Advertisements
Feeds:
Posts
Comments

Archive for the ‘Artificial Pancreas for Type1 Diabetes’ Category


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Obesity is a global concern that is associated with many chronic complications such as type 2 diabetes, insulin resistance (IR), cardiovascular diseases, and cancer. Growing evidence has implicated the digestive system, including its microbiota, gut-derived incretin hormones, and gut-associated lymphoid tissue in obesity and IR. During high fat diet (HFD) feeding and obesity, a significant shift occurs in the microbial populations within the gut, known as dysbiosis, which interacts with the intestinal immune system. Similar to other metabolic organs, including visceral adipose tissue (VAT) and liver, altered immune homeostasis has also been observed in the small and large intestines during obesity.

 

A link between the gut microbiota and the intestinal immune system is the immune-derived molecule immunoglobulin A (IgA). IgA is a B cell antibody primarily produced in dimeric form by plasma cells residing in the gut lamina propria (LP). Given the importance of IgA on intestinal–gut microbe immunoregulation, which is directly influenced by dietary changes, scientists hypothesized that IgA may be a key player in the pathogenesis of obesity and IR. Here, in this study it was demonstrate that IgA levels are reduced during obesity and the loss of IgA in mice worsens IR and increases intestinal permeability, microbiota encroachment, and downstream inflammation in metabolic tissues, including inside the VAT.

 

IgA deficiency alters the obese gut microbiota and its metabolic phenotype can be recapitulated into microbiota-depleted mice upon fecal matter transplantation. In addition, the researchers also demonstrated that commonly used therapies for diabetes such as metformin and bariatric surgery can alter cellular and stool IgA levels, respectively. These findings suggested a critical function for IgA in regulating metabolic disease and support the emerging role for intestinal immunity as an important modulator of systemic glucose metabolism.

 

Overall, the researchers demonstrated a critical role for IgA in regulating intestinal homeostasis, metabolic inflammation, and obesity-related IR. These findings identify intestinal IgA+ immune cells as mucosal mediators of whole-body glucose regulation in diet-induced metabolic disease. This research further emphasized the importance of the intestinal adaptive immune system and its interactions with the gut microbiota and innate immune system within the larger network of organs involved in the manifestation of metabolic disease.

 

Future investigation is required to determine the impact of IgA deficiency during obesity in humans and the role of metabolic disease in human populations with selective IgA deficiency, especially since human IgA deficiency is associated with an altered gut microbiota that cannot be fully compensated with IgM. However, the research identified IgA as a critical immunological molecule in the intestine that impacts systemic glucose homeostasis, and treatments targeting IgA-producing immune populations and SIgA may have therapeutic potential for metabolic disease.

 

References:

 

https://www.nature.com/articles/s41467-019-11370-y?elqTrackId=dc86e0c60f574542b033227afd0fdc8e

 

https://www.jci.org/articles/view/88879

 

https://www.nature.com/articles/nm.2353

 

https://diabetes.diabetesjournals.org/content/57/6/1470

 

https://www.sciencedirect.com/science/article/pii/S1550413115001047?via%3Dihub

 

https://www.sciencedirect.com/science/article/pii/S1550413115002326?via%3Dihub

 

https://www.sciencedirect.com/science/article/pii/S1931312814004636?via%3Dihub

 

https://www.nature.com/articles/nature15766

 

https://www.sciencedirect.com/science/article/pii/S1550413116000371?via%3Dihub

 

https://www.nature.com/articles/nm.2001

 

https://www.sciencedirect.com/science/article/abs/pii/S1550413118305047?via%3Dihub

 

Advertisements

Read Full Post »


Reprogrammed Human Pancreatic Cells Reprogrammed to Create Insulin

Reporter: Irina Robu, PhD

A  new study proposes that various cells can be modified to take a place of an insulin producing cell to help control sugar levels.  Researchers from University of Lincoln, UK report coaxing human pancreatic cells that don’t normally make insulin (a hormone that regulates the amount of glucose in the blood), to change their identity and begin producing the hormone. When implanted in mice, these reprogrammed cells relieved symptoms of diabetes, raising the opportunity that the method could one day be used as a treatment in people.

It is known that beta cells normally respond by releasing insulin when blood sugar levels rise after eating, which in turn stimulates to start absorbing sugars. In people with diabetes, this system breaks down, leading to high blood sugar levels that can harm the body and cause illness. In type 1 diabetes, the immune system attacks and destroys β-cells; in type 2, the β-cells do not produce enough of the hormone, or the body becomes resistant to insulin.

Scientists have previously revealed in mouse studies that if β-cells are destroyed, alternative type of pancreatic cell, called α-cells become more β-like and start making insulin. These α-cells normally yield the hormone glucagon which are originate together with β-cells in clumps of hormone-secreting cells called pancreatic islets or islets of Langerhans. Preceding studies showed that two proteins that control gene expression seemed to have an important role in coaxing α-cells to produce insulin in mice: Pdx1 and MafA.

At the same time as researchers from University of Lincoln, researchers from Pedro Herrera group at University of Geneva, wondered whether producing more of these proteins in human α-cells would have a similar result. They first took islet cells from human pancreases, and separated out the individual cell types which were then introduced DNA that encoded Pdx1 and MafA proteins into the α-cells, before clumping them back together.

After one week in culture, almost 40% of the human α-cells were producing insulin, while control cells that hadn’t been reprogrammed were not. The reprogrammed cells showed an increase in the expression of other genes related to β-cells, which were then implanted into diabetic mice, which had their β-cells destroyed and found that blood-sugar levels went down to normal levels. When the cell grafts were removed, the mice’s blood sugar shot back up.

Results of the experiment show that if α-cells or other kinds of islet cells could be made to start producing insulin in this way in diabetes patients’ quality of life will improve. According to Herrera before drawing conclusions about the efficacy of their approach, they will need to test the hybrid cells with other antibodies present in type-1 diabetes that could potentially attack those cells. But the research demonstrates that there is a lot of plasticity in the hormonal system of the human pancreas.

SOURCE

https://www.nature.com/articles/d41586-019-00578-z

Read Full Post »

Digital Therapeutics: A Threat or Opportunity to Pharmaceuticals


Digital Therapeutics: A Threat or Opportunity to Pharmaceuticals

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Digital Therapeutics (DTx) have been defined by the Digital Therapeutics Alliance (DTA) as “delivering evidence based therapeutic interventions to patients, that are driven by software to prevent, manage or treat a medical disorder or disease”. They might come in the form of a smart phone or computer tablet app, or some form of a cloud-based service connected to a wearable device. DTx tend to fall into three groups. Firstly, developers and mental health researchers have built digital solutions which typically provide a form of software delivered Cognitive-Behaviour Therapies (CBT) that help patients change behaviours and develop coping strategies around their condition. Secondly there are the group of Digital Therapeutics which target lifestyle issues, such as diet, exercise and stress, that are associated with chronic conditions, and work by offering personalized support for goal setting and target achievement. Lastly, DTx can be designed to work in combination with existing medication or treatments, helping patients manage their therapies and focus on ensuring the therapy delivers the best outcomes possible.

 

Pharmaceutical companies are clearly trying to understand what DTx will mean for them. They want to analyze whether it will be a threat or opportunity to their business. For a long time, they have been providing additional support services to patients who take relatively expensive drugs for chronic conditions. A nurse-led service might provide visits and telephone support to diabetics for example who self-inject insulin therapies. But DTx will help broaden the scope of support services because they can be delivered cost-effectively, and importantly have the ability to capture real-world evidence on patient outcomes. They will no-longer be reserved for the most expensive drugs or therapies but could apply to a whole range of common treatments to boost their efficacy. Faced with the arrival of Digital Therapeutics either replacing drugs, or playing an important role alongside therapies, pharmaceutical firms have three options. They can either ignore DTx and focus on developing drug therapies as they have done; they can partner with a growing number of DTx companies to develop software and services complimenting their drugs; or they can start to build their own Digital Therapeutics to work with their products.

 

Digital Therapeutics will have knock-on effects in health industries, which may be as great as the introduction of therapeutic apps and services themselves. Together with connected health monitoring devices, DTx will offer a near constant stream of data about an individuals’ behavior, real world context around factors affecting their treatment in their everyday lives and emotional and physiological data such as blood pressure and blood sugar levels. Analysis of the resulting data will help create support services tailored to each patient. But who stores and analyses this data is an important question. Strong data governance will be paramount to maintaining trust, and the highly regulated pharmaceutical industry may not be best-placed to handle individual patient data. Meanwhile, the health sector (payers and healthcare providers) is becoming more focused on patient outcomes, and payment for value not volume. The future will say whether pharmaceutical firms enhance the effectiveness of drugs with DTx, or in some cases replace drugs with DTx.

 

Digital Therapeutics have the potential to change what the pharmaceutical industry sells: rather than a drug it will sell a package of drugs and digital services. But they will also alter who the industry sells to. Pharmaceutical firms have traditionally marketed drugs to doctors, pharmacists and other health professionals, based on the efficacy of a specific product. Soon it could be paid on the outcome of a bundle of digital therapies, medicines and services with a closer connection to both providers and patients. Apart from a notable few, most pharmaceutical firms have taken a cautious approach towards Digital Therapeutics. Now, it is to be observed that how the pharmaceutical companies use DTx to their benefit as well as for the benefit of the general population.

 

References:

 

https://eloqua.eyeforpharma.com/LP=23674?utm_campaign=EFP%2007MAR19%20EFP%20Database&utm_medium=email&utm_source=Eloqua&elqTrackId=73e21ae550de49ccabbf65fce72faea0&elq=818d76a54d894491b031fa8d1cc8d05c&elqaid=43259&elqat=1&elqCampaignId=24564

 

https://www.s3connectedhealth.com/resources/white-papers/digital-therapeutics-pharmas-threat-or-opportunity/

 

http://www.pharmatimes.com/web_exclusives/digital_therapeutics_will_transform_pharma_and_healthcare_industries_in_2019._heres_how._1273671

 

https://www.mckinsey.com/industries/pharmaceuticals-and-medical-products/our-insights/exploring-the-potential-of-digital-therapeutics

 

https://player.fm/series/digital-health-today-2404448/s9-081-scaling-digital-therapeutics-the-opportunities-and-challenges

 

Read Full Post »


Artificial Pancreas – Medtronic Receives FDA Approval for World’s First Hybrid Closed Loop System for People with Type 1 Diabetes

Reporter: Aviva Lev-Ari, PhD, RN

 

Press Release

Read Full Post »