Feeds:
Posts
Comments

Archive for the ‘Health Care System by Country’ Category


The Wide Variability in Reported COVID-19 Epidemiologic Data May Suggest That Personalized Omic Testing May Be Needed to Identify At-Risk Populations

Curator: Stephen J. Williams, PhD

I constantly check the Youtube uploads from Dr. John Campbell, who is a wonderful immunologist and gives daily reports on new findings on COVID-19 from the scientific literature.  His reporting is extremely insightful and easily understandable.  This is quite a feat as it seems the scientific field has been inundated with a plethora of papers, mostly reported clinical data from small retrospective studies, and many which are being put on preprint servers, and not peer reviewed.

It has become a challenge for many scientists, already inundated with expanding peer reviewed literature in their own fields, as well as the many requests to review papers, to keep up with all these COVID related literature.  Especially when it is up to the reader to do their own detailed peer review. So many thanks to people like Dr. Campbell who is an expert in his field for doing this.

However the other day he had posted a video which I found a bit disturbing, as a central theme of the video was that many expert committee could not find any reliable epidemiologic study concerning transmission or even incidence of the disease.  In all studies, as Dr. Campell alluded to, there is such a tremendous variability in the reported statistics, whether one is looking at percentage of people testing positive who are symptomatic, the percentage of asymptomatic which may be carriers, the transmission of the disease, and even the percentage of people who recover.

With all the studies being done it would appear that, even if a careful meta analysis were done using all available studies, and assuming their validity before peer review, that there would be a tighter consensus on some of these metrics of disease spread, incidence and prevalence.

Below is the video from Dr. Campbell and the topic is on percentage of asymptomatic carriers of the COVID-19 virus.  This was posted last week but later in this post there will be updated information and views by the WHO on this matter as well as other literature (which still shows to my point that this wide variability in reported data may be adding to the policy confusion with respect to asymptomatic versus symptomatic people and why genetic testing might be needed to further discriminate these cohorts of people.

 

Below is the video: 

From the Oxford Center for Evidence Based Medicine: COVID-19 Portal at https://www.cebm.net/oxford-covid-19-evidence-service/

“There is not a single reliable study to determine the number of asymptomatic infections”

And this is very troubling as this means there is no reliable testing resulting in any meaningful data.

As Dr. Campell says

” This is not good enough.  There needs to be some sort of coordinated research program it seems all ad hoc”

A few other notes from post and Oxford Center for Evidence Based Medicine:

  • Symptom based screening will miss a lot of asymptomatic and presymptomatic cases
  • Some asymptomatic cases will become symptomatic over next week (these people were technically presymptomatic but do we know the %?)
  • We need a population based antibody screening program
  • An Italian study of all 3,000 people in city of Vo’Euganeo revealed that 50-75% of those who tested positive were asymptomatic and authors concluded that asymptomatic represents “a formidable source of infection”; Dr. Campbell feels this was a reliable study
  • Another study from a Washington state nursing facility showed while 56% of positive cases were asymptomatic, 75% of these asymptomatic developed symptoms within a week. Symptom based screening missed half of cases.
  • Other studies do not follow-up on the positive cases to determine in presymptomatic
  • It also appears discrepancies between data from different agencies (like CDC, WHO) on who is shedding virus as different tests used (PCR vs antibody)

 

Recent Studies Conflict Concerning Asymptomatic, Presymtomatic and Viral Transmission

‘We don’t actually have that answer yet’: WHO clarifies comments on asymptomatic spread of Covid-19

From StatNews

A top World Health Organization official clarified on Tuesday that scientists have not determined yet how frequently people with asymptomatic cases of Covid-19 pass the disease on to others, a day after suggesting that such spread is “very rare.”

The clarification comes after the WHO’s original comments incited strong pushback from outside public health experts, who suggested the agency had erred, or at least miscommunicated, when it said people who didn’t show symptoms were unlikely to spread the virus.

Maria Van Kerkhove, the WHO’s technical lead on the Covid-19 pandemic, made it very clear Tuesday that the actual rates of asymptomatic transmission aren’t yet known.

Some of the confusion boiled down to the details of what an asymptomatic infection actually is, and the different ways the term is used. While some cases of Covid-19 are fully asymptomatic, sometimes the word is also used to describe people who haven’t started showing symptoms yet, when they are presymptomatic. Research has shown that people become infectious before they start feeling sick, during that presymptomatic period.

At one of the WHO’s thrice-weekly press briefings Monday, Van Kerkhove noted that when health officials review cases that are initially reported to be asymptomatic, “we find out that many have really mild disease.” There are some infected people who are “truly asymptomatic,” she said, but countries that are doing detailed contact tracing are “not finding secondary transmission onward” from those cases. “It’s very rare,” she said.

Source: https://www.statnews.com/2020/06/09/who-comments-asymptomatic-spread-covid-19/

 

Therefore the problems have been in coordinating the testing results, which types of tests conducted, and the symptomology results.  As Dr. Campbell previously stated it appears more ‘ad hoc’ than coordinated research program.  In addition, defining the presymptomatic and measuring this group have been challenging.

However, an alternative explanation to the wide variability in the data may be we need to redefine the cohorts of patients we are evaluating and the retrospective data we are collecting.  It is feasible that sub groups, potentially defined by genetic background may be identified and data re-evaluated based on personalized omic data, in essence creating new cohorts based on biomarker data.

From a Perspective in The Lancet about a worldwide proteomic effort (COVID-19 MS Coalition) to discover biomarkers related to COVID19 infection risk, by identifying COVID-related antigens.

The COVID-19 MS Coalition is a collective mass spectrometry effort that will provide molecular level information on SARS-CoV-2 in the human host and reveal pathophysiological and structural information to treat and minimise COVID-19 infection. Collaboration with colleagues at pace involves sharing of optimised methods for sample collection and data generation, processing and formatting for maximal information gain. Open datasets will enable ready access to this valuable information by the computational community to help understand antigen response mechanisms, inform vaccine development, and enable antiviral drug design. As countries across the world increase widespread testing to confirm SARS-CoV-2 exposure and assess immunity, mass spectrometry has a significant role in fighting the disease. Through collaborative actions, and the collective efforts of the COVID-19 MS Coalition, a molecular level quantitative understanding of SARS-CoV-2 and its effect will benefit all.

 

In an ACS Perspective below, Morteza Mahmoudi suggests a few possible nanobased technologies (i.e., protein corona sensor array and magnetic levitation) that could discriminate COVID-19-infected people at high risk of death while still in the early stages of infection.

Emerging Biomolecular Testing to Assess the Risk of Mortality from COVID-19 Infection

Morteza Mahmoudi*

Publication Date:May 7, 2020

 

Please see other articles on COVID-19 on our Coronavirus Portal at

An Epidemiological Approach Stephen J. Williams, PhD and Aviva Lev-Ari, PhD, RN Lead Curators – e–mail Contacts: sjwilliamspa@comcast.net and avivalev-ari@alum.berkeley.edu

https://pharmaceuticalintelligence.com/coronavirus-portal/an-epidemiological-approach-stephen-j-williams-phd-and-aviva-lev-ari-phd-rn-lead-curators-e-mail-contacts-sjwilliamspacomcast-net-and-avivalev-arialum-berkeley-edu/

and

https://pharmaceuticalintelligence.com/coronavirus-portal/

Read Full Post »


Personalized Medicine, Omics, and Health Disparities in Cancer:  Can Personalized Medicine Help Reduce the Disparity Problem?

Curator: Stephen J. Williams, PhD

In a Science Perspectives article by Timothy Rebbeck, health disparities, specifically cancer disparities existing in the sub-Saharan African (SSA) nations, highlighting the cancer incidence disparities which exist compared with cancer incidence in high income areas of the world [1].  The sub-Saharan African nations display a much higher incidence of prostate, breast, and cervix cancer and these cancers are predicted to double within the next twenty years, according to IARC[2].  Most importantly,

 the histopathologic and demographic features of these tumors differ from those in high-income countries

meaning that the differences seen in incidence may reflect a true health disparity as increases rates in these cancers are not seen in high income countries (HIC).

Most frequent male cancers in SSA include prostate, lung, liver, leukemia, non-Hodgkin’s lymphoma, and Kaposi’s sarcoma (a cancer frequently seen in HIV infected patients [3]).  In SSA women, breast and cervical cancer are the most common and these display higher rates than seen in high income countries.  In fact, liver cancer is seen in SSA females at twice the rate, and in SSA males almost three times the rate as in high income countries.

 

 

 

 

 

 

Reasons for cancer disparity in SSA

Patients with cancer are often diagnosed at a late stage in SSA countries.  This contrasts with patients from high income countries, which have their cancers usually diagnosed at an earlier stage, and with many cancers, like breast[4], ovarian[5, 6], and colon, detecting the tumor in the early stages is critical for a favorable outcome and prognosis[7-10].  In addition, late diagnosis also limits many therapeutic options for the cancer patient and diseases at later stages are much harder to manage, especially with respect to unresponsiveness and/or resistance of many therapies.  In addition, treatments have to be performed in low-resource settings in SSA, and availability of clinical lab work and imaging technologies may be limited.

Molecular differences in SSA versus HIC cancers which may account for disparities

Emerging evidence suggests that there are distinct molecular signatures with SSA tumors with respect to histotype and pathology.  For example Dr. Rebbeck mentions that Nigerian breast cancers were defined by increased mutational signatures associated with deficiency of the homologous recombination DNA repair pathway, pervasive mutations in the tumor suppressor gene TP53, mutations in GATA binding protein 3 (GATA3), and greater mutational burden, compared with breast tumors from African Americans or Caucasians[11].  However more research will be required to understand the etiology and causal factors related to this molecular distinction in mutational spectra.

It is believed that there is a higher rate of hereditary cancers in SSA. And many SSA cancers exhibit the more aggressive phenotype than in other parts of the world.  For example breast tumors in SSA black cases are twice as likely than SSA Caucasian cases to be of the triple negative phenotype, which is generally more aggressive and tougher to detect and treat, as triple negative cancers are HER2 negative and therefore are not a candidate for Herceptin.  Also BRCA1/2 mutations are more frequent in black SSA cases than in Caucasian SSA cases [12, 13].

Initiatives to Combat Health Disparities in SSA

Multiple initiatives are being proposed or in action to bring personalized medicine to the sub-Saharan African nations.  These include:

H3Africa empowers African researchers to be competitive in genomic sciences, establishes and nurtures effective collaborations among African researchers on the African continent, and generates unique data that could be used to improve both African and global health.

There is currently a global effort to apply genomic science and associated technologies to further the understanding of health and disease in diverse populations. These efforts work to identify individuals and populations who are at risk for developing specific diseases, and to better understand underlying genetic and environmental contributions to that risk. Given the large amount of genetic diversity on the African continent, there exists an enormous opportunity to utilize such approaches to benefit African populations and to inform global health.

The Human Heredity and Health in Africa (H3Africa) consortium facilitates fundamental research into diseases on the African continent while also developing infrastructure, resources, training, and ethical guidelines to support a sustainable African research enterprise – led by African scientists, for the African people. The initiative consists of 51 African projects that include population-based genomic studies of common, non-communicable disorders such as heart and renal disease, as well as communicable diseases such as tuberculosis. These studies are led by African scientists and use genetic, clinical, and epidemiologic methods to identify hereditary and environmental contributions to health and disease. To establish a foundation for African scientists to continue this essential work into the future work, the consortium also supports many crucial capacity building elements, such as: ethical, legal, and social implications research; training and capacity building for bioinformatics; capacity for biobanking; and coordination and networking.

The World Economic Forum’s Leapfrogging with Precision Medicine project 

This project is part of the World Economic Forum’s Shaping the Future of Health and Healthcare Platform

The Challenge

Advancing precision medicine in a way that is equitable and beneficial to society means ensuring that healthcare systems can adopt the most scientifically and technologically appropriate approaches to a more targeted and personalized way of diagnosing and treating disease. In certain instances, countries or institutions may be able to bypass, or “leapfrog”, legacy systems or approaches that prevail in developed country contexts.

The World Economic Forum’s Leapfrogging with Precision Medicine project will develop a set of tools and case studies demonstrating how a precision medicine approach in countries with greenfield policy spaces can potentially transform their healthcare delivery and outcomes. Policies and governance mechanisms that enable leapfrogging will be iterated and scaled up to other projects.

Successes in personalized genomic research in SSA

As Dr. Rebbeck states:

 Because of the underlying genetic and genomic relationships between Africans and members of the African diaspora (primarily in North America and Europe), knowledge gained from research in SSA can be used to address health disparities that are prevalent in members of the African diaspora.

For example members of the West African heritage and genomic ancestry has been reported to confer the highest genomic risk for prostate cancer in any worldwide population [14].

 

PERSPECTIVEGLOBAL HEALTH

Cancer in sub-Saharan Africa

  1. Timothy R. Rebbeck

See all authors and affiliations

Science  03 Jan 2020:
Vol. 367, Issue 6473, pp. 27-28
DOI: 10.1126/science.aay474

Summary/Abstract

Cancer is an increasing global public health burden. This is especially the case in sub-Saharan Africa (SSA); high rates of cancer—particularly of the prostate, breast, and cervix—characterize cancer in most countries in SSA. The number of these cancers in SSA is predicted to more than double in the next 20 years (1). Both the explanations for these increasing rates and the solutions to address this cancer epidemic require SSA-specific data and approaches. The histopathologic and demographic features of these tumors differ from those in high-income countries (HICs). Basic knowledge of the epidemiology, clinical features, and molecular characteristics of cancers in SSA is needed to build prevention and treatment tools that will address the future cancer burden. The distinct distribution and determinants of cancer in SSA provide an opportunity to generate knowledge about cancer risk factors, genomics, and opportunities for prevention and treatment globally, not only in Africa.

 

References

  1. Rebbeck TR: Cancer in sub-Saharan Africa. Science 2020, 367(6473):27-28.
  2. Parkin DM, Ferlay J, Jemal A, Borok M, Manraj S, N’Da G, Ogunbiyi F, Liu B, Bray F: Cancer in Sub-Saharan Africa: International Agency for Research on Cancer; 2018.
  3. Chinula L, Moses A, Gopal S: HIV-associated malignancies in sub-Saharan Africa: progress, challenges, and opportunities. Current opinion in HIV and AIDS 2017, 12(1):89-95.
  4. Colditz GA: Epidemiology of breast cancer. Findings from the nurses’ health study. Cancer 1993, 71(4 Suppl):1480-1489.
  5. Hamilton TC, Penault-Llorca F, Dauplat J: [Natural history of ovarian adenocarcinomas: from epidemiology to experimentation]. Contracept Fertil Sex 1998, 26(11):800-804.
  6. Garner EI: Advances in the early detection of ovarian carcinoma. J Reprod Med 2005, 50(6):447-453.
  7. Brockbank EC, Harry V, Kolomainen D, Mukhopadhyay D, Sohaib A, Bridges JE, Nobbenhuis MA, Shepherd JH, Ind TE, Barton DP: Laparoscopic staging for apparent early stage ovarian or fallopian tube cancer. First case series from a UK cancer centre and systematic literature review. European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology 2013, 39(8):912-917.
  8. Kolligs FT: Diagnostics and Epidemiology of Colorectal Cancer. Visceral medicine 2016, 32(3):158-164.
  9. Rocken C, Neumann U, Ebert MP: [New approaches to early detection, estimation of prognosis and therapy for malignant tumours of the gastrointestinal tract]. Zeitschrift fur Gastroenterologie 2008, 46(2):216-222.
  10. Srivastava S, Verma M, Henson DE: Biomarkers for early detection of colon cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 2001, 7(5):1118-1126.
  11. Pitt JJ, Riester M, Zheng Y, Yoshimatsu TF, Sanni A, Oluwasola O, Veloso A, Labrot E, Wang S, Odetunde A et al: Characterization of Nigerian breast cancer reveals prevalent homologous recombination deficiency and aggressive molecular features. Nature communications 2018, 9(1):4181.
  12. Zheng Y, Walsh T, Gulsuner S, Casadei S, Lee MK, Ogundiran TO, Ademola A, Falusi AG, Adebamowo CA, Oluwasola AO et al: Inherited Breast Cancer in Nigerian Women. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2018, 36(28):2820-2825.
  13. Rebbeck TR, Friebel TM, Friedman E, Hamann U, Huo D, Kwong A, Olah E, Olopade OI, Solano AR, Teo SH et al: Mutational spectrum in a worldwide study of 29,700 families with BRCA1 or BRCA2 mutations. Human mutation 2018, 39(5):593-620.
  14. Lachance J, Berens AJ, Hansen MEB, Teng AK, Tishkoff SA, Rebbeck TR: Genetic Hitchhiking and Population Bottlenecks Contribute to Prostate Cancer Disparities in Men of African Descent. Cancer research 2018, 78(9):2432-2443.

Other articles on Cancer Health Disparities and Genomics on this Online Open Access Journal Include:

Gender affects the prevalence of the cancer type
The Rutgers Global Health Institute, part of Rutgers Biomedical and Health Sciences, Rutgers University, New Brunswick, New Jersey – A New Venture Designed to Improve Health and Wellness Globally
Breast Cancer Disparities to be Sponsored by NIH: NIH Launches Largest-ever Study of Breast Cancer Genetics in Black Women
War on Cancer Needs to Refocus to Stay Ahead of Disease Says Cancer Expert
Ethical Concerns in Personalized Medicine: BRCA1/2 Testing in Minors and Communication of Breast Cancer Risk
Ethics Behind Genetic Testing in Breast Cancer: A Webinar by Laura Carfang of survivingbreastcancer.org
Live Notes from @HarvardMed Bioethics: Authors Jerome Groopman, MD & Pamela Hartzband, MD, discuss Your Medical Mind
Testing for Multiple Genetic Mutations via NGS for Patients: Very Strong Family History of Breast & Ovarian Cancer, Diagnosed at Young Ages, & Negative on BRCA Test
Study Finds that Both Women and their Primary Care Physicians Confusion over Ovarian Cancer Symptoms May Lead to Misdiagnosis

 

Read Full Post »


US Responses to Coronavirus Outbreak Expose Many Flaws in Our Medical System

Curator: Stephen J. Williams, Ph.D.

The  coronavirus pandemic has affected almost every country in every continent however, after months of the novel advent of novel COVID-19 cases, it has become apparent that the varied clinical responses in this epidemic (and outcomes) have laid bare some of the strong and weak aspects in, both our worldwide capabilities to respond to infectious outbreaks in a global coordinated response and in individual countries’ response to their localized epidemics.

 

Some nations, like Israel, have initiated a coordinated government-private-health system wide action plan and have shown success in limiting both new cases and COVID-19 related deaths.  After the initial Wuhan China outbreak, China closed borders and the government initiated health related procedures including the building of new hospitals. As of writing today, Wuhan has experienced no new cases of COVID-19 for two straight days.

 

However, the response in the US has been perplexing and has highlighted some glaring problems that have been augmented in this crisis, in the view of this writer.    In my view, which has been formulated after social discussion with members in the field ,these issues can be centered on three major areas of deficiencies in the United States that have hindered a rapid and successful response to this current crisis and potential future crises of this nature.

 

 

  1. The mistrust or misunderstanding of science in the United States
  2. Lack of communication and connection between patients and those involved in the healthcare industry
  3. Socio-geographical inequalities within the US healthcare system

 

1. The mistrust or misunderstanding of science in the United States

 

For the past decade, anyone involved in science, whether directly as active bench scientists, regulatory scientists, scientists involved in science and health policy, or environmental scientists can attest to the constant pressure to not only defend their profession but also to defend the entire scientific process and community from an onslaught of misinformation, mistrust and anxiety toward the field of science.  This can be seen in many of the editorials in scientific publications including the journal Science and Scientific American (as shown below)

 

Stepping Away from Microscopes, Thousands Protest War on Science

Boston rally coincides with annual American Association for the Advancement of Science (AAAS) conference and is a precursor to the March for Science in Washington, D.C.

byLauren McCauley, staff writer

Responding to the troubling suppression of science under the Trump administration, thousands of scientists, allies, and frontline communities are holding a rally in Boston’s Copley Square on Sunday.

#standupforscience Tweets

 

“Science serves the common good,” reads the call to action. “It protects the health of our communities, the safety of our families, the education of our children, the foundation of our economy and jobs, and the future we all want to live in and preserve for coming generations.”

It continues: 

But it’s under attack—both science itself, and the unalienable rights that scientists help uphold and protect. 

From the muzzling of scientists and government agencies, to the immigration ban, the deletion of scientific data, and the de-funding of public science, the erosion of our institutions of science is a dangerous direction for our country. Real people and communities bear the brunt of these actions.

The rally was planned to coincide with the annual American Association for the Advancement of Science (AAAS) conference, which draws thousands of science professionals, and is a precursor to the March for Science in Washington, D.C. and in cities around the world on April 22.

 

Source: https://www.commondreams.org/news/2017/02/19/stepping-away-microscopes-thousands-protest-war-science

https://images.app.goo.gl/UXizCsX4g5wZjVtz9

 

https://www.washingtonpost.com/video/c/embed/85438fbe-278d-11e7-928e-3624539060e8

 

 

The American Association for Cancer Research (AACR) also had marches for public awareness of science and meaningful science policy at their annual conference in Washington, D.C. in 2017 (see here for free recordings of some talks including Joe Biden’s announcement of the Cancer Moonshot program) and also sponsored events such as the Rally for Medical Research.  This patient advocacy effort is led by the cancer clinicians and scientific researchers to rally public support for cancer research for the benefit of those affected by the disease.

Source: https://leadingdiscoveries.aacr.org/cancer-patients-front-and-center/

 

 

     However, some feel that scientists are being too sensitive and that science policy and science-based decision making may not be under that much of a threat in this country. Yet even as some people think that there is no actual war on science and on scientists they realize that the public is not engaged in science and may not be sympathetic to the scientific process or trust scientists’ opinions. 

 

   

From Scientific American: Is There Really a War on Science? People who oppose vaccines, GMOs and climate change evidence may be more anxious than antagonistic

 

Certainly, opponents of genetically modified crops, vaccinations that are required for children and climate science have become louder and more organized in recent times. But opponents typically live in separate camps and protest single issues, not science as a whole, said science historian and philosopher Roberta Millstein of the University of California, Davis. She spoke at a standing-room only panel session at the American Association for the Advancement of Science’s annual meeting, held in Washington, D.C. All the speakers advocated for a scientifically informed citizenry and public policy, and most discouraged broadly applied battle-themed rhetoric.

 

Source: https://www.scientificamerican.com/article/is-there-really-a-war-on-science/

 

      In general, it appears to be a major misunderstanding by the public of the scientific process, and principles of scientific discovery, which may be the fault of miscommunication by scientists or agendas which have the goals of subverting or misdirecting public policy decisions from scientific discourse and investigation.

 

This can lead to an information vacuum, which, in this age of rapid social media communication,

can quickly perpetuate misinformation.

 

This perpetuation of misinformation was very evident in a Twitter feed discussion with Dr. Eric Topol, M.D. (cardiologist and Founder and Director of the Scripps Research Translational  Institute) on the US President’s tweet on the use of the antimalarial drug hydroxychloroquine based on President Trump referencing a single study in the International Journal of Antimicrobial Agents.  The Twitter thread became a sort of “scientific journal club” with input from international scientists discussing and critiquing the results in the paper.  

 

Please note that when we scientists CRITIQUE a paper it does not mean CRITICIZE it.  A critique is merely an in depth analysis of the results and conclusions with an open discussion on the paper.  This is part of the normal peer review process.

 

Below is the original Tweet by Dr. Eric Topol as well as the ensuing tweet thread

 

https://twitter.com/EricTopol/status/1241442247133900801?s=20

 

Within the tweet thread it was discussed some of the limitations or study design flaws of the referenced paper leading the scientists in this impromptu discussion that the study could not reasonably conclude that hydroxychloroquine was not a reliable therapeutic for this coronavirus strain.

 

The lesson: The public has to realize CRITIQUE does not mean CRITICISM.

 

Scientific discourse has to occur to allow for the proper critique of results.  When this is allowed science becomes better, more robust, and we protect ourselves from maybe heading down an incorrect path, which may have major impacts on a clinical outcome, in this case.

 

 

2.  Lack of communication and connection between patients and those involved in the healthcare industry

 

In normal times, it is imperative for the patient-physician relationship to be intact in order for the physician to be able to communicate proper information to their patient during and after therapy/care.  In these critical times, this relationship and good communication skills becomes even more important.

 

Recently, I have had multiple communications, either through Twitter, Facebook, and other social media outlets with cancer patients, cancer advocacy groups, and cancer survivorship forums concerning their risks of getting infected with the coronavirus and how they should handle various aspects of their therapy, whether they were currently undergoing therapy or just about to start chemotherapy.  This made me realize that there were a huge subset of patients who were not receiving all the information and support they needed; namely patients who are immunocompromised.

 

These are patients represent

  1. cancer patient undergoing/or about to start chemotherapy
  2. Patients taking immunosuppressive drugs: organ transplant recipients, patients with autoimmune diseases, multiple sclerosis patients
  3. Patients with immunodeficiency disorders

 

These concerns prompted me to write a posting curating the guidance from National Cancer Institute (NCI) designated cancer centers to cancer patients concerning their risk to COVID19 (which can be found here).

 

Surprisingly, there were only 14 of the 51 US NCI Cancer Centers which had posted guidance (either there own or from organizations like NCI or the National Cancer Coalition Network (NCCN).  Most of the guidance to patients had stemmed from a paper written by Dr. Markham of the Fred Hutchinson Cancer Center in Seattle Washington, the first major US city which was impacted by COVID19.

 

Also I was surprised at the reactions to this posting, with patients and oncologists enthusiastic to discuss concerns around the coronavirus problem.  This led to having additional contact with patients and oncologists who, as I was surprised, are not having these conversations with each other or are totally confused on courses of action during this pandemic.  There was a true need for each party, both patients/caregivers and physicians/oncologists to be able to communicate with each other and disseminate good information.

 

Last night there was a Tweet conversation on Twitter #OTChat sponsored by @OncologyTimes.  A few tweets are included below

https://twitter.com/OncologyTimes/status/1242611841613864960?s=20

https://twitter.com/OncologyTimes/status/1242616756658753538?s=20

https://twitter.com/OncologyTimes/status/1242615906846547978?s=20

 

The Lesson:  Rapid Communication of Vital Information in times of stress is crucial in maintaining a good patient/physician relationship and preventing Misinformation.

 

3.  Socio-geographical Inequalities in the US Healthcare System

It has become very clear that the US healthcare system is fractioned and multiple inequalities (based on race, sex, geography, socio-economic status, age) exist across the whole healthcare system.  These inequalities are exacerbated in times of stress, especially when access to care is limited.

 

An example:

 

On May 12, 2015, an Amtrak Northeast Regional train from Washington, D.C. bound for New York City derailed and wrecked on the Northeast Corridor in the Port Richmond neighborhood of Philadelphia, Pennsylvania. Of 238 passengers and 5 crew on board, 8 were killed and over 200 injured, 11 critically. The train was traveling at 102 mph (164 km/h) in a 50 mph (80 km/h) zone of curved tracks when it derailed.[3]

Some of the passengers had to be extricated from the wrecked cars. Many of the passengers and local residents helped first responders during the rescue operation. Five local hospitals treated the injured. The derailment disrupted train service for several days. 

(Source Wikipedia https://en.wikipedia.org/wiki/2015_Philadelphia_train_derailment)

What was not reported was the difficulties that first responders, namely paramedics had in finding an emergency room capable of taking on the massive load of patients.  In the years prior to this accident, several hospitals, due to monetary reasons, had to close their emergency rooms or reduce them in size. In addition only two in Philadelphia were capable of accepting gun shot victims (Temple University Hospital was the closest to the derailment but one of the emergency rooms which would accept gun shot victims. This was important as Temple University ER, being in North Philadelphia, is usually very busy on any given night.  The stress to the local health system revealed how one disaster could easily overburden many hospitals.

 

Over the past decade many hospitals, especially rural hospitals, have been shuttered or consolidated into bigger health systems.  The graphic below shows this

From Bloomberg: US Hospital Closings Leave Patients with Nowhere to go

 

 

https://images.app.goo.gl/JdZ6UtaG3Ra3EA3J8

 

Note the huge swath of hospital closures in the midwest, especially in rural areas.  This has become an ongoing problem as the health care system deals with rising costs.

 

Lesson:  Epidemic Stresses an already stressed out US healthcare system

 

Please see our Coronavirus Portal at

https://pharmaceuticalintelligence.com/coronavirus-portal/

 

for more up-to-date scientific, clinical information as well as persona stories, videos, interviews and economic impact analyses

and @pharma_BI

Read Full Post »


Medicine in 2045 – Perspectives by World Thought Leaders in the Life Sciences & Medicine

Reporter: Aviva Lev-Ari, PhD, RN

 

This report is based on an article in Nature Medicine | VOL 25 | December 2019 | 1800–1809 | http://www.nature.com/naturemedicine

Looking forward 25 years: the future of medicine.

Nat Med 25, 1804–1807 (2019) doi:10.1038/s41591-019-0693-y

 

Aviv Regev, PhD

Core member and chair of the faculty, Broad Institute of MIT and Harvard; director, Klarman Cell Observatory, Broad Institute of MIT and Harvard; professor of biology, MIT; investigator, Howard Hughes Medical Institute; founding co-chair, Human Cell Atlas.

  • millions of genome variants, tens of thousands of disease-associated genes, thousands of cell types and an almost unimaginable number of ways they can combine, we had to approximate a best starting point—choose one target, guess the cell, simplify the experiment.
  • In 2020, advances in polygenic risk scores, in understanding the cell and modules of action of genes through genome-wide association studies (GWAS), and in predicting the impact of combinations of interventions.
  • we need algorithms to make better computational predictions of experiments we have never performed in the lab or in clinical trials.
  • Human Cell Atlas and the International Common Disease Alliance—and in new experimental platforms: data platforms and algorithms. But we also need a broader ecosystem of partnerships in medicine that engages interaction between clinical experts and mathematicians, computer scientists and engineers

Feng Zhang, PhD

investigator, Howard Hughes Medical Institute; core member, Broad Institute of MIT and Harvard; James and Patricia Poitras Professor of Neuroscience, McGovern Institute for Brain Research, MIT.

  • fundamental shift in medicine away from treating symptoms of disease and toward treating disease at its genetic roots.
  • Gene therapy with clinical feasibility, improved delivery methods and the development of robust molecular technologies for gene editing in human cells, affordable genome sequencing has accelerated our ability to identify the genetic causes of disease.
  • 1,000 clinical trials testing gene therapies are ongoing, and the pace of clinical development is likely to accelerate.
  • refine molecular technologies for gene editing, to push our understanding of gene function in health and disease forward, and to engage with all members of society

Elizabeth Jaffee, PhD

Dana and Albert “Cubby” Broccoli Professor of Oncology, Johns Hopkins School of Medicine; deputy director, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins.

  • a single blood test could inform individuals of the diseases they are at risk of (diabetes, cancer, heart disease, etc.) and that safe interventions will be available.
  • developing cancer vaccines. Vaccines targeting the causative agents of cervical and hepatocellular cancers have already proven to be effective. With these technologies and the wealth of data that will become available as precision medicine becomes more routine, new discoveries identifying the earliest genetic and inflammatory changes occurring within a cell as it transitions into a pre-cancer can be expected. With these discoveries, the opportunities to develop vaccine approaches preventing cancers development will grow.

Jeremy Farrar, OBE FRCP FRS FMedSci

Director, Wellcome Trust.

  • shape how the culture of research will develop over the next 25 years, a culture that cares more about what is achieved than how it is achieved.
  • building a creative, inclusive and open research culture will unleash greater discoveries with greater impact.

John Nkengasong, PhD

Director, Africa Centres for Disease Control and Prevention.

  • To meet its health challenges by 2050, the continent will have to be innovative in order to leapfrog toward solutions in public health.
  • Precision medicine will need to take center stage in a new public health order— whereby a more precise and targeted approach to screening, diagnosis, treatment and, potentially, cure is based on each patient’s unique genetic and biologic make-up.

Eric Topol, MD

Executive vice-president, Scripps Research Institute; founder and director, Scripps Research Translational Institute.

  • In 2045, a planetary health infrastructure based on deep, longitudinal, multimodal human data, ideally collected from and accessible to as many as possible of the 9+ billion people projected to then inhabit the Earth.
  • enhanced capabilities to perform functions that are not feasible now.
  • AI machines’ ability to ingest and process biomedical text at scale—such as the corpus of the up-to-date medical literature—will be used routinely by physicians and patients.
  • the concept of a learning health system will be redefined by AI.

Linda Partridge, PhD

Professor, Max Planck Institute for Biology of Ageing.

  • Geroprotective drugs, which target the underlying molecular mechanisms of ageing, are coming over the scientific and clinical horizons, and may help to prevent the most intractable age-related disease, dementia.

Trevor Mundel, MD

President of Global Health, Bill & Melinda Gates Foundation.

  • finding new ways to share clinical data that are as open as possible and as closed as necessary.
  • moving beyond drug donations toward a new era of corporate social responsibility that encourages biotechnology and pharmaceutical companies to offer their best minds and their most promising platforms.
  • working with governments and multilateral organizations much earlier in the product life cycle to finance the introduction of new interventions and to ensure the sustainable development of the health systems that will deliver them.
  • deliver on the promise of global health equity.

Josep Tabernero, MD, PhD

Vall d’Hebron Institute of Oncology (VHIO); president, European Society for Medical Oncology (2018–2019).

  • genomic-driven analysis will continue to broaden the impact of personalized medicine in healthcare globally.
  • Precision medicine will continue to deliver its new paradigm in cancer care and reach more patients.
  • Immunotherapy will deliver on its promise to dismantle cancer’s armory across tumor types.
  • AI will help guide the development of individually matched
  • genetic patient screenings
  • the promise of liquid biopsy policing of disease?

Pardis Sabeti, PhD

Professor, Harvard University & Harvard T.H. Chan School of Public Health and Broad Institute of MIT and Harvard; investigator, Howard Hughes Medical Institute.

  • the development and integration of tools into an early-warning system embedded into healthcare systems around the world could revolutionize infectious disease detection and response.
  • But this will only happen with a commitment from the global community.

Els Toreele, PhD

Executive director, Médecins Sans Frontières Access Campaign

  • we need a paradigm shift such that medicines are no longer lucrative market commodities but are global public health goods—available to all those who need them.
  • This will require members of the scientific community to go beyond their role as researchers and actively engage in R&D policy reform mandating health research in the public interest and ensuring that the results of their work benefit many more people.
  • The global research community can lead the way toward public-interest driven health innovation, by undertaking collaborative open science and piloting not-for-profit R&D strategies that positively impact people’s lives globally.

Read Full Post »


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

One of the most contagious diseases known to humankind, measles killed an average of 2.6 million people each year before a vaccine was developed, according to the World Health Organization. Widespread vaccination has slashed the death toll. However, lack of access to vaccination and refusal to get vaccinated means measles still infects more than 7 million people and kills more than 100,000 each year worldwide as reported by WHO. The cases are on the rise, tripling in early 2019 and some experience well-known long-term consequences, including brain damage and vision and hearing loss. Previous epidemiological research into immune amnesia suggests that death rates attributed to measles could be even higher, accounting for as much as 50 percent of all childhood mortality.

 

Over the last decade, evidence has mounted that the measles vaccine protects in two ways. It prevents the well-known acute illness with spots and fever and also appears to protect from other infections over the long term by giving general boost to the immune system. The measles virus can impair the body’s immune memory, causing so-called immune amnesia. By protecting against measles infection, the vaccine prevents the body from losing or “forgetting” its immune memory and preserves its resistance to other infections. Researchers showed that the measles virus wipes out 11% to 73% of the different antibodies that protect against viral and bacterial strains a person was previously immune to like from influenza to herpes virus to bacteria that cause pneumonia and skin infections.

 

This study at Harvard Medical School and their collaborators is the first to measure the immune damage caused by the virus and underscores the value of preventing measles infection through vaccination. The discovery that measles depletes people’s antibody repertoires, partially obliterating immune memory to most previously encountered pathogens, supports the immune amnesia hypothesis. It was found that those who survive measles gradually regain their previous immunity to other viruses and bacteria as they get re-exposed to them. But because this process may take months to years, people remain vulnerable in the meantime to serious complications of those infections and thus booster shots of routine vaccines may be required.

 

VirScan detects antiviral and antibacterial antibodies in the blood that result from current or past encounters with viruses and bacteria, giving an overall snapshot of the immune system. Researchers gathered blood samples from unvaccinated children during a 2013 measles outbreak in the Netherlands and used VirScan to measure antibodies before and two months after infection in 77 children who’d contracted the disease. The researchers also compared the measurements to those of 115 uninfected children and adults. Researchers found a striking drop in antibodies from other pathogens in the measles-infected children that clearly suggested a direct effect on the immune system resembling measles-induced immune amnesia.

 

Further tests revealed that severe measles infection reduced people’s overall immunity more than mild infection. This could be particularly problematic for certain categories of children and adults, the researchers said. The present study observed the effects in previously healthy children only. But, measles is known to hit malnourished children much harder, the degree of immune amnesia and its effects could be even more severe in less healthy populations. Inoculation with the MMR (measles, mumps, rubella) vaccine did not impair children’s overall immunity. The results align with decades of research. Ensuring widespread vaccination against measles would not only help prevent the expected 120,000 deaths that will be directly attributed to measles this year alone, but could also avert potentially hundreds of thousands of additional deaths attributable to the lasting damage to the immune system.

 

References:

 

https://hms.harvard.edu/news/inside-immune-amnesia?utm_source=Silverpop

 

https://science.sciencemag.org/content/366/6465/599

 

www.who.int/immunization/newsroom/measles-data-2019/en/

 

https://www.ncbi.nlm.nih.gov/pubmed/20636817

 

https://www.ncbi.nlm.nih.gov/pubmed/27157064

 

https://www.ncbi.nlm.nih.gov/pubmed/30797735

 

Read Full Post »


The Health Care Benefits of Combining Wearables and AI

Reporter: Gail S. Thornton, M.A.

 

 

This article is excerpted from the Harvard Business Review, May 28, 2019

By Moni Miyashita, Michael Brady

In southeast England, patients discharged from a group of hospitals serving 500,000 people are being fitted with a Wi-Fi-enabled armband that remotely monitors vital signs such as respiratory rate, oxygen levels, pulse, blood pressure, and body temperature.

Under a National Health Service pilot program that now incorporates artificial intelligence to analyze all that patient data in real time, hospital readmission rates are down, and emergency room visits have been reduced. What’s more, the need for costly home visits has dropped by 22%. Longer term, adherence to treatment plans have increased to 96%, compared to the industry average of 50%.

The AI pilot is targeting what Harvard Business School Professor and Innosight co-founder Clay Christensen calls “non-consumption.”  These are opportunity areas where consumers have a job to be done that isn’t currently addressed by an affordable or convenient solution.

Before the U.K. pilot at the Dartford and Gravesham hospitals, for instance, home monitoring had involved dispatching hospital staffers to drive up to 90 minutes round-trip to check in with patients in their homes about once per week. But with algorithms now constantly searching for warning signs in the data and alerting both patients and professionals instantly, a new capability is born: providing healthcare before you knew you even need it.

The biggest promise of artificial intelligence — accurate predictions at near-zero marginal cost — has rightly generated substantial interest in applying AI to nearly every area of healthcare. But not every application of AI in healthcare is equally well-suited to benefit. Moreover, very few applications serve as an appropriate strategic response to the largest problems facing nearly every health system: decentralization and margin pressure.

Take for example, medical imaging AI tools — an area in which hospitals are projected to spend $2 billion annually within four years. Accurately diagnosing diseases from cancers to cataracts is a complex task, with difficult-to-quantify but typically major consequences. However, the task is currently typically part of larger workflows performed by extensively trained, highly specialized physicians who are among some of the world’s best minds. These doctors might need help at the margins, but this is a job already being done. Such factors make disease diagnosis an extraordinarily difficult area for AI to create transformative change. And so the application of AI in such settings  —  even if beneficial  to patient outcomes —  is unlikely to fundamentally improve the way healthcare is delivered or to substantially lower costs in the near-term.

However, leading organizations seeking to decentralize care can deploy AI to do things that have never been done before. For example: There’s a wide array of non-acute health decisions that consumers make daily. These decisions do not warrant the attention of a skilled clinician but ultimately play a large role in determining patient’s health — and ultimately the cost of healthcare.

According to the World Health Organization, 60% of related factors to individual health and quality of life are correlated to lifestyle choices, including taking prescriptions such as blood-pressure medications correctly, getting exercise, and reducing stress. Aided by AI-driven models, it is now possible to provide patients with interventions and reminders throughout this day-to-day process based on changes to the patient’s vital signs.

Home health monitoring itself isn’t new. Active programs and pilot studies are underway through leading institutions ranging from Partners Healthcare, United Healthcare, and the Johns Hopkins School of Medicine, with positive results. But those efforts have yet to harness AI to make better judgements and recommendations in real time. Because of the massive volumes of data involved, machine learning algorithms are particularly well suited to scaling that task for large populations. After all, large sets of data are what power AI by making those algorithms smarter.

By deploying AI, for instance, the NHS program is not only able to scale up in the U.K. but also internationally. Current Health, the venture-capital backed maker of the patient monitoring devices used in the program, recently received FDA clearance to pilot the system in the U.S. and is now testing it with New York’s Mount Sinai Hospital. It’s part of an effort to reduce patient readmissions, which costs U.S. hospitals about $40 billion annually.

The early success of such efforts drives home three lessons in using AI to address non-consumption in the new world of patient-centric healthcare:

1) Focus on impacting critical metrics – for example, reducing costly hospital readmission rates.

Start small to home in on the goal of making an impact on a key metric tied to both patient outcomes and financial sustainability. As in the U.K. pilot, this can be done through a program with select hospitals or provider locations. In another case Grady Hospital, the largest public hospital in Atlanta, points to $4M in saving from reduced readmission rates by 31% over two years thanks to the adoption of an AI tool which identifies ‘at-risk’ patients. The system alerts clinical teams to initiate special patient touch points and interventions.

2) Reduce risk by relying on new kinds of partners.

Don’t try to do everything alone. Instead, form alliances with partners that are aiming to tackle similar problems. Consider the Synaptic Healthcare Alliance, a collaborative pilot program between Aetna, Ascension, Humana, Optum, and others. The alliance is using Blockchain to create a giant dataset across various health care providers, with AI trials on the data getting underway. The aim is to streamline health care provider data management with the goal of reducing the cost of processing claims while also improving access to care. Going it alone can be risky due to data incompatibility issues alone. For instance, the M.D. Anderson Cancer Center had to write off millions in costs for a failed AI project due in part to incompatibility with its electronic health records system. By joining forces, Synaptic’s dataset will be in a standard format that makes records and results transportable.

3) Use AI to collaborate, not compete, with highly-trained professionals.

Clinicians are often looking to augment their knowledge and reasoning, and AI can help. Many medical AI applications do actually compete with doctors. In radiology, for instance, some algorithms have performed image-bases diagnosis as well as or better than human experts. Yet it’s unclear if patients and medical institutions will trust AI to automate that job entirely. A University of California at San Diego pilot in which AI successfully diagnosed childhood diseases more accurately than junior-level pediatricians still required senior doctors to personally review and sign off on the diagnosis. The real aim is always going to be to use AI to collaborate with clinicians seeking higher precision — not try to replace them.

MIT and MGH have developed a deep learning model which identifies patients likely to develop breast cancer in the future. Learning from data on 60,000 prior patients, the AI system allows physicians to personalize their approach to breast cancer screening, essentially creating a detailed risk profile for each patient.

Taken together, these three lessons paired with solutions targeted at non-consumption have the potential to provide a clear path to effectively harnessing a technology that has been subject to rampant over-promising. Longer term, we believe the one of the transformative benefits of AI will be deepening relationships between health providers and patients. The U.K. pilot, for instance, is resulting in more frequent proactive check-ins that never would have happened before. That’s good for both improving health as well as customer loyalty in the emerging consumer-centric healthcare marketplace.

Source:

https://hbr.org/2019/05/the-health-care-benefits-of-combining-wearables-and-ai

 

Read Full Post »


eProceedings for BIO 2019 International Convention, June 3-6, 2019 Philadelphia Convention Center; Philadelphia PA, Real Time Coverage by Stephen J. Williams, PhD @StephenJWillia2

 

CONFERENCE OVERVIEW

Real Time Coverage of BIO 2019 International Convention, June 3-6, 2019 Philadelphia Convention Center; Philadelphia PA

Reporter: Stephen J. Williams, PhD @StephenJWillia2

https://pharmaceuticalintelligence.com/2019/05/31/real-time-coverage-of-bio-international-convention-june-3-6-2019-philadelphia-convention-center-philadelphia-pa/

 

LECTURES & PANELS

Real Time Coverage @BIOConvention #BIO2019: Machine Learning and Artificial Intelligence: Realizing Precision Medicine One Patient at a Time, 6/5/2019, Philadelphia PA

Reporter: Stephen J Williams, PhD @StephenJWillia2

https://pharmaceuticalintelligence.com/2019/06/05/real-time-coverage-bioconvention-bio2019-machine-learning-and-artificial-intelligence-realizing-precision-medicine-one-patient-at-a-time/

 

Real Time Coverage @BIOConvention #BIO2019: Genome Editing and Regulatory Harmonization: Progress and Challenges, 6/5/2019. Philadelphia PA

Reporter: Stephen J Williams, PhD @StephenJWillia2

https://pharmaceuticalintelligence.com/2019/06/05/real-time-coverage-bioconvention-bio2019-genome-editing-and-regulatory-harmonization-progress-and-challenges/

 

Real Time Coverage @BIOConvention #BIO2019: Precision Medicine Beyond Oncology June 5, 2019, Philadelphia PA

Reporter: Stephen J Williams PhD @StephenJWillia2

https://pharmaceuticalintelligence.com/2019/06/05/real-time-coverage-bioconvention-bio2019-precision-medicine-beyond-oncology-june-5-philadelphia-pa/

 

Real Time @BIOConvention #BIO2019:#Bitcoin Your Data! From Trusted Pharma Silos to Trustless Community-Owned Blockchain-Based Precision Medicine Data Trials, 6/5/2019, Philadelphia PA

Reporter: Stephen J Williams, PhD @StephenJWillia2

https://pharmaceuticalintelligence.com/2019/06/05/real-time-bioconvention-bio2019bitcoin-your-data-from-trusted-pharma-silos-to-trustless-community-owned-blockchain-based-precision-medicine-data-trials/

 

Real Time Coverage @BIOConvention #BIO2019: Keynote Address Jamie Dimon CEO @jpmorgan June 5, 2019, Philadelphia, PA

Reporter: Stephen J. Williams, PhD @StephenJWillia2

https://pharmaceuticalintelligence.com/2019/06/05/real-time-coverage-bioconvention-bio2019-keynote-address-jamie-dimon-ceo-jpmorgan-june-5-philadelphia/

 

Real Time Coverage @BIOConvention #BIO2019: Chat with @FDA Commissioner, & Challenges in Biotech & Gene Therapy June 4, 2019, Philadelphia, PA

Reporter: Stephen J. Williams, PhD @StephenJWillia2

https://pharmaceuticalintelligence.com/2019/06/04/real-time-coverage-bioconvention-bio2019-chat-with-fda-commissioner-challenges-in-biotech-gene-therapy-june-4-philadelphia/

 

Falling in Love with Science: Championing Science for Everyone, Everywhere June 4 2019, Philadelphia PA

Reporter: Stephen J. Williams, PhD @StephenJWillia2

https://pharmaceuticalintelligence.com/2019/06/04/real-time-coverage-bioconvention-bio2019-falling-in-love-with-science-championing-science-for-everyone-everywhere/

 

Real Time Coverage @BIOConvention #BIO2019: June 4 Morning Sessions; Global Biotech Investment & Public-Private Partnerships, 6/4/2019, Philadelphia PA

Reporter: Stephen J Williams PhD @StephenJWillia2

https://pharmaceuticalintelligence.com/2019/06/04/real-time-coverage-bioconvention-bio2019-june-4-morning-sessions-global-biotech-investment-public-private-partnerships/

 

Real Time Coverage @BIOConvention #BIO2019: Understanding the Voices of Patients: Unique Perspectives on Healthcare; June 4, 2019, 11:00 AM, Philadelphia PA

Reporter: Stephen J. Williams, PhD @StephenJWillia2

https://pharmaceuticalintelligence.com/2019/06/04/real-time-coverage-bioconvention-bio2019-understanding-the-voices-of-patients-unique-perspectives-on-healthcare-june-4/

 

Real Time Coverage @BIOConvention #BIO2019: Keynote: Siddhartha Mukherjee, Oncologist and Pulitzer Author; June 4 2019, 9AM, Philadelphia PA

Reporter: Stephen J. Williams, PhD. @StephenJWillia2

https://pharmaceuticalintelligence.com/2019/06/04/real-time-coverage-bioconvention-bio2019-keynote-siddhartha-mukherjee-oncologist-and-pulitzer-author-june-4-9am-philadelphia-pa/

 

Real Time Coverage @BIOConvention #BIO2019:  Issues of Risk and Reproduceability in Translational and Academic Collaboration; 2:30-4:00 June 3, 2019, Philadelphia PA

Reporter: Stephen J. Williams, PhD @StephenJWillia2

https://pharmaceuticalintelligence.com/2019/06/03/real-time-coverage-bioconvention-bio2019-issues-of-risk-and-reproduceability-in-translational-and-academic-collaboration-230-400-june-3-philadelphia-pareal-time-coverage-bioconvention-bi/

 

Real Time Coverage @BIOConvention #BIO2019: What’s Next: The Landscape of Innovation in 2019 and Beyond. 3-4 PM June 3, 2019, Philadelphia PA

Reporter: Stephen J. Williams, PhD @StephenJWillia2

https://pharmaceuticalintelligence.com/2019/06/03/real-time-coverage-bioconvention-bio2019-whats-next-the-landscape-of-innovation-in-2019-and-beyond-3-4-pm-june-3-philadelphia-pa/

 

Real Time Coverage @BIOConvention #BIO2019: After Trump’s Drug Pricing Blueprint: What Happens Next? A View from Washington; June 3, 2019 1:00 PM, Philadelphia PA

Reporter: Stephen J. Williams, PhD @StephenJWillia2

https://pharmaceuticalintelligence.com/2019/06/03/real-time-coverage-bioconvention-bio2019-after-trumps-drug-pricing-blueprint-what-happens-next-a-view-from-washington-june-3-2019-100-pm-philadelphia-pa/

 

Real Time Coverage @BIOConvention #BIO2019: International Cancer Clusters Showcase June 3, 2019, Philadelphia PA

Reporter: Stephen J. Williams PhD @StephenJWillia2

https://pharmaceuticalintelligence.com/2019/06/03/real-time-coverage-bioconvention-bio2019-international-cancer-clusters-showcase-june-3-philadelphia-pa/

Read Full Post »


Real Time Coverage @BIOConvention #BIO2019: After Trump’s Drug Pricing Blueprint: What Happens Next? A View from Washington; June 3 2019 1:00 PM Philadelphia PA

Reporter: Stephen J. Williams, PhD @StephenJWillia2

 

Speaker: Dan Todd, JD

Dan Todd is the Principal of Todd Strategy, LLC, a consulting firm founded in 2014 and based in Washington, DC. He provides legislative and regulatory strategic guidance and advocacy for healthcare stakeholders impacted by federal healthcare programs.

Prior to Todd Strategy, Mr. Todd was a Senior Healthcare Counsel for the Republican staff of the Senate Finance Committee, the Committee of jurisdiction for the Medicare and Medicaid programs. His areas of responsibility for the committee included the Medicare Part B and Part D programs, which includes physician, medical device, diagnostic and biopharmaceutical issues.

Before joining the Finance Committee, Mr. Todd spent several years in the biotechnology industry, where he led policy development and government affairs strategy. He also represented his companies’ interests with major trade associations such as PhRMA and BIO before federal and state representatives, as well as with key stakeholders such as physician and patient advocacy organizations.

Dan also served as a Special Assistant in the Office of the Administrator at the Centers for Medicare & Medicaid Services (CMS), the federal agency charged with the operation of the Medicare and Medicaid programs. While at CMS, Dan worked on Medicare Part B and Part D issues during the implementation of the Medicare Modernization Act from 2003 to 2005.

Cost efficiencies were never measured.

Removing drug rebates would cost 180 billion over 10 years. CBO came up with similar estimate.  Not sure what Congress will do. It appears they will keep the rebates in.

  • House  Dems are really going after PBMs; anytime the Administration makes a proposal goes right into CBO baseline estimates;  negotiations appear to be in very early stages and estimates are up in the air
  • WH close to meet a budget cap but then broke down in next day; total confusion in DC on budget; healthcare is now held up, especially the REBATE rule; : is a shame as panel agrees cost savings would be huge
  • they had initiated a study to tie the costs of PartB to international drug prices; meant to get at disparity on international drug prices; they currently are only mulling the international price index; other option is to reform Part B;  the proposed models were brought out near 2016 elections so not much done; unified agenda;
  • most of the response of Congress relatively publicly muted; a flat fee program on biologics will have big effect on how physicians and health systems paid; very cat and mouse game in DC around drug pricing
  • administration is thinking of a PartB “inflation cap”;  committees are looking at it seriously; not a rebate;  discussion of tiering of physician payments
  • Ways and Means Cmmtte:  proposing in budget to alleve some stresses on PartB deductable amounts;
  • PartD: looking at ways to shore it up; insurers 80% taxpayers 20% responsible; insurers think it will increase premiums but others think will reduce catastrophic costs; big part of shift in spending in Part D has been this increase in catastrophic costs
  • this week they may actually move through committees on this issue; Administration trying to use the budgetary process to drive this bargain;  however there will have to be offsets so there may be delays in process

Follow or Tweet on Twitter using the following @ and # (hashtags)

@pharma_BI

@AVIVA1950

@BIOConvention

@PCPCC

#BIO2019

#patientcost

#PrimaryCare

 

Other articles on this Open Access Journal on Healthcare Costs, Payers, and Patient Care Include:

The Arnold Relman Challenge: US HealthCare Costs vs US HealthCare Outcomes

Centers for Medicare & Medicaid Services announced that the federal healthcare program will cover the costs of cancer gene tests that have been approved by the Food and Drug Administration

Trends in HealthCare Economics: Average Out-of-Pocket Costs, non-Generics and Value-Based Pricing, Amgen’s Repatha and AstraZeneca’s Access to Healthcare Policies

Can Blockchain Technology and Artificial Intelligence Cure What Ails Biomedical Research and Healthcare

Live Conference Coverage @Medcity Converge 2018 Philadelphia: Oncology Value Based Care and Patient Management

Read Full Post »


Verily kicked off Project Baseline in April 2017, with a health study geared to gather health data from 10,000 people over four years – Partnership with Big Pharma on Clinical Trials announced on 5/21/2019

 

Reporter: Aviva Lev-Ari, PhD, RN

 

UPDATED on 5/22/2019

On Tuesday morning, Verily, Alphabet’s unit focused on life sciences, announced that it had formed alliances with Novartis, Sanofi, Otsuka, and Pfizer to work on clinical trials. What are those drug giants getting out of the deal? STAT sat down with Scarlet Shore, who leads Verily’s project Baseline, to learn about the company’s vision for the clinical trial of the future. The conversation took place at CNBC’s “Healthy Returns” conference, where the partnerships were unveiled.

SOURCE

https://www.statnews.com/2019/05/21/four-of-the-worlds-largest-drug-companies-are-teaming-with-verily-here-is-what-they-get/?utm_source=STAT+Newsletters&utm_campaign=1630aad75d-Readout_COPY_03&utm_medium=email&utm_term=0_8cab1d7961-1630aad75d-150237109

Novartis, Otsuka, Pfizer, Sanofi join Verily’s Project Baseline

“Evidence generation through research is the backbone of improving health outcomes. We need to be inclusive and encourage diversity in research to truly understand health and disease, and to provide meaningful insights about new medicines, medical devices and digital health solutions,” said Jessica Mega, M.D., Verily’s chief medical and scientific officer, in the statement. “Novartis, Otsuka, Pfizer and Sanofi have been early adopters of advanced technology and digital tools to improve clinical research operations, and together we’re taking another step towards making research accessible and generating evidence to inform better treatments and care.”
Jessica Mega, M.D., Verily’s chief medical and scientific officer, in the statement. “Novartis, Otsuka, Pfizer and Sanofi have been early adopters of advanced technology and digital tools to improve clinical research operations, and together we’re taking another step towards making research accessible and generating evidence to inform better treatments and care.”

 

Read Full Post »


The Journey of Antibiotic Discovery

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

The term ‘antibiotic’ was introduced by Selman Waksman as any small molecule, produced by a microbe, with antagonistic properties on the growth of other microbes. An antibiotic interferes with bacterial survival via a specific mode of action but more importantly, at therapeutic concentrations, it is sufficiently potent to be effective against infection and simultaneously presents minimal toxicity. Infectious diseases have been a challenge throughout the ages. From 1347 to 1350, approximately one-third of Europe’s population perished to Bubonic plague. Advances in sanitary and hygienic conditions sufficed to control further plague outbreaks. However, these persisted as a recurrent public health issue. Likewise, infectious diseases in general remained the leading cause of death up to the early 1900s. The mortality rate shrunk after the commercialization of antibiotics, which given their impact on the fate of mankind, were regarded as a ‘medical miracle’. Moreover, the non-therapeutic application of antibiotics has also greatly affected humanity, for instance those used as livestock growth promoters to increase food production after World War II.

 

Currently, more than 2 million North Americans acquire infections associated with antibiotic resistance every year, resulting in 23,000 deaths. In Europe, nearly 700 thousand cases of antibiotic-resistant infections directly develop into over 33,000 deaths yearly, with an estimated cost over €1.5 billion. Despite a 36% increase in human use of antibiotics from 2000 to 2010, approximately 20% of deaths worldwide are related to infectious diseases today. Future perspectives are no brighter, for instance, a government commissioned study in the United Kingdom estimated 10 million deaths per year from antibiotic resistant infections by 2050.

 

The increase in antibiotic-resistant bacteria, alongside the alarmingly low rate of newly approved antibiotics for clinical usage, we are on the verge of not having effective treatments for many common infectious diseases. Historically, antibiotic discovery has been crucial in outpacing resistance and success is closely related to systematic procedures – platforms – that have catalyzed the antibiotic golden age, namely the Waksman platform, followed by the platforms of semi-synthesis and fully synthetic antibiotics. Said platforms resulted in the major antibiotic classes: aminoglycosides, amphenicols, ansamycins, beta-lactams, lipopeptides, diaminopyrimidines, fosfomycins, imidazoles, macrolides, oxazolidinones, streptogramins, polymyxins, sulphonamides, glycopeptides, quinolones and tetracyclines.

 

The increase in drug-resistant pathogens is a consequence of multiple factors, including but not limited to high rates of antimicrobial prescriptions, antibiotic mismanagement in the form of self-medication or interruption of therapy, and large-scale antibiotic use as growth promotors in livestock farming. For example, 60% of the antibiotics sold to the USA food industry are also used as therapeutics in humans. To further complicate matters, it is estimated that $200 million is required for a molecule to reach commercialization, with the risk of antimicrobial resistance rapidly developing, crippling its clinical application, or on the opposing end, a new antibiotic might be so effective it is only used as a last resort therapeutic, thus not widely commercialized.

 

Besides a more efficient management of antibiotic use, there is a pressing need for new platforms capable of consistently and efficiently delivering new lead substances, which should attend their precursors impressively low rates of success, in today’s increasing drug resistance scenario. Antibiotic Discovery Platforms are aiming to screen large libraries, for instance the reservoir of untapped natural products, which is likely the next antibiotic ‘gold mine’. There is a void between phenotanypic screening (high-throughput) and omics-centered assays (high-information), where some mechanistic and molecular information complements antimicrobial activity, without the laborious and extensive application of various omics assays. The increasing need for antibiotics drives the relentless and continuous research on the foreground of antibiotic discovery. This is likely to expand our knowledge on the biological events underlying infectious diseases and, hopefully, result in better therapeutics that can swing the war on infectious diseases back in our favor.

 

During the genomics era came the target-based platform, mostly considered a failure due to limitations in translating drugs to the clinic. Therefore, cell-based platforms were re-instituted, and are still of the utmost importance in the fight against infectious diseases. Although the antibiotic pipeline is still lackluster, especially of new classes and novel mechanisms of action, in the post-genomic era, there is an increasingly large set of information available on microbial metabolism. The translation of such knowledge into novel platforms will hopefully result in the discovery of new and better therapeutics, which can sway the war on infectious diseases back in our favor.

 

References:

 

https://www.mdpi.com/2079-6382/8/2/45/htm

 

https://www.ncbi.nlm.nih.gov/pubmed/19515346

 

https://www.ajicjournal.org/article/S0196-6553(11)00184-2/fulltext

 

https://www.ncbi.nlm.nih.gov/pubmed/21700626

 

http://www.med.or.jp/english/journal/pdf/2009_02/103_108.pdf

 

Read Full Post »

Older Posts »