Archive for the ‘Healthcare Reform’ Category

International Award for Human Genome Project

Reporter and Curator: Dr. Sudipta Saha, Ph.D.


The Thai royal family awarded its annual prizes in Bangkok, Thailand, in late January 2018 in recognition of advances in public health and medicine – through the Prince Mahidol Award Foundation under the Royal Patronage. This foundation was established in 1992 to honor the late Prince Mahidol of Songkla, the Royal Father of His Majesty King Bhumibol Adulyadej of Thailand and the Royal Grandfather of the present King. Prince Mahidol is celebrated worldwide as the father of modern medicine and public health in Thailand.


The Human Genome Project has been awarded the 2017 Prince Mahidol Award for revolutionary advances in the field of medicine. The Human Genome Project was completed in 2003. It was an international, collaborative research program aimed at the complete mapping and sequencing of the human genome. Its final goal was to provide researchers with fundamental information about the human genome and powerful tools for understanding the genetic factors in human disease, paving the way for new strategies for disease diagnosis, treatment and prevention.


The resulting human genome sequence has provided a foundation on which researchers and clinicians now tackle increasingly complex problems, transforming the study of human biology and disease. Particularly it is satisfying that it has given the researchers the ability to begin using genomics to improve approaches for diagnosing and treating human disease thereby beginning the era of genomic medicine.


National Human Genome Research Institute (NHGRI) is devoted to advancing health through genome research. The institute led National Institutes of Health’s (NIH’s) contribution to the Human Genome Project, which was successfully completed in 2003 ahead of schedule and under budget. NIH, is USA’s national medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases.


Building on the foundation laid by the sequencing of the human genome, NHGRI’s work now encompasses a broad range of research aimed at expanding understanding of human biology and improving human health. In addition, a critical part of NHGRI’s mission continues to be the study of the ethical, legal and social implications of genome research.





Read Full Post »

Defining Health Care’s Future: Digital Health, Innovation Accessible, Prevention Importance as Cure – The Vision of Stanford Medical School Dean delivered at 2018 JP Morgan in San Francisco

Reporter: Aviva Lev-Ari, PhD, RN


At JPM 2018: Three Challenges That Will Define Health Care’s Future

Lloyd Minor

Lloyd Minor, LinkedIn Influencer

Read Full Post »

Where Does Kaiser Permanente Stand on Doctor Choice? Interview with George Halvorson, CEO, Kaiser Permanente, CA

 Reporter: Aviva Lev-Ari, PhD, RN


George Halvorson – All Videos


34 Videos


Read Full Post »

The Future of Hospitals – How Medical Care and Technology Work Together to Advance Patient Care 

Curator: Gail S. Thornton, M.A.

Co-Editor: The VOICES of Patients, Hospital CEOs, HealthCare Providers, Caregivers and Families: Personal Experience with Critical Care and Invasive Medical Procedures


Gap Medics (, the world’s leading provider of hospital work experience placements for high school and university students, recently released their “Futuristic Hospitals” infographic. The infographic reviews a collection of top hospitals in the world based on several key factors:

  • overall patient care,
  • innovative medical and technological excellence,
  • efforts toward sustainability,
  • environmental stewardship, and
  • social responsibility, as well as
  • other innovative health care features

to help advance the field of medicine and, ultimately, patient care.

Futuristic Hospitals Infographic

Image SOURCE: Infographic of Futuristic Hospitals courtesy of Evolved Digital and Gap Medics. Reprinted here with Permission from the Source.


“Many leading hospital facilities are now rolling out significant improvements and changes that couldn’t have been envisioned 10 years ago,” said Ian McIntosh, Director, Evolved Digital (, a U.K.-based digital marketing company specializing in search engine optimization and content marketing, whose team created the infographic for Gap Medics.

Science and innovation are working together to help convey higher expectations for quality medical and health care and advancements in the hospital experience for health care providers, patients and their families.

Particularly, the infographic analyzed prominent hospitals around the world so patients and their families can learn about the latest advances and efforts in patient care and hospital and medical technology.

In this infographic, we investigated the most cutting-edge hospital facilities in the world, where best-in-class technology and innovative medical care are making a difference in providing a quality experience all over the world.

“Gap Medics creates programs offered to thousands of students from Europe, Asia and the United States so they have the opportunity to gain insights into the work of doctors, nurses, physician assistants, midwives and dentists before the students begin their clinical training,” said Dave Brown, Director, Gap Medics, a U.K.-based company that provides hospital work experience between 1-8 weeks to students 16 years of age and older.

This one-in-a-lifetime opportunity helps students better understand their chosen career path, develop as people, and strengthen their university application process.



Other related articles published in this Open Access Online Scientific Journal include the following:


“Sudden Cardiac Death,” SudD is in Ferrer inCode’s Suite of Cardiovascular Genetic Tests to be Commercialized in the US

Curator: Aviva Lev-Ari, PhD, RN


Hybrid Cath Lab/OR Suite’s da Vinci Surgical Robot of Intuitive Surgical gets FDA Warning Letter on Robot Track Record

Reporter: Aviva Lev-Ari, PhD, RN


3D Cardiovascular Theater – Hybrid Cath Lab/OR Suite, Hybrid Surgery, Complications Post PCI and Repeat Sternotomy

Curator: Aviva Lev-Ari, PhD, RN

Read Full Post »

Reporter and Curator: Dr. Sudipta Saha, Ph.D.


Low sperm count and motility are markers for male infertility, a condition that is actually a neglected health issue worldwide, according to the World Health Organization. Researchers at Harvard Medical School have developed a very low cost device that can attach to a cell phone and provides a quick and easy semen analysis. The device is still under development, but a study of the machine’s capabilities concludes that it is just as accurate as the elaborate high cost computer-assisted semen analysis machines costing tens of thousands of dollars in measuring sperm concentration, sperm motility, total sperm count and total motile cells.


The Harvard team isn’t the first to develop an at-home fertility test for men, but they are the first to be able to determine sperm concentration as well as motility. The scientists compared the smart phone sperm tracker to current lab equipment by analyzing the same semen samples side by side. They analyzed over 350 semen samples of both infertile and fertile men. The smart phone system was able to identify abnormal sperm samples with 98 percent accuracy. The results of the study were published in the journal named Science Translational Medicine.


The device uses an optical attachment for magnification and a disposable microchip for handling the semen sample. With two lenses that require no manual focusing and an inexpensive battery, it slides onto the smart phone’s camera. Total cost for manufacturing the equipment: $4.45, including $3.59 for the optical attachment and 86 cents for the disposable micro-fluidic chip that contains the semen sample.


The software of the app is designed with a simple interface that guides the user through the test with onscreen prompts. After the sample is inserted, the app can photograph it, create a video and report the results in less than five seconds. The test results are stored on the phone so that semen quality can be monitored over time. The device is under consideration for approval from the Food and Drug Administration within the next two years.


With this device at home, a man can avoid the embarrassment and stress of providing a sample in a doctor’s clinic. The device could also be useful for men who get vasectomies, who are supposed to return to the urologist for semen analysis twice in the six months after the procedure. Compliance is typically poor, but with this device, a man could perform his own semen analysis at home and email the result to the urologist. This will make sperm analysis available in the privacy of our home and as easy as a home pregnancy test or blood sugar test.


The device costs about $5 to make in the lab and can be made available in the market at lower than $50 initially. This low cost could help provide much-needed infertility care in developing or underdeveloped nations, which often lack the resources for currently available diagnostics.




Read Full Post »

Reporter and Curator: Dr. Sudipta Saha, Ph.D.


Scientists think excessive population growth is a cause of scarcity and environmental degradation. A male pill could reduce the number of unintended pregnancies, which accounts for 40 percent of all pregnancies worldwide.


But, big drug companies long ago dropped out of the search for a male contraceptive pill which is able to chemically intercept millions of sperm before they reach a woman’s egg. Right now the chemical burden for contraception relies solely on the female. There’s not much activity in the male contraception field because an effective solution is available on the female side.


Presently, male contraception means a condom or a vasectomy. But researchers from Center for Drug Discovery at Baylor College of Medicine, USA are renewing the search for a better option—an easy-to-take pill that’s safe, fast-acting, and reversible.


The scientists began with lists of genes active in the testes for sperm production and motility and then created knockout mice that lack those genes. Using the gene-editing technology called CRISPR, in collaboration with Japanese scientists, they have so far made more than 75 of these “knockout” mice.


They allowed these mice to mate with normal (wild type) female mice, and if their female partners don’t get pregnant after three to six months, it means the gene might be a target for a contraceptive. Out of 2300 genes that are particularly active in the testes of mice, the researchers have identified 30 genes whose deletion makes the male infertile. Next the scientists are planning a novel screening approach to test whether any of about two billion chemicals can disable these genes in a test tube. Promising chemicals could then be fed to male mice to see if they cause infertility.


Female birth control pills use hormones to inhibit a woman’s ovaries from releasing eggs. But hormones have side effects like weight gain, mood changes, and headaches. A trial of one male contraceptive hormone was stopped early in 2011 after one participant committed suicide and others reported depression. Moreover, some drug candidates have made animals permanently sterile which is not the goal of the research. The challenge is to prevent sperm being made without permanently sterilizing the individual.


As a better way to test drugs, Scientists at University of Georgia, USA are investigating yet another high-tech approach. They are turning human skin cells into stem cells that look and act like the spermatogonial cells in the testes. Testing drugs on such cells might provide more accurate leads than tests on mice.


The male pill would also have to start working quickly, a lot sooner than the female pill, which takes about a week to function. Scientists from University of Dundee, U.K. admitted that there are lots of challenges. Because, a women’s ovary usually release one mature egg each month, while a man makes millions of sperm every day. So, the male pill has to be made 100 percent effective and act instantaneously.



Read Full Post »

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

During pregnancy, the baby is mostly protected from harmful microorganisms by the amniotic sac, but recent research suggests the baby could be exposed to small quantities of microbes from the placenta, amniotic fluid, umbilical cord blood and fetal membranes. One theory is that any possible prenatal exposure could ‘pre-seed’ the infant microbiome. In other words, to set the right conditions for the ‘main seeding event’ for founding the infant microbiome.

When a mother gives birth vaginally and if she breastfeeds, she passes on colonies of essential microbes to her baby. This continues a chain of maternal heritage that stretches through female ancestry for thousands of generations, if all have been vaginally born and breastfed. This means a child’s microbiome, that is the trillions of microorganisms that live on and in him or her, will resemble the microbiome of his/her mother, the grandmother, the great-grandmother and so on, if all have been vaginally born and breastfed.

As soon as the mother’s waters break, suddenly the baby is exposed to a wave of the mother’s vaginal microbes that wash over the baby in the birth canal. They coat the baby’s skin, and enter the baby’s eyes, ears, nose and some are swallowed to be sent down into the gut. More microbes form of the mother’s gut microbes join the colonization through contact with the mother’s faecal matter. Many more microbes come from every breath, from every touch including skin-to-skin contact with the mother and of course, from breastfeeding.

With formula feeding, the baby won’t receive the 700 species of microbes found in breast milk. Inside breast milk, there are special sugars called human milk oligosaccharides (HMO’s) that are indigestible by the baby. These sugars are designed to feed the mother’s microbes newly arrived in the baby’s gut. By multiplying quickly, the ‘good’ bacteria crowd out any potentially harmful pathogens. These ‘good’ bacteria help train the baby’s naive immune system, teaching it to identify what is to be tolerated and what is pathogen to be attacked. This leads to the optimal training of the infant immune system resulting in a child’s best possible lifelong health.

With C-section birth and formula feeding, the baby is not likely to acquire the full complement of the mother’s vaginal, gut and breast milk microbes. Therefore, the baby’s microbiome is not likely to closely resemble the mother’s microbiome. A baby born by C-section is likely to have a different microbiome from its mother, its grandmother, its great-grandmother and so on. C-section breaks the chain of maternal heritage and this break can never be restored.

The long term effect of an altered microbiome for a child’s lifelong health is still to be proven, but many studies link C-section with a significantly increased risk for developing asthma, Type 1 diabetes, celiac disease and obesity. Scientists might not yet have all the answers, but the picture that is forming is that C-section and formula feeding could be significantly impacting the health of the next generation. Through the transgenerational aspect to birth, it could even be impacting the health of future generations.


Read Full Post »

Older Posts »