Feeds:
Posts
Comments

Archive for the ‘Cancer Researchers Fighting COVID-19’ Category


From AAAS Science News on COVID19: New CRISPR based diagnostic may shorten testing time to 5 minutes

Reporter: Stephen J. Williams, Ph.D.

 

 

 

 

 

 

 

 

 

A new CRISPR-based diagnostic could shorten wait times for coronavirus tests.

 

 

New test detects coronavirus in just 5 minutes

By Robert F. ServiceOct. 8, 2020 , 3:45 PM

Science’s COVID-19 reporting is supported by the Pulitzer Center and the Heising-Simons Foundation.

 

Researchers have used CRISPR gene-editing technology to come up with a test that detects the pandemic coronavirus in just 5 minutes. The diagnostic doesn’t require expensive lab equipment to run and could potentially be deployed at doctor’s offices, schools, and office buildings.

“It looks like they have a really rock-solid test,” says Max Wilson, a molecular biologist at the University of California (UC), Santa Barbara. “It’s really quite elegant.”

CRISPR diagnostics are just one way researchers are trying to speed coronavirus testing. The new test is the fastest CRISPR-based diagnostic yet. In May, for example, two teams reported creating CRISPR-based coronavirus tests that could detect the virus in about an hour, much faster than the 24 hours needed for conventional coronavirus diagnostic tests.CRISPR tests work by identifying a sequence of RNA—about 20 RNA bases long—that is unique to SARS-CoV-2. They do so by creating a “guide” RNA that is complementary to the target RNA sequence and, thus, will bind to it in solution. When the guide binds to its target, the CRISPR tool’s Cas13 “scissors” enzyme turns on and cuts apart any nearby single-stranded RNA. These cuts release a separately introduced fluorescent particle in the test solution. When the sample is then hit with a burst of laser light, the released fluorescent particles light up, signaling the presence of the virus. These initial CRISPR tests, however, required researchers to first amplify any potential viral RNA before running it through the diagnostic to increase their odds of spotting a signal. That added complexity, cost, and time, and put a strain on scarce chemical reagents. Now, researchers led by Jennifer Doudna, who won a share of this year’s Nobel Prize in Chemistry yesterday for her co-discovery of CRISPR, report creating a novel CRISPR diagnostic that doesn’t amplify coronavirus RNA. Instead, Doudna and her colleagues spent months testing hundreds of guide RNAs to find multiple guides that work in tandem to increase the sensitivity of the test.

In a new preprint, the researchers report that with a single guide RNA, they could detect as few as 100,000 viruses per microliter of solution. And if they add a second guide RNA, they can detect as few as 100 viruses per microliter.

That’s still not as good as the conventional coronavirus diagnostic setup, which uses expensive lab-based machines to track the virus down to one virus per microliter, says Melanie Ott, a virologist at UC San Francisco who helped lead the project with Doudna. However, she says, the new setup was able to accurately identify a batch of five positive clinical samples with perfect accuracy in just 5 minutes per test, whereas the standard test can take 1 day or more to return results.

The new test has another key advantage, Wilson says: quantifying a sample’s amount of virus. When standard coronavirus tests amplify the virus’ genetic material in order to detect it, this changes the amount of genetic material present—and thus wipes out any chance of precisely quantifying just how much virus is in the sample.

By contrast, Ott’s and Doudna’s team found that the strength of the fluorescent signal was proportional to the amount of virus in their sample. That revealed not just whether a sample was positive, but also how much virus a patient had. That information can help doctors tailor treatment decisions to each patient’s condition, Wilson says.

Doudna and Ott say they and their colleagues are now working to validate their test setup and are looking into how to commercialize it.

Posted in:

doi:10.1126/science.abf1752

Robert F. Service

Bob is a news reporter for Science in Portland, Oregon, covering chemistry, materials science, and energy stories.

 

Source: https://www.sciencemag.org/news/2020/10/new-test-detects-coronavirus-just-5-minutes

Other articles on CRISPR and COVID19 can be found on our Coronavirus Portal and the following articles:

The Nobel Prize in Chemistry 2020: Emmanuelle Charpentier & Jennifer A. Doudna
The University of California has a proud legacy of winning Nobel Prizes, 68 faculty and staff have been awarded 69 Nobel Prizes.
Toaster Sized Machine Detects COVID-19
Study with important implications when considering widespread serological testing, Ab protection against re-infection with SARS-CoV-2 and the durability of vaccine protection

Read Full Post »


Placenta lacks molecules required for COVID-19 infection

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

The pandemic of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected more than 10 million people, including pregnant women. To date, no consistent evidence for the vertical transmission of SARS-CoV-2 has been found. The placenta serves as the lungs, gut, kidneys, and liver of the fetus. This fetal organ also has major endocrine actions that modulate maternal physiology and, importantly, together with the extraplacental chorioamniotic membranes shield the fetus against microbes from hematogenous dissemination and from invading the amniotic cavity.

 

Most pathogens that cause hematogenous infections in the mother are not able to reach the fetus, which is largely due to the potent protective mechanisms provided by placental cells (i.e. trophoblast cells: syncytiotrophoblasts and cytotrophoblasts). Yet, some of these pathogens such as Toxoplasma gondii, Rubella virus, herpesvirus (HSV), cytomegalovirus (CMV), and Zika virus (ZIKV), among others, are capable of crossing the placenta and infecting the fetus, causing congenital disease.

 

The placental membranes that contain the fetus and amniotic fluid lack the messenger RNA (mRNA) molecule required to manufacture the ACE2 receptor, the main cell surface receptor used by the SARS-CoV-2 virus to cause infection. These placental tissues also lack mRNA needed to make an enzyme, called TMPRSS2, that SARS-CoV-2 uses to enter a cell. Both the receptor and enzyme are present in only miniscule amounts in the placenta, suggesting a possible explanation for why SARS-CoV-2 has only rarely been found in fetuses or newborns of women infected with the virus, according to the study authors.

 

The single-cell transcriptomic analysis presented by the researchers provides evidence that SARS-CoV-2 is unlikely to infect the placenta and fetus since its canonical receptor and protease, ACE2 and TRMPSS2, are only minimally expressed by the human placenta throughout pregnancy. In addition, it was shown that the SARS-CoV-2 receptors are not expressed by the chorioamniotic membranes in the third trimester. However, viral receptors utilized by CMV, ZIKV, and others are highly expressed by the human placental tissues.

 

Transcript levels do not always correlate with protein expression, but the data of the present study indicates a low likelihood of placental infection and vertical transmission of SARS-CoV-2. However, it is still possible that the expression of these proteins is much higher in individuals with pregnancy complications related with the renin-angiotensin-aldosterone system, which can alter the expression of ACE2. The cellular receptors and mechanisms that could be exploited by SARS-CoV-2 are still under investigation.

 

References:

 

https://www.nih.gov/news-events/news-releases/placenta-lacks-major-molecules-used-sars-cov-2-virus-cause-infection

 

https://pubmed.ncbi.nlm.nih.gov/32662421/

 

https://pubmed.ncbi.nlm.nih.gov/32217113/

 

https://pubmed.ncbi.nlm.nih.gov/32161408/

 

https://pubmed.ncbi.nlm.nih.gov/32335053/

 

https://pubmed.ncbi.nlm.nih.gov/32298273/

 

Read Full Post »


How Are Cancer Researchers Fighting COVID-19? Lectures from Koch Institute @MIT

WATCH RECORDING, below

 

Reporter: Aviva Lev-Ari, PhD, RN

  • I attended Jun 29, 2020 11:30 AM Eastern Time the five presentations on

    How Are Cancer Researchers Fighting COVID-19? Lectures from Koch Institute @MIT

 

From: Koch Institute at MIT <no-reply@zoom.us>

Reply-To: <no-reply@zoom.us>

Date: Wednesday, July 1, 2020 at 11:20 AM

To: Aviva Lev-Ari <AvivaLev-Ari@alum.berkeley.edu>

Subject: Thank you for attending SOLUTIONS with/in/sight:

How Are Cancer Researchers Fighting COVID-19? (Part II)

 

Hi Aviva Lev-Ari,

Thank you for attending SOLUTIONS with/in/sight: How Are Cancer Researchers Fighting COVID-19? (Part II). We hope you enjoyed our event.

Please submit your questions or comments to: kievents@mit.edu.

You may view a recording of the webinar here: https://ki.mit.edu/news/events/withinsight/jun-2020

Learn more about Koch Institute cancer research and events by signing up for our mailing list here: https://ki.mit.edu/subscribe

Thank you and be safe.

Read Full Post »


Koch Institute at MIT @kochinstitute SOLUTIONS with/in/sight: How Are Cancer Researchers Fighting COVID-19? Monday, June 29 at 11:30 a.m. EDT (8:30 a.m. PDT) on Zoom

 

Reporter: Aviva Lev-Ari, PhD, RN

 

View this email in your browser

Don’t forget to register for part two of SOLUTIONS with/in/sight: How Are Cancer Researchers Fighting COVID-19? showcasing the work of MIT investigators to overcome new and ongoing challenges in the COVID-19 pandemic.

Presentations, followed by Q&A, will explore the science behind developing technologies and highlight how the Koch Institute’s flexible, collaborative research models accelerate innovation in the face of rapidly evolving understanding.

Join us online

Monday, June 29 at 11:30 a.m. EDT (8:30 a.m. PDT) on Zoom

Presenters

Michael Yaffe, MD, PhD
Overcoming respiratory distress
David H. Koch Professor of Science; Intensive Care Physician, Beth Israel Deaconess Medical Center
Angela Koehler, PhD
Novel therapeutic candidates
Samuel A. Goldblith Career
Development Professor in
Applied Biology
Sangeeta Bhatia, MD, PhD
Nanomedicine for monitoring, prevention, and therapy
John J. and Dorothy Wilson Professor
of Health Sciences and Technology
and of Electrical Engineering and
Computer Science
Robert Langer, ScD
Drug and vaccine delivery
David H. Koch Institute Professor
Moderated by Salil Garg, MD, PhD, Charles W. (1955) and Jennifer C. Johnson Clinical Investigator

Register Online

or contact Ineke Ceder at 617.324.2169 or iceder@mit.edu .

SOURCE

From: Koch Institute for Integrative Cancer Research at MIT <kievents@mit.edu>

Reply-To: Koch Institute for Integrative Cancer Research at MIT <kievents@mit.edu>

Date: Friday, June 26, 2020 at 2:00 PM

To: Aviva Lev-Ari <AvivaLev-Ari@alum.berkeley.edu>

Subject: Don’t forget to register for How Are Cancer Researchers Fighting COVID-19?

Read Full Post »


National Cancer Institute Director Neil Sharpless says mortality from delays in cancer screenings due to COVID19 pandemic could result in tens of thousands of extra deaths in next decade

Reporter: Stephen J Williams, PhD

Source: https://cancerletter.com/articles/20200619_1/

NCI Director’s Report

Sharpless: COVID-19 expected to increase mortality by at least 10,000 deaths from breast and colorectal cancers over 10 years

By Matthew Bin Han Ong

This story is part of The Cancer Letter’s ongoing coverage of COVID-19’s impact on oncology. A full list of our coverage, as well as the latest meeting cancellations, is available here.

The COVID-19 pandemic will likely cause at least 10,000 excess deaths from breast cancer and colorectal cancer over the next 10 years in the United States.

Scenarios run by NCI and affiliated modeling groups predict that delays in screening for and diagnosis of breast and colorectal cancers will lead to a 1% increase in deaths through 2030. This translates into 10,000 additional deaths, on top of the expected one million deaths resulting from these two cancers.

“For both these cancer types, we believe the pandemic will influence cancer deaths for at least a decade,” NCI Director Ned Sharpless said in a virtual joint meeting of the Board of Scientific Advisors and the National Cancer Advisory Board June 15. “I find this worrisome as cancer mortality is common. Even a 1% increase every decade is a lot of cancer suffering.

“And this analysis, frankly, is pretty conservative. We do not consider cancers other than those of breast and colon, but there is every reason to believe the pandemic will affect other types of cancer, too. We did not account for the additional non-lethal morbidity from upstaging, but this could also be significant and burdensome.”

An editorial by Sharpless on this subject appears in the journal Science.

The early analyses, conducted by the institute’s Cancer Intervention and Surveillance Modeling Network, focused on breast and colorectal cancers, because these are common, with relatively high screening rates.

CISNET modelers created four scenarios to assess long-term increases in cancer mortality rates for these two diseases:

  1. The pandemic has no effect on cancer mortality

 

  1. Delayed screening—with 75% reduction in mammography and, colorectal screening and adenoma surveillance for six months

 

  1. Delayed diagnosis—with one-third of people delaying follow-up after a positive screening or diagnostic mammogram, positive FIT or clinical symptoms for six months during a six-month period

 

  1. Combination of scenarios two and three

 

Treatment scenarios after diagnosis were not included in the model. These would be: delays in treatment, cancellation of treatment, or modified treatment.

“What we did is show the impact of the number of excess deaths per year for 10 years for each year starting in 2020 for scenario four versus scenario one,” Eric “Rocky” Feuer, chief of the NCI’s Statistical Research and Applications Branch in the Surveillance Research Program, said to The Cancer Letter.

Feuer is the overall project scientist for CISNET, a collaborative group of investigators who use simulation modeling to guide public health research and priorities.

“The results for breast cancer were somewhat larger than for colorectal,” Feuer said. “And that’s because breast cancer has a longer preclinical natural history relative to colorectal cancer.”

Modelers in oncology are creating a global modeling consortium, COVID-19 and Cancer Taskforce, to “support decision-making in cancer control both during and after the crisis.” The consortium is supported by the Union for International Cancer Control, The International Agency for Research on Cancer, The International Cancer Screening Network, the Canadian Partnership Against Cancer, and Cancer Council NSW, Australia.

A spike in cancer mortality rates threatens to reverse or slow down—at least in the medium term—the steady trend of reduction of cancer deaths. On Jan. 8, the American Cancer Society published its annual estimates of new cancer cases and deaths, declaring that the latest data—from 2016 to 2017—show the “largest ever single-year drop in overall cancer mortality of 2.2%.” Experts say that innovation in lung cancer treatment and the success of smoking cessation programs are driving the sharp decrease (The Cancer LetterFeb. 7, 2020).

The pandemic is expected to have broader impact, including increases in mortality rates for other cancer types. Also, variations in severity of COVID-19 in different regions in the U.S. will influence mortality metrics.

“There’s some other cancers that might have delays in screening—for example cervical, prostate, and lung cancer, although lung cancer screening rates are still quite low and prostate cancer screening should only be conducted on those who determine that the benefits outweigh the harms,” Feuer said. “So, those are the major screening cancers, but impacts of delays in treatment, canceling treatment or alternative treatments—could impact a larger range of cancer sites.

“This model assumes a moderate disruption which resolves after six months, and doesn’t consider non-lethal morbidities associated with the delay. One thing I think probably is occurring is regional variation in these impacts,” Feuer said. “If you’re living in New York City where things were ground zero for some of the worst impact early on, probably delays were larger than other areas of the country. But now, as we’re seeing upticks in other areas of the country, there may be in impact in these areas as well”

How can health care providers mitigate some of these harms? For example, for people who delayed screening and diagnosis, are providers able to perform triage, so that those at highest risk are prioritized?

“From a strictly cancer control point of view, let’s get those people who delayed screening, or followup to a positive test, or treatment back on schedule as soon as possible,” Feuer said. “But it’s not a simple calculus, because in every situation, we have to weigh the harms and benefits. As we come out of the pandemic, it tips more and more to, ‘Let’s get back to business with respect to cancer control.’

“Telemedicine doesn’t completely substitute for seeing patients in person, but at least people could get the advice they need, and then are triaged through their health care providers to indicate if they really should prioritize coming in. That helps the individual and the health care provider  weigh the harms and benefits, and try to strategize about what’s best for any individual.”

If the pandemic continues to disrupt routine care, cancer-related mortality rates would rise beyond the predictions in this model.

“I think this analysis begins to help us understand the costs with regard to cancer outcomes of the pandemic,” Sharpless said. “Let’s all agree we will do everything in our power to minimize these adverse effects, to protect our patients from cancer suffering.”

 

For more Articles on COVID-19 please see our Coronavirus Portal at

https://pharmaceuticalintelligence.com/coronavirus-portal/

 

Read Full Post »


Powerful AI Tools Being Developed for the COVID-19 Fight

Curator: Stephen J. Williams, Ph.D.

 

Source: https://www.ibm.com/blogs/research/2020/04/ai-powered-technologies-accelerate-discovery-covid-19/

IBM Releases Novel AI-Powered Technologies to Help Health and Research Community Accelerate the Discovery of Medical Insights and Treatments for COVID-19

April 3, 2020 | Written by: 

IBM Research has been actively developing new cloud and AI-powered technologies that can help researchers across a variety of scientific disciplines accelerate the process of discovery. As the COVID-19 pandemic unfolds, we continue to ask how these technologies and our scientific knowledge can help in the global battle against coronavirus.

Today, we are making available multiple novel, free resources from across IBM to help healthcare researchers, doctors and scientists around the world accelerate COVID-19 drug discovery: from gathering insights, to applying the latest virus genomic information and identifying potential targets for treatments, to creating new drug molecule candidates.

Though some of the resources are still in exploratory stages, IBM is making them available to qualifying researchers at no charge to aid the international scientific investigation of COVID-19.

Today’s announcement follows our recent leadership in launching the U.S. COVID-19 High Performance Computing Consortium, which is harnessing massive computing power in the effort to help confront the coronavirus.

Streamlining the Search for Information

Healthcare agencies and governments around the world have quickly amassed medical and other relevant data about the pandemic. And, there are already vast troves of medical research that could prove relevant to COVID-19. Yet, as with any large volume of disparate data sources, it is difficult to efficiently aggregate and analyze that data in ways that can yield scientific insights.

To help researchers access structured and unstructured data quickly, we are offering a cloud-based AI research resource that has been trained on a corpus of thousands of scientific papers contained in the COVID-19 Open Research Dataset (CORD-19), prepared by the White House and a coalition of research groups, and licensed databases from the DrugBankClinicaltrials.gov and GenBank. This tool uses our advanced AI and allows researchers to pose specific queries to the collections of papers and to extract critical COVID-19 knowledge quickly. Please note, access to this resource will be granted only to qualified researchers. To learn more and request access, please click here.

Aiding the Hunt for Treatments

The traditional drug discovery pipeline relies on a library of compounds that are screened, improved, and tested to determine safety and efficacy. In dealing with new pathogens such as SARS-CoV-2, there is the potential to enhance the compound libraries with additional novel compounds. To help address this need, IBM Research has recently created a new, AI-generative framework which can rapidly identify novel peptides, proteins, drug candidates and materials.

We have applied this AI technology against three COVID-19 targets to identify 3,000 new small molecules as potential COVID-19 therapeutic candidates. IBM is releasing these molecules under an open license, and researchers can study them via a new interactive molecular explorer tool to understand their characteristics and relationship to COVID-19 and identify candidates that might have desirable properties to be further pursued in drug development.

To streamline efforts to identify new treatments for COVID-19, we are also making the IBM Functional Genomics Platform available for free for the duration of the pandemic. Built to discover the molecular features in viral and bacterial genomes, this cloud-based repository and research tool includes genes, proteins and other molecular targets from sequenced viral and bacterial organisms in one place with connections pre-computed to help accelerate discovery of molecular targets required for drug design, test development and treatment.

Select IBM collaborators from government agencies, academic institutions and other organizations already use this platform for bacterial genomic study. And now, those working on COVID-19 can request the IBM Functional Genomics Platform interface to explore the genomic features of the virus. Access to the IBM Functional Genomics Platform will be prioritized for those conducting COVID-19 research. To learn more and request access, please click here.

Drug and Disease Information

Clinicians and healthcare professionals on the frontlines of care will also have free access to hundreds of pieces of evidence-based, curated COVID-19 and infectious disease content from IBM Micromedex and EBSCO DynaMed. Using these two rich decision support solutions, users will have access to drug and disease information in a single and comprehensive search. Clinicians can also provide patients with consumer-friendly patient education handouts with relevant, actionable medical information. IBM Micromedex is one of the largest online reference databases for medication information and is used by more than 4,500 hospitals and health systems worldwide. EBSCO DynaMed provides peer-reviewed clinical content, including systematic literature reviews in 28 specialties for comprehensive disease topics, health conditions and abnormal findings, to highly focused topics on evaluation, differential diagnosis and management.

The scientific community is working hard to make important new discoveries relevant to the treatment of COVID-19, and we’re hopeful that releasing these novel tools will help accelerate this global effort. This work also outlines our long-term vision for the future of accelerated discovery, where multi-disciplinary scientists and clinicians work together to rapidly and effectively create next generation therapeutics, aided by novel AI-powered technologies.

Learn more about IBM’s response to COVID-19: IBM.com/COVID19.

Source: https://www.ibm.com/blogs/research/2020/04/ai-powered-technologies-accelerate-discovery-covid-19/

DiA Imaging Analysis Receives Grant to Accelerate Global Access to its AI Ultrasound Solutions in the Fight Against COVID-19

Source: https://www.grantnews.com/news-articles/?rkey=20200512UN05506&filter=12337

Grant will allow company to accelerate access to its AI solutions and use of ultrasound in COVID-19 emergency settings

TEL AVIV, IsraelMay 12, 2020 /PRNewswire-PRWeb/ — DiA Imaging Analysis, a leading provider of AI based ultrasound analysis solutions, today announced that it has received a government grant from the Israel Innovation Authority (IIA) to develop solutions for ultrasound imaging analysis of COVID-19 patients using Artificial Intelligence (AI).Using ultrasound in point of care emergency settings has gained momentum since the outbreak of COVID-19 pandemic. In these settings, which include makeshift hospital COVID-19 departments and triage “tents,” portable ultrasound offers clinicians diagnostic decision support, with the added advantage of being easier to disinfect and eliminating the need to transport patients from one room to another.However, analyzing ultrasound images is a process that it is still mostly done visually, leading to a growing market need for automated solutions and decision support.As the leading provider of AI solutions for ultrasound analysis and backed by Connecticut Innovations, DiA makes ultrasound analysis smarter and accessible to both new and expert ultrasound users with various levels of experience. The company’s flagship LVivo Cardio Toolbox for AI-based cardiac ultrasound analysis enables clinicians to automatically generate objective clinical analysis, with increased accuracy and efficiency to support decisions about patient treatment and care.

The IIA grant provides a budget of millions NIS to increase access to DiA’s solutions for users in Israel and globally, and accelerate R&D with a focus on new AI solutions for COVID-19 patient management. DiA solutions are vendor-neutral and platform agnostic, as well as powered to run in low processing, mobile environments like handheld ultrasound.Recent data highlights the importance of looking at the heart during the progression of COVID-19, with one study citing 20% of patients hospitalized with COVID-19 showing signs of heart damage and increased mortality rates in those patients. DiA’s LVivo cardiac analysis solutions automatically generate objective, quantified cardiac ultrasound results to enable point-of-care clinicians to assess cardiac function on the spot, near patients’ bedside.

According to Dr. Ami Applebaum, the Chairman of the Board of the IIA, “The purpose of IIA’s call was to bring solutions to global markets for fighting COVID-19, with an emphasis on relevancy, fast time to market and collaborations promising continuity of the Israeli economy. DiA meets these requirements with AI innovation for ultrasound.”DiA has received several FDA/CE clearances and established distribution partnerships with industry leading companies including GE Healthcare, IBM Watson and Konica Minolta, currently serving thousands of end users worldwide.”We see growing use of ultrasound in point of care settings, and an urgent need for automated, objective solutions that provide decision support in real time,” said Hila Goldman-Aslan, CEO and Co-founder of DiA Imaging Analysis, “Our AI solutions meet this need by immediately helping clinicians on the frontlines to quickly and easily assess COVID-19 patients’ hearts to help guide care delivery.”

About DiA Imaging Analysis:
DiA Imaging Analysis provides advanced AI-based ultrasound analysis technology that makes ultrasound accessible to all. DiA’s automated tools deliver fast and accurate clinical indications to support the decision-making process and offer better patient care. DiA’s AI-based technology uses advanced pattern recognition and machine-learning algorithms to automatically imitate the way the human eye detects image borders and identifies motion. Using DiA’s tools provides automated and objective AI tools, helps reduce variability among users, and increases efficiency. It allows clinicians with various levels of experience to quickly and easily analyze ultrasound images.

For additional information, please visit http://www.dia-analysis.com.

Read Full Post »


via Dr. Giordano Featured in Forbes Article on COVID-19 Antibody Tests in Italy and USA

Read Full Post »


Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on NCI Activities: COVID-19 and Cancer Research 5:20 PM

Reporter: Stephen J. Williams, PhD

NCI Activities: COVID-19 and Cancer Research

Dinah S. Singer. NCI-DCB, Bethesda, MD @theNCI

  • at the NCI they are pivoting some of their clinical trials to address COVID related issues like trials on tocilizumab and producing longitudinal cohorts of cancer patients and COVID for further analysis and studies
  • vaccine and antibody efforts at NCI and they are asking all their cancer centers (Cancer COVID Consortium) collecting data
  • Moonshot is collecting metadata but now COVID data from cellular therapy patients
  • they are about to publish new grants related to COVID and adding option to investigators to use current funds to do COVID related options
  • she says if at home take the time to think, write manuscripts, analyze data BE A REVIEWER FOR JOURNALS,
  • SSMMART project from Moonshot is still active
  • so far NCI and NIH grant process is ongoing although the peer review process is slower
  • they have extended deadlines with NO justification required (extend 90 days)
  • also allowing flexibility on use of grant money and allowing more early investigator rules and lax on those rules
  • non competitive renewals (type 5) will allow restructuring of project; contact program administrator
  • she and NCI heard rumors of institutions shutting down cancer research she is stressing to them not to do that
  • non refundable travel costs may be charged to the grant
  • NCI contemplating on extending the early investigator time
  • for more information go to NIH and NCI COVID-19 pages which have more guidances updated regularly

Follow on Twitter at:

@pharma_BI

@AACR

@CureCancerNow

@pharmanews

@BiotechWorld

@theNCI

#AACR20

Read Full Post »


Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on COVID-19 and Cancer 9:00 AM

Reporter: Stephen J. Williams, PhD

 

COVID-19 and Cancer

Introduction

Antoni Ribas
UCLA Medical Center

  • Almost 60,000 viewed the AACR 2020 Virtual meeting for the April 27 session
  • The following speakers were the first cancer researchers treating patients at the epicenters of the pandemic even though nothing was known about the virus

 

The experience of treating patients with cancer during the COVID-19 pandemic in China
Li Zhang, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology

  • reporting a retrospective study from three hospitals from Wuhan
  • 2.2% of Wuhan cancer patients were COVID positive; most were lung cancers and most male; 35% were stage four
  • most have hospital transmission of secondary infection; had severe events when admitted
  • 74% were prescribed antivirals like ganciclovir and others; iv IgG was given to some
  • mortailtiy rate of 26%; by April 4 54% were cured and discharged; median time of infection to severe event was 7 days; clinical presentation SARS sepsis, and shock
  • by day 10 in lung cancer patients, see lung path but after supportive therapy improved
  • cancer patients at stage four who did not receive therapy were at higher risk
  • cancer patients who had received chemo in last 14 days had higher risk of infection
  • they followed up with cancer patients on I/O inhibitors;  it seemed there was only one patient that contracted COVID19 so there may not be as much risk with immune checkpoint inhibitors

 

TERAVOLT (Thoracic cancERs international coVid 19 cOLlaboraTion): First results of a global collaboration to address the impact of COVID-19 in patients with thoracic malignancies

Marina Chiara Garassino

@marinagarassino
Fondazione IRCCS Istituto Nazionale dei Tumori

Dr Marina Chiara Garassino is the Chief of the Thoracic Oncology Unit at Istituto Nazionale dei Tumori, Milan, Italy. She leads the strategy for clinical and translational research in advanced and locally advanced NSCLC, SCLC, mesothelioma and thymic malignancies. Istituto Nazionale dei Tumori in Milan is the most important comprehensive cancer in Italy and one of the most important in Europe. As a medical oncologist, she has done research in precision medicine and in immuno-oncology. Her main research interests have been mainly development of new drugs and therapeutical strategies and biomarkers. She has contributed to over 150 peer-reviewed publications, including publications as first or last author in the New England Journal of Medicine, Lancet Oncology, Journal of Clinical Oncology, Annals of Oncology. She has delivered many presentations at international congresses,  including  AACR, ASCO, ECCO, ESMO, WCLC. Her education includes a degree and further specialization in Medical Oncology at Università degli Studi in Milan. She achieved a Master Degree in Oncology management at University of Economics “Luigi Bocconi”. She completed her training with an ESMO Clinical fellowship in 2009 at Christie’s Hospital in Manchester (UK). She was a member of the EMA SAG (Scientific Advisory Group). She is serving as ESMO Council member as the Chair of the National Societies Committee. She was the ESMO National Representative for Italy for 5 years (2011-2017). She is serving on several ESMO Committees (Public Policy extended Committee, Press Committee, Women for Oncology Committee, Lung Cancer faculty, Membership Committee).She used to be an active member of the Young Oncologist Committee. She’s serving on both ESMO, WCLC and ASCO annual congress Lung Cancer Track (2019, and 2020), Chair of ESMO National Societies, from 2019. She is the founder and president of Women for Oncology Italy.

  • 2 million confirmed cases but half of patients are asymptomatic and not tested; pooled prevalance of COVID in cancer patients in Italy was 2%; must take them as high risk patients
  • they were not prepared for pandemic lasting for months instead of days; March 15 in middle of outbreak they started TERAVOLT registry; by March 26 had IRB approval; they are accruing 17 new patients per week; Ontario also joined in and has become worldwide (21 countries involved);  in registry they also included radiologic exams and COVID testing result
  • most patients were males and many smokers; 75% had SCLC; 83% of cases had one comorbility like hypertension and one third had at least one comorbility; 73.9% of patients were on treatment (they see this in their clinic: 30% on chemo or TKI alone; other patients were just on folowup
  • most of symptoms overlap with symptoms of lung cancer like pneumonia and pneumonitits and multi organ failure; most were hospitalized
  • unexpected high mortality among lung cancer patients with COVID19; this mortality seems due to COVID and not to cancer;
  • study had some limitations like short followup and some surgical cases so some bias may be present
  • she stresses don’t go it alone and make your own registry JOIN A REGISTRY

 

Outcome of cancer patients infected with COVID-19, including toxicity of cancer treatments
Fabrice Barlesi @barlesi
Gustave Roussy Cancer Campus

Professor Fabrice Barlesi
 As a specialist in lung cancer, precision medicine and cancer immunology, Prof. Fabrice Barlesi is a major contributor to research in the field of novel oncological therapies. He was apppointed General Director of Gustave Roussy in January 2020.
Fabrice Barlesi is Professor of Medicine at the University of Aix-Marseille. He has been head of the Multidisciplinary Oncology and Innovative Therapies Department of the Nord Hospital in Marseille (Marseille Public Hospitals) and the Marseille Centre for Early Trials in Oncology (CLIP2) which were established by him. He holds a doctorate in Sciences and Management with methods of analysis of health care systems, together with an ESSEC (international business school) master’s degree in general hospital management.
Professor Barlesi was also a co-founder of the Marseille Immunopôle French Immunology network, which aims to coordinate immunological expertise in the Aix-Marseille metropolitan area. In this context, he has organised PIONeeR (Investment in the future RHU 2017), the major international Hospital-University research project whose objective is to improve understanding of resistance to immunotherapy – anti-PD1(L1) – in lung cancer and help to prevent and overcome it. He was also vice-chair of the PACA (Provence, Alps and Côte d’Azur) Region Cancer Research Directorate.
Professor Barlesi is the author and co-author of some 300 articles in international journals and specialist publications. In 2018, the European Society of Medical Oncology (ESMO) and the International Association for the Study of Lung Cancer (IASLC) awarded him the prestigious Heine H. Hansen prize. He appears in the 2019 world list of most influential researchers (Highly cited researchers, Web of Science Group).
  • March 14 started protective measures and at peak had increased commited beds at highest rate
  • 12% of cancer patients tested positive for COVID; (by RTPCR); they curated data across different chemo regimens used
  • they retrospectively collected data; primary endpoint was clinical worsening; median of disease 13 days;
  • they actually had more breast cancer patients and other solid malignancies; 23% of covid cases no symptoms; 83% finally did have the symptoms after followup; diarhea actually in 10% of cases so clinics are seeing this as a symptom
  • CT scan showed 66% cases had pneumonitits like display; 25% patients were managed as outpatient
  • 24% patients worsened during treatment but 75% were able to go home (treated at home or well)
  • I/O did not have negative outcome and you can use these drugs without increasing risk to COVID
  • although many clinical trials have been hindered they are actively recruiting for COVID-cancer studies
  • outcomes with respect to death and symptoms are comparable to worldwide stats

Adapting oncologic practice to COVID19 outbreak: From outpatient triage to risk assessment for specific treatment in Madrid, Spain
Carlos Gomez-Martin
Octubre University Hospital

  • MOST slides were DO NOT POST so as requested data will not be shown; this study will be published soon
  • Summary is that Spain is seeing statistics like other European countries and similar results
  • Tocilizumab, the IL6 antagonists had been suggested as a treatment for cytokine storm and they are involved in a trial with this agent; results will be published

Experience in using oncology drugs in patients with COVID-19

Paolo A. Ascierto
Istituto Nazionale Tumori IRCCS Fondazione Pascale

  • giving surgery only for patients at highest risk of cancer mortality so using neoadjuvant therapy more often
  • telemedicine is a viable strategy for patient consult
  • for metastatic melanoma they are given highest priority for treatment
  • they are conducting a tocilizumab clinical trial and have accrued over 300 patients
  • results are in press so please look for publication soon
  • also can use TNF inhibitor, JAK inhibitor, IL1 inhibitor to treat cytokine storm

COVID-19 and cancer: Flattening the curve but widening disparities
Louis P. Voigt
Memorial Sloan Kettering Cancer Center

  • Sloan has performed about 5000 COVID tests;  78 patients needed hospitilization; 15 died; 40% still in ICU
  • they do see many African American patients
  • mortality rates in US (published) have been around 50-60 % for cancer patients with COVID; Sloan prelim results are lower but still accruing data

Patients with cancer appear more vulnerable to SARS-COV-2: A multi-center study during the COVID-19 outbreak
Hongbing Cai
Zhongnan Hospital of Wuhan University

  • metastatic cancer showed much higher risk than non cancer but non metastatic showed increased risk too
  • main criteria of outcome was ICU admission
  • patients need to be isolated and personalized treatment plans need to be made
  • many comparisons were between non cancer and cancer which was clearest significance; had not looked at cancer types or stage grade or treatment
  • it appears that there are more questions right now than answers so data collection is a priority

Follow on Twitter at:

@pharma_BI

@AACR

@CureCancerNow

@pharmanews

@BiotechWorld

@HopkinsMedicine

#AACR20

For other Articles on the Online Open Access Journal on COVID19 and Cancer please see

https://pharmaceuticalintelligence.com/coronavirus-portal/

Opinion Articles from the Lancet: COVID-19 and Cancer Care in China and Africa

Actemra, immunosuppressive which was designed to treat rheumatoid arthritis but also approved in 2017 to treat cytokine storms in cancer patients SAVED the sickest of all COVID-19 patients

The Second in a Series of Virtual Town Halls with Leading Oncologist on Cancer Patient Care during COVID-19 Pandemic: What you need to know

Responses to the COVID-19 outbreak from Oncologists, Cancer Societies and the NCI: Important information for cancer patients

 

Read Full Post »


Opinion Articles from the Lancet: COVID-19 and Cancer Care in China and Africa

Reporter: Stephen J. Williams, PhD

Cancer Patients in SARS-CoV-2 infection: a nationwide analysis in China

Wenhua Liang, Weijie Guan, Ruchong Chen, Wei Wang, Jianfu Li, Ke Xu, Caichen Li, Qing Ai, Weixiang Lu, Hengrui Liang, Shiyue Li, Jianxing He

Lancet Oncol. 2020 Mar; 21(3): 335–337. Published online 2020 Feb 14. doi: 10.1016/S1470-2045(20)30096-6

PMCID: PMC7159000

 

The National Clinical Research Center for Respiratory Disease and the National Health Commission of the People’s Republic of China collaborated to establish a prospective cohort to monitor COVID-19 cases in China.  As on Jan31, 20202007 cases have been collected and analyzed with confirmed COVID-19 infection in these cohorts.

Results: 18 or 1% of COVID-19 cases had a history of cancer (the overall average cancer incidence in the overall China population is 0.29%) {2015 statistics}.  It appeared that cancer patients had an observable higher risk of COVID related complications upon hospitalization. However, this was a higher risk compared with the general population.  There was no comparison between cancer patients not diagnosed with COVID-19 and an assessment of their risk of infection.  Interestingly those who were also cancer survivors showed an increased incidence of COVID related severe complications compared to the no cancer group.

Although this study could have compared the risk within a cancer group, the authors still felt the results warranted precautions when dealing with cancer patients and issued recommendations including:

  1. Postponing of adjuvant chemotherapy or elective surgery for stable cancer should be considered
  2. Stronger personal protection for cancer patients
  3. More intensive surveillance or treatment should be considered when patients with cancer are infected, especially in older patients

Further studies will need to address the risk added by specific types of chemotherapy: cytolytic versus immunotherapy e.g.

 

Preparedness for COVID-19 in the oncology community in Africa

Lancet Oncology, Verna Vanderpuye, Moawia Mohammed,Ali Elhassan

Hannah Simonds: Published:April 03, 2020DOI:https://doi.org/10.1016/S1470-2045(20)30220-5

Africa has a heterogeneity of cultures, economies and disease patterns however fortunately it is one of the last countries to be hit by the COVID-19 pandemic, which allows some time for preparation by the African nations.  The authors note that with Africa’s previous experiences with epidemics, namely ebola and cholera, Africa should be prepared for this pandemic.

However, as a result of poor economic discipline, weak health systems, and poor health-seeking behaviors across the continent, outcomes could be dismal. Poverty, low health literacy rates, and cultural practices that negatively affect cancer outcomes will result in poor assimilation of COVID-19 containment strategies in Africa.”

In general African oncologists are following COVID-19 guidelines from other high-income countries, but as this writer acknowledges in previous posts, there was a significant lag from first cases in the United States to the concrete formulation of guidelines for both oncologists and patients with regard to this pandemic.  African oncologist are delaying the start of adjuvant therapies and switching more to oral therapies and rethink palliative care.

However the authors still have many more questions than answers, however even among countries that have dealt with this pandemic before Africa (like Italy and US), oncologists across the globe still have not been able to answer questions like: what if my patient develops a fever, what do I do during a period of neutropenia, to their satisfaction or the satisfaction of the patient.  These are questions even oncologists who are dealing in COVID hotspots are still trying to answer including what constitutes a necessary surgical procedure? As I have highlighted in recent posts, oncologists in New York have all but shut down all surgical procedures and relying on liquid biopsies taken in the at-home setting. But does Africa have this capability of access to at home liquid biopsy procedures?

In addition, as I had just highlighted in a recent posting, there exists extreme cancer health disparities across the African continent, as well as the COVID responses. In West Africa, COVID-19 protocols are defined at individual institutions.  This is more like the American system where even NCI designated centers were left to fashion some of their own guidelines initially, although individual oncologists had banded together to do impromptu meetings to discuss best practices. However this is fine for big institutions, but as in the US, there is a large rural population on the African continent with geographical barriers to these big centers. Elective procedures have been cancelled and small number of patients are seen by day.  This remote strategy actually may be well suited for African versus more developed nations, as highlighted in a post I did about mobile health app use in oncology, as this telemedicine strategy is rather new among US oncologists (reference my posts with the Town Hall meetings).

The situation is more complicated in South Africa where they are dealing with an HIV epidemic, where about 8 million are infected with HIV. Oncology services here are still expecting to run at full capacity as the local hospitals deal with the first signs of the COVID outbreak. In Sudan, despite low COVID numbers, cancer centers have developed contingency plans. and are deferring new referrals except for emergency cases.  Training sessions for staff have been developed.

For more articles in this online open access journal on Cancer and COVID-19 please see our

Coronovirus Portal
Responses to the #COVID-19 outbreak from Oncologists, Cancer Societies and the NCI: Important information for cancer patients

 

Read Full Post »

Older Posts »