Advertisements
Feeds:
Posts
Comments

Archive for the ‘Metabolism’ Category


Lesson 4 Cell Signaling And Motility: G Proteins, Signal Transduction: Curations and Articles of reference as supplemental information: #TUBiol3373

Curator: Stephen J. Williams, Ph.D.

Below please find the link to the Powerpoint presentation for lesson #4 for #TUBiol3373.  The lesson first competes the discussion on G Protein Coupled Receptors, including how cells terminate cell signals.  Included are mechanisms of receptor desensitization.  Please NOTE that desensitization mechanisms like B arrestin decoupling of G proteins and receptor endocytosis occur after REPEATED and HIGH exposures to agonist.  Hydrolysis of GTP of the alpha subunit of G proteins, removal of agonist, and the action of phosphodiesterase on the second messenger (cAMP or cGMP) is what results in the downslope of the effect curve, the termination of the signal after agonist-receptor interaction.

 

Click below for PowerPoint of lesson 4

Powerpoint for lesson 4

 

Please Click below for the papers for your Group presentations

paper 1: Membrane interactions of G proteins and other related proteins

paper 2: Macaluso_et_al-2002-Journal_of_Cellular_Physiology

paper 3: Interactions of Ras proteins with the plasma membrane

paper 4: Futosi_et_al-2016-Immunological_Reviews

 

Please find related article on G proteins and Receptor Tyrosine Kinases on this Open Access Online Journal

G Protein–Coupled Receptor and S-Nitrosylation in Cardiac Ischemia and Acute Coronary Syndrome

Action of Hormones on the Circulation

Newer Treatments for Depression: Monoamine, Neurotrophic Factor & Pharmacokinetic Hypotheses

VEGF activation and signaling, lysine methylation, and activation of receptor tyrosine kinase

 

Advertisements

Read Full Post »


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

The relationship between gut microbial metabolism and mental health is one of the most intriguing and controversial topics in microbiome research. Bidirectional microbiota–gut–brain communication has mostly been explored in animal models, with human research lagging behind. Large-scale metagenomics studies could facilitate the translational process, but their interpretation is hampered by a lack of dedicated reference databases and tools to study the microbial neuroactive potential.

 

Out of all the many ways, the teeming ecosystem of microbes in a person’s gut and other tissues might affect health. But, its potential influences on the brain may be the most provocative for research. Several studies in mice had indicated that gut microbes can affect behavior, and small scale studies on human beings suggested this microbial repertoire is altered in depression. Studies by two large European groups have found that several species of gut bacteria are missing in people with depression. The researchers can’t say whether the absence is a cause or an effect of the illness, but they showed that many gut bacteria could make substances that affect the nerve cell function—and maybe the mood.

 

Butyrate-producing Faecalibacterium and Coprococcus bacteria were consistently associated with higher quality of life indicators. Together with DialisterCoprococcus spp. was also depleted in depression, even after correcting for the confounding effects of antidepressants. Two kinds of microbes, Coprococcus and Dialister, were missing from the microbiomes of the depressed subjects, but not from those with a high quality of life. The researchers also found the depressed people had an increase in bacteria implicated in Crohn disease, suggesting inflammation may be at fault.

 

Looking for something that could link microbes to mood, researchers compiled a list of 56 substances important for proper functioning of nervous system that gut microbes either produce or break down. They found, for example, that Coprococcus seems to have a pathway related to dopamine, a key brain signal involved in depression, although they have no evidence how this might protect against depression. The same microbe also makes an anti-inflammatory substance called butyrate, and increased inflammation is implicated in depression.

 

Still, it is very much unclear that how microbial compounds made in the gut might influence the brain. One possible channel is the vagus nerve, which links the gut and brain. Resolving the microbiome-brain connection might lead to novel therapies. Some physicians and companies are already exploring typical probiotics, oral bacterial supplements, for depression, although they don’t normally include the missing gut microbes identified in the new study.

 

References:

 

https://www.sciencemag.org/news/2019/02/evidence-mounts-gut-bacteria-can-influence-mood-prevent-depression?utm_source=Nature+Briefing

 

https://www.nature.com/articles/s41564-018-0337-x

 

https://www.ncbi.nlm.nih.gov/pubmed/22968153

 

https://www.ncbi.nlm.nih.gov/pubmed/24888394

 

https://www.ncbi.nlm.nih.gov/pubmed/27067014

 

Read Full Post »


The second annual PureTech Health BIG (Brain-Immune-Gut) Summit 2019 – By invitation only –

Selected Tweets from  #BIGAxisSummit

by @pharma_BI @AVIVA1950

for @pharmaceuticalintelligence.com

Reporter: Aviva Lev-Ari, PhD, RN

 

January 30 – February 1, 2019

The second annual PureTech Health BIG Summit brings together an elite ensemble of leading scientific researchers, investors, and CEOs and R&D leaders from major pharmaceutical, technology, and biotech companies.

The BIG Summit is designed to stimulate ideas that will have an impact on existing pipelines and catalyze future interactions among a group of delegates that represent leaders and innovators in their fields.

Please follow the discussion on Twitter using #BIGAxisSummit

By invitation only; registration is non-transferable.

For more information, please contact PureTechHealthSummit@PureTechHealth.com

 

HOST COMMITTEE

Participants

 

BIG SUMMIT AGENDA

(Subject to Change)

PureTech Health BIG Summit 2019 Agenda_FINALv2_WEBSITE.jpg

“Almost starting to understand immunology at this thought-provoking @PureTechh #BIGAxisSummit. Great Speakers.”

-tweet by Simone Fishburn, BioCentury @SimoneFishburn

SOURCE

https://bigsummit2019.com/agenda/

 

Selected Tweets from  #BIGAxisSummit

by @pharma_BI @AVIVA1950

for @pharmaceuticalintelligence.com

Gail S. Thornton Selections

Luke Timmerman‏ @ldtimmerman 7h7 hours ago

Back for final sessions at #BIGAxisSummit. @PureTechH Jim Harper of Sonde Health talking about how voice data — pacing, fine motor articulation, oscillation — can point the way to objective, quantitative measures for detecting and monitoring depression.

 

Eddie Martucci

 @EddieMartucci 5h5 hours ago

Paul Biondi at #BIGAxisSummit : What makes big deals happen is financial, and *deep conviction* of a big future fit. Disproportionate valuation from bidders is expected.

Love this. We often reduce everything to mathematical analyses to champion or ridicule deals. Not that simple

 

PureTech Health Plc‏ @PureTechH Jan 31

Bob Langer (@MIT) asks how #lymphatics affected by #aging. Santambrogio: typically blame aging #immune cells for increased disease, but aging affects lymphatics too (less efficient trafficking shown). Rejuvenating these could affect several aging-related diseases #BigAxisSummit

 

PureTech Health Plc‏ @PureTechH Jan 31

Viviane Labrie (@VAInstitute) discusses why the appendix has been identified as a potential starting point for #parkinsons #BIGAxisSummit

 

PureTech Health Plc‏ @PureTechH Jan 31

Chris Porter (@MIPS_Australia) notes #lymphatics is major route for trafficking #immune cells that surveil gut and respond to immune & #autoimmune stimuli. This is key in #BIGAxis interactions and why lymphatics-targeted therapies could enhance #immunomodulation #BIGAxisSummit

 

Dr. Stephen J. Williams Selections

1.

2.

3.

4.

5.

Dr. Irina Robu Selection

1.

2.

3.

4.

5.

Dr. Sudipta Saha Selection

1.

2.

3.

4.

5.

 

 

Read Full Post »


Ability of gut microbiota to influence the bioavailability of in Parkinson’s disease – The presence of more bacteria producing the tyrosine decarboxylase (TDC) enzyme means less levodopa in the bloodstream

 

Reporter: Aviva Lev-Ari, PhD, RN

 

Decarboxylase enzymes can convert levodopa into dopamine. In contrast to levodopa, dopamine cannot cross the , so patients are also given a decarboxylase inhibitor. “But the levels of levodopa that will reach the brain vary strongly among Parkinson’s disease patients.

The bacterial  decarboxylase enzyme, which normally converts tyrosine into tyramine, but was found to also convert levodopa into . “We then determined that the source of this decarboxylase was Enterococcus bacteria.” The researchers also showed that the conversion of levodopa was not inhibited by a high concentration of the amino acid tyrosine, the main substrate of the bacterial tyrosine decarboxylase enzyme.

  • Carbidopa is over 10,000 times more potent in inhibiting the human decarboxylase,
  • the higher abundance of bacterial enzyme in the small intestines of rats reduced levels of levodopa in the bloodstream,
  • positive correlation between disease duration and levels of bacterial tyrosine decarboxylase.
  • Some Parkinson’s disease patients develop an overgrowth of small intestinal bacteria including Enterococci due to frequent uptake of proton pump inhibitors, which they use to treat gastrointestinal symptoms associated with the disease.
  • Altogether, these factors result in a vicious circle leading to an increased levodopa/decarboxylase inhibitor dosage requirement in a subset of patients.El Aidy concludes that
  • the presence of the bacterial tyrosine decarboxylase enzyme can explain why some patients need more frequent dosages of levodopa to treat their motor fluctuations. “This is considered to be a problem for Parkinson’s disease patients, because a higher dose will result in dyskinesia, one of the major side effects of levodopa treatment.

SOURCE

https://www.rdmag.com/news/2019/01/how-gut-bacteria-affect-treatment-parkinsons-disease?type=cta&et_cid=6585419&et_rid=461755519&linkid=Mobius_Link

Article OPEN Published: 

Gut bacterial tyrosine decarboxylases restrict levels of levodopa in the treatment of Parkinson’s disease

Nature Communications volume 10, Article number: 310 (2019) Download Citation

Abstract

Human gut microbiota senses its environment and responds by releasing metabolites, some of which are key regulators of human health and disease. In this study, we characterize gut-associated bacteria in their ability to decarboxylate levodopa to dopamine via tyrosine decarboxylases. Bacterial tyrosine decarboxylases efficiently convert levodopa to dopamine, even in the presence of tyrosine, a competitive substrate, or inhibitors of human decarboxylase. In situ levels of levodopa are compromised by high abundance of gut bacterial tyrosine decarboxylase in patients with Parkinson’s disease. Finally, the higher relative abundance of bacterial tyrosine decarboxylases at the site of levodopa absorption, proximal small intestine, had a significant impact on levels of levodopa in the plasma of rats. Our results highlight the role of microbial metabolism in drug availability, and specifically, that abundance of bacterial tyrosine decarboxylase in the proximal small intestine can explain the increased dosage regimen of levodopa treatment in Parkinson’s disease patients.

@@@@@@

RELATED READS

 

Read Full Post »


Hypertriglyceridemia: Evaluation and Treatment Guideline

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Severe and very severe hypertriglyceridemia increase the risk for pancreatitis, whereas mild or moderate hypertriglyceridemia may be a risk factor for cardiovascular disease. Individuals found to have any elevation of fasting triglycerides should be evaluated for secondary causes of hyperlipidemia including endocrine conditions and medications. Patients with primary hypertriglyceridemia must be assessed for other cardiovascular risk factors, such as central obesity, hypertension, abnormalities of glucose metabolism, and liver dysfunction. The aim of this study was to develop clinical practice guidelines on hypertriglyceridemia.

The diagnosis of hypertriglyceridemia should be based on fasting levels, that mild and moderate hypertriglyceridemia (triglycerides of 150–999 mg/dl) be diagnosed to aid in the evaluation of cardiovascular risk, and that severe and very severe hypertriglyceridemia (triglycerides of >1000 mg/dl) be considered a risk for pancreatitis. The patients with hypertriglyceridemia must be evaluated for secondary causes of hyperlipidemia and that subjects with primary hypertriglyceridemia be evaluated for family history of dyslipidemia and cardiovascular disease.

The treatment goal in patients with moderate hypertriglyceridemia should be a non-high-density lipoprotein cholesterol level in agreement with National Cholesterol Education Program Adult Treatment Panel guidelines. The initial treatment should be lifestyle therapy; a combination of diet modification, physical activity and drug therapy may also be considered. In patients with severe or very severe hypertriglyceridemia, a fibrate can be used as a first-line agent for reduction of triglycerides in patients at risk for triglyceride-induced pancreatitis.

Three drug classes (fibrates, niacin, n-3 fatty acids) alone or in combination with statins may be considered as treatment options in patients with moderate to severe triglyceride levels. Statins are not be used as monotherapy for severe or very severe hypertriglyceridemia. However, statins may be useful for the treatment of moderate hypertriglyceridemia when indicated to modify cardiovascular risk.

 

References:

 

https://www.medpagetoday.com/clinical-connection/cardio-endo/77242?xid=NL_CardioEndoConnection_2019-01-21

https://www.ncbi.nlm.nih.gov/pubmed/19307519

https://www.ncbi.nlm.nih.gov/pubmed/23009776

https://www.ncbi.nlm.nih.gov/pubmed/6827992

https://www.ncbi.nlm.nih.gov/pubmed/22463676

https://www.ncbi.nlm.nih.gov/pubmed/17635890

 

Read Full Post »


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Clostridium difficile-associated disease, a significant problem in healthcare facilities, causes an estimated 15,000 deaths in the United States each year. Clostridium difficile, commonly referred to as C. diff, is a bacterium that infects the colon and can cause diarrhea, fever, and abdominal pain. Clostridium difficile-associated disease (CDAD) most commonly occurs in hospitalized older adults who have recently taken antibiotics. However, cases of CDAD can occur outside of healthcare settings as well.

 

Although antibiotics often cure the infection, C. diff can cause potentially life-threatening colon inflammation. People with CDAD usually are treated with a course of antibiotics, such as oral vancomycin or fidaxomicin. However, CDAD returns in approximately 20 percent of people who receive such treatment, according to the Centers for Disease Control and Prevention (CDC).

 

Multiple research studies have indicated that fecal microbiota transplantation (FMT) is an effective method for curing patients with repeat C. diff infections. However, the long-term safety of FMT has not been established. Although more research is needed to determine precisely how FMT effectively cures recurrent CDAD, the treatment appears to rapidly restore a healthy and diverse gut microbiome in recipients. Physicians perform FMT using various routes of administration, including oral pills, upper gastrointestinal endoscopy, colonoscopy, and enema.

 

A research consortium recently began enrolling patients in a clinical trial examining whether FMT by enema (putting stool from a healthy donor in the colon of a recipient) is safe and can prevent recurrent CDAD, a potentially life-threatening diarrheal illness. Investigators aim to enroll 162 volunteer participants 18 years or older who have had two or more episodes of CDAD within the previous six months.

 

Trial sites include Emory University in Atlanta, Duke University Medical Center in Durham, North Carolina, and Vanderbilt University Medical Center in Nashville, Tennessee. Each location is a Vaccine and Treatment Evaluation Unit (VTEU), clinical research sites joined in a network funded by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health. This randomized, controlled trial aims to provide critical data on the efficacy and long-term safety of using FMT by enema to cure C. diff infections.

 

Volunteers will be enrolled in the trial after completing a standard course of antibiotics for a recurrent CDAD episode, presuming their diarrhea symptoms cease on treatment. They will be randomly assigned to one of two groups. The first group (108 people) will take an anti-diarrheal medication and receive a stool transplant (FMT) delivered by retention enema. The second group (54 people) will take an anti-diarrheal medication and receive a placebo solution delivered by retention enema.

 

Participants in either group who have diarrhea with stools that test positive for C. diff shortly after the enema will be given an active stool transplant for a maximum of two FMTs. If participants in either group have another C. diff infection after receiving two FMTs, then they will be referred to other locally available treatment options. Investigators will evaluate the stool specimens for changes in gut microbial diversity and infectious pathogens and will examine the blood samples for metabolic syndrome markers.

 

To learn more about the long-term outcomes of FMT, the researchers will monitor all participants for adverse side effects for three years after completing treatment for recurrent CDAD. Investigators will also collect information on any new onset of CDAD, related chronic medical conditions or any other serious health issues they may have.

 

References:

 

https://www.nih.gov/news-events/news-releases/clinical-trial-testing-fecal-microbiota-transplant-recurrent-diarrheal-disease-begins

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4749851/

 

https://bmjopengastro.bmj.com/content/3/1/e000087

 

https://jamanetwork.com/journals/jama/fullarticle/2635633

 

https://www.hopkinsmedicine.org/gastroenterology_hepatology/clinical_services/advanced_endoscopy/fecal_transplantation.html

 

https://en.wikipedia.org/wiki/Fecal_microbiota_transplant

 

https://www.openbiome.org/about-fmt/

 

https://taymount.com/faecal-microbiota-transplantation-fmt

 

Read Full Post »


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Over the past 20 years, studies have shown that girls and possibly boys have been experiencing puberty at progressively younger ages. This is troubling news, as earlier age at puberty has been linked with increased risk of mental illness, breast and ovarian cancer in girls and testicular cancer in boys. Researchers found that daughters of mothers who had higher levels of diethyl phthalate and triclosan in their bodies during pregnancy experienced puberty at younger ages. The same trend was not observed in boys. So, researchers suspected that girls exposed to chemicals commonly found in toothpaste, makeup, soap and other personal care products before birth may hit puberty earlier.

 

Diethyl phthalate is often used as a stabilizer in fragrances and cosmetics. The antimicrobial agent triclosan — which the FDA banned from use in hand soap in 2017 because it was shown to be ineffective — is still used in some toothpastes. Researchers suspected that many chemicals in personal care products can interfere with natural hormones in human bodies, and studies have shown that exposure to these chemicals can alter reproductive development in rats. Chemicals that have been implicated include phthalates, which are often found in scented products like perfumes, soaps and shampoos; parabens, which are used as preservatives in cosmetics; and phenols, which include triclosan.

 

However, few studies have looked at how these chemicals might affect the growth of human children. This present study at UC Berkeley, USA recruited pregnant women living in the farm-working, primarily Latino communities of Central California’s Salinas Valley between 1999 and 2000. While the primary aim of the study was to examine the impact of pesticide exposure on childhood development, the researchers used the opportunity to examine the effects of other chemicals as well. The scientists measured concentrations of phthalates, parabens and phenols in urine samples taken from mothers twice during pregnancy, and from children at the age of 9. They then followed the growth of the children — 159 boys and 179 girls — between the ages of 9 and 13 to track the timing of developmental milestones marking different stages of puberty.

 

The vast majority — more than 90 percent — of urine samples of both mothers and children showed detectable concentrations of all three classes of chemicals, with the exception of triclosan which was present in approximately 70 percent of samples. The researchers found that every time the concentrations of diethyl phthalate and triclosan in the mother’s urine doubled, the timing of developmental milestones in girls shifted approximately one month earlier. Girls who had higher concentrations of parabens in their urine at age 9 also experienced puberty at younger ages. However, it is unclear if the chemicals were causing the shift, or if girls who reached puberty earlier were more likely to start using personal care products at younger ages.

 

The limitations are that these chemicals are quickly metabolized and one to two urinary measurements per developmental point may not accurately reflect usual exposure. The study population was limited to Latino children of low socioeconomic status living in a farmworker community and may not be widely generalizable. But, this study contributes to a growing literature that suggests that exposure to certain endocrine disrupting chemicals may impact timing of puberty in children.

 

References:

 

https://www.universityofcalifornia.edu/news/prenatal-exposure-chemicals-personal-care-products-may-speed-puberty-girls?utm_source=fiat-lux

 

https://www.ncbi.nlm.nih.gov/pubmed/30517665

 

https://www.ncbi.nlm.nih.gov/pubmed/24781428

 

https://www.ncbi.nlm.nih.gov/pubmed/30203993

 

https://www.ncbi.nlm.nih.gov/pubmed/25173057

 

Read Full Post »

Older Posts »