Natural Products Chemistry
Writer and Curator: Larry H. Bernstein, MD, FCAP
Natural products chemistry or pharmacognosy, the study of the physical, chemical, biochemical and biological properties of drugs, drug substances or potential drugs
or drug substances of natural origin as well as the search for new drugs from natural
sources, is an a tradition in medicine that reaches to a tradition thousands of years
old. It has to some extent been supplanted by structural organic chemistry, metallo-organic chemistry, and synthetic organic chemistry of families of drugs. In some
cases, drug failures may be attributed to the inherent failure in a family, and in others
there has been substitution of a drug compound by another with eaqual or greater
potency and less toxicity. A serious confounder has been that medications intended
for a specific effect has either an unfavorable interaction with another class of drugs,
or it has a metabolic reaction with another organ or pathway than the use intended.
That has been the huge impediment to pharmaceutical development.
However, it is important to remember that many of the medications in common use
were originally plant or natural derivatives, e.g., digoxin, Warfarin.
Thymoquinone, an extract of nigella sativa seed oil, blocked pancreatic cancer cell
growth and killed the cells by enhancing the process of programmed cell death
Steve Benowitz steven.benowitz@jefferson.edu
Researchers at the Kimmel Cancer at Jefferson in Philadelphia have found that
thymoquinone, an extract of nigella sativa seed oil, blocked pancreatic cancer cell
growth and killed the cells by enhancing the process of programmed cell death.
According to Hwyda Arafat, M.D., Ph.D., associate professor of Surgery at
Jefferson Medical College of Thomas Jefferson University, nigella sativa helps treat
a broad array of diseases, including some immune and inflammatory disorders.
Previous studies also have shown anticancer activity in prostate and colon cancers,
as well as antioxidant and anti-inflammatory effects.
Using a human pancreatic cancer cell line, she and her team found that adding
thymoquinone killed approximately 80 percent of the cancer cells. They demonstrated
that thymoquinone triggered programmed cell death in the cells, and that a number of
important genes, including p53, Bax, bcl-2 and p21, were affected. The researchers
found that expression of p53, a tumor suppressor gene, and Bax, a gene that promotes
programmed cell death, was increased, while bcl-2, which blocks such cell death,
was decreased. The p21 gene, which is involved in the regulation of different phases
of the cell cycle, was substantially increased.
In addition, adding thymoquinone to pancreatic cancer cells reduced the production
and activity of enzymes called histone deacetylases (HDACs), which remove the
acetyl groups from the histone proteins, halting the gene transcription process.
Dr. Arafat notes that HDAC inhibitors are a “hot” new class of drugs that interfere
with the function of histone deacetylases, and is being studied as a treatment for
cancer and neurodegenerative diseases.
Extra Virgin Olive Oil Improves Learning and Memory in SAMP8 Mice
SA Farra, TO Price, LJ Dominguez, A Motisi, F Saianoe, et al.
Journal of Alzheimer’s Disease 28 (2012) 81–92
http://dx.doi.org/10.3233/JAD-2011-110662
Polyphenols are potent antioxidants found in extra virgin olive oil (EVOO);
antioxidants have been shown to reverse age- and disease-related learning and
memory deficits. We examined the effects of EVOO on learning and memory
in SAMP8 mice, an age-related learning/memory impairment model
associated with increased amyloid- protein and brain oxidative damage.
We administered EVOO, coconut oil, or butter to 11 month old SAMP8
mice for 6 weeks. Mice were tested in T-maze foot shock avoidance
and one-trial novel object recognition with a 24 h delay. Mice which
received EVOO had improved acquisition in the T-maze and spent
more time with the novel object in one-trial novel object recognition
versus mice which received coconut oil or butter. Mice that received
EVOO had improve T-maze retention compared to the mice that received
butter. EVOO increased brain glutathione levels suggesting reduced
oxidative stress as a possible mechanism. These effects plus increased
glutathione reductase activity, superoxide dismutase activity, and
decreased tissue levels of 4-hydroxynoneal and 3-nitrotyrosine were
enhanced with enriched EVOO (3× and 5× polyphenols concentration).
Our findings suggest that EVOO has beneficial effects on learning
and memory deficits found in aging and diseases, such as those related
to the overproduction of amyloid- protein, by reversing oxidative damage
in the brain, effectsthat are augmented with increasing concentrations
of polyphenols in EVOO.
Synthetic analogues of flavonoids with improved activity against platelet activation
and aggregation as novel prototypes of food supplements
S Del Turco, S Sartini, G Cigni, C Sentieri, S Sbrana, et al.
Food Chemistry 175 (2015) 494–499 http://dx.doi.org/10.1016/j.foodchem.2014.12.005
We investigated the ability of quercetin and apigenin to modulate platelet activation
and aggregation, and compared the observed efficacy with that displayed by their
synthetic analogues 2-phenyl-4H-pyrido[1,2-a]pyrimidin-4-ones, 1–4, and 2,3-
diphenyl-4H-pyrido[1,2-a]pyrimidin-4-ones, 5–7. Platelet aggregation was
explored through a spectrophotometric assay on platelet-rich plasma (PRP)
treated with the thromboxane A2 mimetic U46619, collagen and thrombin in
presence/absence of various bioisosteres of flavonoids (12.5–25–50–100 lM).
The platelet density, (mean platelet component, MPC), was measured by the
Advia 120 Hematology System as a marker surrogate of platelet activation. The
induced P-selectin expression, which reflects platelet degranulation/activation,
was quantified by flow cytometry on PRP. Our synthetic compounds modulated
significantly both platelet activation and aggregation, thus turning out to be more
effective than the analogues quercetin and apigenin when tested at a
concentration fully consistent with their use in vivo. Accordingly, they might
be used as food supplements to increase the efficacy of natural flavonoids.
Polysaccharide Extracts From Sargassum Siliquosum J.G. Agardh Modulates
Production Of Pro-Inflammatory Cytokines In Lps-Induced Pbmc And Delays
Coagulation Time In-Vitro
RD Vasquez, RSP Garcia-Meim and JDA Ramos
Jour. Harmo. Res. Pharm., 2014, 3(3), 101-112 www.johronline.com
Sulfated polysaccharides from brown seaweeds exhibit various biological activities,
structural diversity, and are potential reagents for the development of therapeutic
drugs. This study aimed to determine the effect of aqueous and fucoidan extracts from
Sargassum siliquosum J. G. Agardh on viability of peripheral blood mononuclear
cells, production of pro-inflammatory cytokines and plasma coagulation using
in vitro
assays. Sulfate contents of the polysaccharides were quantified using Acid-Ashing Digestion Ion chromatography. Effect on viability of the extracts on
peripheral blood mononuclear cells was determined by MTT Assay. Estimation
of pro-inflammatory cytokines concentrations was done through Enzyme-Linked
Immunosorbent Assay, while anticoagulant activity was measured by Prothrombin
Time and Activated Partial Thromboplastin Time. Results revealed that both
extracts were non-cytotoxic to PBMCs, reduced significantly the production of
IL-1, IL-6,TNF-α and exhibited normal anticoagulant activity in PT assays and
prolonged APTT remarkably in dose-dependent manner. In conclusion, extracts
of the Sargassum siliquosum J.G. Agardh is a potential alternative source in
producing anti-inflammatory and anticoagulant substances in the future.
Purple corn anthocyanins inhibit diabetes-associated glomerular monocyte
activation and macrophage infiltration
Min-Kyung Kang, J Li, Jung-Lye Kim, Ju-Hyun Gong, Su-Nam Kwak, JHY Park, et al.
Am J Physiol Renal Physiol 303: F1060–F1069
http://dx.doi.org:/10.1152/ajprenal.00106.2012
Purple corn anthocyanins inhibit diabetes-associated glomerular monocyte activation
and macrophage infiltration. Diabetic nephropathy (DN) is one of the major diabetic
complications and the leading cause of end- stage renal disease. In early DN, renal
injury and macrophage accumulation take place in the pathological environment
of glomerular vessels adjacent to renal mesangial cells expressing proinflammatory
mediators. Purple corn utilized as a daily food is rich in anthocyanins exerting
disease-preventive activities as a functional food. This study elucidated whether
anthocyanin-rich purple corn extract (PCA) could suppress monocyte activation and
macrophage infiltration. In the in vitro study, human endothelial cells and THP-1 monocytes were cultured in conditioned media of human mesangial cells exposed
to 33 mM glucose (HG-HRMC). PCA decreased the HG-HRMC-conditioned, media-induced expression of endothelial vascular cell adhesion molecule-1, E-selectin,
and monocyte integrins- and -2 through blocking the mesangial Tyk2 pathway. In the
in vivo animal study, db/db mice were treated with 10 mg/kg PCA daily for 8 wk. PCA
attenuated CXCR2 induction and the activation of Tyk2 and STAT1/3 in db/db mice.
Periodic acid-Schiff staining showed that PCA alleviated mesangial expansion-elicited renal injury in diabetic kidneys. In glomeruli, PCA attenuated the induction
of intracellular cell adhesion molecule-1 and CD11b. PCA diminished monocyte
chemoattractant protein-1 expression and macrophage inflammatory protein 2
transcription in the diabetic kidney, inhibiting the induction of the macrophage
markers CD68 and F4/80. These results demonstrate that PCA antagonized
the infiltration and accumulation of macrophages in diabetic kidneys through
disturbing the mesangial IL-8-Tyk-STAT signaling pathway. Therefore, PCA may
be a potential renoprotective agent treating diabetes-associated glomerulosclerosis.
Proximate analysis, phytochemical screening, and total phenolic and flavonoid
contentof Philippine bamboo Schizostachyum lumampao
JVV Tongco, RM Aguda and RA Razal.
Journal of Chemical and Pharmaceutical Research, 2014, 6(1):709-713
www.jocpr.com
In Asia, bamboo has been widely cultivated as a fast growing non-timber forest
species. Flavonoids and phenolics were shown to reduce inflammation, promote
overall cardiovascular health and circulation, and even protect against certain kinds
of cancer. These studies necessitate the chemical characterization (e.g., proximate
analysis) and qualitative identification of phenolics.
The chemical composition of the leaves of Schizostachyum lumampao, known as
“buho” in the Philippines, was determined for its potential use as herbal tea with
potential health benefits, such as antioxidant properties. Proximate analysis using
standard AOAC methods showed that the air-dried leaves contain 10 % moisture, 30.5 % ash, 22.1 % crude protein, 1.6 % crude
fat, 28.7 % crude fiber, and 7.2 % total sugar (by difference). Using a variety of
reagents for qualitative phytochemical screening, saponins, diterpenes, triterpenes,
phenols, tannins, and flavonoids were detected in both the ethanolic and aqueous
leaf extracts, while phytosterols were only detected in the ethanolic extract. Using
UV-Vis spectrophotometry, the total phenolic content (in GAE) were 76.7 and
13.5 gallic acid equivalents per 100 g air-dried sample for the ethanolic and
aqueous extracts, respectively. The total flavonoid content were 70.2 and 17.86 mg
quercetin equivalents per 100 g air-dried sample for the ethanolic and aqueous
extracts, respectively. This preliminary study showed the total amount of phenolics
and flavonoids present in buho, the phytochemicals present, and its proximate
analysis.
Ophiopogonin D: A new herbal agent against osteoporosis
Q Huang, B Gao, L Wang, Hong-Yang Zhang, Xiao-Jie Li, J Shi, Z Wang, et al.
Bone 74 (2015) 18–28
http://dx.doi.org/10.1016/j.bone.2015.01.002
Excessive reactive oxygen species (ROS) play an important role in the development
of osteoporosis. Ophiopogonin D (OP-D), isolated from the traditional Chinese
herbal agent Radix Ophiopogon japonicus, is a potent anti-oxidative agent. We
hypothesized that OP-D demonstrates anti-osteoporosis effects via decreasing
ROS generation in mouse pre-osteoblast cell line MC3T3-E1 subclone 4 cells
and a macrophage cell line RAW264.7 cells. We investigated OP-D on osteogenic
and osteoclastic differentiation under oxidative status. Hydrogen peroxide (H2O2)
was used to establish an oxidative damage model. In vivo, we established a murine
ovariectomized (OVX) osteoporosis model. Then, we searched the molecular
mechanism of OP-D against osteoporosis. Our results revealed that OP-D
significantly promoted the proliferation of MC3T3-E1 cells and improved some
osteogenic markers. Moreover, OP-D reduced TRAP activity and the mRNA
expressions of osteoclastic genes in RAW264.7 cells. OP-D suppressed ROS
generation in both MC3T3-E1 and RAW264.7 cells. OP-D treatment reduced
the activity of serum bone degradation markers, including CTX-1 and TRAP.
Further research showed that OP-D displayed anti-osteoporosis effects via
reducing ROS through the FoxO3a-β-catenin signaling pathway. In summary,
our results indicated that the protective effects of OP-D against osteoporosis
are linked to a reduction in oxidative stress via the FoxO3a-β-catenin signaling
pathway, suggesting that OP-D may be a beneficial herbal agent in bone-related
disorders, such as osteoporosis.
Revealing the macromolecular targets of complex natural products
D Reker, AM Perna, T Rodrigues, P Schneider, M Reutlinger, et al.
Nature Chemistry Dec 2014; 6: 1072 – 1078
http://dx.doi.org:/10.1038/NCHEM.2095
Natural products have long been a source of useful biological activity for the
development of new drugs. Their macromolecular targets are, however, largely
unknown, which hampers rational drug design and optimization. Here we present
the development and experimental validation of a computational method for the
discovery of such targets. The technique does not require three-dimensional
target models and may be applied to structurally complex natural products. The
algorithm dissects the natural products into fragments and infers potential
pharmacological targets by comparing the fragments to synthetic reference drugs
with known targets. We demonstrate that this approach results in confident
predictions. In a prospective validation, we show that fragments of the potent
antitumour agent archazolid A, a macrolide from the myxobacterium Archangium
gephyra, contain relevant information regarding its polypharmacology.
Biochemical and biophysical evaluation confirmed the predictions. The results
obtained corroborate the practical applicability of the computational approach to
natural product ‘de-orphaning’.
In vitro activity of Inula helenium against clinical Staphylococcus aureus strains
including MRSA
O’Shea S, Lucey B, Cotter L.
Br J Biomed Sci. 2009;66(4):186-9.
The present study aims to investigate the bactericidal activity (specifically
antistaphylococcal) of Inula helenium. The antimicrobial activity of the extract is
tested against 200 clinically significant Irish Staphylococcus aureus isolates
consisting of methicillin-resistant (MRSA) and -sensitive (MSSA) S. aureus
using a drop test method and a microbroth dilution method. The antibacterial
effect is evaluated by measuring the area of the inhibition zone against the
isolates. Results proved I. helenium to be 100% effective against the 200
staphylococci tested, with 93% of isolates falling within the ++ and +++ groups.
The minimum bactericidal concentration of I. helenium was examined on a subset
of isolates and values ranged from 0.9 mg/mL to 9.0 mg/mL. The extract was
equally effective against antibiotic-resistant and -sensitive strains. This plant
therefore possesses compounds with potent antistaphylococcal properties, which
in the future could be used to complement infection control policies and prevent
staphylococcal infection and carriage. This research supports other studies
wherein herbal plants exhibiting medicinal properties are being examined to
overcome the problems of antibiotic resistance and to offer alternatives in the
treatment and control of infectious diseases.
Inhibition of Proliferation of Breast Cancer Cells MCF7 and MDA-MB-231 by Lipophilic Extracts of Papaya (Carica papaya L. var. Maradol) Fruit
LE Gayosso-García Sancho, EM Yahia, P García-Solís, GA González-Aguilar
Food and Nutrition Sciences, 2014, 5, 2097-2103
http://dx.doi.org/10.4236/fns.2014.521222
Several epidemiological studies have suggested that carotenoids have
antineoplasic activities. The objective of this study was to determine the
antiproliferative effect of rich carotenoid lipophilic extracts of papaya fruit
pulp (Carica papaya L., cv Maradol) in breast cancer cells, MCF-7 (estrogen
receptor positive) and MDA-MB-231 (estrogen receptor negative), and in
non-tumoral mammary epithelial cells MCF-12F. Antiproliferative effect
was evaluated using the methyl-thiazolydiphenyl-tetrazolium bromide
(MTT) assay and testing lipophilic extracts from different papaya fruit
ripening stages (RS1, RS2, RS3, RS4), at different times (24, 48 and
72 h). Papaya lipophilic extracts do not inhibit cell proliferation of MCF-12F
and MDA-MB-231 cells. However, MCF-7 cells showed a significant
reduction in proliferation at 72 h with the RS4 papaya extract. Results
suggested that lipophilic extracts had different action mechanisms on
each type of cells and therefore, more studies were required to elucidate
such mechanisms.
In vitro cytotoxic activity of silver nano particle biosynthesized from Colpomenia
sinuosa and Halymenia poryphyroides using DLA and EAC cell lines
Vishnu Kiran M and Murugesan S
World J Pharm Sci 2014; 2(9): 926-930.
This study was conducted to investigate the invitro cytotoxic activity of silver
nanoparticles biosynthesized
from Colpomenia sinuosa and Halymenia poryphyroides using DLA and EAC
cell lines by tryphan blue dye exclusion technique and MTT assay using Mouse L929 cell lines (Lungs fibroblast). The results of the trypan blue dye exclusion assay indicates that the silver nano particles biosynthesized from
Colpomenia sinuosa and Halymenia poryphyroides inhibits the growth of DLA
and EAC cell lines in a dose dependent manner against the standard drug
Curcumin where the silver nano particle biosynthesized from Colpomenia sinuosa
showed 61.57 % and silver nano particle biosynthesized from Halymenia poryphyroides showed 89.36 % in DLA cell line similarly the silver nanoparticle biosynthesized
from Colpomenia sinuosa showed 81.96 % and silver nanoparticle biosynthesized
from Halymenia poryphyroides 91.45 % in EAC cell line. The results of the MTT
assay indicated the silver nanoparticles biosynthesized from Colpomenia sinuosa
and Halymenia poryphyroides significantly inhibited the proliferation of L929 cells
in dose dependent manner where the silver nanoparticle biosynthesized from
Colpomenia sinuosa showed 37.06 % and silver nanoparticle biosynthesized from
Halymenia poryphyroides showed 100 % against the standard drug Curcumin.
Garlic compound fights source of food-borne illness better than antibiotics
·Better than antibiotics: Garlic compound fights source of food-borne illness
(http://www.wsunews.wsu.edu)
Researchers at Washington State University have found that a compound in garlic
is 100 times more effective than two popular antibiotics at fighting the Campylobacter
bacterium, one of the most common causes of intestinal illness. Their work was
recently published in the Journal of Antimicrobial Chemotherapy. The discovery
opens the door to new treatments for raw and processed meats and food preparation
surfaces. Most infections stem from eating raw or undercooked poultry or foods
that have been cross-contaminated via surfaces or utensils used to prepare poultry.
Lu and his colleagues looked at the ability of the garlic-derived compound, diallyl
sulfide, to kill the bacterium when it is protected by a slimy biofilm that makes it
,000 times more resistant to antibiotics than the free floating bacterial cell. They
found the compound can easily penetrate the protective biofilm and kill bacterial
cells by combining with a sulfur-containing enzyme, subsequently changing
the enzyme’s function and effectively shutting down cell metabolism. The
researchers found the diallyl sulfide was as effective as 100 times as much
of the antibiotics erythromycin and ciprofloxacin and would often work in a
fraction of the time.
Two previous works published last year by Lu and WSU colleagues in Applied
and Environmental Microbiology and Analytical Chemistry found diallyl sulfide
and other organosulfur compounds effectively kill important foodborne pathogens,
such as Listeria monocytogenes and Escherichia coli O157:H7.
“Diallyl sulfide could make many foods safer to eat”, says Barbara Rasco, a
co-author on all three recent papers and Lu’s advisor for his doctorate in food
science. “It can be used to clean food preparation surfaces and as a preservative
in packaged foods like potato and pasta salads, coleslaw and deli meats”.
Effect of tree nuts on metabolic syndrome criteria: a systematic review and
meta-analysis of randomized controlled trials
SB Mejia, CWC Kendall, E Viguiliouk, LS Augustin, V Ha, AI Cozma, A Mirrahimi, et al.
BMJ Open 2014;4:e004660. http://dx.doi.org:/10.1136/bmjopen-2013-004660
Objective: To provide a broader evidence summary to inform dietary guidelines of the
effect of tree nuts on criteria of the metabolic syndrome (MetS).
Design: We conducted a systematic review and metaanalysis of the effect of
tree nuts on criteria of the MetS.
Data sources: We searched MEDLINE, EMBASE, CINAHL and the Cochrane Library
(through 4 April 2014).
Eligibility criteria for selecting studies: We included relevant randomized controlled
trials (RCTs) of ≥3 weeks reporting at least one criterion of the MetS.
Data extraction: Two or more independent reviewers extracted all relevant data. Data
were pooled using the generic inverse variance method using random effects models
and expressed as mean differences (MD) with 95% CIs. Heterogeneity was assessed
by the Cochran Q statistic and quantified by the I2 statistic. Study quality and risk of
bias were assessed.
Results: Eligibility criteria were met by 49 RCTs including 2226 participants who
were otherwise healthy or had dyslipidemia, MetS or type 2 diabetes mellitus.
Tree nut interventions lowered triglycerides (MD=−0.06 mmol/L (95% CI −0.09
to −0.03 mmol/L)) and fasting blood glucose (MD=−0.08 mmol/L (95% CI −0.16
to −0.01 mmol/L)) compared with control diet interventions. There was no effect
on waist circumference, high-density lipoprotein cholesterol or blood pressure with
the direction of effect favoring tree nuts for waist circumference. There was
evidence of significant unexplained heterogeneity in all analyses (p<0.05).
Conclusions: Pooled analyses show a MetS benefit of tree nuts through modest
decreases in triglycerides and fasting blood glucose with no adverse effects
on other criteria across nut types. As our conclusions are limited by the short
duration and poor quality of the majority of trials, as well as significant
unexplained between-study heterogeneity, there remains a need for larger,
longer, high-quality trials.
DPPH free radical scavenging activity of phenolics and flavonoids in some medicinal
plants of India
R Patel, Y Patel, P Kunjadia and A Kunjadia
Int.J.Curr.Microbiol.App.Sci (2015) 4(1): 773-780 http://www.ijcmas.com
Methanolic extracts of Gymnema sylvestre (leaf), Holarrhena antidysenterica (bark),
Vernonia anthelmintica(seeds) Enicostemma littorale (leaf), Momordica charantia
(fruit), Swertia chirata (leaf), Azadirachta indica (leaf), Caesalpinia bonducella (leaf)
used in Ayurvedic medicines for number of ailments were evaluated for their
antioxidant activity.The free radical-scavenging activity of the extracts was measured
as decolorizing activity followed by the trapping of the unpaired electron by 1, 1-
diphenyl-2-picryl hydrazyl radical (DPPH). The percentage decrease of DPPH
was recorded maximum in A. indica followed by M. charantia, C. bonducella,
E.littorale, V. anthelmintica, S.chirata, H.antidysenterica, G.sylvestre. The
antioxidant activity of medicinal plants was at par with the commercial antioxidant
like L-Ascorbic acid. Phytochemical analysis revealed the presence of major
phytocompounds like terpenoids, alkaloids, glycosides, phenolics and tannins.
Moreover, total flavonoid concentration equivalents to gallic acid was found in
the range of 326 μg to 1481μg/g of plant extracts and that of total phenolic
concentration equivalents to phenol was found in the range of 23.50 μg to
89.82 μg/g of plant extracts. The findings indicated promising antioxidant
activity of crude extracts of the above plants and needs further exploration
for their effective use in both modern and traditional system of medicines.
Cyanobacterial natural products as antimicrobial agents
V.D. Pandey
Int.J.Curr.Microbiol.App.Sci (2015) 4(1): 310-317 http://www.ijcmas.com
Cyanobacteria (blue-green algae) constitute a morphologically diverse and
widely distributed group of Gram-negative photosynthetic prokaryotes. Possessing
tremendous adaptability to varying environmental conditions, effective protective
mechanisms against various abiotic stresses and metabolic versatility, they colonize
and grow in different types of terrestrial and aquatic habitats. In addition to
the potential applications of cyanobacteria in various fields, such as agriculture,
aquaculture, pollution control, bioenergy and nutraceuticals, they produce chemically
diverse and pharmacologically important novel bioactive compounds, including
antimicrobial compounds (antibacterial, antifungal and antiviral). The emergence
and spread of antibiotic resistance in pathogenic microbes against commonly used
antibiotics necessitated the search for new antimicrobial agents from sources other
than the traditional microbial sources (streptomycetes and fungi). Various features
of cyanobacteria, including their capability of producing antimicrobial compounds,
make them suitable candidates for their exploitation as a natural source
of antimicrobial agents.
Determination of nutritional value and antioxidant from bulbs of different onion
(Allium cepa) variety: A comparative study
Kandoliya, U.K.*, Bodar, N.P., Bajaniya, V.K., Bhadja N.V. and Golakiya, B.A.
Int.J.Curr.Microbiol.App.Sci (2015) 4(1): 635-641 http://www.ijcmas.com
Onion (Allium cepa) is one of the most economically important vegetable crops
consumed for their ability to enhance the added flavor and typical taste in other
foods. It is a good source of antioxidants as well as some phytonutrients.
So the experiment was conducted to study the nutritional quality along with
various parameters contributing antioxidant activity from onion of different red and
white type local varieties. The findings revealed from all the variety studied,
shows 58.14 to 77.67 % DPPH value, comparable amount of flavanoids
(0.422 to 1.232 mg.g-1) and anthocyanine content along with total phenol
(8.96-18.23 mg.100 g-1), Pyruvic acid (1.09 to 1.33 mg.g-1), ascorbic acid
(1.18 to 3.89 mg.100g-1) , protein (0.79 to 1.27%) and titrable acidity
(0.34 0.75%).These results reveal that JDRO-07-13 of Red variety and
GWO-1 of white nutritionally found better due to its higher antioxidant
property, proteins, carbohydrates, reducing sugar and should be included in diets to supplement our daily allowance needed by the body.
Curcumin: New Weapon against Cancer
Fayez Hamam
Food and Nutrition Sciences, 2014, 5, 2257-2264
http://dx.doi.org/10.4236/fns.2014.522239
All the evidences point out to the fact that the incidence, mortality and number of
persons living with cancer are on the rise and, thus, this will impose a significant
burden on health care resources. The considerable number of deaths from cancer
necessitates the need to developing novel alternative cures that are efficient, safe,
cheap and easy to use. In the search for new therapies for tumors, naturally-derived compounds have been considered as a good source of novel anticancer
drugs. The challenge here is to find products that are pharmacologically active
against tumor cells with suitable toxicity profile and least damage to normal cells.
Curcumin is a spice widely used in many countries especially in South Asia and
it has gained importance for its anticancer function and low toxicity toward normal
tissues in a range of biological systems. In spite of significant research works, many
difficulties hinder its oral use in the therapy of different kind of tumors, such as
extreme low solubility in water, quick break down and excretion after being absorbed
in the human body. Low bioavailability due to enhanced metabolism and rapid
system elimination is another problem that hinders oral use of curcumin as
anticancer agent. Therefore, the previously mentioned poor pharmacokinetics
characteristics inhibit curcumin from reaching its site of action and, thus,
lessen its effectiveness against tumors. This article reviews the latest global
cancer statistics with special attention to be directed toward ovarian cancer.
It sheds light on many research works that investigated the protective and
therapeutic functions of different curcumin preparations against different
sites of cancer using animal models. It also summarizes recent
research works concerning the antitumor effects of curcumin alone and/or
loaded into a range of delivery devices in many types of ovarian cancer cell lines.
Cinnamon is lethal weapon against E. coli O157:H7
When cinnamon is in, Escherichia coli O157:H7 is out. That’s what researchers
at Kansas State University discovered in laboratory tests with cinnamon and
apple juice heavily tainted with the bacteria. Presented at the Institute of Food
Technologists’ 1999 Annual Meeting in Chicago on July 27, the study findings
revealed that cinnamon is a lethal weapon against E. coli O157:H7 and may be
able to help control it in unpasteurized juices.
Lead researcher Erdogan Ceylan, M.S., reported that in apple juice samples
inoculated with about one million E. coli O157:H7 bacteria, about one teaspoon
(0.3 percent) of cinnamon killed 99.5 percent of the bacteria in three days at room
temperature (25 C). When the same amount of cinnamon was combined with
either 0.1 percent sodium benzoate or potassium sorbate, preservatives approved
by the Food and Drug Administration, the E. coli were knocked out to an
undetectable level. The number of bacteria added to the test samples was
100 times the number typically found in contaminated food.
“If cinnamon can knock out E. coli O157:H7, one of the most virulent foodborne
microorganisms that exists today, it will certainly have antimicrobial effects on other
common foodborne bacteria, such as Salmonella and Campylobacter,” noted Daniel
Y.C. Fung, Ph.D., professor of Food Science in the Department of Animal Sciences
and Industry at K-State, who oversaw the research.
Last year, Fung and Ceylan researched the antimicrobial effects of various spices
on E. coli O157:H7 in raw ground beef and sausage and found that cinnamon,
clove, and garlic were the most powerful. This research led to their recent studies
on cinnamon in apple juice, which proved to be a more effective medium than meat
for the spice to kill the bacteria.
“In liquid, the E. coli have nowhere to hide,” Fung noted, “whereas in a solid structure,
such as ground meat, the bacteria can get trapped in the fat or other cells and
avoid contact with the cinnamon. But this cannot happen in a free-moving environment.”
For a copy of the study presented at IFT’s Annual Meeting, contact Angela Dansby at
312-82-8424 x127 or via e-mail at aldansby@ift.org
Anti-inflammatory, anti-proliferative and anti-atherosclerotic effects of quercetin in
human in vitro and in vivo models
R Kleemann, Lars Verschuren, M Morrison, S Zadelaar, MJ van Erk, PY Wielinga, & T Kooistra
Atherosclerosis 218 (2011) 44– 52
http://dx.doi.org:/10.1016/j.atherosclerosis.2011.04.023
Objective: Polyphenols such as quercetin may exert several beneficial effects,
including those resulting from anti-inflammatory activities, but their impact on
cardiovascular health is debated. We investigated the effect of quercetin on
cardiovascular risk markers including human C-reactive protein (CRP) and on
atherosclerosis using transgenic humanized models of cardiovascular disease.
Methods: After evaluating its anti-oxidative and anti-inflammatory effects in
cultured human cells, quercetin (0.1%, w/w in diet) was given to human CRP
transgenic mice, a humanized inflammation model, and ApoE*3Leiden transgenic
mice, a humanized atherosclerosis model. Sodium salicylate was used as an
anti-inflammatory reference. Results: In cultured human endothelial cells,
quercetin protected against H2O2-induced lipid peroxidation and reduced the
cytokine-induced cell-surface expression of VCAM-1 and E-selectin. Quercetin
also reduced the transcriptional activity of NFB in human hepatocytes. In human
CRP transgenic mice (quercetin plasma concentration: 12.9 ± 1.3 M), quercetin
quenched IL1-induced CRP expression, as did sodium salicylate. In ApoE*3 Leiden mice, quercetin (plasma concentration: 19.3 ± 8.3 M) significantly attenuated
atherosclerosis by 40% (sodium salicylate by 86%). Quercetin did not affect
atherogenic plasma lipids or lipoproteins but it significantly lowered the circulating
inflammatory risk factors SAA and fibrinogen. Combined histological and microarray
analysis of aortas revealed that quercetin affected vascular cell proliferation thereby
reducing atherosclerotic lesion growth. Quercetin also reduced the gene expression
of specific factors implicated in local vascular inflammation including IL-1R, Ccl8, IKK,
and STAT3.
Conclusion: Quercetin reduces the expression of human CRP and cardiovascular risk
factors (SAA, fibrinogen) in mice in vivo. These systemic effects together with local
anti-proliferative and anti-inflammatory effects in the aorta may contribute to the
attenuation of atherosclerosis.
Natural products to drugs: natural product derived compounds in clinical trials
Mark S. Butler
Nat Prod Rep 2005; 22 : 162 – 195 http://dx.doi.org:/10.1039/b402985m
Natural product and natural product-derived compounds that are being
evaluated in clinical trials or in registration (current 31 December 2004)
have been reviewed. Natural product derived drugs launched in the
United States of America, Europe and Japan since 1998 and new
natural product templates discovered since 1990 are discussed.
Natural Products (NPs) traditionally have played an important role in drug discovery
and were the basis of most early medicines. Over the last 10 to 15 years advances
in X-ray crystallography and NMR, and alternative drug discovery methods such as
rational drug design and combinatorial chemistry have placed great pressure upon
NP drug discovery programs and during this period most major pharmaceutical
companies have terminated or considerably scaled down their NP operations.
However, despite the promise of these alternative drug discovery methods, there is
still a shortage of lead compounds progressing into clinical trials. This is especially
the case in therapeutic areas such as oncology, immunosuppression and metabolic
diseases where NPs have played a central role in lead discovery. In a recent review,
Newman,Cragg and Snader analysed the number of NP-derived drugs present in
the total drug launches from 1981 to 2002 and found that NPs were a significant
source of these new drugs, especially in the oncological and antihypertensive
therapeutic areas. In addition to providing many new drug leads, NPs and NP-derived drugs were well represented in the top 35 worldwide selling ethical drugs
in 2000, 2001 and 2002.
Antibacterial activity of green tea (Camellia sinensis) Extract against dental
caries and other pathogens
P. Lavanya and M. Sri priya
Int.J.Adv. Res.Biol.Sci.2014; 1(5):58-70
The present study has however, revealed that the herbal plant Camellia sinensis (green tea) possess antimicrobial properties. The isolated strains were confirmed by performing staining and biochemical techniques. Aqueous extract of green tea were taken and used for the study of inhibition effect against dental caries and
other pathogens. The zone of inhibition was performed using agar well diffusion techniques different concentration of green tea extracts were studied for their
antibacterial activity. The overall results showed that the microorganisms
were susceptible to different concentration of aqueous extracts of Camellia
sinensis which is a function of their antimicrobial properties. The effectiveness of active principle was studied and compared with the previous one. The nature
of the chemicals present as active principle of the extract was studied using
Paper chromatography and Thin layer chromatography. The chemicals involved in
antimicrobial activity are commonly belonging to any one of the group such as flavanoids, alkaloids, saponins and polyphenols. It could be concluded
that flavonoid in a potential natural, antimicrobial agent against dental
caries and other pathogens.
Antibacterial activity of Mangrove Medicinal Plants against Gram positive
Bacterial pathogens
K. A. Selvam* and K. Kolanjinathan
Int. J. Adv. Res. Biol.Sci. 1(8): (2014): 234–241
Ten mangrove medicinal plants viz., Avicennia marina, Rhizophora mucuronata, Rhizophora mangle, Asparagus officinalis, Ceriops decandra, Aegiceras
corniculatum, Acanthus ilicifolius, Bruguiera cylindrica, Rhizophora apiculata and Xylocarpus grantum were collected from mangrove forest of Pichavaram, Tamil
Nadu, India. The antibacterial activity of mangrove plant extracts (150 mg/ml and
300 mg/ml) were determined by Disc diffusion method. The zone of inhibition was more at 300 mg/ml of extracts when compared to 150 mg/ml of extracts. The
antibacterial activity of selected mangrove plant leaf extracts was determined
against pathogenic bacterial isolates. The methanol extract of Ceriops decandra showed maximum zone of inhibition against all the bacterial isolates followed
by Avicennia marina, Rhizophora mucronata, Aegiceras corniculatum, Rhizophora apiculata, Rhizophora mangle, Acanthus ilicifolius, Asparagus officinalis, Xylocarpus grantum and Bruguiera cylindrica at 300 mg/ml. The hexane extract of mangrove plants showed minimum inhibition zone against bacterial pathogens
when compared to the other solvent extracts. The DMSO was used as a blind
control and the antibiotic Ampicillin (300 mg/ml) was used as a positive control. Minimum inhibitory concentration (MIC) of the mangrove plant extracts against bacterial isolates was tested in Mueller Hinton broth by Broth macro dilution
method. The MIC of mangrove plants against bacterial pathogens was ranged
between 20 mg/ml to 640 mg/ml.
Antioxidant and antibacterial activity of Berberis tinctoria root
Karthikkumar Va, Sharanya R , Allegendiran R, Sasikumar J.M
Int. J. Adv. Res. Biol.Sci. 1(9): (2014): 292–297
Herbs have always been the principle form of medicine in developing nations
and presently they are becoming popular throughout the developed world as
people strive to stay healthy in the face of chronic stress and to treat illness with medicines that work in concert with body’s own defences. The aim of the present study was to evaluate the antioxidant and antibacterial potential of Bereris
tinctoria root. Plant material collected and extracted with various solvents. Different concentrations of extracts were used to evaluate the potential. Bereberis tinctoria
root at a concentration of 1000μg/ml shows high antioxidant activity and relatively
all extracts possessing strong to moderate antibacterial activity. In addition, during phytochemical screening, we got saponins and sterols from its root, when extracting with organic solvents. Thus, root extract of Berberis tinctoria might be good
candidate for the synthesis of antibacterial drugs in the future.
Biological Activities of Soybean Galactomannan Oligosaccharides and
Their Sulfated Derivatives
MMI Helal, SA Ismail, MOI Ghobashy, SS Elgazar, et al.
Int.J.Adv. Res.Biol.Sci.2014; 1(6):113-121
Galactomanno-oligosaccharieds (GMO) and their sulfated derivatives
(SGMO) were prepared from soybean hulls and evaluated for their biological
activities as anticoagulant; antimicrobial; antitumor; fibrinolytic and prebiotics.
The results indicated that the sulfating process has positive effect on the
anticoagulation and fibrinolytic activities of the galactomanno-oligosaccharides.
The SGMO have prolonged clotting time more than 24h at concentration resemble that of the standard heparin. It was also found that the SGMO have fibrinolytic
activity as that of the standard hemoclar and 3 times higher than that of the native GMO oligosaccharides. The prepared oligosaccharides also preformed anti-tumor
activity against human colon carcinoma cell line and the percentage of the dead cells increase from 28% to 72% by increase the concentration of the oligosaccharides from 0.005 to 0.02 mg/ml. The tested galactomanno-oligosaccharides also act as good source for prebiotic as they have the ability to grow the beneficial bacteria
4 to 8 times higher than the pathogenic one. To our knowledge this is the first
time someone report anticoagulation; fibrinolytic and direct antitumor activities for galactomanno-oligosaccharides not to mention soybean galactomanno-oligosaccharides.
Biotechnological Application of Production β-Lactamase Inhibitory Protein
(BLIP) By Actinomycetes Isolates from Al-Khurmah Governorate
HM Atta; RA Bayoumi and MH El-Sehrawi
Int. J. Adv. Res. Biol.Sci. 1(7): (2014): 144–154
Many pathogenic bacteria secrete β-lactamase enzymes as a mechanism of
defense against β-lactam antibiotics. Sixty-nine unrepeated actinomycetes
isolates were isolated from different localities in Al-Khurmah governorate, Saudi Arabia kingdom. Actinomycetes isolates were screened for producing β-lactamase inhibitory effect against amoxicillin –resistant bacteria. There were eleven isolates (15.94 %) which had β-lactamase inhibitory protein (BLIP) effect against amoxicillin –resistant Staphylococcus aureus, pseudomonas aeruginosa and Klebsiella
pneumonia. The KH-3201-144 isolate has been considered the most potent, this
was identified by biochemical, chemotaxonomic, morphological and physiological properties consistent with classification in the genus Streptomyces, with the
nearest species being Streptomyces rimosus. Furthermore, a phylogenetic
analysis of the 16S rDNA gene sequence and ribosomal database project
consistent with conventional taxonomy confirmed that strain KH-3201-144
was most similar to Streptomyces rimosus (96%). The highest amount of
β-lactamase inhibitory protein was precipitated at 40% of saturated ammonium sulphate. The purification was carried out by using both diethyl-aminoethyl-cellulose G-25 and sephadex G-200 column chromatography, respectively.
The β-lactamase inhibitory protein was separated at 40 KDa. The minimum
inhibition concentrations “MICs” of the purified β-lactamase inhibitory protein
(BLIP) effect against amoxicillin –resistant Staphylococcus aureus, pseudomonas aeruginosa and Klebsiella pneumonia were also determined.
Bioactive compounds from marine Microbes
P.Sudhasupriya and M.Rajalakshmi
Int.J.Adv. Res.Biol.Sci.2014; 1(6):232-236
Natural compounds isolated from marine organisms have been found to be
a very rich source of bioactive molecules. Reported biological effects of these compounds include anti‐tumor, anti-inflammatory and anti‐viral activities as
well as immunomodulatory and analgesic properties. Pharmaceutical market is growing rapidly and continuously. But, still the demand for new drug discovery
is encouraged. The reason behind this motivation can be the growing number
of drug–resistant infectious diseases and more and more upcoming disorders. Pharmaceutical market is growing rapidly and continuously. But, still the demand
for new drug discovery is encouraged. The reason behind this motivation can
be the growing number of drug–resistant infectious diseases and more and more upcoming disorders.
Like this:
Like Loading...
Read Full Post »