Advertisements
Feeds:
Posts
Comments

Archive for the ‘Pharmaceutical Drug Discovery’ Category


World’s Top Ten Cancer Drugs by 2020  (million USD)

Reporter: Aviva Lev-Ari, PhD, RN

 

 

Image Source: Statista (www.statista.com)

Opdivo Setback May Yield Lessons for Pharma – Advancing Immunotherapies With PD-L1 Testing

Sep 12, 2016 | Turna Ray

The anti-PD-1/PD-L1 drug market is estimated to be worth around $30 billion by 2020. The negative Phase III results for Opdivo in first-line NSCLC shocked market analysts, and pharmaceutical companies developing drugs in this space “are taking stock of the situation” and surely assessing whether they have the right test methods in place in their drug studies, said Peter Keeling, CEO of consulting firm Diaceutics.

Most drugmakers developing anti-PD-1/PD-L1 drugs are evaluating whether their therapies work especially well in patients whose tumor cells express PD-L1, a protein that cancer cells use to hide from an immune system attack. But studies have demonstrated that PD-L1 expression status doesn’t neatly bucket responders and non-responders in the same way that testing for EGFR mutations or ALK rearrangements can, making it difficult for pharmaceutical companies to integrate PD-L1 testing for patient stratification in clinical trials.

In the absence of a universal diagnostic, Cancer Genetics is one lab that does offer all the FDA-approved companion and complementary PD-L1 tests, but also spends a lot of time educating doctors and pathologists on the differences between these tests and which to order for a particular immunotherapy. “There’s a big need for our pharma cousins to really push more knowledge about the associated diagnostics and tests and how to use them,” Sharma said. “That’s the only way they’re going to get uptake in the community setting.”

Despite the muddled messages around PD-L1 testing, healthcare providers and researchers nonetheless seem interested in PD-L1 testing as part of the tumor profiling workup for patients. Diaceutics’ surveys show a sharp uptick in the number of labs offering PD-L1 testing over the past year-and-a-half and 52 labs in the US offer at least one PD-L1 test. The company also reviewed biomarkers being studied in 95 Phase II/III NSCLC, and found that approximately half are incorporating patients’ PD-L1 status either alone or in combination with other markers, such as EGFR and ALK mutations.

At Cancer Genetics over the past year, there has also been a notable ramp up in orders for PD-L1 testing for lung cancer patients, but also for melanoma and head and neck cancer patients. “One our biggest volume increased tests this year has been PD-L1 testing,” Sharma said. “We think there is a lot of opportunity for significant additional growth.”

https://www.genomeweb.com/molecular-diagnostics/opdivo-setback-may-yield-lessons-pharma-advancing-immunotherapies-pd-l1

Advertisements

Read Full Post »


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Scientists think excessive population growth is a cause of scarcity and environmental degradation. A male pill could reduce the number of unintended pregnancies, which accounts for 40 percent of all pregnancies worldwide.

 

But, big drug companies long ago dropped out of the search for a male contraceptive pill which is able to chemically intercept millions of sperm before they reach a woman’s egg. Right now the chemical burden for contraception relies solely on the female. There’s not much activity in the male contraception field because an effective solution is available on the female side.

 

Presently, male contraception means a condom or a vasectomy. But researchers from Center for Drug Discovery at Baylor College of Medicine, USA are renewing the search for a better option—an easy-to-take pill that’s safe, fast-acting, and reversible.

 

The scientists began with lists of genes active in the testes for sperm production and motility and then created knockout mice that lack those genes. Using the gene-editing technology called CRISPR, in collaboration with Japanese scientists, they have so far made more than 75 of these “knockout” mice.

 

They allowed these mice to mate with normal (wild type) female mice, and if their female partners don’t get pregnant after three to six months, it means the gene might be a target for a contraceptive. Out of 2300 genes that are particularly active in the testes of mice, the researchers have identified 30 genes whose deletion makes the male infertile. Next the scientists are planning a novel screening approach to test whether any of about two billion chemicals can disable these genes in a test tube. Promising chemicals could then be fed to male mice to see if they cause infertility.

 

Female birth control pills use hormones to inhibit a woman’s ovaries from releasing eggs. But hormones have side effects like weight gain, mood changes, and headaches. A trial of one male contraceptive hormone was stopped early in 2011 after one participant committed suicide and others reported depression. Moreover, some drug candidates have made animals permanently sterile which is not the goal of the research. The challenge is to prevent sperm being made without permanently sterilizing the individual.

 

As a better way to test drugs, Scientists at University of Georgia, USA are investigating yet another high-tech approach. They are turning human skin cells into stem cells that look and act like the spermatogonial cells in the testes. Testing drugs on such cells might provide more accurate leads than tests on mice.

 

The male pill would also have to start working quickly, a lot sooner than the female pill, which takes about a week to function. Scientists from University of Dundee, U.K. admitted that there are lots of challenges. Because, a women’s ovary usually release one mature egg each month, while a man makes millions of sperm every day. So, the male pill has to be made 100 percent effective and act instantaneously.

 

References:

 

https://www.technologyreview.com/s/603676/the-search-for-a-perfect-male-birth-control-pill/

 

https://futurism.com/videos/the-perfect-male-birth-control-pill-is-coming-soon/?utm_source=Digest&utm_campaign=c42fc7b9b6-EMAIL_CAMPAIGN_2017_03_20&utm_medium=email&utm_term=0_03cd0a26cd-c42fc7b9b6-246845533

 

http://www.telegraph.co.uk/women/sex/the-male-pill-is-coming—and-its-going-to-change-everything/

 

http://www.mensfitness.com/women/sex-tips/male-birth-control-pill-making

 

http://health.howstuffworks.com/sexual-health/contraception/male-bc-pill.htm

 

http://europe.newsweek.com/male-contraception-side-effects-study-pill-injection-518237?rm=eu

 

http://edition.cnn.com/2016/01/07/health/male-birth-control-pill/index.html

 

http://www.nhs.uk/Conditions/contraception-guide/Pages/male-pill.aspx

Read Full Post »


Expedite Use of Agents in Clinical Trials: New Drug Formulary Created – The NCI Formulary is a public-private partnership between NCI, part of the National Institutes of Health, and pharmaceutical and biotechnology companies

Reporter: Aviva Lev-Ari, PhD, RN

 

Wednesday, January 11, 2017

New Drug Formulary Will Help Expedite Use of Agents in Clinical Trials

The National Cancer Institute (NCI) today launched a new drug formulary (the “NCI Formulary”) that will enable investigators at NCI-designated Cancer Centers to have quicker access to approved and investigational agents for use in preclinical studies and cancer clinical trials. The NCI Formulary could ultimately translate into speeding the availability of more-effective treatment options to patients with cancer.

The NCI Formulary is a public-private partnership between NCI, part of the National Institutes of Health, and pharmaceutical and biotechnology companies. It is also one of NCI’s efforts in support of the Cancer Moonshot, answering Vice President Biden’s call for greater collaboration and faster development of new therapies for patients. The availability of agents through the NCI Formulary will expedite the start of clinical trials by alleviating the lengthy negotiation process — sometimes up to 18 months — that has been required for investigators to access such agents on their own.

“The NCI Formulary will help researchers begin testing promising drug combinations more quickly, potentially helping patients much sooner,” said NCI Acting Director Douglas Lowy, M.D. “Rather than spending time negotiating agreements, investigators will be able to focus on the important research that can ultimately lead to improved cancer care.”

The NCI Formulary launched today with fifteen targeted agents from six pharmaceutical companies:

  • Bristol-Myers Squibb
  • Eli Lilly and Company
  • Genentech
  • Kyowa Hakko Kirin
  • Loxo Oncology
  • Xcovery Holding Company LLC

“The agreements with these companies demonstrate our shared commitment to expedite cancer clinical trials and improve outcomes for patients,” said James Doroshow, M.D., NCI Deputy Director for Clinical and Translational Research. “It represents a new drug development paradigm that will enhance the efficiency with which new treatments are discovered.”

The establishment of the NCI Formulary will enable NCI to act as an intermediary between investigators at NCI-designated Cancer Centers and participating pharmaceutical companies, facilitating and streamlining the arrangements for access to and use of pharmaceutical agents. Following company approval, investigators will be able to obtain agents from the available formulary list and test them in new preclinical or clinical studies, including combination studies of formulary agents from different companies.

The NCI Formulary leverages lessons learned through NCI’s Cancer Therapy Evaluation Program (CTEP) and the NCI-MATCH trial, a study in which targeted agents from different companies are being tested alone or in combination in patients with genetic mutations that are targeted by these drugs. As the use of genomic sequencing data becomes more common in selecting cancer therapies, requests for access to multiple targeted agents for the conduct of clinical trials are becoming more common.

“We are very pleased that several additional pharmaceutical companies have already pledged a willingness to participate and are in various stages of negotiation with NCI,” said Dr. Doroshow, who is also director of NCI’s Division of Cancer Treatment and Diagnosis. “By the end of 2017, we expect to have doubled the number of partnerships and drugs available in the NCI Formulary.”

CTEP staff continue to discuss the NCI Formulary with pharmaceutical companies to make additional proprietary agents available for studies initiated by investigators at NCI-designated Cancer Centers.

The Formulary will complement NIH’s plans for another new public-private partnership in oncology, the Partnership to Accelerate Cancer Therapies (PACT). Through PACT, the NIH, U.S. Food and Drug Administration, biopharmaceutical groups in the private sector, foundations, and cancer advocacy organizations will come together to support new research projects to accelerate progress in cancer research as part of the Cancer Moonshot. PACT research will center on the identification and validation of biomarkers of response and resistance to cancer therapies, with special emphasis on immunotherapies. PACT will also establish a platform for selecting and testing combination therapies. PACT is expected to launch in 2017.

About the National Cancer Institute (NCI): NCI leads the National Cancer Program and the NIH’s efforts to dramatically reduce the prevalence of cancer and improve the lives of cancer patients and their families, through research into prevention and cancer biology, the development of new interventions, and the training and mentoring of new researchers. For more information about cancer, please visit the NCI website at cancer.gov or call NCI’s Cancer Information Service at 1-800-4-CANCER.

About the National Institutes of Health (NIH): NIH, the nation’s medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

SOURCE

https://www.nih.gov/news-events/news-releases/new-drug-formulary-will-help-expedite-use-agents-clinical-trials

Read Full Post »

Milestones in Physiology & Discoveries in Medicine and Genomics: Request for Book Review Writing on Amazon.com


physiology-cover-seriese-vol-3individualsaddlebrown-page2

Milestones in Physiology

Discoveries in Medicine, Genomics and Therapeutics

Patient-centric Perspective 

http://www.amazon.com/dp/B019VH97LU 

2015

 

 

Author, Curator and Editor

Larry H Bernstein, MD, FCAP

Chief Scientific Officer

Leaders in Pharmaceutical Business Intelligence

Larry.bernstein@gmail.com

Preface

Introduction 

Chapter 1: Evolution of the Foundation for Diagnostics and Pharmaceuticals Industries

1.1  Outline of Medical Discoveries between 1880 and 1980

1.2 The History of Infectious Diseases and Epidemiology in the late 19th and 20th Century

1.3 The Classification of Microbiota

1.4 Selected Contributions to Chemistry from 1880 to 1980

1.5 The Evolution of Clinical Chemistry in the 20th Century

1.6 Milestones in the Evolution of Diagnostics in the US HealthCare System: 1920s to Pre-Genomics

 

Chapter 2. The search for the evolution of function of proteins, enzymes and metal catalysts in life processes

2.1 The life and work of Allan Wilson
2.2  The  evolution of myoglobin and hemoglobin
2.3  More complexity in proteins evolution
2.4  Life on earth is traced to oxygen binding
2.5  The colors of life function
2.6  The colors of respiration and electron transport
2.7  Highlights of a green evolution

 

Chapter 3. Evolution of New Relationships in Neuroendocrine States
3.1 Pituitary endocrine axis
3.2 Thyroid function
3.3 Sex hormones
3.4 Adrenal Cortex
3.5 Pancreatic Islets
3.6 Parathyroids
3.7 Gastointestinal hormones
3.8 Endocrine action on midbrain
3.9 Neural activity regulating endocrine response

3.10 Genomic Promise for Neurodegenerative Diseases, Dementias, Autism Spectrum, Schizophrenia, and Serious Depression

 

Chapter 4.  Problems of the Circulation, Altitude, and Immunity

4.1 Innervation of Heart and Heart Rate
4.2 Action of hormones on the circulation
4.3 Allogeneic Transfusion Reactions
4.4 Graft-versus Host reaction
4.5 Unique problems of perinatal period
4.6. High altitude sickness
4.7 Deep water adaptation
4.8 Heart-Lung-and Kidney
4.9 Acute Lung Injury

4.10 Reconstruction of Life Processes requires both Genomics and Metabolomics to explain Phenotypes and Phylogenetics

 

Chapter 5. Problems of Diets and Lifestyle Changes

5.1 Anorexia nervosa
5.2 Voluntary and Involuntary S-insufficiency
5.3 Diarrheas – bacterial and nonbacterial
5.4 Gluten-free diets
5.5 Diet and cholesterol
5.6 Diet and Type 2 diabetes mellitus
5.7 Diet and exercise
5.8 Anxiety and quality of Life
5.9 Nutritional Supplements

 

Chapter 6. Advances in Genomics, Therapeutics and Pharmacogenomics

6.1 Natural Products Chemistry

6.2 The Challenge of Antimicrobial Resistance

6.3 Viruses, Vaccines and immunotherapy

6.4 Genomics and Metabolomics Advances in Cancer

6.5 Proteomics – Protein Interaction

6.6 Pharmacogenomics

6.7 Biomarker Guided Therapy

6.8 The Emergence of a Pharmaceutical Industry in the 20th Century: Diagnostics Industry and Drug Development in the Genomics Era: Mid 80s to Present

6.09 The Union of Biomarkers and Drug Development

6.10 Proteomics and Biomarker Discovery

6.11 Epigenomics and Companion Diagnostics

 

Chapter  7

Integration of Physiology, Genomics and Pharmacotherapy

7.1 Richard Lifton, MD, PhD of Yale University and Howard Hughes Medical Institute: Recipient of 2014 Breakthrough Prizes Awarded in Life Sciences for the Discovery of Genes and Biochemical Mechanisms that cause Hypertension

7.2 Calcium Cycling (ATPase Pump) in Cardiac Gene Therapy: Inhalable Gene Therapy for Pulmonary Arterial Hypertension and Percutaneous Intra-coronary Artery Infusion for Heart Failure: Contributions by Roger J. Hajjar, MD

7.3 Diagnostics and Biomarkers: Novel Genomics Industry Trends vs Present Market Conditions and Historical Scientific Leaders Memoirs

7.4 Synthetic Biology: On Advanced Genome Interpretation for Gene Variants and Pathways: What is the Genetic Base of Atherosclerosis and Loss of Arterial Elasticity with Aging

7.5 Diagnosing Diseases & Gene Therapy: Precision Genome Editing and Cost-effective microRNA Profiling

7.6 Imaging Biomarker for Arterial Stiffness: Pathways in Pharmacotherapy for Hypertension and Hypercholesterolemia Management

7.7 Neuroprotective Therapies: Pharmacogenomics vs Psychotropic drugs and Cholinesterase Inhibitors

7.8 Metabolite Identification Combining Genetic and Metabolic Information: Genetic association links unknown metabolites to functionally related genes

7.9 Preserved vs Reduced Ejection Fraction: Available and Needed Therapies

7.10 Biosimilars: Intellectual Property Creation and Protection by Pioneer and by

7.11 Demonstrate Biosimilarity: New FDA Biosimilar Guidelines

 

Chapter 7.  Biopharma Today

8.1 A Great University engaged in Drug Discovery: University of Pittsburgh

8.2 Introduction – The Evolution of Cancer Therapy and Cancer Research: How We Got Here?

8.3 Predicting Tumor Response, Progression, and Time to Recurrence

8.4 Targeting Untargetable Proto-Oncogenes

8.5 Innovation: Drug Discovery, Medical Devices and Digital Health

8.6 Cardiotoxicity and Cardiomyopathy Related to Drugs Adverse Effects

8.7 Nanotechnology and Ocular Drug Delivery: Part I

8.8 Transdermal drug delivery (TDD) system and nanotechnology: Part II

8.9 The Delicate Connection: IDO (Indolamine 2, 3 dehydrogenase) and Cancer Immunology

8.10 Natural Drug Target Discovery and Translational Medicine in Human Microbiome

8.11 From Genomics of Microorganisms to Translational Medicine

8.12 Confined Indolamine 2, 3 dioxygenase (IDO) Controls the Homeostasis of Immune Responses for Good and Bad

 

Chapter 9. BioPharma – Future Trends

9.1 Artificial Intelligence Versus the Scientist: Who Will Win?

9.2 The Vibrant Philly Biotech Scene: Focus on KannaLife Sciences and the Discipline and Potential of Pharmacognosy

9.3 The Vibrant Philly Biotech Scene: Focus on Computer-Aided Drug Design and Gfree Bio, LLC

9.4 Heroes in Medical Research: The Postdoctoral Fellow

9.5 NIH Considers Guidelines for CAR-T therapy: Report from Recombinant DNA Advisory Committee

9.6 1st Pitch Life Science- Philadelphia- What VCs Really Think of your Pitch

9.7 Multiple Lung Cancer Genomic Projects Suggest New Targets, Research Directions for Non-Small Cell Lung Cancer

9.8 Heroes in Medical Research: Green Fluorescent Protein and the Rough Road in Science

9.9 Issues in Personalized Medicine in Cancer: Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing

9.10 The SCID Pig II: Researchers Develop Another SCID Pig, And Another Great Model For Cancer Research

Epilogue

Read Full Post »


Agenda @Biotech Week Boston: WHERE THE HEART, TECHNOLOGY AND BUSINESS OF SCIENCE CONVERGE, Conference: October 4 – 7, 2016 | Exhibition: October 5-7, 2016 Boston Convention and Exhibition Center

Reporter: Aviva Lev-Ari, PhD, RN

Conference: October 4 – 7, 2016 | Exhibition: October 5-7, 2016

Boston Convention and Exhibition Center,
Boston, MA

WHERE THE HEART, TECHNOLOGY AND BUSINESS OF SCIENCE CONVERGE

#BIOTECHWEEKBOSTON

https://lifesciences.knect365.com/biotech-week-boston

October 6, 2016 – Key Sessions

Toni Hoover, Ph.D.

Harnessing Science, Technology and Innovation to Improve Global Health

Bill & Melinda Gates Foundation

Rick Berke

STAT Panel Discussion – President Clinton or President Trump: What Our Next President Will Mean for Biotech and Pharma

STAT (STATnews.com)

October 6, 2016

7:30 am 30 mins

Single-use XCell™ ATF Systems for Continuous Processing: 100% Cell Retention, 8x Faster Set-up, No autoclave

12:35 pm 30 mins

cGMP Biologics Production Using Corynex ® : A Highly-Productive Gram-Positive Microbial Protein Secretion System

12:35 pm 30 mins

Advanced Materials for Single Use Systems

12:35 pm 30 mins

Fast Trak Your Molecule to Market: When, Why and How to Outsource Biomanufacturing

12:35 pm 30 mins

An Integrated BalanCD ® CHO Media Solution for Early Therapeutic Antibody Development, Scale-Up and Commercial Supply

12:35 pm 30 mins

Reveal Information that Gives Insights – New Approaches to Sub-Visible Particle Characterization

9:15 am 525 mins

BWB Exhibit Hall Open

9:30 am 45 mins

Harnessing Science, Technology and Innovation to Improve Global Health

  • Toni Hoover, Ph.D., Bill & Melinda Gates Foundation

10:30 am 10 mins

Asahi Kasei Product Presentation

10:40 am 10 mins

How to Reduce Costs, Make Informed Decisions and Gain Insight for Innovation Through BioSolve

10:50 am 10 mins

Increasing Protein Production with Novel Cell-Ess Supplement without Affecting Metabolic Profile

12 pm 60 mins

Oral Poster Presentations

 1:10 pm
10 mins

Lonza Presentation

1:20 pm 15 mins

Distek Presentation

1:35 pm 10 mins

PendoTECH Presentation

2:15 pm 90 mins

Town Hall Forum: An Update on Single-Use Standardization and Alignment

4 pm 10 mins

Sartorius Presentation

4:10 pm 20 mins

Catalent Presentation

4:30 pm 10 mins

Asahi Kasei Presentation

4:40 pm 10 mins

Meissner Filtration Products Presentation

5 pm 60 mins

STAT Panel Discussion – President Clinton or President Trump: What Our Next President Will Mean for Biotech and Pharma

  • Rick Berke, STAT (STATnews.com)
  • Mason Tenaglia, IMS Institute for Healthcare Informatics, Payer & Managed Care Insights
  • Damien Garde, STAT (STATnews.com)
  • Dylan Scott, STAT (STATnews.com)

October 7, 2016

Key Sessions

Steve Wozniak

Innovation & Customer Centricity – Sponsored by Pall Life Sciences

Apple Computer Inc

7:15 am 30 mins

Accelerating Mammalian and Microbial Culture with Single-Use Technology

12:35 pm 30 mins

Unlocking Downstream Efficiency

9:10 am 330 mins

BWB Exhibit Hall Open

9:15 am 60 mins

Innovation & Customer Centricity – Sponsored by Pall Life Sciences

Pall Life Sciences
  • Steve Wozniak, Apple Computer Inc

10:15 am 10 mins

Steve Wozniak Meet & Greet at Pall Lounge

12:30 pm
60 mins

Panel Discussion: Immuno-oncology: What’s Next?

1:30 pm 30 mins

Passport Prize Drawing

10:50 am 20 mins

Innovations in Live Banking of Bio-Specimens: Prospective Advantages to the Retrospective Clinical Failures

11:10 am 20 mins

Innovations in Cell & Gene Therapy

11:30 am 60 mins

PANEL DISCUSSION: Innovations and Technology to Drive Improvements in Healthcare Delivery

SOURCE

https://lifesciences.knect365.com/biotech-week-boston

Read Full Post »


Value for Patients – Turning Advances in Science: A Case Study of a Leading Global Pharmaceutical Company – Astellas Pharma Inc.

Astellas Pharma Inc. (https://www.astellas.com/en/) and Astellas Pharma U.S., Inc. (https://www.astellas.us/)

UPDATED on 4/3/2017

Astellas Pharma Inc. and Ogeda SA announced today that Astellas and Ogeda shareholders have entered into a definitive agreement under which Astellas has agreed to acquire Ogeda a privately owned drug discovery company. Ogeda is a clinical-stage drug discovery company that discovers and develops small molecule drugs targeting G-protein coupled receptors (GPCRs). The lead investigational candidate, fezolinetant, is a selective NK3 receptor antagonist, and the positive data from a Phase 2a study result for the non-hormonal treatment of menopause-related vasomotor symptoms (“MR-VMS”) was announced in January 2017. This transaction expands Astellas’ late stage pipeline and is expected to contribute to its mid-to-long term growth.

SOURCE

http://www.prnewswire.com/news-releases/astellas-to-acquire-ogeda-sa-300433141.html

https://endpts.com/astellas-swoops-in-on-a-mid-stage-drug-for-hot-flashes-in-860m-biotech-buyout-deal/?utm_medium=email&utm_campaign=Monday%20%20April%203%202017&utm_content=Monday%20%20April%203%202017+CID_4adac18d4a997566831a3ca0829b655e&utm_source=ENDPOINTS%20emails&utm_term=Astellas%20swoops%20in%20on%20a%20mid-stage%20drug%20for%20hot%20flashes%20in%20860M%20biotech%20buyout%20deal

UPDATED on 8/24/2016

Some analysts suggested Pfizer paid too much, particularly since it will split profits from Xtandi with Japan-based Astellas Pharma, which helps market the drug. Pfizer defended the deal, saying it would add 5 cents to its earnings per share in the first full year.

“The proposed acquisition of Medivation is expected to immediately accelerate revenue growth and drive overall earnings growth potential for Pfizer,” Ian Read, chairman and chief executive of Pfizer, said in the statement on Monday.

SOURCE

http://www.nytimes.com/2016/08/23/business/dealbook/medivation-pfizer-14-billion-deal.html?_r=0

Author: Gail S. Thornton, M.A.

Co-Editor: The VOICES of Patients, HealthCare Providers, Caregivers and Families: Personal Experience with Critical Care and Invasive Medical Procedures  https://pharmaceuticalintelligence.com/biomed-e-books/series-e-titles-in-the-strategic-plan-for-2014-1015/2014-the-patients-voice-personal-experience-with-invasive-medical-procedures/

 

Tokyo-based Astellas Pharma Inc., a top 20 global pharmaceutical research company, has a strong, global company legacy, precision focus and patient-centric vision in creating innovative pharmaceuticals in areas of unmet medical need.

2012-05-10 003_Astellas building

Image SOURCE: Photograph of the Astellas Pharma U.S. building. Courtesy of Astellas Pharma U.S., 5/10/2012.   

The company’s commitment to science is based on development of medicines that address high unmet medical needs in therapeutic areas that include:

  • oncology,
  • urology,
  • immunology,
  • nephrology, and
  • neuroscience.

The company is also exploring advancements in new therapeutic areas and related diseases such as,

  • ophthalmology—retinitis pigmentosa (RP), age-related macular degeneration (AMD), diabetic macular edema (DME) and Stargardt’s macular degeneration (SMD) and
  • muscle diseases.

And they are investing in new technologies and modalities, such as,

  • regenerative medicine and cell therapy, and
  • next-generation vaccines.

The company is committed to improving the lives of patients through innovative science and with the highest sense of ethics and integrity. This commitment is reflected in the Astellas Group Code of Conduct, which applies to all employees across the globe and can be accessed through the link below.

Astellas Group Code of Conduct

Boosting research and development productivity remains an important issue for Astellas Pharma Inc., because innovation is vital for the company’s success in developing new therapeutic areas, technologies and modalities of treatment.

Dr. Bernhardt Zeiher, President, Development, is responsible for the more than 800-person development organization that is involved in developing these innovative therapies through cutting-edge clinical research. Dr. Zeiher’s team conducts clinical investigations of novel biological targets and new chemical entities with unique mechanisms of action and looks to determine whether the findings in preclinical testing will translate to benefit for patients.  Clinical studies are conducted globally with operational hubs in the United States, Netherlands and Japan. Astellas relocated their Development headquarters from Japan to the United States in 2008.

Building on its 120-year heritage, Astellas uses creativity and innovation to bring patients new medicines through the more than 17,000 global employees who work to improve the lives of patients and their families. Astellas was formed through the merger of Japan’s third and fifth largest pharmaceutical companies, Yamanouchi, founded in 1923, and Fujisawa, founded in 1894. Yamanouchi brought a record of developing blockbuster drugs, a pipeline full of promising new compounds and a sales and marketing culture of deeply grounded, data-driven expertise. Fujisawa brought dominance in transplantation, a soaring reputation for in-depth understanding of the disease states and treatments within its market niches, and a track record for developing high-profile, market-leading products that become new standards of care.

The company has made steady progress; they reported annual global sales of 1,372,706 million yen (approx. $13.2 billion) through the end of fiscal year 2015, with an annual research and development investment of 225,665 million yen (approx. $2.2 billion) through the end of fiscal year 2015.

Below is my interview with Astellas Dr. Bernhardt Zeiher, President, Development, which occurred in June, 2016.

What is your overall Research & Development (R&D) strategy?

Dr. Zeiher: We are focused on turning innovative science into value for patients in areas of high unmet need where we have, or can quickly acquire, expertise and where Astellas believes new scientific understanding is poised to drive significant innovation. Our commitment to R&D is based on the development of medicines that address high unmet medical needs in our main therapeutic areas of focus: oncology, urology and immunology.  We also have increased efforts to explore advancements in new therapeutic areas such as ophthalmology, nephrology, neuroscience and muscle diseases where there is a high level of unmet medical need. Building on our patient-centric vision, Astellas has been actively investing in new technologies and modalities, such as regenerative medicine and next-generation vaccines.

What are your R&D strengths?

Dr. Zeiher: Astellas is building on its legacy of bringing transformative medications to patients by investing in some of today’s most dynamic areas of scientific exploration. Innovations delivered by Astellas have helped to address and largely solve some of the most significant scientific challenges in urology and transplant. We also have built a strong presence in oncology with treatments for difficult-to-treat cancers, such as prostate and non-small cell lung cancer.

Moving forward in oncology, Astellas has made a deliberate effort to build leadership through organic efforts with a pipeline exemplifying the “follow the biology” approach that includes treatments for prostate, non-small cell lung and pancreatic cancer, and continued research in therapies for breast cancer and acute myeloid leukemia, among others. We also have forged strategic acquisitions and collaborated with industry and academic leaders to further build our portfolio.

In addition, we are leveraging what we know across conditions with similar biologies or mechanisms, building on our expertise to expand into adjacent diseases and proactively seek new opportunities. For example, leveraging our expertise in transplantation and infectious diseases, Astellas is developing the world’s first DNA vaccine for cytomegalovirus (CMV) infections. Currently in clinical trials, ASP0113 is a potential first-in-class agent for immunocompromised individuals undergoing solid organ or hematopoietic stem cell transplant who are at high risk of viral reactivation.

Describe your near-term R&D projects and pipeline activities?

Dr. Zeiher: Currently, the company is working on 35 investigational programs in Phase II and Phase III/registration development, of which half involve new molecular entities. We have a diverse pipeline with a balance of early- and later-stage assets. Later-stage programs include novel therapies/vaccines for cancer, anemia and infectious diseases.

  • Our two most advanced novel oncology agents, ASP2215 and ASP8273, continue to progress through the pipeline. ASP2215 shows promise in the treatment of relapsed or refractory acute myeloid leukemia, and ASP8273 is being evaluated as a treatment for a type of non-small cell lung cancer.
  • Leveraging our expertise in kidney disease, we are developing a first-in-class oral treatment for anemia associated with chronic kidney disease through our licensing agreement with FibroGen.
  • Astellas is developing the world’s first DNA vaccine for cytomegalovirus (CMV) infections. Currently in clinical trials, ASP0113 is a potential first-in-class agent for immunocompromised individuals undergoing solid organ or hematopoietic stem cell transplant who are at risk of viral reactivation. We are also working on a therapeutic vaccine, ASP4070, for Japanese red cedar pollen allergy.

We are building expertise in two new therapeutic areas—ophthalmology and muscle diseases—where there is significant unmet need. Through the Astellas Institute for Regenerative Medicine (AIRM) and external collaborations, we are addressing ophthalmologic diseases with a higher risk of blindness, including age-related and Stargardt’s macular degeneration, retinitis pigmentosa (RP), and diabetic macular edema (DME). In the muscle disease area, we are collaborating with our partner, Cytokinetics, on a skeletal muscle troponin activator which is being investigated in Spinal Muscular Atrophy (SMA). In addition, Astellas and Cytokinetics have agreed to amend their collaboration agreement to enable the development of CK-2127107 for the potential treatment of ALS and to extend their joint research focused on the discovery of additional next-generation skeletal muscle activators through 2017.

The pharmaceutical industry is intensely competitive and it requires an extensive search for technological innovations. How are you positioned to be a leader in developing new medicines that address unmet medical needs in critical therapeutic areas?

Dr. Zeiher: Astellas is focused on accelerating scientific discovery with an open innovation model. The Astellas open innovation model combines in-house R&D with strategic merger and acquisition approaches to advance research in untouched and complex disease states, allowing the company to maintain steady productivity and maximize its return on R&D investment.

With open innovation, Astellas undertakes research activities in the best possible environment. In some cases, the best environment is within the Astellas research laboratories. In many other cases, we look to collaborate with top biotech and academic leaders.  By building partnerships with top researchers and companies that complement our existing expertise, Astellas is able to quickly advance into new technologies and therapeutic areas of research where there is significant unmet medical need.

This approach has helped Astellas credibly enter into, compete and lead in some segments of the most competitive therapeutic areas in the pharmaceutical industry – oncology – and is accelerating the company’s efforts to develop treatments for important emerging therapeutic categories, such as ophthalmology and musculoskeletal disease, as well as leading technologies, such as regenerative medicine and vaccines.

For example, LAMP-vax is a next-generation DNA vaccine that utilizes the body’s natural cellular processing of Lysosomal Associated Membrane Protein (LAMP) to develop a more complete immune response to a target antigen.  The ability to activate a more complete immune response gives the LAMP-vax technology potential across a number of diseases, including allergic disease and cancer immunotherapy.  In 2015, Astellas established a licensing agreement with Immunomic Therapeutics, Inc. for the LAMP-vax products for the treatment or prevention of any and all allergic diseases in humans, including ARA-LAMP-vax for peanut allergy and other research-stage programs for food or environmental allergies.

Earlier this year, Astellas acquired Ocata Therapeutics, Inc., and established the Astellas Institute for Regenerative Medicine (AIRM) to serve as the global hub for Astellas regenerative medicine and cell therapy research. Our most advanced cellular therapy programs are in ophthalmology, but we are exploring other therapeutic areas. We are working on treatments for ophthalmologic diseases that leave patients at risk for blindness, which include retinitis pigmentosa (RP), age-related macular degeneration (AMD), and Stargardt’s macular degeneration (SMD).

Zeiher_Bernie

Image SOURCE: Photograph of Dr. Bernhardt Zeiher, President of Development, at Astellas. Courtesy of Todd Rosenberg, 11/17/2014. 

Dr. Bernhardt Zeiher serves as President, Development, at Astellas. In this role, he is responsible for all phases of drug development.

Prior to his current role, Dr. Zeiher was executive vice president and Therapeutic Area head, Immunology, Infectious Diseases and Transplantation at Astellas. Of note, he led the development of CRESEMBA® (isavuconazonium sulfate), which received Qualified Infectious Disease Product (QIDP) designation from the U.S. Food and Drug Administration and was approved in 2015 for the treatment of two rare invasive fungal infections. Prior to joining Astellas, he served as vice president of the Inflammation/Immunology therapeutic area at Pfizer.

Dr. Zeiher earned his Doctor of Medicine at the Case Western Reserve University School of Medicine, and completed an internal medicine residency at University Hospitals of Cleveland as well as a fellowship in Pulmonary and Critical Care Medicine at University of Iowa Hospitals and Clinics. Dr. Zeiher has received several awards, including being named a Fellow by American College of Physicians in 2004, awarded to those who demonstrate excellence and contributions to both medicine and the broader community of internists.

Editor’s note:

We would like to thank Jeff Winton, Andrew Lewis and Julie Monzo from the Astellas communications team for the tremendous help and support they provided during this interview.

 

REFERENCE/SOURCE

Astellas Pharma Inc. (https://www.astellas.com/en/) and Astellas Pharma U.S., Inc. (https://www.astellas.us/)

Other related articles:

Retrieved from http://3blmedia.com/News/Astellas-USA-Foundation-Giving-Back-Means-Living-Smarttm-Together-Our-Communities

Retrieved from http://3blmedia.com/News/Astellas-and-World-Transplant-Games-Federation-Announce-Launch-Fit-Life-Promote-Physical

Retrieved from http://www.fiercepharma.com/pharma-asia/japan-s-astellas-shows-nearly-50-gain-q1-even-as-sales-drag-price-revisions

Retrieved from http://3blmedia.com/News/Astellas-Farma-Brasil-Ranked-Among-20-Greatest-Workplaces-Brazil

 

Other related articles were published in this Open Access Online Scientific Journal include the following: 

2016

LIVE 4:50 pm – 5:55 pm 4/25/2016 Early Detection and Prevention of Cancer & Innovation Break: Announcing the C³ Prize from Astellas Oncology and the World Medical Innovation Forum @2016 World Medical Innovation Forum: CANCER, April 25-27, 2016, Westin Hotel, Boston

https://pharmaceuticalintelligence.com/2016/04/25/live-450-pm-555-pm-4252016-early-detection-and-prevention-of-cancer-innovation-break-announcing-the-c%C2%B3-prize-from-astellas-oncology-and-the-world-medical-innovation-forum-2016-world/

Top Seven Big Pharma in Thomson Reuters 2015 Top 100 Global Innovators

https://pharmaceuticalintelligence.com/2016/01/04/top-seven-big-pharma-in-thomson-reuters-2015-top-100-global-innovators/

Eye Lens Regenerated

https://pharmaceuticalintelligence.com/2016/03/19/eye-lens-regenerated/

 

2012

Picturing US-Trained PhDs’ Paths and Pharmaceutical Industry’s Crisis of Productivity: Partnerships between Industry and Academia

https://pharmaceuticalintelligence.com/2012/06/27/picturing-us-trained-phds-paths-pharmaceutical-industrys-crisis-of-productivity-partnerships-between-industry-and-academia/

Medicines in Development for Cancer in 2012: An Excellent Response from America’s Biopharmaceutical Research Companies

https://pharmaceuticalintelligence.com/2012/07/31/medicines-in-development-for-cancer-in-2012-an-excellent-response-from-americas-biopharmaceutical-research-companies/

Read Full Post »


New Studies toward Understanding Alzheimer Disease

Curators: Larry H. Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

 

There is no unifying concept of Alzheimer Disease beyond the Tau and beta amyloid roles.  Recently, Ingenbleek and Bernstein (journal AD) made the connection between the age related decline of liver synthesis of plasma transthyretin and the more dramatic decline of transthyretin at the blood brain barrier, and the relationship to inability to transfer vitamin A via retinol binding protein to the brain.  Related metabolic events are reported by several groups.

 

What else is New?

 

Amyloid-β peptide protects against microbial infection in mouse and worm models of Alzheimer’s disease.

Kumar DK, Choi SH, Washicosky KJ, Eimer WA, Tucker S, Ghofrani J, Lefkowitz A, McColl G, Goldstein LE, Tanzi RE, Moir RD.

Sci Transl Med. 2016 May 25;8(340):340ra72.  http://dx.doi.org:/10.1126/scitranslmed.aaf1059

They show that Aβ oligomerization, a behavior traditionally viewed as intrinsically pathological, may be necessary for the antimicrobial activities of the peptide. Collectively, our data are consistent with a model in which soluble Aβ oligomers first bind to microbial cell wall carbohydrates via a heparin-binding domain. Developing protofibrils inhibited pathogen adhesion to host cells. Propagating β-amyloid fibrils mediate agglutination and eventual entrapment of unatttached microbes….Salmonella Typhimurium bacterial infection of the brains of transgenic 5XFAD mice resulted in rapid seeding and accelerated β-amyloid deposition, which closely colocalized with the invading bacteria.

This is quite interesting in that infection drives the production of acute phase reactants resulting in decreased production of transthyretin.  Whether this also has ties to chronic disease in the elderly and risk of AD is not known.

Gain-of-function mutations in protein kinase Cα (PKCα) may promote synaptic defects in Alzheimer’s disease.

Alfonso SI, Callender JA, Hooli B, Antal CE, Mullin K, Sherman MA, Lesné SE, Leitges M, Newton AC, Tanzi RE, Malinow R.

Sci Signal. 2016 May 10;9(427):ra47.  http://dx.doi.org:/10.1126/scisignal.aaf6209.

Through whole-genome sequencing of 1345 individuals from 410 families with late-onset AD (LOAD), they identified three highly penetrant variants in PRKCA, the gene that encodes protein kinase Cα (PKCα), in five of the families. All three variants linked with LOAD displayed increased catalytic activity relative to wild-type PKCα as assessed in live-cell imaging experiments using a genetically encoded PKC activity reporter. Deleting PRKCA in mice or adding PKC antagonists to mouse hippocampal slices infected with a virus expressing the Aβ precursor CT100 revealed that PKCα was required for the reduced synaptic activity caused by Aβ. In PRKCA(-/-) neurons expressing CT100, introduction of PKCα, but not PKCα lacking a PDZ interaction moiety, rescued synaptic depression, suggesting that a scaffolding interaction bringing PKCα to the synapse is required for its mediation of the effects of Aβ. Thus, enhanced PKCα activity may contribute to AD, possibly by mediating the actions of Aβ on synapses.

 

Science Signaling Podcast for 10 May 2016: PKCα in Alzheimer’s disease.

Newton AC, Tanzi RE, VanHook AM.

Sci Signal. 2016 May 10;9(427):pc11. doi: 10.1126/scisignal.aaf9436.

Relevance of the COPI complex for Alzheimer’s disease progression in vivo.

Bettayeb K, Hooli BV, Parrado AR, Randolph L, Varotsis D, Aryal S, Gresack J,Tanzi RE, Greengard P, Flajolet M.

Proc Natl Acad Sci U S A. 2016 May 10;113(19):5418-23. http://dx.doi.org:/10.1073/pnas.1604176113

Inhibition of death-associated protein kinase 1 attenuates the phosphorylation and amyloidogenic processing of amyloid precursor protein.

Kim BM, You MH, Chen CH, Suh J, Tanzi RE, Ho Lee T.

Hum Mol Genet. 2016 Apr 19. pii: ddw114.

Extracellular deposition of amyloid-beta (Aβ) peptide, a metabolite of sequential cleavage of amyloid precursor protein (APP), is a critical step in the pathogenesis of Alzheimer’s disease (AD). While death-associated protein kinase 1 (DAPK1) is highly expressed in AD brains and its genetic variants are linked to AD risk, little is known about the impact of DAPK1 on APP metabolism and Aβ generation. This study demonstrated a novel effect of DAPK1 in the regulation of APP processing using cell culture and mouse models. DAPK1, but not its kinase deficient mutant (K42A), significantly increased human Aβ secretion in neuronal cell culture models. Moreover, knockdown of DAPK1 expression or inhibition of DAPK1 catalytic activity significantly decreased Aβ secretion. Furthermore, DAPK1, but not K42A, triggered Thr668 phosphorylation of APP, which may initiate and facilitate amyloidogenic APP processing leading to the generation of Aβ. In Tg2576 APPswe-overexpressing mice, knockout of DAPK1 shifted APP processing toward non-amyloidogenic pathway and decreased Aβ generation. Finally, in AD brains, elevated DAPK1 levels showed co-relation with the increase of APP phosphorylation. Combined together, these results suggest that DAPK1 promotes the phosphorylation and amyloidogenic processing of APP, and that may serve a potential therapeutic target for AD.

Recapitulating amyloid β and tau pathology in human neural cell culture models: clinical implications.

Choi SH, Kim YH, D’Avanzo C, Aronson J, Tanzi RE, Kim DY.

US Neurol. 2015 Fall;11(2):102-105.    Free PMC Article

The “amyloid β hypothesis” of Alzheimer’s disease (AD) has been the reigning hypothesis explaining pathogenic mechanisms of AD over the last two decades. However, this hypothesis has not been fully validated in animal models, and several major unresolved issues remain. Our 3D human neural cell culture model system provides a premise for a new generation of cellular AD models that can serve as a novel platform for studying pathogenic mechanisms and for high-throughput drug screening in a human brain-like environment.

The two key pathological hallmarks of AD are senile plaques (amyloid plaques) and neurofibrillary tangles (NFTs), which develop in brain regions responsible for memory and cognitive functions (i.e. cerebral cortex and limbic system) 3. Senile plaques are extracellular deposits of amyloid-β (Aβ) peptides, while NFTs are intracellular, filamentous aggregates of hyperphosphorylated tau protein 4.

The identification of Aβ as the main component of senile plaques by Drs. Glenner and Wong in 1984 5 resulted in the original formation of the “amyloid hypothesis.” According to this hypothesis, which was later renamed the “amyloid-β cascade hypothesis” by Drs. Hardy and Higgins 6, the accumulation of Aβ is the initial pathological trigger in the disease, subsequently leading to hyperphosphorylation of tau, causing NFTs, and ultimately, neuronal death and dementia 4,710. Although the details have been modified to reflect new findings, the core elements of this hypothesis remain unchanged: excess accumulation of the pathogenic forms of Aβ, by altered Aβ production and/or clearance, triggers the vicious pathogenic cascades that eventually lead to NFTs and neuronal death.

Over the last two decades, the Aβ hypothesis of AD has reigned, providing the foundation for numerous basic studies and clinical trials 4,7,10,11. According to this hypothesis, the accumulation of Aβ, either by altered Aβ production and/or clearance, is the initial pathological trigger in the disease. The excess accumulation of Aβ then elicits a pathogenic cascade including synaptic deficits, altered neuronal activity, inflammation, oxidative stress, neuronal injury, hyperphosphorylation of tau causing NFTs and ultimately, neuronal death and dementia 4,710.

One of the major unresolved issues of the Aβ hypothesis is to show a direct causal link between Aβ and NFTs 1214. Studies have demonstrated that treatments with various forms of soluble Aβ oligomers induced synaptic deficits and neuronal injury, as well as hyperphosphorylation of tau proteins, in mouse and rat neurons, which could lead to NFTs and neurodegeneration in vivo 1821. However, transgenic AD mouse models carrying single or multiple human familial AD (FAD) mutations in amyloid precursor protein (APP) and/or presenilin 1 (PS1) do not develop NFTs or robust neurodegeneration as observed in human patients, despite robust Aβ deposition 13,22,23. Double and triple transgenic mouse models, harboring both FAD and tau mutations linked with frontotemporal dementia (FTD), are the only rodent models to date displaying both amyloid plaques and NFTs. However, the NFT pathology in these models stems mainly from the overexpression of human tau as a result of the FTD, rather than the FAD mutations24,25.

Human neurons carrying FAD mutations are an optimal model to test whether elevated levels of pathogenic Aβ trigger pathogenic cascades including NFTs, since those cells truly share the same genetic background that induces FAD in humans. Indeed, Israel et al., observed elevated tau phosphorylation in neurons with an APP duplication FAD mutation 33. Blocking Aβ generation by β-secretase inhibitors significantly decreased tau phosphorylation in the same model, but γ-secretase inhibitor, another Aβ blocker, did not affect tau phosphorylation 33. Neurons with the APP V717I FAD mutation also showed an increase in levels of phospho tau and total tau levels 28. More importantly, Muratore and colleagues showed that treatments with Aβ-neutralizing antibodies in those cells significantly reduced the elevated total and phospho tau levels at the early stages of differentiation, suggesting that blocking pathogenic Aβ can reverse the abnormal tau accumulation in APP V717I neurons 28.

Recently, Moore et al. also reported that neurons harboring the APP V717I or the APP duplication FAD mutation showed increases in both total and phospho tau levels 27. Interestingly, altered tau levels were not detected in human neurons carrying PS1 FAD mutations, which significantly increased pathogenic Aβ42 species in the same cells 27. These data suggest that elevated tau levels in these models were not due to extracellular Aβ accumulation but may possibly represent a very early stage of tauopathy. It may also be due to developmental alterations induced by the APP FAD mutations.

As summarized, most human FAD neurons showed significant increases in pathogenic Aβ species, while only APP FAD neurons showed altered tau metabolism that may represent very early stages of tauopathy. However, all of these human FAD neurons failed to recapitulate robust extracellular amyloid plaques, NFTs, or any signs of neuronal death, as predicted in the amyloid hypothesis.

In our recent study, we moved one step closer to proving the amyloid hypothesis. By generating human neural stem cell lines carrying multiple mutations in APP together with PS1, we achieved high levels of pathogenic Aβ42 comparable to those in brains of AD patients 4446.

An external file that holds a picture, illustration, etc. Object name is nihms740236f1.jpg

 

Platform for AD drug screening in human neural progenitor cells with FAD mutations in a 3D culture system, which successfully reproduce human AD pathogenesis (amyloid plaques-driven tauopathy).

In addition to the impact on toxic Aβ species, our 3D culture model can test if these antibodies can block tau pathologies in 3D human neural cell culture systems 4446. Human cellular AD models can also be used to determine optimal doses of candidate AD drugs to block Aβ and/or tau pathology without affecting neuronal survival (Fig. 1).

While much progress has been made, many challenges still lie on the path to creating human neural cell culture models that comprehensively recapitulate pathogenic cascades of AD. A major difficulty lies in reconstituting the brain regions most affected in AD: the hippocampus and specific cortical layers. Recent progress in 3D culture technology, such as “cerebral organoids,” may also be helpful in rebuilding the brain structures that are affected by AD in a dish 52,53. These “cerebral organoids” were able to model various discrete brain regions including human cortical areas 52, which enabled them to reproduce microcephaly, a brain developmental disorder. Similarly, pathogenic cascades of AD may be recapitulated in cortex-like structures using this model. Adding neuroinflammatory components, such as microglial cells, which are critical in AD pathogenesis, will illuminate the validity of the amyloid β hypothesis. Reconstitution of robust neuronal death stemming from Aβ and tau pathologies will be the next major step in comprehensively recapitulating AD in a cellular model.

 

Family-based association analyses of imputed genotypes reveal genome-wide significant association of Alzheimer’s disease with OSBPL6, PTPRG, and PDCL3.

Herold C, Hooli BV, Mullin K, Liu T, Roehr JT, Mattheisen M, Parrado AR, Bertram L, Lange C, Tanzi RE.

Mol Psychiatry. 2016 Feb 2. http://dx.doi.org:/10.1038/mp.2015.218.

Relationship between ubiquilin-1 and BACE1 in human Alzheimer’s disease and APdE9 transgenic mouse brain and cell-based models.

Natunen T, Takalo M, Kemppainen S, Leskelä S, Marttinen M, Kurkinen KM, Pursiheimo JP, Sarajärvi T, Viswanathan J, Gabbouj S, Solje E, Tahvanainen E, Pirttimäki T, Kurki M, Paananen J, Rauramaa T, Miettinen P, Mäkinen P, Leinonen V, Soininen H, Airenne K, Tanzi RE, Tanila H, Haapasalo A, Hiltunen M.

Neurobiol Dis. 2016 Jan;85:187-205. http://dx.doi.org:/10.1016/j.nbd.2015.11.005.

Accumulation of β-amyloid (Aβ) and phosphorylated tau in the brain are central events underlying Alzheimer’s disease (AD) pathogenesis. Aβ is generated from amyloid precursor protein (APP) by β-site APP-cleaving enzyme 1 (BACE1) and γ-secretase-mediated cleavages. Ubiquilin-1, a ubiquitin-like protein, genetically associates with AD and affects APP trafficking, processing and degradation. Here, we have investigated ubiquilin-1 expression in human brain in relation to AD-related neurofibrillary pathology and the effects of ubiquilin-1 overexpression on BACE1, tau, neuroinflammation, and neuronal viability in vitro in co-cultures of mouse embryonic primary cortical neurons and microglial cells under acute neuroinflammation as well as neuronal cell lines, and in vivo in the brain of APdE9 transgenic mice at the early phase of the development of Aβ pathology. Ubiquilin-1 expression was decreased in human temporal cortex in relation to the early stages of AD-related neurofibrillary pathology (Braak stages 0-II vs. III-IV). There was a trend towards a positive correlation between ubiquilin-1 and BACE1 protein levels. Consistent with this, ubiquilin-1 overexpression in the neuron-microglia co-cultures with or without the induction of neuroinflammation resulted in a significant increase in endogenously expressed BACE1 levels. Sustained ubiquilin-1 overexpression in the brain of APdE9 mice resulted in a moderate, but insignificant increase in endogenous BACE1 levels and activity, coinciding with increased levels of soluble Aβ40 and Aβ42. BACE1 levels were also significantly increased in neuronal cells co-overexpressing ubiquilin-1 and BACE1. Ubiquilin-1 overexpression led to the stabilization of BACE1 protein levels, potentially through a mechanism involving decreased degradation in the lysosomal compartment. Ubiquilin-1 overexpression did not significantly affect the neuroinflammation response, but decreased neuronal viability in the neuron-microglia co-cultures under neuroinflammation. Taken together, these results suggest that ubiquilin-1 may mechanistically participate in AD molecular pathogenesis by affecting BACE1 and thereby APP processing and Aβ accumulation.

Correction to Cathepsin L Mediates the Degradation of Novel APP C-Terminal Fragments.

Wang H, Sang N, Zhang C, Raghupathi R, Tanzi RE, Saunders A.

Biochemistry. 2015 Sep 22;54(37):5781.  http://dx.doi.org:/10.1021/acs.biochem.5b00968. Epub 2015 Sep 8. No abstract available.

Massachusetts Alzheimer’s Disease Research Center: progress and challenges.

Hyman BT, Growdon JH, Albers MW, Buckner RL, Chhatwal J, Gomez-Isla MT, Haass C, Hudry E, Jack CR Jr, Johnson KA, Khachaturian ZS, Kim DY, Martin JB, Nitsch RM, Rosen BR, Selkoe DJ, Sperling RA, St George-Hyslop P, Tanzi RE, Yap L, Young AB, Phelps CH, McCaffrey PG.

Alzheimers Dement. 2015 Oct;11(10):1241-5. http://dx.doi.org:/10.1016/j.jalz.2015.06.1887. Epub 2015 Aug 19. No abstract available.

Alzheimer’s in 3D culture: challenges and perspectives.

D’Avanzo C, Aronson J, Kim YH, Choi SH, Tanzi RE, Kim DY.

Bioessays. 2015 Oct;37(10):1139-48. doi: 10.1002/bies.201500063. Epub 2015 Aug 7. Review.

Synaptotagmins interact with APP and promote Aβ generation.

Gautam V, D’Avanzo C, Berezovska O, Tanzi RE, Kovacs DM.

Mol Neurodegener. 2015 Jul 23;10:31. doi: 10.1186/s13024-015-0028-5.

Near-infrared fluorescence molecular imaging of amyloid beta species and monitoring therapy in animal models of Alzheimer’s disease.

Zhang X, Tian Y, Zhang C, Tian X, Ross AW, Moir RD, Sun H, Tanzi RE, Moore A, Ran C.

Proc Natl Acad Sci U S A. 2015 Aug 4;112(31):9734-9. doi: 10.1073/pnas.1505420112. Epub 2015 Jul 21.

A 3D human neural cell culture system for modeling Alzheimer’s disease.

Kim YH, Choi SH, D’Avanzo C, Hebisch M, Sliwinski C, Bylykbashi E, Washicosky KJ, Klee JB, Brüstle O, Tanzi RE, Kim DY.

Nat Protoc. 2015 Jul;10(7):985-1006. doi: 10.1038/nprot.2015.065. Epub 2015 Jun 11.

Cathepsin L Mediates the Degradation of Novel APP C-Terminal Fragments.

Wang H, Sang N, Zhang C, Raghupathi R, Tanzi RE, Saunders A.

Biochemistry. 2015 May 12;54(18):2806-16. doi: 10.1021/acs.biochem.5b00329. Epub 2015 Apr 28. Erratum in: Biochemistry. 2015 Sep 22;54(37):5781.

γ-Secretase modulators reduce endogenous amyloid β42 levels in human neural progenitor cells without altering neuronal differentiation.

D’Avanzo C, Sliwinski C, Wagner SL, Tanzi RE, Kim DY, Kovacs DM.

FASEB J. 2015 Aug;29(8):3335-41. doi: 10.1096/fj.15-271015. Epub 2015 Apr 22.

PLD3 gene variants and Alzheimer’s disease.

Hooli BV, Lill CM, Mullin K, Qiao D, Lange C, Bertram L, Tanzi RE.

Nature. 2015 Apr 2;520(7545):E7-8. doi: 10.1038/nature14040. No abstract available.

Read Full Post »

Older Posts »