum.se/en/coronavirus/

The first virus ever discovered

We have understood since the 19th century that many diseases are caused by microscopic bacteria that cannot be seen by the naked eye. It turned out that there were even smaller contagions: viruses. Research on viruses has been recognized with several Nobel Prizes.

https://nobelprizemuseum.se/en/the-first-virus-ever-discovered/

Spanish flu

The worst pandemic of the 20th century was the Spanish flu, which swept across the world 1918–1920.

The Spanish flu was caused by an influenza virus. American soldiers at military facilities at the end of World War I were likely an important source of its spread in Europe. The war had just ended, and the pandemic claimed even more lives than the war. Between 50 and 100 million people died in the pandemic.

The Red Cross, an international aid organization, which received the Nobel Peace Prize for its efforts during the war, also took part in fighting the Spanish flu. International Committee of the Red Cross received the prize in 1917, 1944 and 1963.

This photo shows personnel from the Red Cross providing transportation for people suffering from the Spanish flu in St. Louis, Missouri in the United States.

https://nobelprizemuseum.se/en/spanish-flu/

Polio

Polio is an illness that often affects children and young people and that can lead to permanent paralysis.

Polio is a highly infectious RNA virus belonging to the genus Enterovirus. The virus only infects humans and enters the body via droplets such as sneezing and coughing, or through contact with infected people’s feces. Usually, polio infects our respiratory and intestinal tract, but sometimes the virus spreads to the spinal cord and can then cause paralysis. The virus mainly affects children, but most of those infected show no or very mild symptoms.

Vaccines are a way to help our immune system fight viruses. The immune system is the body’s defence mechanism against attacks from viruses and bacteria. A number of Nobel Laureates have researched the immune system and contributed to the development of vaccines.

Hepatitis B

The virus can infect people without them becoming sick. Discoveries in the 1960s enabled both vaccines and tests to prevent the spread.

Hepatitis B can infect humans and apes, and is most common in West Africa and in sub-Saharan Africa. The disease also occurs in the rest of Africa, as well as in areas from the Caspian Sea through to China and Korea and further down to Southeast Asia.

Baruch Blumberg discovered the virus behind hepatitis B and developed a vaccine against the disease.

There are many varieties of hepatitis, or jaundice, that cause inflammation in the liver. When studying blood proteins from people from different parts of the world at the end of the 1960s, Baruch Blumberg unexpectedly discovered an infectious agent for hepatitis B. He showed that the infectious agent was linked to a virus of previously unknown type. The virus can infect people without them becoming sick. The discoveries enabled both vaccines and tests to prevent the spread through blood transfusions.

Baruch Blumberg was awarded the Nobel Prize in Physiology or Medicine 1976. He has summarized what the Nobel Prize meant to him.

https://nobelprizemuseum.se/en/hepatitis-b/

Yellow fever

Each year, Yellow fever causes about 30,000 deaths. The vaccine against yellow fever was produced in the 1930s. A work awarded the Nobel Prize.

Yellow fever is a serious disease caused by a virus that is spread by mosquitos in tropical areas of Africa and South America.

Each year, Yellow fever causes about 200,000 infections and 30,000 deaths. About 90% of the cases occur in Africa. The disease is common in warm, tropical climates such as South America and Africa, but it is not found in Asia.

You may think that the number of people infected would be decreasing, but since the 1980s the number of yellow fever cases has unfortunately increased. This is believed to be due to the fact that more and more people are living in cities, that we are traveling more than before, and an increased climate impact.

Since there is no cure for the disease, preventive vaccination is a very important measure. Max Theiler successfully infected mice with a virus in the 1930s, which opened the door to more in-depth studies. When the virus was transferred between mice, a weakened form of the virus was created that gave monkeys immunity. In 1937, Theiler was able to develop an even weaker version of the virus. This version could be used as a vaccine for people.

Max Theiler was awarded the Nobel Prize in Physiology or Medicine in 1951.

https://nobelprizemuseum.se/en/yellow-fever/

HIV/AIDS

In the early 1980s, reports began to emerge about young men that suffered from unusual infections and cancers that normally only affect patients with weakened immune systems. It turned out to be a previously unknown epidemic, HIV, which spread rapidly across the world.

HIV, which is an abbreviation of human immunodeficiency virus, is a sexually transmitted retrovirus that attacks our immune system. An untreated infection eventually leads to AIDS, or acquired immune deficiency syndrome. In 2008, French scientists Luc Montagnier and Françoise Barré-Sinoussi were awarded the Nobel Prize in Physiology or Medicine for the detection of human immunodeficiency virus.

Watch the interview where Françoise Barré-Sinoussi talks about what it is like to meet patients affected by the virus she discovered.

https://nobelprizemuseum.se/en/hiv-aids/

 

Viruses captured in photos

Viruses are incredibly small and cannot be seen in normal microscopes.

The electron microscope, which was invented by Ernst Ruska and Max Knoll in 1933, made it possible to take pictures of much smaller objects than was previously possible. Ernst Ruska’s brother, Helmut Ruska, was a doctor and biologist, and used early electron microscopes to make images of viruses and other small objects. The tobacco mosaic virus was the first virus captured on film. The development of the electron microscope has enabled increasingly better images to be taken.

Ernst Ruska was awarded the 1986 Nobel Prize in Physics together with Gerd Binnig and Heinrich Röhrer, who developed the scanning electron microscope.

Read more about Ernst Ruska – his life and research. https://www.nobelprize.org/prizes/physics/1986/ruska/facts/

https://nobelprizemuseum.se/en/viruses-captured-in-photos/

 

Epidemics and literature

When epidemics and pandemics strike the world, it isn’t just the physical health of people that are impacted but also ways of life, thoughts and feelings. Nobel Laureates in literature have been effected by epidemics and written about life under real and fictive epidemics.

The coronavirus crisis has had a dramatic impact on our lives and our view of our lives. Olga Tokarczuk is one of the authors who has reflected on this.

Tokarczuk argues that the coronavirus has swept away the illusion that we are the masters of creation and that we can do anything since the world belongs to us. She wonders if the pandemic has forced us into a slower, more natural rhythm in life, but also worries about how it may increase distrust of strangers and worsen inequality among people.

Orhan Pamuk has worked for many years on a novel about a bubonic plague epidemic that struck primarily Asia in 1901. The coronavirus crisis has caused him to consider the similarities between the ongoing pandemic and past epidemics throughout history.

He sees several recurring behaviors when epidemics strike: denial and false information, distrust of individuals belonging to other groups, and theories about a malicious intent behind the pandemic. But epidemics also remind us that we are not alone and allow us to rediscover a sense of solidarity. He writes in The New York Times.

https://nobelprizemuseum.se/en/epidemics-and-literature/

Economics Laureates on the current pandemic

Pandemics have wide-ranging impacts on the economy. Paul Romer and Paul Krugman are two economists who have been active in the public discourse during the coronavirus crisis.

Paul Romer has expressed concerns about the pandemic’s effects on the economy but is optimistic about the possibilities of technology. He supports widespread testing. Those who are infected have to stay home for two weeks while others can work and take part in other ways in society.

Paul Romer was awarded the prize “for integrating technological innovations into long-run macroeconomic analysis.” Paul Romer has demonstrated how knowledge can function as a driver of long-term economic growth. He showed how economic forces govern the willingness of firms to produce new ideas.

His thoughts are developed in his lecture during the Nobel Week 2018.

https://nobelprizemuseum.se/en/economics-laureates-on-the-current-pandemic/

 

Other SOURCE

https://www.nobelprize.org/

 

Read Full Post »


Inflammation BioMarker C-Reactive Protein Guides Use of Systemic Glucocorticoids in Patients with COVID-19: The Effects on Mortality or Use of Mechanical Ventilation – (CRP) ≥20 mg/dL was associated with significantly reduced risk of Mortality or Mechanical Ventilation Efficacy

Reporter: Aviva Lev-Ari, PhD, RN

 

In patients with high levels of inflammation — at least 20 mg/dL — steroid treatment was associated with a 77% reduction in the risk of needing mechanical ventilation or dying (odds ratio [OR], 0.23).

Importantly, treating with steroids when CRP levels were less than 10 mg/dL was associated with an almost threefold increased risk of going on mechanical ventilation or dying (OR, 2.64).

“The laboratory test could potentially be very helpful,” Keller told Medscape Medical News.

https://www.medscape.com/viewarticle/934571

Effect of Systemic Glucocorticoids on Mortality or Mechanical Ventilation in Patients With COVID-19

Article has an altmetric score of 299

Abstract

The efficacy of glucocorticoids in COVID-19 is unclear. This study was designed to determine whether systemic glucocorticoid treatment in COVID-19 patients is associated with reduced mortality or mechanical ventilation. This observational study included 1,806 hospitalized COVID-19 patients; 140 were treated with glucocorticoids within 48 hours of admission. Early use of glucocorticoids was not associated with mortality or mechanical ventilation. However, glucocorticoid treatment of patients with initial C-reactive protein (CRP) ≥20 mg/dL was associated with significantly reduced risk of mortality or mechanical ventilation (odds ratio, 0.23; 95% CI, 0.08-0.70), while glucocorticoid treatment of patients with CRP <10 mg/dL was associated with significantly increased risk of mortality or mechanical ventilation (OR, 2.64; 95% CI, 1.39-5.03). Whether glucocorticoid treatment is associated with changes in mortality or mechanical ventilation in patients with high or low CRP needs study in prospective, randomized clinical trials.

Glucocorticoids are useful as adjunctive treatment for some infections with inflammatory responses, but their efficacy in COVID-19 is unclear. Prior experience with influenza and other coronaviruses may be relevant. A recent meta-analysis of influenza pneumonia showed increased mortality and a higher rate of secondary infections in patients who were administered glucocorticoids.3 For Middle East respiratory syndrome, severe acute respiratory syndrome, and influenza, some studies have demonstrated an association between glucocorticoid use and delayed viral clearance.4-7 However, a recent retrospective series of patients with COVID-19 and ARDS demonstrated a decrease in mortality with glucocorticoid use.8 Glucocorticoids are easily obtained and familiar to providers caring for COVID-19 patients. Hence their empiric use is widespread.8,9

The primary goal of this study was to determine whether early glucocorticoid treatment is associated with reduced mortality or need for MV in COVID-19 patients.

DISCUSSION

The results of this study indicate that early treatment with glucocorticoids is not associated with mortality or need for MV in unselected patients with COVID-19. Subgroup analyses suggest that glucocorticoid-treated patients with markedly elevated CRP may benefit from glucocorticoid treatment, whereas those patients with lower CRP may be harmed. Our findings were consistent after adjustment for clinical characteristics. The public health implications of these findings are hard to overestimate. Given the global growth of the pandemic and that glucocorticoids are widely available and inexpensive, glucocorticoid therapy may save many thousands of lives. Equally important because we have been able to identify a group that may be harmed, some patients may be saved because glucocorticoids will not be given.

Our study reaffirms the finding of the as yet unpublished Randomised Evaluation of COVID-19 Therapy (RECOVERY) trial that there is a subset of patients with COVID-19 who benefit from treatment with glucocorticoids.10 Our study extends the findings of the RECOVERY trial in two important ways. First, in addition to finding some patients who may benefit, we also have identified patient groups that may experience harm from treatment with glucocorticoids. This finding suggests choosing the right patients for glucocorticoid treatment is critical to maximize the likelihood of benefit and minimize the risk of harm. Second, we have identified patient groups who are likely to benefit (or be harmed) on the basis of a widely available lab test (CRP).

Our results are also consistent with previous studies of patients with SARS-CoV and MERS-CoV, in which no associations between glucocorticoid treatment and mortality were found.7 However, the results of studies examining the effect of glucocorticoids in patients with COVID-19 are less consistent.8,11,12

Few of the previous studies examined the effects of glucocorticoids in subgroups of patients. In our study, the improved outcomes associated with glucocorticoid use in patients with elevated CRPs is intriguing and may be clinically important. Proinflammatory cytokines, especially interleukin-6, acutely increase CRP levels. Cytokine storm syndrome (CSS) is a hyperinflammatory condition that occurs in a subset of COVID-19 patients, often resulting in multiorgan dysfunction.13 CRP is markedly elevated in CSS,14 and improved outcomes with glucocorticoid therapy in this subgroup may indicate benefit in this inflammatory phenotype. Patients with lower CRP are less likely to have CSS and may experience more harm than benefit associated with glucocorticoid treatment.

Several limitations are inherent to this study. Since it was done at a single center, the results may not be generalizable. As a retrospective analysis, it is subject to confounding and bias. In addition, because patients were included only if they had reached the outcome of death/MV or hospital discharge, the sample size was truncated. We believe glucocorticoid use in hospitalized patients excluded from the study reflects increased use with time because of a growing belief in their effectiveness.

Preliminary analysis from the RECOVERY study showed a reduced rate of mortality in patients randomized to dexamethasone, compared with those who received standard of care.10 These results led to the National Institutes for Health COVID-19 Treatment Guidelines Panel recommendation for dexamethasone treatment in patients with COVID-19 who require supplemental oxygen or MV.15 Our findings suggest a role for CRP to identify patients who may benefit from glucocorticoid therapy, as well as those in whom it may be harmful. Additional studies to further elucidate the role of CRP in guiding glucocorticoid therapy and to predict clinical response are needed.

Read Full Post »


Severe COVID-19 in Patients experiencing Cytokine Storm: Positive Outcomes (faster respiratory recovery, a lower likelihood of mechanical ventilation, and fewer in-hospital deaths) of high dose methylprednisolone plus tocilizumab (Actemra, Genentech) vs Supportive Care Alone

Reporter: Aviva Lev-Ari, PhD, RN

 

“COVID-19-associated cytokine storm syndrome [CSS] is an important complication of severe acute respiratory syndrome coronavirus-2 infection in up to 25% of the patients,” lead author Sofia Ramiro, MD, PhD, told Medscape Medical News.

The researchers assessed outcomes of 86 individuals with COVID-19-associated CSS treated with high-dose methylprednisolone plus/minus tocilizumab, an anti-interleukin-6 receptor monoclonal antibody. They compared them with another 86 patients with COVID-19 treated with supportive care before initiation of the combination therapy protocol.

Participants with CSS had an oxygen saturation of 94% or lower at rest or tachypnea exceeding 30 breaths per minute.

They also had at least two of the following:

  • C-reactive protein > 100 mg/L;
  • serum ferritin > 900 μg/L at one occasion or
  • a twofold increase at admission within 48 hours; or
  • D-dimer levels > 1500 μg/L.

https://www.medscape.com/viewarticle/934567

Historically controlled comparison of glucocorticoids with or without tocilizumab versus supportive care only in patients with COVID-19-associated cytokine storm syndrome: results of the CHIC study

  1. Sofia Ramiro1,2,
  2. Rémy L M Mostard3,
  3. César Magro-Checa1,
  4. Christel M P van Dongen1,
  5. Tom Dormans4,
  6. Jacqueline Buijs5,
  7. Michiel Gronenschild3,
  8. Martijn D de Kruif3,
  9. Eric H J van Haren3,
  10. Tom van Kraaij3,
  11. Mathie P G Leers6,
  12. Ralph Peeters1,
  13. Dennis R Wong7,
  14. Robert B M Landewé1,8

Author affiliations

 

Read Full Post »


The Global Economic Outlook During the COVID-19 Pandemic: A Changed World

Reporter: Joel Shertok, PhD

 

By the World Bank — June 8, 2020

https://www.worldbank.org/en/news/feature/2020/06/08/the-global-economic-outlook-during-the-covid-19-pandemic-a-changed-world

This is THE definitive assessment of the economic effects of COVID-19, from the World Bank. Obviously, bad and likely getting worse with the coming of the Second Lockdown……

Empty highway in Dubai because on coronavirus. Sign advertising the Stay Home Stay Safe campaign.

An empty highway in Dubai during the coronavirus pandemic. Above the highway, a sign reads “Stay Safe, Stay Home.” © Mo Azizi/Shutterstock


As the health and human toll grows, the economic damage is already evident and represents the largest economic shock the world has experienced in decades.

The June 2020 Global Economic Prospects describes both the immediate and near-term outlook for the impact of the pandemic and the long-term damage it has dealt to prospects for growth. The baseline forecast envisions a 5.2 percent contraction in global GDP in 2020, using market exchange rate weights—the deepest global recession in decades, despite the extraordinary efforts of governments to counter the downturn with fiscal and monetary policy support. Over the longer horizon, the deep recessions triggered by the pandemic are expected to leave lasting scars through lower investment, an erosion of human capital through lost work and schooling, and fragmentation of global trade and supply linkages.

For emerging market and developing countries, many of which face daunting vulnerabilities, it is critical to strengthen public health systems, address the challenges posed by informality, and implement reforms that will support strong and sustainable growth once the health crisis abates.

Historic contraction of per capita income

Advanced economies are projected to shrink 7 percent. That weakness will spill over to the outlook for emerging market and developing economies, who are forecast to contract by 2.5 percent as they cope with their own domestic outbreaks of the virus. This would represent the weakest showing by this group of economies in at least sixty years.


“The crisis highlights the need for urgent action to cushion the pandemic’s health and economic consequences, protect vulnerable populations, and set the stage for a lasting recovery.”


Every region is subject to substantial growth downgrades. East Asia and the Pacific will grow by a scant 0.5%. South Asia will contract by 2.7%, Sub-Saharan Africa by 2.8%, Middle East and North Africa by 4.2%, Europe and Central Asia by 4.7%, and Latin America by 7.2%.  These downturns are expected to reverse years of progress toward development goals and tip tens of millions of people back into extreme poverty.

Emerging market and developing economies will be buffeted by economic headwinds from multiple quarters: pressure on weak health care systems, loss of trade and tourism, dwindling remittances, subdued capital flows, and tight financial conditions amid mounting debt. Exporters of energy or industrial commodities will be particularly hard hit. Demand for metals and transport-related commodities such as rubber and platinum used for vehicle parts has also tumbled. While agriculture markets are well supplied globally, trade restrictions and supply chain disruptions could yet raise food security issues in some places.

A Worker in Sub-Saharan Africa standing near a truck is seen wearing a mask

A worker wears a mask in Sub-Saharan Africa. © Lucian Coman/Shutterstock

A possibility of even worse outcomes

Even this bleak outlook is subject to great uncertainty and significant downside risks. The forecast assumes that the pandemic recedes in such a way that domestic mitigation measures can be lifted by mid-year in advanced economies and later in developing countries, that adverse global spillovers ease during the second half of 2020, and that widespread financial crises are avoided. This scenario would envision global growth reviving, albeit modestly, to 4.2% in 2021.

However, this view may be optimistic. Businesses might find it hard to service debt, heightened risk aversion could lead to climbing borrowing costs, and bankruptcies and defaults could result in financial crises in many countries. Under this downside scenario, global growth could shrink by almost 8% in 2020.

Looking at the speed with which the crisis has overtaken the global economy may provide a clue to how deep the recession will be. The sharp pace of global growth forecast downgrades points to the possibility of yet further downward revisions and the need for additional action by policymakers in coming months to support economic activity.

A particularly concerning aspect of the outlook is the humanitarian and economic toll the global recession will take on economies with extensive informal sectors that make up an estimated one-third of the GDP and about 70% of total employment in emerging market and developing economies. Policymakers must consider innovative measures to deliver income support to these workers and credit support to these businesses.

Long-term damage to potential output, productivity growth

The June 2020 Global Economic Prospects looks beyond the near-term outlook to what may be lingering repercussions of the deep global recession: setbacks to potential output⁠—the level of output an economy can achieve at full capacity and full employment⁠—and labor productivity.  Efforts to contain COVID-19 in emerging and developing economies, including low-income economies with limited health care capacity, could precipitate deeper and longer recessions⁠—exacerbating a multi-decade trend of slowing potential growth and productivity growth.

Image

Another important feature of the current landscape is the historic collapse in oil demand and oil prices. Low oil prices are likely to provide, at best, temporary initial support to growth once restrictions to economic activity are lifted. However, even after demand recovers, adverse impacts on energy exporters may outweigh any benefits to activity in energy importers. In addition, the recent oil price plunge may provide further momentum to undertake energy subsidy reforms and deepen them once the immediate health crisis subsides.

In the face of this disquieting outlook, the immediate priority for policymakers is to address the health crisis and contain the short-term economic damage. Over the longer term, authorities need to undertake comprehensive reform programs to improve the fundamental drivers of economic growth once the crisis lifts.

, including support for the private sector and getting money directly to people. During the mitigation period, countries should focus on sustaining economic activity with support for households, firms and essential services.

Global coordination and cooperation—of the measures needed to slow the spread of the pandemic, and of the economic actions needed to alleviate the economic damage, including international support—provide the greatest chance of achieving public health goals and enabling a robust global recovery.

SOURCE

https://www.worldbank.org/en/news/feature/2020/06/08/the-global-economic-outlook-during-the-covid-19-pandemic-a-changed-world

Read Full Post »


Reported by Joel Shertok, PhD,

From the New York Times, May 31, 2020

https://www.nytimes.com/2020/05/29/business/coronavirus-economic-forecast-shiller.html

By 

The Great Depression of the 1930s was an economic downturn that became a prolonged malaise. A Nobel laureate asks whether that pattern might be repeated.

Yogi Berra supposedly said, “It’s difficult to make predictions, especially about the future.” Yet, in spite of this warning, a cottage industry has arisen trying to anticipate the long term economics effects of the COVID-19 pandemic. Robert Schiller, Professor of Economics at Yale, in the NY Times, sounds a call for caution:

Longer-term analyses of the coronavirus pandemic emphasize that there is a good chance that it will fade within a year or two, especially if a vaccine or effective treatment appears.

I hope that’s true. But even if it is, I’m worried that the economy may not return to normal within that time frame.

Big events like a pandemic have the potential to leave behind a trail of disruption. They can create social discord, reduce people’s willingness to spend and take risks, destroy business momentum and shake confidence in the value of investments.

But episodes as far-reaching as this one are scarce, widely spaced in time, and so different in circumstances that statisticians cannot easily compare them systematically. The best we can do is examine some case studies.

The so-called Spanish flu, the influenza epidemic that started in 1918, which ultimately cost 675,000 American lives and millions around the world, is a reasonable place to start. While we know a great deal about that era, we don’t know enough to shed much light on current circumstances.

There was a recession in the United States from August 1918 to March 1919, according to the National Bureau of Economic Research, but not a deep one. Searching the newspapers of the time, one finds surprisingly little concern about the possible ill effects of the influenza on the economy, perhaps because the more-dominant narrative concerned the impact of World War I, which ended on November 11, 1918.

Yet a recent study by Robert Barro of Harvard University and his associates suggests that the epidemic along with the decline in production associated with the war led to a protracted decline in G.D.P. growth in affected countries from 1918 through 1920. In short, that period provides little comfort.

Perhaps more relevant to the current crisis is the Great Depression of 1929 to 1940, the biggest economic slowdown of modern history. From 1931 to 1940, the annual unemployment rate in the United States never fell below 12 percent. (In April this year, unemployment shot up to 14.7 percent.)

The conventional story is that the 1929 crash was the result of a stock market bubble in the 1920s. The Cyclically Adjusted Price Earnings Ratio, a stock valuation measure that I helped develop, reached 32.6 in 1929 (compared with 31.0 in January 2020). The Depression started in 1929 after a 23 percent crash in the Dow Jones industrial average over two days, Oct. 28 and 29. It created global social unrest around the world and the downturn only ended with World War II.

In 1929 many people expected the stock market to bounce right back and that decline was short-lived, in one sense: The market rose almost half the way back to its 1929 peak by April 1930. But it fell sharply again, and the crash set in motion a train of powerful narratives that resemble some of the popular notions that are circulating today.

Much as President Trump dismissed the seriousness of the Covid-19 pandemic in its early days, President Herbert Hoover made optimistic forecasts that proved to be wrong.

Much as people fret these days about extreme polarization between Democrats and Republicans, so too were people of that era concerned about extreme political divisiveness. After losing the 1932 election to Franklin Delano Roosevelt, for example, President Hoover, by then a lame duck, called F.D.R.’s plans a “march to Moscow.”

Much as people today have experienced long lines and empty shelves at supermarkets, in the Great Depression people fretted about long lines and empty cash registers at banks.

There are other troubling parallels: Fear of long-term unemployment and a never-ending depression was rampant back then, leading people to restrain spending, thus prolonging the downturn. This may not happen now, but it is a danger.

Much as now, in the Great Depression people were very focused on maintaining a “fair wage” in the face of economic distress. But this led to nationwide resistance to nominal wage cuts for anyone, even when retail prices were falling rapidly.

This appears to have had the unintended result of inducing employers, who could not afford to keep everyone working at their former wages, to lay off many people. The economists Harold L. Cole of the University of Pennsylvania and Lee E. Ohanian, of U.C.L.A., have shown that this may explain some of the extreme duration of Great Depression unemployment.

Another development back then may have resonance today. Faced with widespread poverty, even people with money voluntarily embraced austerity, saying they no longer needed to “keep up with the Joneses.” Their reduction in consumption helps to explain the severity and duration of the Depression. If contemporary culture shifts in a similar way, it could limit the economy’s ability to bounce back.

A series of concerns like these — some with echoes of the Great Depression, some newly forming and associated directly with worries about disease and infection — will be on millions of people’s minds long after the economy reopens. Such social narratives will affect their thinking on how to spend and invest, whether to go out to eat or attend sporting events, on whom to vote for, and whether to travel: multitudes of decisions, big and small, that determine the course of the economy.

It is too early to tell which narratives will prevail and what path the economy will take after this pandemic subsides. Limited case studies will take us only so far. But we shouldn’t be surprised if we see post-pandemic economic weakness over the next decade.

SOURCE

https://www.nytimes.com/2020/05/29/business/coronavirus-economic-forecast-shiller.html

Read Full Post »


The Complexity of Estimation of the Economic Impact of an Outbreak | Panel Discussion | BC Woods College

Reporter: Ofer Markman, PhD

Economic Impact of an Outbreak | Panel Discussion | BC Woods College

197 views

May 21, 2020

Prominent economists, all faculty of the Boston College M.S. in Applied Economics degree program in the Woods College of Advancing Studies, presented a virtual panel discussion on the impact of the coronavirus outbreak on the health care system and the global economy. For more information about the M.S. program, visit https://on.bc.edu/MSAppliedEcon

Read Full Post »


COVID-19’s seasonal cycle to be estimated at Lawrence Berkeley National Laboratory (Berkeley Lab) by Artificial Intelligence and Machine Learning Algorithms: Will A Fall and Winter resurgence be Likely??

Reporter: Aviva Lev-Ari, PhD, RN

Using machine learning to estimate COVID-19’s seasonal cycle

Woman walks down empty city street wearing a mask

Credit: Ivan Marc/Shutterstock

Berkeley Lab researchers have launched a project to determine if the novel coronavirus might be seasonal, waning in summer months and resurging in fall and winter.

One of the many unanswered scientific questions about COVID-19 is whether it is seasonal like the flu — waning in warm summer months then resurging in the fall and winter.

Now scientists at Lawrence Berkeley National Laboratory (Berkeley Lab) are launching a project to apply machine-learning methods to a plethora of health and environmental datasets, combined with high-resolution climate models and seasonal forecasts, to tease out the answer.

“Environmental variables, such as temperature, humidity, and UV [ultraviolet radiation] exposure, can have an effect on the virus directly, in terms of its viability. They can also affect the transmission of the virus and the formation of aerosols,” said Berkeley Lab scientist Eoin Brodie, the project lead. “We will use state-of-the-art machine-learning methods to separate the contributions of social factors from the environmental factors to attempt to identify those environmental variables to which disease dynamics are most sensitive.

The research team will take advantage of an abundance of health data available at the county level — such as the severity, distribution and duration of the COVID-19 outbreak, as well as what public health interventions were implemented when — along with demographics, climate and weather factors, and, thanks to smartphone data, population mobility dynamics. The initial goal of the research is to predict — for each county in the United States — how environmental factors influence the transmission of the SARS-CoV-2 virus, which causes COVID-19.

Multidisciplinary team for a complex problem

Untangling environmental factors from social and health factors is a knotty problem with a large number of variables, all interacting in different ways. On top of that, climate and weather affect not only the virus but also human physiology and behavior. For example, people may spend more or less time indoors, depending on the weather; and their immune systems may also change with the seasons.

It’s a complex data problem similar to others tackled by Berkeley Lab’s researchers studying systems like watersheds and agriculture; the challenge involves integrating data across scales to make predictions at the local level. “Downscaling of climate information is something that we routinely do to understand how climate impacts ecosystem processes,” Brodie said. “It involves the same types of variables — temperature, humidity, solar radiation.”

Brodie, deputy director of Berkeley Lab’s Climate and Ecosystem Sciences Division, is leading a cross-disciplinary team of Lab scientists with expertise in climate modeling, data analytics, machine learning, and geospatial analytics. Ben Brown, a computational biologist in Berkeley Lab’s Biosciences Area, is leading the machine-learning analysis. One of their main aims is to understand how climate and weather interact with societal factors.

“We don’t necessarily expect climate to be a massive or dominant effect in and of itself. It’s not going to trump which city shut down when,” Brown said. “But there may be some really important interactions [between the variables]. Looking at New York and California for example, even accounting for the differences between the timing of state-instituted interventions, the death rate in New York may be four times higher than in California — though additional testing on random samples of the population is needed to know for sure. Understanding the environmental interactions may help explain why these patterns appear to be emerging. This is a quintessential problem for machine learning and AI [artificial intelligence].”

The computing work will be conducted at the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science user facility located at Berkeley Lab.

Signs of climatic influences

map of the worldwide incidence rate of COVID-19
The worldwide incidence rate of COVID-19.
Credit: Center for Systems Science and Engineering at Johns Hopkins University

Already, geographical differences in how the disease behaves have been reported, the researchers point out. Temperature, humidity, and the UV Index have all been statistically associated with rates of COVID-19 transmission — although contact rates are still the dominant influence on the spread of disease. In the southern hemisphere, for example, where it’s currently fall, disease spread has been slower than in the northern hemisphere. “There’s potentially other factors associated with that,” Brodie said. “The question is, when the southern hemisphere moves into winter, will there be an increase in transmission rate, or will fall and winter 2020 lead to a resurgence across the U.S. in the absence of interventions?”

India is another place where COVID-19 does not yet appear to be as virulent. “There are cities where it behaves as if it’s the most infectious disease in recorded history. Then there are cities where it behaves more like influenza,” Brown said. “It is really critical to understand why we see those massive differences.”

Brown notes other experiments suggesting the SARS-CoV-2 virus could be seasonal. In particular, the National Biodefense Analysis and Countermeasures Center (NBACC) assessed the longevity of the virus on various surfaces. “Under sunlight and humidity, they found that the virus loses viability in under 60 minutes,” Brown said. “But in darkness and low temperatures it’s stable for eight days. There’s some really serious differences that need investigating.”

The Berkeley Lab team believes that enough data may now be available to determine what environmental factors may influence the virulence of the virus. “Now we should have enough data from around the world to really make an assessment,” Brown said.

The team hopes to have the first phase of their analysis available by late summer or early fall. The next phase will be to make projections under different scenarios, which could aid in public health decisions.

“We would use models to project forward, with different weather scenarios, different health intervention scenarios — such as continued social distancing or whether there are vaccines or some level of herd immunity — in different parts of the country. For example, we hope to be able to say, if you have kids going back to school under this type of environment, the climate and weather in this zone will influence the potential transmission by this amount,” Brodie explained. “That will be a longer-term task for us to accomplish.”

This research is supported by Berkeley Lab’s Laboratory Directed Research and Development (LDRD) program. Other team members include Dan Feldman, Zhao Hao, Chaincy Kuo, Haruko Wainwright, and Nicola Falco. Berkeley Lab mobilized quickly to provide LDRD funding for several research projects to address the COVID-19 pandemic, including one on text mining scientific literature and another on indoor transmission of the virus.

Read Full Post »


Is Remdesivir the miracle cure or a short term cure for COVID-19?

Reporter: Irina Robu, PhD

 

Updated on 5/23/2020

 

New England Journal of Medicine

SOURCE

https://www.nejm.org/doi/full/10.1056/NEJMoa2007764

Disclosures

The trial was sponsored and primarily funded by the National Institute of Allergy and Infectious Diseases, the NIH, and funded in part by the NIAID and the National Cancer Institute, NIH. The trial has also been funded in part by the governments of Japan, Mexico, Denmark, and Singapore. The trial site in South Korea received funding from the Seoul National University Hospital. Support for the London International Coordinating Centre was also provided by the United Kingdom Medical Research Council.

Beigel disclosed no conflicts of interest.

Other co-authors disclosed support from NIH/NIAID/DMID, University of Minnesota, Medical Research Council U.K., Novo Nordisk Foundation, Simonsen Foundation, GSK, Pfizer, Boehringer Ingelheim, Gliead, MSD, Lundbeck Foundation, Merck, Sanofi-Pasteur,Cepheid, Ellume, Genentech, Janssen, ViiV Healthcare, Integrum Scientific LLC, UCL, Bristol University, Gilead Sciences Europe, ECDC, EU Social funds and National resources.

One co-author is an employee of the U.S. government.

Abstract

BACKGROUND

Although several therapeutic agents have been evaluated for the treatment of coronavirus disease 2019 (Covid-19), none have yet been shown to be efficacious.

METHODS

We conducted a double-blind, randomized, placebo-controlled trial of intravenous remdesivir in adults hospitalized with Covid-19 with evidence of lower respiratory tract involvement. Patients were randomly assigned to receive either remdesivir (200 mg loading dose on day 1, followed by 100 mg daily for up to 9 additional days) or placebo for up to 10 days. The primary outcome was the time to recovery, defined by either discharge from the hospital or hospitalization for infection-control purposes only.

RESULTS

A total of 1063 patients underwent randomization. The data and safety monitoring board recommended early unblinding of the results on the basis of findings from an analysis that showed shortened time to recovery in the remdesivir group. Preliminary results from the 1059 patients (538 assigned to remdesivir and 521 to placebo) with data available after randomization indicated that those who received remdesivir had a median recovery time of 11 days (95% confidence interval [CI], 9 to 12), as compared with 15 days (95% CI, 13 to 19) in those who received placebo (rate ratio for recovery, 1.32; 95% CI, 1.12 to 1.55; P<0.001). The Kaplan-Meier estimates of mortality by 14 days were 7.1% with remdesivir and 11.9% with placebo (hazard ratio for death, 0.70; 95% CI, 0.47 to 1.04). Serious adverse events were reported for 114 of the 541 patients in the remdesivir group who underwent randomization (21.1%) and 141 of the 522 patients in the placebo group who underwent randomization (27.0%).

CONCLUSIONS

Remdesivir was superior to placebo in shortening the time to recovery in adults hospitalized with Covid-19 and evidence of lower respiratory tract infection. (Funded by the National Institute of Allergy and Infectious Diseases and others; ACCT-1 ClinicalTrials.gov number, NCT04280705. opens in new tab.)

References (14)

  1. Helmy YAFawzy MElaswad ASobieh AKenney SPShehata AA. The COVID-19 pandemic: a comprehensive review of taxonomy, genetics, epidemiology, diagnosis, treatment, and control. J Clin Med 2020;9(4):E1225E1225.

    Google Scholar. opens in new tab

  2. Cao BWang YWen D, et al. A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19. N Engl J Med 2020;382:17871799.

    Google Scholar. opens in new tab

  3. Borba MGSVal FFASampaio VS, et al. Effect of high vs low doses of chloroquine diphosphate as adjunctive therapy for patients hospitalized with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: a randomized clinical trial. JAMA Netw Open 2020;3(4):e208857e208857.

    Google Scholar. opens in new tab

  4. Sheahan TPSims ACLeist SR, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun 2020;11:222222.

    Google Scholar. opens in new tab

  5. Agostini MLAndres ELSims AC, et al. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. mBio 2018;9(2):e00221-18e00221-18.

    Google Scholar. opens in new tab

  6. Brown AJWon JJGraham RL, et al. Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase. Antiviral Res 2019;169:104541104541.

    Google Scholar. opens in new tab

  7. Sheahan TPSims ACGraham RL, et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci Transl Med 2017;9:eaal3653eaal3653.

    Google Scholar. opens in new tab

  8. Wang MCao RZhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020;30:269271.

    Google Scholar. opens in new tab

  9. de Wit ERasmussen ALFalzarano D, et al. Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques. Proc Natl Acad Sci U S A 2013;110:1659816603.

    Google Scholar. opens in new tab

  10. de Wit EFeldmann FCronin J, et al. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc Natl Acad Sci U S A 2020;117:67716776.

    Google Scholar. opens in new tab

  11. Royal College of Physicians. National Early Warning Score (NEWS) 2. 2017(https://www.rcplondon.ac.uk/projects/outputs/national-early-warning-score-news-2. opens in new tab).

    Google Scholar. opens in new tab

  12. King JCBeigel JHIson MG, et al. Clinical development of therapeutic agents for hospitalized patients with influenza: challenges and innovations. Open Forum Infect Dis 2019;6:ofz137ofz137.

    Google Scholar. opens in new tab

  13. Wang YZhang DDu G, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2020;395:15691578.

    Google Scholar. opens in new tab

  14. The CONSORT Group. 3b. Changes to trial design (http://www.consort-statement.org/consort-2010. opens in new tab).

    Google Scholar

Remdesivir Data from NIAID Trial Published

— “Not a panacea” or a “cure-all,” expert cautions

Peer-reviewed findings were published late Friday from one of the key trials of remdesivir, perhaps the most promising antiviral agent for COVID-19, confirming and extending topline results announced a month ago via press release.

Hospitalized patients with COVID-19 who received remdesivir had a median recovery time of 11 days versus 15 days with placebo (rate ratio for recovery 1.32, 95% CI 1.12-1.55, P<0.001), reported John Beigel, MD, of the National Institute of Allergy and Infectious Diseases (NIAID), and colleagues.

Mortality estimates by 14 days were lower for the remdesivir group compared to placebo, but non-significant (HR for death 0.70, 95% CI 0.47-1.04), the authors wrote in the New England Journal of Medicine.

Interestingly, when researchers examined outcomes on an 8-point ordinal scale, they found patients with a baseline ordinal score of 5 had a rate ratio for recovery of 1.47 (95% CI 1.17-1.84), while patients with a baseline score of 7 had a rate ratio for recovery of 0.95 (95% CI 0.64-1.42).

Some of these data were released by the NIAID on April 29, but without further details such as 95% confidence intervals. On May 1, the FDA agreed to let remdesivir be used clinically under an emergency use authorization. Since then, however, clinicians and other researchers have clamored for a fuller report, to help guide their clinical practice. For example, questions were raised as to whether particular subgroups got more benefit from the drug than others.

David Aronoff, MD, of Vanderbilt University Medical Center in Nashville, who was not involved in the research, noted the drug seemed more effective when given to patients who weren’t as severely ill, earlier in the course of disease. He added this wasn’t surprising, given remdesivir’s mechanism of action as an antiviral, which works by blocking the virus from replicating.

“The drug doesn’t affect the host, it only affects the virus. What seems to cause major problems late in the course of disease is the inflammatory response to the initial damage the virus causes,” he told MedPage Today.

Aronoff likened the virus to an arsonist setting fires, and antivirals like remdesivir as the police trying to catch the arsonist before they set more fires.

“But once the building is on fire, it doesn’t matter where the arsonist is,” he noted.

This is why combining a drug to address the viral response with a drug to address the host response may be critical to treating the virus. Aronoff cited the NIAID’s ACTT-2 trial in progress, which will examine combination therapy with remdesivir and anti-inflammatory drug, baricitinib, versus remdesivir alone.

SOURCE

https://www.medpagetoday.com/infectiousdisease/covid19/86670?xid=NL_breakingnewsalert_2020-05-23&eun=g99985d0r&utm_source=Sailthru&utm_medium=email&utm_campaign=RemdesivirAlert_052320&utm_term=NL_Daily_Breaking_News_Active

 

Is Remdesivir the miracle cure or a short term cure for COVID-19?

Reporter: Irina Robu, PhD

 

In 1947, amid the “Golden Age” of antibiotic research that yielded many of the medicines used against bacteria such as chloramphenicol, a molecule that could combat a wide array of bacteria from different families. It was among the first FDA-approved broad-spectrum antibiotics used against typhus/meningitis. Now, chloramphenicol’s side effects make it a last-resort drug but it remains invaluable against a host of bacterial infections.
Viruses are more slippery targets than bacteria and they are a hundred times smaller and consist only of bare-bones cellular machinery. There are simply fewer targets at which to aim antivirals, especially for drugs that would shoot for the rare viral components that remain common across diverse types of viruses. Scientists call this virus-pinpointing model the “one drug, one bug” approach. An antiviral’s mechanism can’t be too generic, either.

Even with that, there is no common mechanism to target all viruses but instead researchers hope to expand the existing list of broad-spectrum antivirals and find more medicines that work on all viruses of a certain family. This reality makes the search for treatments for SARS-CoV-2 all the more challenging. Presently, no broad-spectrum antiviral is accepted for the treatment of all coronaviruses of which a new strain has driven the current pandemic.

With no specific antiviral drug for treatment of patients with severe COVID-19, scientists are rushing to find a solution. Yet, remdesivir’s journey from hypothesis to treatment is unparalleled. The drug was originally investigated by Gilead as a treatment for another lethal viral disease, Ebola. Remdesivir, a nucleoside analogue prodrug has inhibitory effects on pathogenic animal and human coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro, and inhibits Middle East respiratory syndrome coronavirus, SARS-CoV-1, and SARS-CoV-2 replication in animal models.

However, Gilead was unwilling to give up on its investment in the drug and remained hopeful that the drug might be useful in treating COVID-19. In collaboration with Chinese researchers, the National Institute of Allergy and Infectious Diseases (NIAID) and the pharmaceutical company behind the drug, Gilead, all launched studies of remdesivir’s efficacy in treating COVID-19. Based on those encouraging results in May 1, the FDA issued an emergency-use authorization that permits doctors to treat severely ill COVID-19 patients with remdesivir. Japanese health officials issued a similar clearance days later.

On top of the biological challenge of finding new broad-spectrum antiviral drugs lies an economic one, partly because there is little financial incentive to develop broad-spectrum drugs against emerging diseases. And with all the government backed research, there is no guarantee that pharma companies have enough incentive to continue working on research. Yet, broad-spectrum antivirals are not miracle drugs, but they can be a helpful addition to a toolbox that is currently sparse.

Remdesivir’s potential first drew public attention in October 2015 during an Ebola outbreak in West Africa that claimed more than 11,000 lives. Remdesivir subdues a virus by interfering with replication. First, the body changes remdesivir into an imposter. It becomes what’s called a nucleoside analog, a genetic doppelganger that resembles adenosine. When the virus replicates, it weaves this analog into the new strand of genetic material. Nevertheless, the analog’s molecular makeup differs from real adenosine just enough to grind the copying process to a halt.

As COVID-19 swept the globe, scientists led an international trial of remdesivir as a treatment option. EIDD-2801, another treatment option has demonstrated broad-spectrum antiviral potential, as well as an ability to defend cells from SARS-CoV-2. Yet, the best treatment for COVID-19 can be remdesivir, EIDD-2801 or any single antiviral at all. Even with that, broad spectrum antivirals can be invaluable in the short-term.
The early success of remdesivir suggests that broad-spectrum antivirals will get their moment in the scientific limelight. After a pandemic pass, though, the rush interest about a multipurpose treatment diminishes.

SOURCE

https://www.smithsonianmag.com/science-nature/remdesivir-works-against-many-viruses-why-arent-there-more-drugs-it-180974859/?utm_source=smithsoniandaily

https://www.gilead.com/news-and-press/press-room/press-releases/2020/4/gilead-announces-results-from-phase-3-trial-of-investigational-antiviral-remdesivir-in-patients-with-severe-covid-19

 

Read Full Post »


The Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV) Partnership on May 18, 2020: Leadership of AbbVie, Amgen, AstraZeneca, Bristol Myers Squibb, Eisai, Eli Lilly, Evotec, Gilead, GlaxoSmithKline, Johnson & Johnson, KSQ Therapeutics, Merck, Novartis, Pfizer, Roche, Sanofi, Takeda, and Vir. We also thank multiple NIH institutes (especially NIAID), the FDA, BARDA, CDC, the European Medicines Agency, the Department of Defense, the VA, and the Foundation for NIH

Reporter: Aviva Lev-Ari, PhD, RN

May 18, 2020

Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV) An Unprecedented Partnership for Unprecedented Times

JAMA. Published online May 18, 2020. doi:10.1001/jama.2020.8920

First reported in Wuhan, China, in December 2019, COVID-19 is caused by a highly transmissible novel coronavirus, SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2). By March 2020, as COVID-19 moved rapidly throughout Europe and the US, most researchers and regulators from around the world agreed that it would be necessary to go beyond “business as usual” to contain this formidable infectious agent. The biomedical research enterprise was more than willing to respond to the challenge of COVID-19, but it soon became apparent that much-needed coordination among important constituencies was lacking.

Clinical trials of investigational vaccines began as early as January, but with the earliest possible distribution predicted to be 12 to 18 months away. Clinical trials of experimental therapies had also been initiated, but most, except for a trial testing the antiviral drug remdesivir,2 were small and not randomized. In the US, there was no true overarching national process in either the public or private sector to prioritize candidate therapeutic agents or vaccines, and no efforts were underway to develop a clear inventory of clinical trial capacity that could be brought to bear on this public health emergency. Many key factors had to change if COVID-19 was to be addressed effectively in a relatively short time frame.

On April 3, leaders of the National Institutes of Health (NIH), with coordination by the Foundation for the National Institutes of Health (FNIH), met with multiple leaders of research and development from biopharmaceutical firms, along with leaders of the US Food and Drug Administration (FDA), the Biomedical Advanced Research and Development Authority (BARDA), the European Medicines Agency (EMA), and academic experts. Participants sought urgently to identify research gaps and to discuss opportunities to collaborate in an accelerated fashion to address the complex challenges of COVID-19.

These critical discussions culminated in a decision to form a public-private partnership to focus on speeding the development and deployment of therapeutics and vaccines for COVID-19. The group assembled 4 working groups to focus on preclinical therapeutics, clinical therapeutics, clinical trial capacity, and vaccines (Figure). In addition to the founding members, the working groups’ membership consisted of senior scientists from each company or agency, the Centers for Disease Control and Prevention (CDC), the Department of Veterans Affairs (VA), and the Department of Defense.

Figure.

Accelerating COVID-19 Therapeutic Interventions and Vaccines

ACTIV’s 4 working groups, each with one cochair from NIH and one from industry, have made rapid progress in establishing goals, setting timetables, and forming subgroups focused on specific issues (Figure). The goals of the working group, along with a few examples of their accomplishments to date, include the following.

 

The Preclinical Working Group was charged to standardize and share preclinical evaluation resources and methods and accelerate testing of candidate therapies and vaccines to support entry into clinical trials. The aim is to increase access to validated animal models and to enhance comparison of approaches to identify informative assays. For example, through the ACTIV partnership, this group aims to extend preclinical researchers’ access to high-throughput screening systems, especially those located in the Biosafety Level 3 (BSL3) facilities currently required for many SARS-CoV-2 studies. This group also is defining a prioritization approach for animal use, assay selection and staging of testing, as well as completing an inventory of animal models, assays, and BSL 3/4 facilities.

 

The Therapeutics Clinical Working Group has been charged to prioritize and accelerate clinical evaluation of a long list of therapeutic candidates for COVID-19 with near-term potential. The goals have been to prioritize and test potential therapeutic agents for COVID-19 that have already been in human clinical trials. These may include agents with either direct-acting or host-directed antiviral activity, including immunomodulators, severe symptom modulators, neutralizing antibodies, or vaccines. To help achieve these goals, the group has established a steering committee with relevant expertise and objectivity to set criteria for evaluating and ranking potential candidate therapies submitted by industry partners. Following a rigorous scientific review, the prioritization subgroup has developed a complete inventory of approximately 170 already identified therapeutic candidates that have acceptable safety profiles and different mechanisms of action. On May 6, the group presented its first list of repurposed agents recommended for inclusion in ACTIV’s master protocol for adaptive clinical trials. Of the 39 agents that underwent final prioritization review, the group identified 6 agents—including immunomodulators and supportive therapies—that it proposes to move forward into the master protocol clinical trial(s) expected to begin later in May.

 

The Clinical Trial Capacity Working Group is charged with assembling and coordinating existing networks of clinical trials to increase efficiency and build capacity. This will include developing an inventory of clinical trial networks supported by NIH and other funders in the public and private sectors, including contract research organizations. For each network, the working group seeks to identify their specialization in different populations and disease stages to leverage infrastructure and expertise from across multiple networks, and establish a coordination mechanism across networks to expedite trials, track incidence across sites, and project future capacity. The clinical trials inventory subgroup has already identified 44 networks, with access to adult populations and within domestic reach, for potential inclusion in COVID-19 trials. Meanwhile, the survey subgroup has developed 2 survey instruments to assess the capabilities and capacities of those networks, and its innovation subgroup has developed a matrix to guide deployment of innovative solutions throughout the trial life cycle.

 

The Vaccines Working Group has been charged to accelerate evaluation of vaccine candidates to enable rapid authorization or approval.4 This includes development of a harmonized master protocol for adaptive trials of multiple vaccines, as well as development of a trial network that could enroll as many as 100 000 volunteers in areas where COVID-19 is actively circulating. The group also aims to identify biomarkers to speed authorization or approval and to provide evidence to address cross-cutting safety concerns, such as immune enhancement. Multiple vaccine candidates will be evaluated, and the most promising will move to a phase 2/3 adaptive trial platform utilizing large geographic networks in the US and globally.5 Because time is of the essence, ACTIV will aim to have the next vaccine candidates ready to enter clinical trials by July 1, 2020.

References

1.

Desai  A .  Twentieth-century lessons for a modern coronavirus pandemic.   JAMA. Published online April 27, 2020. doi:10.1001/jama.2020.4165
ArticlePubMedGoogle Scholar

2.

NIH clinical trial shows remdesivir accelerates recovery from advanced COVID-19. National Institutes of Health. Published April 29, 2020. Accessed May 7, 2020. https://www.nih.gov/news-events/news-releases/nih-clinical-trial-shows-remdesivir-accelerates-recovery-advanced-covid-19

3.

NIH to launch public-private partnership to speed COVID-19 vaccine and treatment options. National Institutes of Health. Published April 17, 2020. Accessed May 7, 2020. https://www.nih.gov/news-events/news-releases/nih-launch-public-private-partnership-speed-covid-19-vaccine-treatment-options

4.

Corey  L , Mascola  JR , Fauci  AS , Collins  FS .  A strategic approach to COVID-19 vaccine R&D.   Science. Published online May 11, 2020. doi:10.1126/science.abc5312PubMedGoogle Scholar

5.

Angus  DC .  Optimizing the trade-off between learning and doing in a pandemic.   JAMA. Published online March 30, 2020. doi:10.1001/jama.2020.4984
ArticlePubMedGoogle Scholar

6.

Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV) portal. National Institutes of Health. Accessed May 15, 2020. https://www.nih.gov/ACTIV

7.

Accelerating Medicines Partnership (AMP). National Institutes of Health. Published February 4, 2014. Accessed May 7, 2020. https://www.nih.gov/research-training/accelerating-medicines-partnership-amp
SOURCE

Read Full Post »

Older Posts »