Advertisements
Feeds:
Posts
Comments

Archive for the ‘Computational Biology/Systems and Bioinformatics’ Category


Single-cell Genomics: Directions in Computational and Systems Biology – Contributions of Prof. Aviv Regev @Broad Institute of MIT and Harvard, Cochair, the Human Cell Atlas Organizing Committee with Sarah Teichmann of the Wellcome Trust Sanger Institute

 

Curator: Aviva Lev-Ari, PhD, RN

 

Dana Pe’er, PhD, now chair of computational and systems biology at the Sloan Kettering Institute at the Memorial Sloan Kettering Cancer Center and a member of the Human Cell Atlas Organizing Committee,

what really sets Regev apart is the elegance of her work. Regev, says Pe’er, “has a rare, innate ability of seeing complex biology and simplifying it and formalizing it into beautiful, abstract, describable principles.”

Dr. Aviv Regev, an MIT biology professor who is also chair of the faculty of the Broad and director of its Klarman Cell Observatory and Cell Circuits Program, was reviewing a newly published white paper detailing how the Human Cell Atlas is expected to change the way we diagnose, monitor, and treat disease at a gathering of international scientists at Israel’s Weizmann Institute of Science, 10/2017.

For Regev, the importance of the Human Cell Atlas goes beyond its promise to revolutionize biology and medicine. As she once put it, without an atlas of our cells, “we don’t really know what we’re made of.”

Regev, turned to a technique known as RNA interference (she now uses CRISPR), which allowed her to systematically shut genes down. Then she looked at which genes were expressed to determine how the cells’ response changed in each case. Her team singled out 100 different genes that were involved in regulating the response to the pathogens—some of which weren’t previously known to be involved in immune function. The study, published in Science, generated headlines.

The project, the Human Cell Atlas, aims to create a reference map that categorizes all the approximately 37 trillion cells that make up a human. The Human Cell Atlas is often compared to the Human Genome Project, the monumental scientific collaboration that gave us a complete readout of human DNA, or what might be considered the unabridged cookbook for human life. In a sense, the atlas is a continuation of that project’s work. But while the same DNA cookbook is found in every cell, each cell type reads only some of the recipes—that is, it expresses only certain genes, following their DNA instructions to produce the proteins that carry out a cell’s activities. The promise of the Human Cell Atlas is to reveal which specific genes are expressed in every cell type, and where the cells expressing those genes can be found.

Regev says,

The final product, will amount to nothing less than a “periodic table of our cells,” a tool that is designed not to answer one specific question but to make countless new discoveries possible.

Sequencing the RNA of the cells she’s studying can tell her only so much. To understand how the circuits change under different circumstances, Regev subjects cells to different stimuli, such as hormones or pathogens, to see how the resulting protein signals change.

“the modeling step”—creating algorithms that try to decipher the most likely sequence of molecular events following a stimulus. And just as someone might study a computer by cutting out circuits and seeing how that changes the machine’s operation, Regev tests her model by seeing if it can predict what will happen when she silences specific genes and then exposes the cells to the same stimulus.

By sequencing the RNA of individual cancer cells in recent years—“Every cell is an experiment now,” she says—she has found remarkable differences between the cells of a single tumor, even when they have the same mutations. (Last year that work led to Memorial Sloan Kettering’s Paul Marks Prize for Cancer Research.) She found that while some cancers are thought to develop resistance to therapy, a subset of melanoma cells were resistant from the start. And she discovered that two types of brain cancer, oligodendroglioma and astrocytoma, harbor the same cancer stem cells, which could have important implications for how they’re treated.

As a 2017 overview of the Human Cell Atlas by the project’s organizing committee noted, an atlas “is a map that aims to show the relationships among its elements.” Just as corresponding coastlines seen in an atlas of Earth offer visual evidence of continental drift, compiling all the data about our cells in one place could reveal relationships among cells, tissues, and organs, including some that are entirely unexpected. And just as the periodic table made it possible to predict the existence of elements yet to be observed, the Human Cell Atlas, Regev says, could help us predict the existence of cells that haven’t been found.

This year alone it will fund 85 Human Cell Atlas grants. Early results are already pouring in.

  • In March, Swedish researchers working on cells related to human development announced they had sequenced 250,000 individual cells.
  • In May, a team at the Broad made a data set of more than 500,000 immune cells available on a preview site.

The goal, Regev says, is for researchers everywhere to be able to use the open-source platform of the Human Cell Atlas to perform joint analyses.

Eric Lander, PhDthe founding director and president of the Broad Institute and a member of the Human Cell Atlas Organizing Committee, likens it to genomics.

“People thought at the beginning they might use genomics for this application or that application,” he says. “Nothing has failed to be transformed by genomics, and nothing will fail to be transformed by having a cell atlas.”

“How did we ever imagine we were going to solve a problem without single-cell resolution?”

SOURCE

https://www.technologyreview.com/s/611786/the-cartographer-of-cells/?utm_source=MIT+Technology+Review&utm_campaign=Alumni-Newsletter_Sep-Oct-2018&utm_medium=email

Other related articles published in this Open Access Online Scientific Journal include the following:

 

University of California Santa Cruz’s Genomics Institute will create a Map of Human Genetic Variations

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2015/01/13/university-of-california-santa-cruzs-genomics-institute-will-create-a-map-of-human-genetic-variations/

 

Recognitions for Contributions in Genomics by Dan David Prize Awards

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2017/07/31/recognitions-for-contributions-in-genomics-by-dan-david-prize-awards/

 

ENCODE (Encyclopedia of DNA Elements) program: ‘Tragic’ Sequestration Impact on NHGRI Programs

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2013/09/18/encode-encyclopedia-of-dna-elements-program-tragic-sequestration-impact-on-nhgri-programs/

 

Single-cell Sequencing

Genomic Diagnostics: Three Techniques to Perform Single Cell Gene Expression and Genome Sequencing Single Molecule DNA Sequencing

Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2017/07/04/genomic-diagnostics-three-techniques-to-perform-single-cell-gene-expression-and-genome-sequencing-single-molecule-dna-sequencing/

 

LIVE – Real Time – 16th Annual Cancer Research Symposium, Koch Institute, Friday, June 16, 9AM – 5PM, Kresge Auditorium, MIT – See, Aviv Regev

REAL TIME PRESS COVERAGE & Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2017/03/13/16th-annual-cancer-research-symposium-koch-institute-friday-june-16-9am-5pm-kresge-auditorium-mit/

 

LIVE 11/3/2015 1:30PM @The 15th Annual EmTech MIT – MIT Media Lab: Top 10 Breakthrough Technologies & 2015 Innovators Under 35 – See, Gilead Evrony

REAL TIME PRESS COVERAGE & Reporter: Aviva Lev-Ari, PhD, RN
https://pharmaceuticalintelligence.com/2015/11/03/live-1132015-130pm-the-15th-annual-emtech-mit-mit-media-lab-top-10-breakthrough-technologies-2015-innovators-under-35/

 

Cellular Guillotine Created for Studying Single-Cell Wound Repair

Reporter: Irina Robu, PhD

https://pharmaceuticalintelligence.com/2017/06/29/cellular-guillotine-created-for-studying-single-cell-wound-repair/

 

New subgroups of ILC immune cells discovered through single-cell RNA sequencing

Reporter: Stephen J Williams, PhD

https://pharmaceuticalintelligence.com/2016/02/17/new-subgroups-of-ilc-immune-cells-discovered-through-single-cell-rna-sequencing-from-karolinska-institute/

 

#JPM16: Illumina’s CEO on new genotyping array called Infinium XT and Bio-Rad Partnership for single-cell sequencing workflow

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/01/12/jpm16-illuminas-ceo-on-new-genotyping-array-called-infinium-xt-and-bio-rad-partnership-for-single-cell-sequencing-workflow/

 

Juno Acquires AbVitro for $125M: high-throughput and single-cell sequencing capabilities for Immune-Oncology Drug Discovery

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/01/12/juno-acquires-abvitro-for-125m-high-throughput-and-single-cell-sequencing-capabilities-for-immune-oncology-drug-discovery/

 

NIH to Award Up to $12M to Fund DNA, RNA Sequencing Research: single-cell genomics,  sample preparation,  transcriptomics and epigenomics, and  genome-wide functional analysis.

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2015/10/27/nih-to-award-up-to-12m-to-fund-dna-rna-sequencing-research-single-cell-genomics-sample-preparation-transcriptomics-and-epigenomics-and-genome-wide-functional-analysis/

 

Genome-wide Single-Cell Analysis of Recombination Activity and De Novo Mutation Rates in Human Sperm

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

https://pharmaceuticalintelligence.com/2012/08/07/genome-wide-single-cell-analysis-of-recombination-activity-and-de-novo-mutation-rates-in-human-sperm/

REFERENCES to Original studies

In Science, 2018

Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors

 See all authors and affiliations

Science  21 Apr 2017:
Vol. 356, Issue 6335, eaah4573
DOI: 10.1126/science.aah4573
Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis

See all authors and affiliations

Science  26 Apr 2018:
eaar3131
DOI: 10.1126/science.aar3131

In Nature, 2018 and 2017

How to build a human cell atlas

Aviv Regev is a maven of hard-core biological analyses. Now she is part of an effort to map every cell in the human body.

  1. Research | 

  2. Research | 

  3. Research | 

  4. Research | 

  5. Research | 

  6. Amendments and Corrections | 

  7. Research |  | OPEN

  8. Research | 

  9. Amendments and Corrections | 

  10. Comments and Opinion | 

  11. Research | 
Advertisements

Read Full Post »


5:00 – 5:45 PM Early Diagnosis Through Predictive Biomarkers, NonInvasive Testing

Reporter: Stephen J. Williams, Ph.D.

 

Diagnosing cancer early is often the difference between survival and death. Hear from experts regarding the new and emerging technologies that form the next generation of cancer diagnostics.

Moderator: Heather Rose, Director of Licensing, Thomas Jefferson University
Speakers:
Bonnie Anderson, Chairman and CEO, Veracyte @BonnieAndDx
Kevin Hrusovsky, Founder and Chairman, Powering Precision Health @KevinHrusovsky

Bonnie Anderson and Veracyte produces genomic tests for thyroid and other cancer diagnosis.  Kevin Hrusovksy and Precision Health uses peer reviewed evidence based medicine to affect precision medicine decision.

Bonnie: aim to get a truth of diagnosis.  Getting tumor tissue is paramount as well as properly preserved tissue.  They use deep RNA sequencing  and machine learning  in their clinically approved tests.

Kevin: Serial biospace entrepreneur.  Two diseases, cancer and neurologic, have been diseases which have been hardest to get reproducible and validated biomarkers of early disease.  He concentrates on protein biomarkers.

Heather:  FDA has recently approved drugs for early disease intervention.  However the use of biomarkers can go beyond patient stratification in clinical trials.

Kevin: 15 approved drugs for MS but the markers are scans looking for brain atrophy which is too late of an endpoint.  So we need biomarkers of early disease progression.  We can use those early biomarkers of disease progression so pharma can target those early biomarkers and or use those early biomarkers of disease progression  for endpoint

Bonnie: exciting time in the early diagnostics field. She prefers transcriptomics to DNA based methods such as WES or WGS (whole exome or whole genome sequencing).  It was critical to show data on the cost savings imparted by their transcriptomic based thryoid cancer diagnostic test for payers to consider this test eligible for reimbursement.

Kevin: There has been 20 million  CAT scans for  cancer but it is estimated 90% of these scans led to misdiagnosis. Biomarker  development  has revolutionized diagnostics in this disease area.  They have developed a breakthrough panel of ten protein biomarkers in serum which he estimates may replace 5 million mammograms.

All panelists agreed on the importance of regulatory compliance and the focus of new research should be on early detection.  In addition they believe that Dr. Gotlieb’s appointment to the FDA is a positive for the biomarker development field, as Dr. Gotlieb understands the potential and importance of early detection and prevention of disease.  Kevin also felt Dr. Gotlieb understands the importance of incorporating biomarkers as endpoints in clinical trials.  Over 750 phase 1,2, and 3 clinical trials use biomarker endpoints but the pharma companies still need to prove the biomarkers clinical relevance to the FDA.They also agreed it would be helpful to involve advocacy groups in putting more pressure on the healthcare providers and policy makers on this importance of diagnostics as a preventative measure.

In addition, the discovery and use of biomarkers as disease endpoints has led to a resurgence of Alzheimer’s disease drug development by companies which have previously given up on these type of neurodegenerative diseases.

Kevin feels proteomics offers great advantages over DNA-based diagnostics, especially in cancer such as ovarian cancer, where a high degree of specificity for a diagnostic test is required to ascertain if a woman should undergo prophylactic oophorectomy.  He suggests that a new blood-based protein biomarker panel is being developed for early detection of some forms of ovarian cancer.

Please follow on Twitter using the following #hash tags and @pharma_BI

#MCConverge

#cancertreatment

#healthIT

#innovation

#precisionmedicine

#healthcaremodels

#personalizedmedicine

#healthcaredata

And at the following handles:

@pharma_BI

@medcitynews

 

Please see related articles on Live Coverage of Previous Meetings on this Open Access Journal

LIVE – Real Time – 16th Annual Cancer Research Symposium, Koch Institute, Friday, June 16, 9AM – 5PM, Kresge Auditorium, MIT

Real Time Coverage and eProceedings of Presentations on 11/16 – 11/17, 2016, The 12th Annual Personalized Medicine Conference, HARVARD MEDICAL SCHOOL, Joseph B. Martin Conference Center, 77 Avenue Louis Pasteur, Boston

Tweets Impression Analytics, Re-Tweets, Tweets and Likes by @AVIVA1950 and @pharma_BI for 2018 BioIT, Boston, 5/15 – 5/17, 2018

BIO 2018! June 4-7, 2018 at Boston Convention & Exhibition Center

https://pharmaceuticalintelligence.com/press-coverage/

Read Full Post »


Cracking the Genome – Inside the Race to Unlock Human DNA – quotes in newspapers

Reporter: Aviva Lev-Ari, PhD, RN

 

Cracking the Genome

SOURCE
Paperback
, 352 pages
ISBN:

9780801871405
October 2002
$29.00
Available

Usually ships 2-3 business days after receipt of order.

Quantity

Search the full text of our books:

Powered by Google™

Cracking the Genome

Inside the Race to Unlock Human DNA

In 1953, James Watson and Francis Crick unveiled the double helix structure of DNA. The discovery was a profound moment in the history of science, but solving the structure of the genetic material did not reveal what the human genome sequence actually was, or what it says about who we are. Cracking the code of life would take another half a century.

In 2001, two rival teams of scientists shared the acclaim for sequencing the human genome. Kevin Davies, founding editor of Nature Genetics, has relentlessly followed the story as it unfolded week by week since the dawn of the Human Genome Project in 1990. Here, in rich human and scientific detail, is the compelling story of one of the greatest scientific feats ever accomplished: the sequencing of the human genome.

In brilliant, accessible prose, Davies captures the drama of this momentous achievement, drawing on his own genetics expertise and on interviews with the key scientists. Davies details the fraught rivalry between the public consortium, chaperoned by Francis Collins, and Celera Genomics, directed by sequencer J. Craig Venter. And in this newly updated edition, Davies sheds light on the secrets of the sequence, highlighting the myriad ways in which genomics will impact human health for the generations to come.

Cracking the Genome is the definitive, balanced account of how the code that holds the answer to the origin of life, the evolution of humanity, and the future of medicine was finally broken.

Kevin Davies is the founding editor of Nature Genetics and is currently editor-in-chief of Bio•IT World. He graduated from Oxford University and holds a Ph.D. in genetics from the University of London.

“For an up-to-the-minute account of one of the most dramatic periods in present-day science, Cracking the Genome is an essential read.”

“A superb job… A tantalizing glimpse of the ethical perils and technological possibilities awaiting humanity.”

“A rollicking good tale about an enduring intellectual monument.”

“The race is over, and Davies was there, all along, providing the running commentary—and there, too, at the finish line. In Cracking the Genome, he hands out the prizes.”

“Davies has tracked one of the most important stories ever to unfold. Davies helps readers understand how the deciphering of our genetic code will revolutionize our lives while posing serious ethical dilemmas.”

“An impressive job of contextualizing the science within a political, economic, and social framework, creating a lively tale as accessible to non—specialists as it is to scientists.”

“Investors and others looking for a quick primer on the science and business of biotechnology will find this a useful guide.”

“In Davies’ prose, this story of molecular biology and the Human Genome Project is as compelling as any Arthurian legend. In a fast-moving approachable style, Davies captures the uncovering of biology’s Holy Grail, relying on his own expertise in genetics and interviews with key players such as Collins and Venter.”

SOURCE

Read Full Post »


SNP-based Study on high BMI exposure confirms CVD and DM Risks – no associations with Stroke

Reporter: Aviva Lev-Ari, PhD, RN

Genes Affirm: High BMI Carries Weighty Heart, Diabetes Risk – Mendelian randomization study adds to ‘burgeoning evidence’

by Crystal Phend, Senior Associate Editor, MedPage Today, July 05, 2017

 

The “genetically instrumented” measure of high BMI exposure — calculated based on 93 single-nucleotide polymorphisms associated with BMI in prior genome-wide association studies — was associated with the following risks (odds ratios given per standard deviation higher BMI):

  • Hypertension (OR 1.64, 95% CI 1.48-1.83)
  • Coronary heart disease (CHD; OR 1.35, 95% CI 1.09-1.69)
  • Type 2 diabetes (OR 2.53, 95% CI 2.04-3.13)
  • Systolic blood pressure (β 1.65 mm Hg, 95% CI 0.78-2.52 mm Hg)
  • Diastolic blood pressure (β 1.37 mm Hg, 95% CI 0.88-1.85 mm Hg)

However, there were no associations with stroke, Donald Lyall, PhD, of the University of Glasgow, and colleagues reported online in JAMA Cardiology.

The associations independent of age, sex, Townsend deprivation scores, alcohol intake, and smoking history were found in baseline data from 119,859 participants in the population-based U.K. Biobank who had complete medical, sociodemographic, and genetic data.

“The main advantage of an MR approach is that certain types of study bias can be minimized,” the team noted. “Because DNA is stable and randomly inherited, which helps to mitigate errors from reverse causality and confounding, genetic variation can be used as a proxy for lifetime BMI to overcome limitations such as reverse causality and confounding, a process that hampers observational analyses of obesity and its consequences.”

 

Other related articles published in this Open Access Online Scientific Journal include the following:

9 results for Kindle Store : “Aviva Lev-Ari”

Sort by 
Relevance
Featured
Price: Low to High
Price: High to Low
Avg. Customer Review
Publication Date
  • Product Details

    Etiologies of Cardiovascular Diseases: Epigenetics, Genetics and Genomics

    Nov 28, 2015 | Kindle eBook

    by Justin D. Pearlman MD ME PhD MA FACC and Stephen J. Williams PhD
    Subscribers read for free.
    Auto-delivered wirelessly
    Sold by: Amazon Digital Services LLC
  • Product Details

    Perspectives on Nitric Oxide in Disease Mechanisms (Biomed e-Books Book 1)

    Jun 20, 2013 | Kindle eBook

    by Margaret Baker PhD and Tilda Barliya PhD
    Subscribers read for free.
    Auto-delivered wirelessly
    Sold by: Amazon Digital Services LLC
  • Product Details

    Cancer Therapies: Metabolic, Genomics, Interventional, Immunotherapy and Nanotechnology in Therapy Delivery (Series C Book 2)

    May 13, 2017 | Kindle eBook

    by Larry H. Bernstein and Demet Sag
    Subscribers read for free.
    Auto-delivered wirelessly
    Sold by: Amazon Digital Services LLC
  • Product Details

    Metabolic Genomics & Pharmaceutics (BioMedicine – Metabolomics, Immunology, Infectious Diseases Book 1)

    Jul 21, 2015 | Kindle eBook

    by Larry H. Bernstein MD FCAP and Prabodah Kandala PhD
    Subscribers read for free.
    Auto-delivered wirelessly
    Sold by: Amazon Digital Services LLC
  • Product Details

    Milestones in Physiology: Discoveries in Medicine, Genomics and Therapeutics (Series E: Patient-Centered Medicine Book 3)

    Dec 26, 2015 | Kindle eBook

    by Larry H. Bernstein MD FACP and Aviva Lev-Ari PhD RN
    Subscribers read for free.
    Auto-delivered wirelessly
    Sold by: Amazon Digital Services LLC
  • Product Details

    Genomics Orientations for Personalized Medicine (Frontiers in Genomics Research Book 1)

    Nov 22, 2015 | Kindle eBook

    by Sudipta Saha PhD and Ritu Saxena PhD
    Subscribers read for free.
    Auto-delivered wirelessly
    Sold by: Amazon Digital Services LLC
  • Product Details

    Cancer Biology and Genomics for Disease Diagnosis (Series C: e-Books on Cancer & Oncology Book 1)

    Aug 10, 2015 | Kindle eBook

    by Larry H Bernstein MD FCAP and Prabodh Kumar Kandala PhD
    Subscribers read for free.
    Auto-delivered wirelessly
    Sold by: Amazon Digital Services LLC
  • Product Details

    Regenerative and Translational Medicine: The Therapeutic Promise for Cardiovascular Diseases

    Dec 26, 2015 | Kindle eBook

    by Justin D. Pearlman MD ME PhD MA FACC and Stephen J. Williams
    Subscribers read for free.
    Auto-delivered wirelessly
    Sold by: Amazon Digital Services LLC
  • Product Details

    Cardiovascular Original Research: Cases in Methodology Design for Content Co-Curation: The Art of Scientific & Medical Curation

    Nov 29, 2015 | Kindle eBook

    by Larry H. Bernstein MD FCAP and Aviva Lev-Ari PhD RN
    Subscribers read for free.
    Auto-delivered wirelessly

 

Read Full Post »


Genomic Diagnostics: Three Techniques to Perform Single Cell Gene Expression and Genome Sequencing Single Molecule DNA Sequencing

Curator: Aviva Lev-Ari, PhD, RN

 

This article presents Three Techniques to Perform Single Cell Gene Expression and Genome Sequencing Single molecule DNA sequencing

Read Full Post »


The BioPharma Industry’s Unrealized Wealth of Data, by Ben Szekely, Vice President, Cambridge Semantics

Reporter: Aviva Lev-Ari, PhD, RN

 

 

The BioPharma Industry’s Unrealized Wealth of Data

by Ben Szekely, Vice President of Solutions and Pre-sales, Cambridge Semantics

 

Solving the great medical challenges of our time reside within patient data. Clinical trial data, real-world evidence, patient feedback, genetic data, wearables data and adverse event reports contain signals to target medicines at the right patient populations, improve overall safety, and uncover the next blockbuster therapy for unmet medical needs.

However, data sources are large, diverse, multi-structured, messy and highly regulated presenting numerous challenges. As result, extracting value from data are slow to come and require manual work or long-poll dependencies on IT and Data Science teams.

Fortunately, there are new ways being adopted to take better advantage of the ever-growing volumes of patient data.  Called ‘Smart’ Patient Data Lakes (SPDL), these tools create an Enterprise Knowledge Graph built upon foundational and open Semantic Web technology standards, providing rich descriptions of data and flexibility end-to-end.  With the SPDL, biopharma researchers can:

  • Quickly on-board new data without requiring up-front modeling or mapping, ingesting data from any source versus months or weeks of preparation
  • Dynamically map and prepare data at analytics time
  • Horizontally scale in cloud or on-prem infrastructure to 100’s of nodes – allowing billions of facts to be analyzed, queried and explored in real-time   

The world’s BioPharma and research institutions are sitting on a wealth of highly differentiating and life-saving data and should begin to realize its value via Smart Patient Data Lakes (SPDL).

 

 

CONTACT: Nadia Haidar

Global Results Communications ∙ 949-278-7328 ∙ nhaidar@globalresultspr.com

 

Read Full Post »


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Low sperm count and motility are markers for male infertility, a condition that is actually a neglected health issue worldwide, according to the World Health Organization. Researchers at Harvard Medical School have developed a very low cost device that can attach to a cell phone and provides a quick and easy semen analysis. The device is still under development, but a study of the machine’s capabilities concludes that it is just as accurate as the elaborate high cost computer-assisted semen analysis machines costing tens of thousands of dollars in measuring sperm concentration, sperm motility, total sperm count and total motile cells.

 

The Harvard team isn’t the first to develop an at-home fertility test for men, but they are the first to be able to determine sperm concentration as well as motility. The scientists compared the smart phone sperm tracker to current lab equipment by analyzing the same semen samples side by side. They analyzed over 350 semen samples of both infertile and fertile men. The smart phone system was able to identify abnormal sperm samples with 98 percent accuracy. The results of the study were published in the journal named Science Translational Medicine.

 

The device uses an optical attachment for magnification and a disposable microchip for handling the semen sample. With two lenses that require no manual focusing and an inexpensive battery, it slides onto the smart phone’s camera. Total cost for manufacturing the equipment: $4.45, including $3.59 for the optical attachment and 86 cents for the disposable micro-fluidic chip that contains the semen sample.

 

The software of the app is designed with a simple interface that guides the user through the test with onscreen prompts. After the sample is inserted, the app can photograph it, create a video and report the results in less than five seconds. The test results are stored on the phone so that semen quality can be monitored over time. The device is under consideration for approval from the Food and Drug Administration within the next two years.

 

With this device at home, a man can avoid the embarrassment and stress of providing a sample in a doctor’s clinic. The device could also be useful for men who get vasectomies, who are supposed to return to the urologist for semen analysis twice in the six months after the procedure. Compliance is typically poor, but with this device, a man could perform his own semen analysis at home and email the result to the urologist. This will make sperm analysis available in the privacy of our home and as easy as a home pregnancy test or blood sugar test.

 

The device costs about $5 to make in the lab and can be made available in the market at lower than $50 initially. This low cost could help provide much-needed infertility care in developing or underdeveloped nations, which often lack the resources for currently available diagnostics.

 

References:

 

https://www.nytimes.com/2017/03/22/well/live/sperm-counts-via-your-cellphone.html?em_pos=small&emc=edit_hh_20170324&nl=well&nl_art=7&nlid=65713389&ref=headline&te=1&_r=1

 

http://www.npr.org/sections/health-shots/2017/03/22/520837557/a-smartphone-can-accurately-test-sperm-count

 

https://www.ncbi.nlm.nih.gov/pubmed/28330865

 

http://www.sciencealert.com/new-smartphone-microscope-lets-men-check-the-health-of-their-own-sperm

 

https://www.newscientist.com/article/2097618-are-your-sperm-up-to-scratch-phone-microscope-lets-you-check/

 

https://www.dezeen.com/2017/01/19/yo-fertility-kit-men-test-sperm-count-smartphone-design-technology-apps/

 

Read Full Post »

Older Posts »