Genetic variation causes human lupus, systemic lupus erythematosus (SLE)
Reporter: Aviva Lev-Ari, PhD, RN
TLR7 gain-of-function genetic variation causes human lupus
Abstract
Although circumstantial evidence supports enhanced Toll-like receptor 7 (TLR7) signalling as a mechanism of human systemic autoimmune disease1,2,3,4,5,6,7, evidence of lupus-causing TLR7 gene variants is lacking. Here we describe human systemic lupus erythematosus caused by a TLR7 gain-of-function variant. TLR7 is a sensor of viral RNA8,9 and binds to guanosine10,11,–12. We identified a de novo, previously undescribed missense TLR7Y264H variant in a child with severe lupus and additional variants in other patients with lupus. The TLR7Y264H variant selectively increased sensing of guanosine and 2′,3′-cGMP10,11,12, and was sufficient to cause lupus when introduced into mice. We show that enhanced TLR7 signalling drives aberrant survival of B cell receptor (BCR)-activated B cells, and in a cell-intrinsic manner, accumulation of CD11c+ age-associated B cells and germinal centre B cells. Follicular and extrafollicular helper T cells were also increased but these phenotypes were cell-extrinsic. Deficiency of MyD88 (an adaptor protein downstream of TLR7) rescued autoimmunity, aberrant B cell survival, and all cellular and serological phenotypes. Despite prominent spontaneous germinal-centre formation in Tlr7Y264H mice, autoimmunity was not ameliorated by germinal-centre deficiency, suggesting an extrafollicular origin of pathogenic B cells. We establish the importance of TLR7 and guanosine-containing self-ligands for human lupus pathogenesis, which paves the way for therapeutic TLR7 or MyD88 inhibition.
SOURCE
Brown, G.J., Cañete, P.F., Wang, H. et al. TLR7 gain-of-function genetic variation causes human lupus. Nature 605, 349–356 (2022). https://doi.org/10.1038/s41586-022-04642-z
Scientists finally discover the cause of lupus
[Feb. 20, 2023: Alice Deeley, The Francis Crick Institute]
An international team of researchers has identified DNA mutations in a gene that senses viral RNA, as a cause of the autoimmune disease lupus, with the finding paving the way for the development of new treatments.
Lupus is a chronic autoimmune disease which causes inflammation in organs and joints, affects movement and the skin, and causes fatigue. In severe cases, symptoms can be debilitating and complications can be fatal.
In their genetic analysis, carried out at the Centre for Personalised Immunology at the Australian National University, the researchers found a single point mutation in the TLR7 gene. Via referrals from the US and the China Australia Centre of Personalised Immunology (CACPI) at Shanghai Renji Hospital, they identified other cases of severe lupus where this gene was also mutated.
To confirm that the mutation causes lupus, the team used CRISPR gene-editing to introduce it into mice. These mice went on to develop the disease and showed similar symptoms, providing evidence that the TLR7 mutation was the cause. The mouse model and the mutation were both named ‘kika’ by Gabriela, the young girl central to this discovery.
“While it may only be a small number of people with lupus who have variants in TLR7 itself, we do know that many patients have signs of overactivity in the TLR7 pathway. By confirming a causal link between the gene mutation and the disease, we can start to search for more effective treatments.”
The work may also help explain why lupus is about 10 times more frequent in females than in males. As TLR7 sits on the X chromosome, females have two copies of the gene while males have one. Usually, in females one of the X chromosomes is inactive, but in this section of the chromosome, silencing of the second copy is often incomplete. This means females with a mutation in this gene can have two functioning copies.
“There are other systemic autoimmune diseases, like rheumatoid arthritis and dermatomyositis, which fit within the same broad family as lupus. TLR7 may also play a role in these conditions.”
SOURCE
Other related articles published in this Open Access Online Scientific Journal
Reporter: Stephen J. Williams, Ph.D.
T cell-mediated immune responses & signaling pathways activated by Toll-like Receptors
Curator: Larry H. Bernstein, MD, FCAP
Issues Need to be Resolved With Immuno-Modulatory Therapies: NK cells, mAbs, and adoptive T cells
Curator: Stephen J. Williams, PhD
Actemra, immunosuppressive which was designed to treat rheumatoid arthritis but also approved in 2017 to treat cytokine storms in cancer patients SAVED the sickest of all COVID-19 patients
Reporter: Aviva Lev-Ari, PhD, RN