Advertisements
Feeds:
Posts
Comments

Archive for the ‘Health Economics and Outcomes Research’ Category

Digital Therapeutics: A threat or opportunity to pharmaceuticals


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Digital Therapeutics (DTx) have been defined by the Digital Therapeutics Alliance (DTA) as “delivering evidence based therapeutic interventions to patients, that are driven by software to prevent, manage or treat a medical disorder or disease”. They might come in the form of a smart phone or computer tablet app, or some form of a cloud-based service connected to a wearable device. DTx tend to fall into three groups. Firstly, developers and mental health researchers have built digital solutions which typically provide a form of software delivered Cognitive-Behaviour Therapies (CBT) that help patients change behaviours and develop coping strategies around their condition. Secondly there are the group of Digital Therapeutics which target lifestyle issues, such as diet, exercise and stress, that are associated with chronic conditions, and work by offering personalized support for goal setting and target achievement. Lastly, DTx can be designed to work in combination with existing medication or treatments, helping patients manage their therapies and focus on ensuring the therapy delivers the best outcomes possible.

 

Pharmaceutical companies are clearly trying to understand what DTx will mean for them. They want to analyze whether it will be a threat or opportunity to their business. For a long time, they have been providing additional support services to patients who take relatively expensive drugs for chronic conditions. A nurse-led service might provide visits and telephone support to diabetics for example who self-inject insulin therapies. But DTx will help broaden the scope of support services because they can be delivered cost-effectively, and importantly have the ability to capture real-world evidence on patient outcomes. They will no-longer be reserved for the most expensive drugs or therapies but could apply to a whole range of common treatments to boost their efficacy. Faced with the arrival of Digital Therapeutics either replacing drugs, or playing an important role alongside therapies, pharmaceutical firms have three options. They can either ignore DTx and focus on developing drug therapies as they have done; they can partner with a growing number of DTx companies to develop software and services complimenting their drugs; or they can start to build their own Digital Therapeutics to work with their products.

 

Digital Therapeutics will have knock-on effects in health industries, which may be as great as the introduction of therapeutic apps and services themselves. Together with connected health monitoring devices, DTx will offer a near constant stream of data about an individuals’ behavior, real world context around factors affecting their treatment in their everyday lives and emotional and physiological data such as blood pressure and blood sugar levels. Analysis of the resulting data will help create support services tailored to each patient. But who stores and analyses this data is an important question. Strong data governance will be paramount to maintaining trust, and the highly regulated pharmaceutical industry may not be best-placed to handle individual patient data. Meanwhile, the health sector (payers and healthcare providers) is becoming more focused on patient outcomes, and payment for value not volume. The future will say whether pharmaceutical firms enhance the effectiveness of drugs with DTx, or in some cases replace drugs with DTx.

 

Digital Therapeutics have the potential to change what the pharmaceutical industry sells: rather than a drug it will sell a package of drugs and digital services. But they will also alter who the industry sells to. Pharmaceutical firms have traditionally marketed drugs to doctors, pharmacists and other health professionals, based on the efficacy of a specific product. Soon it could be paid on the outcome of a bundle of digital therapies, medicines and services with a closer connection to both providers and patients. Apart from a notable few, most pharmaceutical firms have taken a cautious approach towards Digital Therapeutics. Now, it is to be observed that how the pharmaceutical companies use DTx to their benefit as well as for the benefit of the general population.

 

References:

 

https://eloqua.eyeforpharma.com/LP=23674?utm_campaign=EFP%2007MAR19%20EFP%20Database&utm_medium=email&utm_source=Eloqua&elqTrackId=73e21ae550de49ccabbf65fce72faea0&elq=818d76a54d894491b031fa8d1cc8d05c&elqaid=43259&elqat=1&elqCampaignId=24564

 

https://www.s3connectedhealth.com/resources/white-papers/digital-therapeutics-pharmas-threat-or-opportunity/

 

http://www.pharmatimes.com/web_exclusives/digital_therapeutics_will_transform_pharma_and_healthcare_industries_in_2019._heres_how._1273671

 

https://www.mckinsey.com/industries/pharmaceuticals-and-medical-products/our-insights/exploring-the-potential-of-digital-therapeutics

 

https://player.fm/series/digital-health-today-2404448/s9-081-scaling-digital-therapeutics-the-opportunities-and-challenges

 

Advertisements

Read Full Post »


 

THE 3RD STAT4ONC ANNUAL SYMPOSIUM

APRIL 25-27, 2019

HILTON, HARTFORD, CONNECTICUT
315 Trumbull St, Hartford, CT 06103
Reporter: Stephen J. Williams, Ph.D.

SYMPOSIUM OBJECTIVES

The three-day symposium aims to bring oncologists and statisticians together to share new research, discuss novel ideas, ask questions and provide solutions for cancer clinical trials. In the era of big data, precision medicine, and genomics and immune-based oncology, it is crucial to provide a platform for interdisciplinary dialogues among clinical and quantitative scientists. The Stat4Onc Annual Symposium serves as a venue for oncologists and statisticians to communicate their views on trial design and conduct, drug development, and translations to patient care. To be discussed includes big data and genomics for oncology clinical trials, novel dose-finding designs, drug combinations, immune oncology clinical trials, and umbrella/basket oncology trials. An important aspect of Stat4Onc is the participation of researchers across academia, industry, and regulatory agency.

Meeting Agenda will be announced coming soon. For Updated Agenda and Program Speakers please CLICK HERE

The registration of the symposium is via NESS Society PayPal. Click here to register.

Other  2019 Conference Announcement Posts on this Open Access Journal Include:

Read Full Post »


From Thalidomide to Revlimid: Celgene to Bristol Myers to possibly Pfizer; A Curation of Deals, Discovery and the State of Pharma

 

Curator: Stephen J. Williams, Ph.D.

Updated 2/28/2019

Lenalidomide (brand name Revlimid) is an approved chemotherapeutic used to treat multiple myeloma, mantle cell lymphoma, and certain myedysplastic syndromes.  It is chemically related to thalidomide analog with potential antineoplastic activity. Lenalidomide inhibits TNF-alpha production, stimulates T cells, reduces serum levels of the cytokines vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), and inhibits angiogenesis. This agent also promotes G1 cell cycle arrest and apoptosis of malignant cells.  It is usually given with dexamethasone for multiple myeloma. Revlimid was developed and sold by Celgene Corp.  However, recent news of deals with Bristol Myers Squib

Revlimid Approval History

FDA Approved: Yes (First approved December 27, 2005)
Brand name: Revlimid
Generic name: lenalidomide
Dosage form: Capsules
Company: Celgene Corporation
Treatment for: Myelodysplastic SyndromeMultiple MyelomaLymphoma

Revlimid (lenalidomide) is an immunomodulatory drug indicated for the treatment of patients with multiple myeloma, transfusion-dependent anemia due myelodysplastic syndromes (MDS), and mantle cell lymphoma.

Development History and FDA Approval Process for Revlimid

Date Article
Feb 22, 2017 Approval FDA Expands Indication for Revlimid (lenalidomide) as a Maintenance Treatment for Patients with Multiple Myeloma Following Autologous Hematopoietic Stem Cell Transplant (auto-HSCT)
Feb 18, 2015 Approval FDA Expands Indication for Revlimid (lenalidomide) in Combination with Dexamethasone to Include Patients Newly Diagnosed with Multiple Myeloma
Jun  5, 2013 Approval FDA Approves Revlimid (lenalidomide) for the Treatment of Patients with Relapsed or Refractory Mantle Cell Lymphoma
Oct  3, 2005 Revlimid PDUFA Date Extended Three Months By FDA
Sep 14, 2005 FDA Oncologic Drugs Advisory Committee Recommends Revlimid for Full Approval
Sep 13, 2005 FDA and Celgene Revlimid Briefing Documents for Advisory Committee Meeting Available Online
Jun 21, 2005 FDA Grants Priority Review for Revlimid NDA for Treatment of Low- and Intermediate- Risk MDS With Deletion 5q Chromosomal Abnormality
Jun  7, 2005 Revlimid (lenalidomide) New Drug Application Accepted for Review by FDA
Apr  8, 2005 Revlimid New Drug Application Submitted to FDA for Review

 

 

M&A Deals Now and On The Horizon

  1. Right before the 2019 JP Morgan Healthcare Conference and a month before Bristol Myers quarterly earings reports, Bristol Myers Squib (BMY) announes a $74 Billion offer for Celgene Corp.  From the Bristol Myers website press realease:

Bristol-Myers Squibb to Acquire Celgene to Create a Premier Innovative Biopharma Company

  • Highly Complementary Portfolios with Leading Franchises in Oncology, Immunology and Inflammation and Cardiovascular Disease
  • Significantly Expands Phase III Assets with Six Expected Near-Term Product Launches, Representing Greater Than $15 Billion in Revenue Potential
  • Registrational Trial Opportunities and Early-Stage Pipeline Position Combined Company for Sustained Leadership Underpinned by Cutting-Edge Technologies and Discovery Platforms
  • Strong Combined Cash Flows, Enhanced Margins and EPS Accretion of Greater Than 40% in First Full Year
  • Approximately $2.5 Billion of Expected Run-Rate Cost Synergies to Be Achieved by 2022
THURSDAY, JANUARY 3, 2019 6:58 AM EST

NEW YORK & SUMMIT, N.J.,–(BUSINESS WIRE)–Bristol-Myers Squibb Company (NYSE:BMY) and Celgene Corporation (NASDAQ:CELG) today announced that they have entered into a definitive merger agreement under which Bristol-Myers Squibb will acquire Celgene in a cash and stock transaction with an equity value of approximately $74 billion. Under the terms of the agreement, Celgene shareholders will receive 1.0 Bristol-Myers Squibb share and $50.00 in cash for each share of Celgene. Celgene shareholders will also receive one tradeable Contingent Value Right (CVR) for each share of Celgene, which will entitle the holder to receive a payment for the achievement of future regulatory milestones. The Boards of Directors of both companies have approved the combination.

The transaction will create a leading focused specialty biopharma company well positioned to address the needs of patients with cancer, inflammatory and immunologic disease and cardiovascular disease through high-value innovative medicines and leading scientific capabilities. With complementary areas of focus, the combined company will operate with global reach and scale, maintaining the speed and agility that is core to each company’s strategic approach.

Based on the closing price of Bristol-Myers Squibb stock of $52.43 on January 2, 2019, the cash and stock consideration to be received by Celgene shareholders at closing is valued at $102.43 per Celgene share and one CVR (as described below). When completed, Bristol-Myers Squibb shareholders are expected to own approximately 69 percent of the company, and Celgene shareholders are expected to own approximately 31 percent.

“Together with Celgene, we are creating an innovative biopharma leader, with leading franchises and a deep and broad pipeline that will drive sustainable growth and deliver new options for patients across a range of serious diseases,” said Giovanni Caforio, M.D., Chairman and Chief Executive Officer of Bristol-Myers Squibb. “As a combined entity, we will enhance our leadership positions across our portfolio, including in cancer and immunology and inflammation. We will also benefit from an expanded early- and late-stage pipeline that includes six expected near-term product launches. Together, our pipeline holds significant promise for patients, allowing us to accelerate new options through a broader range of cutting-edge technologies and discovery platforms.”

Dr. Caforio continued, “We are impressed by what Celgene has accomplished for patients, and we look forward to welcoming Celgene employees to Bristol-Myers Squibb. Our new company will continue the strong patient focus that is core to both companies’ missions, creating a shared organization with a goal of discovering, developing and delivering innovative medicines for patients with serious diseases. We are confident we will drive value for shareholders and create opportunities for employees.”

“For more than 30 years, Celgene’s commitment to leading innovation has allowed us to deliver life-changing treatments to patients in areas of high unmet need. Combining with Bristol-Myers Squibb, we are delivering immediate and substantial value to Celgene shareholders and providing them meaningful participation in the long-term growth opportunities created by the combined company,” said Mark Alles, Chairman and Chief Executive Officer of Celgene. “Our employees should be incredibly proud of what we have accomplished together and excited for the opportunities ahead of us as we join with Bristol-Myers Squibb, where we can further advance our mission for patients. We look forward to working with the Bristol-Myers Squibb team as we bring our two companies together.”

Compelling Strategic Benefits

  • Leading franchises with complementary product portfolios provide enhanced scale and balance. The combination creates:
    • Leading oncology franchises in both solid tumors and hematologic malignancies led by Opdivo and Yervoy as well as Revlimid and Pomalyst;
    • A top five immunology and inflammation franchise led by Orencia and Otezla; and
    • The #1 cardiovascular franchise led by Eliquis.

The combined company will have nine products with more than $1 billion in annual sales and significant potential for growth in the core disease areas of oncology, immunology and inflammation and cardiovascular disease.

  • Near-term launch opportunities representing greater than $15 billion in revenue potential. The combined company will have six expected near-term product launches:
    • Two in immunology and inflammation, TYK2 and ozanimod; and
    • Four in hematology, luspatercept, liso-cel (JCAR017), bb2121 and fedratinib.

These launches leverage the combined commercial capabilities of the two companies and will broaden and enhance Bristol-Myers Squibb’s market position with innovative and differentiated products. This is in addition to a significant number of lifecycle management registrational readouts expected in Immuno-Oncology (IO).

  • Early-stage pipeline builds sustainable platform for growth. The combined company will have a deep and diverse early-stage pipeline across solid tumors and hematologic malignancies, immunology and inflammation, cardiovascular disease and fibrotic disease leveraging combined strengths in innovation. The early-stage pipeline includes 50 high potential assets, many with important data readouts in the near-term. With a significantly enhanced early-stage pipeline, Bristol-Myers Squibb will be well positioned for long-term growth and significant value creation.
  • Powerful combined discovery capabilities with world-class expertise in a broad range of modalities. Together, the Company will have expanded innovation capabilities in small molecule design, biologics/synthetic biologics, protein homeostasis, antibody engineering and cell therapy. Furthermore, strong external partnerships provide access to additional modalities.

Compelling Financial Benefits

  • Strong returns and significant immediate EPS accretion. The transaction’s internal rate of return is expected to be well in excess of Celgene’s and Bristol-Myers Squibb’s cost of capital. The combination is expected to be more than 40 percent accretive to Bristol-Myers Squibb’s EPS on a standalone basis in the first full year following close of the transaction.
  • Strong balance sheet and cash flow generation to enable significant investment in innovation. With more than $45 billion of expected free cash flow generation over the first three full years post-closing, the Company is committed to maintaining strong investment grade credit ratings while continuing its dividend policy for the benefit of Bristol-Myers Squibb and Celgene shareholders. Bristol-Myers Squibb will also have significant financial flexibility to realize the full potential of the enhanced late- and early-stage pipeline.
  • Meaningful cost synergies. Bristol-Myers Squibb expects to realize run-rate cost synergies of approximately $2.5 billion by 2022. Bristol-Myers Squibb is confident it will achieve efficiencies across the organization while maintaining a strong, core commitment to innovation and delivering the value of the portfolio.

Terms and Financing

Based on the closing price of Bristol-Myers Squibb stock on January 2, 2019, the cash and stock consideration to be received by Celgene shareholders is valued at $102.43 per share. The cash and stock consideration represents an approximately 51 percent premium to Celgene shareholders based on the 30-day volume weighted average closing stock price of Celgene prior to signing and an approximately 54 percent premium to Celgene shareholders based on the closing stock price of Celgene on January 2, 2019. Each share also will receive one tradeable CVR, which will entitle its holder to receive a one-time potential payment of $9.00 in cash upon FDA approval of all three of ozanimod (by December 31, 2020), liso-cel (JCAR017) (by December 31, 2020) and bb2121 (by March 31, 2021), in each case for a specified indication.

The transaction is not subject to a financing condition. The cash portion will be funded through a combination of cash on hand and debt financing. Bristol-Myers Squibb has obtained fully committed debt financing from Morgan Stanley Senior Funding, Inc. and MUFG Bank, Ltd. Following the close of the transaction, Bristol-Myers Squibb expects that substantially all of the debt of the combined company will be pari passu.

Accelerated Share Repurchase Program

Bristol-Myers Squibb expects to execute an accelerated share repurchase program of up to approximately $5 billion, subject to the closing of the transaction, market conditions and Board approval.

Corporate Governance

Following the close of the transaction, Dr. Caforio will continue to serve as Chairman of the Board and Chief Executive Officer of the company. Two members from Celgene’s Board will be added to the Board of Directors of Bristol-Myers Squibb. The combined company will continue to have a strong presence throughout New Jersey.

Approvals and Timing to Close

The transaction is subject to approval by Bristol-Myers Squibb and Celgene shareholders and the satisfaction of customary closing conditions and regulatory approvals. Bristol-Myers Squibb and Celgene expect to complete the transaction in the third quarter of 2019.

Advisors

Morgan Stanley & Co. LLC is serving as lead financial advisor to Bristol-Myers Squibb, and Evercore and Dyal Co. LLC are serving as financial advisors to Bristol-Myers Squibb. Kirkland & Ellis LLP is serving as Bristol-Myers Squibb’s legal counsel. J.P. Morgan Securities LLC is serving as lead financial advisor and Citi is acting as financial advisor to Celgene. Wachtell, Lipton, Rosen & Katz is serving as legal counsel to Celgene.

Bristol-Myers Squibb 2019 EPS Guidance

In a separate press release issued today, Bristol-Myers Squibb announced its 2019 EPS guidance for full-year 2019, which is available on the “Investor Relations” section of the Bristol-Myers Squibb website at https://www.bms.com/investors.html.

Conference Call

Bristol-Myers Squibb and Celgene will host a conference call today, at 8:00 a.m. ET to discuss the transaction. The conference call can be accessed by dialing (800) 347-6311 (U.S. / Canada) or (786) 460-7199 (International) and giving the passcode 4935567. A replay of the call will be available from January 3, 2019 until January 17, 2019 by dialing (888) 203-1112 (U.S. / Canada) or (719) 457-0820 (International) and giving the passcode 4935567.

A live webcast of the conference call will be available on the investor relations section of each company’s website at Bristol-Myers Squibb https://www.bms.com/investors.html and Celgene https://ir.celgene.com/investors/default.aspx.

Presentation and Infographic

Associated presentation materials and an infographic regarding the transaction will be available on the investor relations section of each company’s website at Bristol-Myers Squibb https://www.bms.com/investors.html and Celgene https://ir.celgene.com/investors/default.aspx as well as a joint transaction website at www.bestofbiopharma.com.

2.  Then through news on Bloomberg and some other financial sites on a possible interest of a merged Celgene-Bristol Myers from Pfizer as well as other pharma groups

Here’s How John Paulson Is Positioning His Celgene/Bristol Trade

Billionaire John Paulson sees a 10 percent to 20 percent chance that Bristol-Myers Squibb Co. receives a takeover bid and he’s positioning his Celgene Corp. trade based on that risk, he said in an interview on Mike Samuels’ “According to Sources” podcast.

Bristol-Myers “is vulnerable and it has an attractive pipeline to several potential acquirers,” Paulson said in the podcast released Monday. “It’s a reasonable probability,” he said. “You have to be prepared someone may show up. It’s an attractive spread, but you can’t take that big a position.”

John Paulson

Photographer: Jin Lee/Bloomberg

Paulson has the Celgene/Bristol-Myers trade as a 3 percent portfolio position, though his firm is short a pharma index rather than Bristol-Myers for about half of the position. If an activist did show up, it would likely blow out the spread from its current $13.85 to probably $20 and, if an actual bid arrived, he said the spread could move out to $40.

“I just don’t feel comfortable being short Bristol in this environment,” Paulson said. “You can sort of get the same economics by shorting an index, maybe even do better because, since Bristol came down, if the pharma sector goes up, Bristol may go up more than the pharma sector, which would increase the profitability on the Celgene. ”

Celgene fell as much as 2.2 percent on Tuesday, its biggest intraday drop since Dec. 27. Bristol-Myers also sank as much as 2.2 percent, the most since Jan. 9.

The question of whether Bristol-Myers receives a hostile takeover offerhas been the top issue for investors since the Celgene deal was announced. The drugmaker was pressured in February 2017 to add three new directors after holding talks with activist hedge fund Jana Partners LLC. The same month, the Wall Street Journal reported that Carl Icahn had taken a stake and saw Bristol-Myers as a takeover target.

Pfizer Inc., AbbVie Inc. or Amgen Inc. “make varying amounts of sense as suitors, though we see many barriers to someone making an offer,” Credit Suisse analyst Vamil Divan wrote in a note earlier this month. AbbVie and Amgen “have the balance sheet strength and could look to beef up their oncology presence.”

CNBC’s David Faber said Jan. 3 — the day the Celgene deal was announced — that there had been “absolutely” no talks between Bristol-Myers and potential acquirers.

Jefferies analyst Michael Yee wrote in note Tuesday that he doesn’t expect an unsolicited offer for Bristol-Myers to “thwart” its Celgene purchase. He sees the deal spread as “quite attractive” again at the current range of 18 percent to 20 percent after it had earlier narrowed to 11 percent to 12 percent.

Paulson managed about $8.7 billion at the the beginning of November.

From StatNews.com at https://www.statnews.com/2019/01/22/celgene-legacy-chutzpah-science-drug-pricing/

 

Nina Kjellson was just two years out of college, working as a research associate at Oracle Partners, a hedge fund in New York, when a cabbie gave her a stock tip. There was a company in New Jersey, he told her, trying to resurrect thalidomide, a drug that was infamous for causing severe birth defects, as a treatment for cancer.

Kjellson was born in Finland, where the memory of thalidomide, which was given to mothers to treat morning sickness but led to babies born without arms or legs, was particularly raw because the drug hit Northern Europe hard. But she was on the hunt for new cancer drugs, and her interest was piqued. She ended up investing a small amount of her own money in Celgene. That was 1999.

Since then, Celgene shares have risen more than 100-fold; the company became one of the largest biotechnology firms in the world. Earlier this month, rival Bristol-Myers Squibb announced plans to purchase Celgene for $74 billion in cash and stock.

Reflecting on a company she watched for two decades, Kjellson, now a venture capitalist at Canaan Partners in San Francisco, marveled at the “grit and chutzpah” that it took to push thalidomide back onto the market. “The company started taking off,” she remembered, “but not without an incredible reversal.” Celgene faced resistance from some thalidomide victims, and the Food and Drug Administration was lobbied not to revive the drug. In the end, she said, it built a golden egg and became a favorite partner of smaller biotech companies like the ones she funds. And it populated the rest of the pharmaceutical industry with its alumni. “If I had a nickel for every company that says we want to do Celgene-like deals,” she said, “I’d have better returns than from my venture career.”

But there’s another side to Celgene. When the company launched thalidomide as a treatment for leprosy in 1998, it cost $6 a pill. As it became clear that it was also an effective cancer drug, Celgene slowly raised the price, quadrupling it by the time it received approval for an improved molecule, Revlimid. Then, it slowly increased the price of Revlimid by a total of 145 percent, according to Sector & Sovereign LLC, a pharmaceutical consultancy.

Revlimid now costs $693 a pill. In 2017, Revlimid and another thalidomide-derived cancer drug represented 76 percent of Celgene’s $12.9 billion in annual sales. Kjellson gives the company credit for guts in science, for taking a terrible drug and resurrecting it. But it also had chutzpah when it came to what it charged.

A pioneer in ‘modern pricing’

How did the price of thalidomide, and then Revlimid, increase so much? Celgene explained it in a 2004 front-page story in the Wall Street Journal. “When we launched it, it was going to be an AIDS-wasting drug,” Celgene’s chief executive at the time, John Jackson, said. “We couldn’t charge more or there would have been demonstrations outside the company.” But once Celgene realized that the drug was a cancer treatment, the company decided to slowly bring thalidomide’s price more in line with other cancer medicines, such as Velcade, a rival medicine now sold by the Japanese drug giant Takeda. In 2003, it cost more than twice as much as thalidomide. “By bringing [the price] up every year, it was heading toward where it should be as a cancer drug,” Jackson told the Journal.

Thalidomide was not actually approved as a myeloma treatment until 2006. That same year, Revlimid, which causes less sleepiness and nerve pain than thalidomide, was approved, and Barer, the chemist behind Celgene’s thalidomide strategy, took over as chief executive. He made good on thalidomide’s promise, churning out one blockbuster after another. In 2017 Revlimid generated $8.2 billion. Another cancer drug derived from thalidomide, Pomalyst, generated $1.6 billion. Otezla, a very different drug also based on thalidomide’s chemistry, treats psoriasis and psoriatic arthritis. Its 2017 sales: $1.3 billion.

With persistent price increases, quarter after quarter, Celgene pioneered something else: what Wall Street calls “modern pricing.” Cancer drug prices have risen inexorably.

 

Updated 2/28/2019

From FiercePharma.com

BMS’ largest investor condemns Celgene deal—and it’s music to activists’ ears

Activist investor Starboard Value is officially rallying the troops against Bristol-Myers Squibb’s $74 billion Celgene deal, and thanks to a big investor’s thumbs-down, it’ll have more support than some expected. But the question is whether it’ll be enough to scuttle the merger.

Starboard CEO Jeffrey Smith penned a letter (PDF) to Bristol-Myers’ shareholders on Thursday labeling the transaction “poorly conceived and ill-advised.” It intends to vote its shares—which number 1.63 million, though the hedge fund is seeking more—against the deal, and it wants to see other shareholders do the same. It’ll be filing proxy materials “in the coming days” to solicit “no” votes from BMS investors, Smith said.

Starboard picked up its stake early this year after the deal was announced, BMS confirmed last week, but until now, the activist fund hasn’t been forthcoming about its intentions. But the timing of its reveal is likely no coincidence; just Wednesday, Wellington Management—which owns about 8% of Bristol-Myers’ shares and ranked as its largest institutional shareholder as of earlier this week—came out publicly against the “risky” buyout.

But while “we believe it is possible at least one other long-term top-five [shareholder] may disagree with the transaction, too,” RBC Capital Markets’ Michael Yee wrote in his own investor note, he—as many of his fellow analysts do—still expects to see the deal go through. “We think the vast majority of the acquirer holder base that would not like the deal already voted by selling their shares earlier, leaving investors who are mostly supportive of the deal,” he wrote.

Meanwhile, Starboard has been clear about one other thing: It wants board seats. It’s nominated five new directors, including CEO Smith, and investors will vote on that group at an as-yet-unscheduled meeting. Thing is, that meeting will take place after BMS investors vote on the Celgene deal in April, so Starboard will have to rally sufficient support against the deal if it wants to see them installed.

The “probability of a third-party buyer for Bristol-Myers Squibb” before the April vote is “very low,” BMO Capital Markets analysts wrote recently, adding that “we do not believe a potential activist can change that.” Barclays analysts agreed Wednesday, pointing to a “lack of realistic, potential alternatives that could collectively provide a similar level of upside.”

Additional posts on Pharma Mergers and Deals on this Open Access Journal include:

Live Conference Coverage Medcity Converge 2018 Philadelphia: Clinical Trials and Mega Health Mergers

First Annual FierceBiotech Drug Development Forum (DDF). Event covers the drug development process from basic research through clinical trials. InterContinental Hotel, Boston, September 19-21, 2016.

Pfizer Near Allergan Buyout Deal But Will Fed Allow It?

New Values for Capital Investment in Technology Disruption: Life Sciences Group @Google and the Future of the Rest of the Biotech Industry

Mapping the Universe of Pharmaceutical Business Intelligence: The Model developed by LPBI and the Model of Best Practices LLC

 

Read Full Post »


Changes in Levels of Sex Hormones and N-Terminal Pro–B-Type Natriuretic Peptide as Biomarker for Cardiovascular Diseases

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Considerable differences exist in the prevalence and manifestation of atherosclerotic cardiovascular disease (CVD) and heart failure (HF) between men and women. Premenopausal women have a lower risk of CVD and HF compared with men; however, this risk increases after menopause. Sex hormones, particularly androgens, are associated with CVD risk factors and events and have been postulated to mediate the observed sex differences in CVD.

 

B-type natriuretic peptides (BNPs) are secreted from cardiomyocytes in response to myocardial wall stress. BNP plays an important role in cardiovascular remodelling and volume homeostasis. It exerts numerous cardioprotective effects by promoting vasodilation, natriuresis, and ventricular relaxation and by antagonizing fibrosis and the effects of the renin-angiotensin-aldosterone system. Although the physiological role of BNP is cardioprotective, pathologically elevated N-terminal pro–BNP (NT-proBNP) levels are used clinically to indicate left ventricular hypertrophy, dysfunction, and myocardial ischemia. Higher NT-proBNP levels among individuals free of clinical CVD are associated with an increased risk of incident CVD, HF, and cardiovascular mortality.

 

BNP and NT-proBNP levels are higher in women than men in the general population. Several studies have proposed the use of sex- and age-specific reference ranges for BNP and NT-proBNP levels, in which reference limits are higher for women and older individuals. The etiology behind this sex difference has not been fully elucidated, but prior studies have demonstrated an association between sex hormones and NT-proBNP levels. Recent studies measuring endogenous sex hormones have suggested that androgens may play a larger role in BNP regulation by inhibiting its production.

 

Data were collected from a large, multiethnic community-based cohort of individuals free of CVD and HF at baseline to analyze both the cross-sectional and longitudinal associations between sex hormones [total testosterone (T), bioavailable T, freeT, dehydroepiandrosterone (DHEA), SHBG, and estradiol] and NT-proBNP, separately for women and men. It was found that a more androgenic pattern of sex hormones was independently associated with lower NT-proBNP levels in cross-sectional analyses in men and postmenopausal women.

 

This association may help explain sex differences in the distribution of NT-proBNP and may contribute to the NP deficiency in men relative to women. In longitudinal analyses, a more androgenic pattern of sex hormones was associated with a greater increase in NT-proBNP levels in both sexes, with a more robust association among women. This relationship may reflect a mechanism for the increased risk of CVD and HF seen in women after menopause.

 

Additional research is needed to further explore whether longitudinal changes in NT-proBNP levels seen in our study are correlated with longitudinal changes in sex hormones. The impact of menopause on changes in NT-proBNP levels over time should also be explored. Furthermore, future studies should aim to determine whether sex hormones directly play a role in biological pathways of BNP synthesis and clearance in a causal fashion. Lastly, the dual role of NTproBNP as both

  • a cardioprotective hormone and
  • a biomarker of CVD and HF, as well as
  • the role of sex hormones in delineating these processes,

should be further explored. This would provide a step toward improved clinical CVD risk stratification and prognostication based on

  • sex hormone and
  • NT-proBNP levels.

 

References:

 

https://www.medpagetoday.com/clinical-connection/cardio-endo/76480?xid=NL_CardioEndoConnection_2018-12-27

 

https://www.ncbi.nlm.nih.gov/pubmed/30137406

 

https://www.ncbi.nlm.nih.gov/pubmed/22064958

 

https://www.ncbi.nlm.nih.gov/pubmed/24036936

 

https://www.ncbi.nlm.nih.gov/pubmed/19854731

 

Read Full Post »


Role of Informatics in Precision Medicine: Notes from Boston Healthcare Webinar: Can It Drive the Next Cost Efficiencies in Oncology Care?

Reporter: Stephen J. Williams, Ph.D.

 

Boston Healthcare sponsored a Webinar recently entitled ” Role of Informatics in Precision Medicine: Implications for Innovators”.  The webinar focused on the different informatic needs along the Oncology Care value chain from drug discovery through clinicians, C-suite executives and payers. The presentation, by Joseph Ferrara and Mark Girardi, discussed the specific informatics needs and deficiencies experienced by all players in oncology care and how innovators in this space could create value. The final part of the webinar discussed artificial intelligence and the role in cancer informatics.

 

Below is the mp4 video and audio for this webinar.  Notes on each of the slides with a few representative slides are also given below:

Please click below for the mp4 of the webinar:

 

 


  • worldwide oncology related care to increase by 40% in 2020
  • big movement to participatory care: moving decision making to the patient. Need for information
  • cost components focused on clinical action
  • use informatics before clinical stage might add value to cost chain

 

 

 

 

Key unmet needs from perspectives of different players in oncology care where informatics may help in decision making

 

 

 

  1.   Needs of Clinicians

– informatic needs for clinical enrollment

– informatic needs for obtaining drug access/newer therapies

2.  Needs of C-suite/health system executives

– informatic needs to help focus of quality of care

– informatic needs to determine health outcomes/metrics

3.  Needs of Payers

– informatic needs to determine quality metrics and managing costs

– informatics needs to form guidelines

– informatics needs to determine if biomarkers are used consistently and properly

– population level data analytics

 

 

 

 

 

 

 

 

 

 

 

 

What are the kind of value innovations that tech entrepreneurs need to create in this space? Two areas/problems need to be solved.

  • innovations in data depth and breadth
  • need to aggregate information to inform intervention

Different players in value chains have different data needs

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data Depth: Cumulative Understanding of disease

Data Depth: Cumulative number of oncology transactions

  • technology innovators rely on LEGACY businesses (those that already have technology) and these LEGACY businesses either have data breath or data depth BUT NOT BOTH; (IS THIS WHERE THE GREATEST VALUE CAN BE INNOVATED?)
  • NEED to provide ACTIONABLE as well as PHENOTYPIC/GENOTYPIC DATA
  • data depth more important in clinical setting as it drives solutions and cost effective interventions.  For example Foundation Medicine, who supplies genotypic/phenotypic data for patient samples supplies high data depth
  • technologies are moving to data support
  • evidence will need to be tied to umbrella value propositions
  • Informatic solutions will have to prove outcome benefit

 

 

 

 

 

How will Machine Learning be involved in the healthcare value chain?

  • increased emphasis on real time datasets – CONSTANT UPDATES NEED TO OCCUR. THIS IS NOT HAPPENING BUT VALUED BY MANY PLAYERS IN THIS SPACE
  • Interoperability of DATABASES Important!  Many Players in this space don’t understand the complexities integrating these datasets

Other Articles on this topic of healthcare informatics, value based oncology, and healthcare IT on this OPEN ACCESS JOURNAL include:

Centers for Medicare & Medicaid Services announced that the federal healthcare program will cover the costs of cancer gene tests that have been approved by the Food and Drug Administration

Broad Institute launches Merkin Institute for Transformative Technologies in Healthcare

HealthCare focused AI Startups from the 100 Companies Leading the Way in A.I. Globally

Paradoxical Findings in HealthCare Delivery and Outcomes: Economics in MEDICINE – Original Research by Anupam “Bapu” Jena, the Ruth L. Newhouse Associate Professor of Health Care Policy at HMS

Google & Digital Healthcare Technology

Can Blockchain Technology and Artificial Intelligence Cure What Ails Biomedical Research and Healthcare

The Future of Precision Cancer Medicine, Inaugural Symposium, MIT Center for Precision Cancer Medicine, December 13, 2018, 8AM-6PM, 50 Memorial Drive, Cambridge, MA

Live Conference Coverage @Medcity Converge 2018 Philadelphia: Oncology Value Based Care and Patient Management

2016 BioIT World: Track 5 – April 5 – 7, 2016 Bioinformatics Computational Resources and Tools to Turn Big Data into Smart Data

The Need for an Informatics Solution in Translational Medicine

 

 

 

 

Read Full Post »


Can Blockchain Technology and Artificial Intelligence Cure What Ails Biomedical Research and Healthcare

Curator: Stephen J. Williams, Ph.D.

Updated 12/18/2018

In the efforts to reduce healthcare costs, provide increased accessibility of service for patients, and drive biomedical innovations, many healthcare and biotechnology professionals have looked to advances in digital technology to determine the utility of IT to drive and extract greater value from healthcare industry.  Two areas of recent interest have focused how best to use blockchain and artificial intelligence technologies to drive greater efficiencies in our healthcare and biotechnology industries.

More importantly, with the substantial increase in ‘omic data generated both in research as well as in the clinical setting, it has become imperative to develop ways to securely store and disseminate the massive amounts of ‘omic data to various relevant parties (researchers or clinicians), in an efficient manner yet to protect personal privacy and adhere to international regulations.  This is where blockchain technologies may play an important role.

A recent Oncotarget paper by Mamoshina et al. (1) discussed the possibility that next-generation artificial intelligence and blockchain technologies could synergize to accelerate biomedical research and enable patients new tools to control and profit from their personal healthcare data, and assist patients with their healthcare monitoring needs. According to the abstract:

The authors introduce new concepts to appraise and evaluate personal records, including the combination-, time- and relationship value of the data.  They also present a roadmap for a blockchain-enabled decentralized personal health data ecosystem to enable novel approaches for drug discovery, biomarker development, and preventative healthcare.  In this system, blockchain and deep learning technologies would provide the secure and transparent distribution of personal data in a healthcare marketplace, and would also be useful to resolve challenges faced by the regulators and return control over personal data including medical records to the individual.

The review discusses:

  1. Recent achievements in next-generation artificial intelligence
  2. Basic concepts of highly distributed storage systems (HDSS) as a preferred method for medical data storage
  3. Open source blockchain Exonium and its application for healthcare marketplace
  4. A blockchain-based platform allowing patients to have control of their data and manage access
  5. How advances in deep learning can improve data quality, especially in an era of big data

Advances in Artificial Intelligence

  • Integrative analysis of the vast amount of health-associated data from a multitude of large scale global projects has proven to be highly problematic (REF 27), as high quality biomedical data is highly complex and of a heterogeneous nature, which necessitates special preprocessing and analysis.
  • Increased computing processing power and algorithm advances have led to significant advances in machine learning, especially machine learning involving Deep Neural Networks (DNNs), which are able to capture high-level dependencies in healthcare data. Some examples of the uses of DNNs are:
  1. Prediction of drug properties(2, 3) and toxicities(4)
  2. Biomarker development (5)
  3. Cancer diagnosis (6)
  4. First FDA approved system based on deep learning Arterys Cardio DL
  • Other promising systems of deep learning include:
    • Generative Adversarial Networks (https://arxiv.org/abs/1406.2661): requires good datasets for extensive training but has been used to determine tumor growth inhibition capabilities of various molecules (7)
    • Recurrent neural Networks (RNN): Originally made for sequence analysis, RNN has proved useful in analyzing text and time-series data, and thus would be very useful for electronic record analysis. Has also been useful in predicting blood glucose levels of Type I diabetic patients using data obtained from continuous glucose monitoring devices (8)
    • Transfer Learning: focused on translating information learned on one domain or larger dataset to another, smaller domain. Meant to reduce the dependence on large training datasets that RNN, GAN, and DNN require.  Biomedical imaging datasets are an example of use of transfer learning.
    • One and Zero-Shot Learning: retains ability to work with restricted datasets like transfer learning. One shot learning aimed to recognize new data points based on a few examples from the training set while zero-shot learning aims to recognize new object without seeing the examples of those instances within the training set.

Highly Distributed Storage Systems (HDSS)

The explosion in data generation has necessitated the development of better systems for data storage and handling. HDSS systems need to be reliable, accessible, scalable, and affordable.  This involves storing data in different nodes and the data stored in these nodes are replicated which makes access rapid. However data consistency and affordability are big challenges.

Blockchain is a distributed database used to maintain a growing list of records, in which records are divided into blocks, locked together by a crytosecurity algorithm(s) to maintain consistency of data.  Each record in the block contains a timestamp and a link to the previous block in the chain.  Blockchain is a distributed ledger of blocks meaning it is owned and shared and accessible to everyone.  This allows a verifiable, secure, and consistent history of a record of events.

Data Privacy and Regulatory Issues

The establishment of the Health Insurance Portability and Accountability Act (HIPAA) in 1996 has provided much needed regulatory guidance and framework for clinicians and all concerned parties within the healthcare and health data chain.  The HIPAA act has already provided much needed guidance for the latest technologies impacting healthcare, most notably the use of social media and mobile communications (discussed in this article  Can Mobile Health Apps Improve Oral-Chemotherapy Adherence? The Benefit of Gamification.).  The advent of blockchain technology in healthcare offers its own unique challenges however HIPAA offers a basis for developing a regulatory framework in this regard.  The special standards regarding electronic data transfer are explained in HIPAA’s Privacy Rule, which regulates how certain entities (covered entities) use and disclose individual identifiable health information (Protected Health Information PHI), and protects the transfer of such information over any medium or electronic data format. However, some of the benefits of blockchain which may revolutionize the healthcare system may be in direct contradiction with HIPAA rules as outlined below:

Issues of Privacy Specific In Use of Blockchain to Distribute Health Data

  • Blockchain was designed as a distributed database, maintained by multiple independent parties, and decentralized
  • Linkage timestamping; although useful in time dependent data, proof that third parties have not been in the process would have to be established including accountability measures
  • Blockchain uses a consensus algorithm even though end users may have their own privacy key
  • Applied cryptography measures and routines are used to decentralize authentication (publicly available)
  • Blockchain users are divided into three main categories: 1) maintainers of blockchain infrastructure, 2) external auditors who store a replica of the blockchain 3) end users or clients and may have access to a relatively small portion of a blockchain but their software may use cryptographic proofs to verify authenticity of data.

 

YouTube video on How #Blockchain Will Transform Healthcare in 25 Years (please click below)

 

 

In Big Data for Better Outcomes, BigData@Heart, DO->IT, EHDN, the EU data Consortia, and yes, even concepts like pay for performance, Richard Bergström has had a hand in their creation. The former Director General of EFPIA, and now the head of health both at SICPA and their joint venture blockchain company Guardtime, Richard is always ahead of the curve. In fact, he’s usually the one who makes the curve in the first place.

 

 

 

Please click on the following link for a podcast on Big Data, Blockchain and Pharma/Healthcare by Richard Bergström:

References

  1. Mamoshina, P., Ojomoko, L., Yanovich, Y., Ostrovski, A., Botezatu, A., Prikhodko, P., Izumchenko, E., Aliper, A., Romantsov, K., Zhebrak, A., Ogu, I. O., and Zhavoronkov, A. (2018) Converging blockchain and next-generation artificial intelligence technologies to decentralize and accelerate biomedical research and healthcare, Oncotarget 9, 5665-5690.
  2. Aliper, A., Plis, S., Artemov, A., Ulloa, A., Mamoshina, P., and Zhavoronkov, A. (2016) Deep Learning Applications for Predicting Pharmacological Properties of Drugs and Drug Repurposing Using Transcriptomic Data, Molecular pharmaceutics 13, 2524-2530.
  3. Wen, M., Zhang, Z., Niu, S., Sha, H., Yang, R., Yun, Y., and Lu, H. (2017) Deep-Learning-Based Drug-Target Interaction Prediction, Journal of proteome research 16, 1401-1409.
  4. Gao, M., Igata, H., Takeuchi, A., Sato, K., and Ikegaya, Y. (2017) Machine learning-based prediction of adverse drug effects: An example of seizure-inducing compounds, Journal of pharmacological sciences 133, 70-78.
  5. Putin, E., Mamoshina, P., Aliper, A., Korzinkin, M., Moskalev, A., Kolosov, A., Ostrovskiy, A., Cantor, C., Vijg, J., and Zhavoronkov, A. (2016) Deep biomarkers of human aging: Application of deep neural networks to biomarker development, Aging 8, 1021-1033.
  6. Vandenberghe, M. E., Scott, M. L., Scorer, P. W., Soderberg, M., Balcerzak, D., and Barker, C. (2017) Relevance of deep learning to facilitate the diagnosis of HER2 status in breast cancer, Scientific reports 7, 45938.
  7. Kadurin, A., Nikolenko, S., Khrabrov, K., Aliper, A., and Zhavoronkov, A. (2017) druGAN: An Advanced Generative Adversarial Autoencoder Model for de Novo Generation of New Molecules with Desired Molecular Properties in Silico, Molecular pharmaceutics 14, 3098-3104.
  8. Ordonez, F. J., and Roggen, D. (2016) Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition, Sensors (Basel) 16.

Articles from clinicalinformaticsnews.com

Healthcare Organizations Form Synaptic Health Alliance, Explore Blockchain’s Impact On Data Quality

From http://www.clinicalinformaticsnews.com/2018/12/05/healthcare-organizations-form-synaptic-health-alliance-explore-blockchains-impact-on-data-quality.aspx

By Benjamin Ross

December 5, 2018 | The boom of blockchain and distributed ledger technologies have inspired healthcare organizations to test the capabilities of their data. Quest Diagnostics, in partnership with Humana, MultiPlan, and UnitedHealth Group’s Optum and UnitedHealthcare, have launched a pilot program that applies blockchain technology to improve data quality and reduce administrative costs associated with changes to healthcare provider demographic data.

The collective body, called Synaptic Health Alliance, explores how blockchain can keep only the most current healthcare provider information available in health plan provider directories. The alliance plans to share their progress in the first half of 2019.

Providing consumers looking for care with accurate information when they need it is essential to a high-functioning overall healthcare system, Jason O’Meara, Senior Director of Architecture at Quest Diagnostics, told Clinical Informatics News in an email interview.

“We were intentional about calling ourselves an alliance as it speaks to the shared interest in improving health care through better, collaborative use of an innovative technology,” O’Meara wrote. “Our large collective dataset and national footprints enable us to prove the value of data sharing across company lines, which has been limited in healthcare to date.”

O’Meara said Quest Diagnostics has been investing time and resources the past year or two in understanding blockchain, its ability to drive purpose within the healthcare industry, and how to leverage it for business value.

“Many health care and life science organizations have cast an eye toward blockchain’s potential to inform their digital strategies,” O’Meara said. “We recognize it takes time to learn how to leverage a new technology. We started exploring the technology in early 2017, but we quickly recognized the technology’s value is in its application to business to business use cases: to help transparently share information, automate mutually-beneficial processes and audit interactions.”

Quest began discussing the potential for an alliance with the four other companies a year ago, O’Meara said. Each company shared traits that would allow them to prove the value of data sharing across company lines.

“While we have different perspectives, each member has deep expertise in healthcare technology, a collaborative culture, and desire to continuously improve the patient/customer experience,” said O’Meara. “We also recognize the value of technology in driving efficiencies and quality.”

Following its initial launch in April, Synaptic Health Alliance is deploying a multi-company, multi-site, permissioned blockchain. According to a whitepaper published by Synaptic Health, the choice to use a permissioned blockchain rather than an anonymous one is crucial to the alliance’s success.

“This is a more effective approach, consistent with enterprise blockchains,” an alliance representative wrote. “Each Alliance member has the flexibility to deploy its nodes based on its enterprise requirements. Some members have elected to deploy their nodes within their own data centers, while others are using secured public cloud services such as AWS and Azure. This level of flexibility is key to growing the Alliance blockchain network.”

As the pilot moves forward, O’Meara says the Alliance plans to open ability to other organizations. Earlier this week Aetna and Ascension announced they joined the project.

“I am personally excited by the amount of cross-company collaboration facilitated by this project,” O’Meara says. “We have already learned so much from each other and are using that knowledge to really move the needle on improving healthcare.”

 

US Health And Human Services Looks To Blockchain To Manage Unstructured Data

http://www.clinicalinformaticsnews.com/2018/11/29/us-health-and-human-services-looks-to-blockchain-to-manage-unstructured-data.aspx

By Benjamin Ross

November 29, 2018 | The US Department of Health and Human Services (HHS) is making waves in the blockchain space. The agency’s Division of Acquisition (DA) has developed a new system, called Accelerate, which gives acquisition teams detailed information on pricing, terms, and conditions across HHS in real-time. The department’s Associate Deputy Assistant Secretary for Acquisition, Jose Arrieta, gave a presentation and live demo of the blockchain-enabled system at the Distributed: Health event earlier this month in Nashville, Tennessee.

Accelerate is still in the prototype phase, Arrieta said, with hopes that the new system will be deployed at the end of the fiscal year.

HHS spends around $25 billion a year in contracts, Arrieta said. That’s 100,000 contracts a year with over one million pages of unstructured data managed through 45 different systems. Arrieta and his team wanted to modernize the system.

“But if you’re going to change the way a workforce of 20,000 people do business, you have to think your way through how you’re going to do that,” said Arrieta. “We didn’t disrupt the existing systems: we cannibalized them.”

The cannibalization process resulted in Accelerate. According to Arrieta, the system functions by creating a record of data rather than storing it, leveraging machine learning, artificial intelligence (AI), and robotic process automation (RPA), all through blockchain data.

“We’re using that data record as a mechanism to redesign the way we deliver services through micro-services strategies,” Arrieta said. “Why is that important? Because if you have a single application or data use that interfaces with 55 other applications in your business network, it becomes very expensive to make changes to one of the 55 applications.”

Accelerate distributes the data to the workforce, making it available to them one business process at a time.

“We’re building those business processes without disrupting the existing systems,” said Arrieta, and that’s key. “We’re not shutting off those systems. We’re using human-centered design sessions to rebuild value exchange off of that data.”

The first application for the system, Arrieta said, can be compared to department stores price-matching their online competitors.

It takes the HHS close to a month to collect the amalgamation of data from existing system, whether that be terms and conditions that drive certain price points, or software licenses.

“The micro-service we built actually analyzes that data, and provides that information to you within one second,” said Arrieta. “This is distributed to the workforce, to the 5,000 people that do the contracting, to the 15,000 people that actually run the programs at [HHS].”

This simple micro-service is replicated on every node related to HHS’s internal workforce. If somebody wants to change the algorithm to fit their needs, they can do that in a distributed manner.

Arrieta hopes to use Accelerate to save researchers money at the point of purchase. The program uses blockchain to simplify the process of acquisition.

“How many of you work with the federal government?” Arrieta asked the audience. “Do you get sick of reentering the same information over and over again? Every single business opportunity you apply for, you have to resubmit your financial information. You constantly have to check for validation and verification, constantly have to resubmit capabilities.”

Wouldn’t it be better to have historical notes available for each transaction? said Arrieta. This would allow clinical researchers to be able to focus on “the things they’re really good at,” instead of red tape.

“If we had the top cancer researcher in the world, would you really want her spending her time learning about federal regulations as to how to spend money, or do you want her trying to solve cancer?” Arrieta said. “What we’re doing is providing that data to the individual in a distributed manner so they can read the information of historical purchases that support activity, and they can focus on the objectives and risks they see as it relates to their programming and their objectives.”

Blockchain also creates transparency among researchers, Arrieta said, which says creates an “uncomfortable reality” in the fact that they have to make a decision regarding data, fundamentally changing value exchange.

“The beauty of our business model is internal investment,” Arrieta said. For instance, the HHS could take all the sepsis data that exists in their system, put it into a distributed ledger, and share it with an external source.

“Maybe that could fuel partnership,” Arrieta said. “I can make data available to researchers in the field in real-time so they can actually test their hypothesis, test their intuition, and test their imagination as it relates to solving real-world problems.”

 

Shivom is creating a genomic data hub to elongate human life with AI

From VentureBeat.com
Blockchain-based genomic data hub platform Shivom recently reached its $35 million hard cap within 15 seconds of opening its main token sale. Shivom received funding from a number of crypto VC funds, including Collinstar, Lateral, and Ironside.

The goal is to create the world’s largest store of genomic data while offering an open web marketplace for patients, data donors, and providers — such as pharmaceutical companies, research organizations, governments, patient-support groups, and insurance companies.

“Disrupting the whole of the health care system as we know it has to be the most exciting use of such large DNA datasets,” Shivom CEO Henry Ines told me. “We’ll be able to stratify patients for better clinical trials, which will help to advance research in precision medicine. This means we will have the ability to make a specific drug for a specific patient based on their DNA markers. And what with the cost of DNA sequencing getting cheaper by the minute, we’ll also be able to sequence individuals sooner, so young children or even newborn babies could be sequenced from birth and treated right away.”

While there are many solutions examining DNA data to explain heritage, intellectual capabilities, health, and fitness, the potential of genomic data has largely yet to be unlocked. A few companies hold the monopoly on genomic data and make sizeable profits from selling it to third parties, usually without sharing the earnings with the data donor. Donors are also not informed if and when their information is shared, nor do they have any guarantee that their data is secure from hackers.

Shivom wants to change that by creating a decentralized platform that will break these monopolies, democratizing the processes of sharing and utilizing the data.

“Overall, large DNA datasets will have the potential to aid in the understanding, prevention, diagnosis, and treatment of every disease known to mankind, and could create a future where no diseases exist, or those that do can be cured very easily and quickly,” Ines said. “Imagine that, a world where people do not get sick or are already aware of what future diseases they could fall prey to and so can easily prevent them.”

Shivom’s use of blockchain technology and smart contracts ensures that all genomic data shared on the platform will remain anonymous and secure, while its OmiX token incentivizes users to share their data for monetary gain.

Rise in Population Genomics: Local Government in India Will Use Blockchain to Secure Genetic Data

Blockchain will secure the DNA database for 50 million citizens in the eighth-largest state in India. The government of Andhra Pradesh signed a Memorandum of Understanding with a German genomics and precision medicine start-up, Shivom, which announced to start the pilot project soon. The move falls in line with a trend for governments turning to population genomics, and at the same time securing the sensitive data through blockchain.

Andhra Pradesh, DNA, and blockchain

Storing sensitive genetic information safely and securely is a big challenge. Shivom builds a genomic data-hub powered by blockchain technology. It aims to connect researchers with DNA data donors thus facilitating medical research and the healthcare industry.

With regards to Andhra Pradesh, the start-up will first launch a trial to determine the viability of their technology for moving from a proactive to a preventive approach in medicine, and towards precision health. “Our partnership with Shivom explores the possibilities of providing an efficient way of diagnostic services to patients of Andhra Pradesh by maintaining the privacy of the individual data through blockchain technologies,” said J A Chowdary, IT Advisor to Chief Minister, Government of Andhra Pradesh.

Other Articles in this Open Access Journal on Digital Health include:

Can Mobile Health Apps Improve Oral-Chemotherapy Adherence? The Benefit of Gamification.

Medical Applications and FDA regulation of Sensor-enabled Mobile Devices: Apple and the Digital Health Devices Market

 

How Social Media, Mobile Are Playing a Bigger Part in Healthcare

 

E-Medical Records Get A Mobile, Open-Sourced Overhaul By White House Health Design Challenge Winners

 

Medcity Converge 2018 Philadelphia: Live Coverage @pharma_BI

 

Digital Health Breakthrough Business Models, June 5, 2018 @BIOConvention, Boston, BCEC

 

 

 

 

 

 

Read Full Post »


CMS initiative in Modernizing Medicare to lead to Lower Prescription Drug Costs

Reporter: Aviva Lev-Ari, PhD, RN

 

CMS Takes Action to Lower Prescription Drug Costs by Modernizing Medicare

 

     

CMS Takes Action to Lower Prescription Drug Costs by Modernizing Medicare 
Proposed regulation for Medicare Parts C & D would strengthen negotiations with prescription drug manufacturers to lower costs and increase transparency for patients

Today, the Centers for Medicare & Medicaid Services (CMS) proposed polices for 2020 to strengthen and modernize the Medicare Part C and D programs. The proposal would ensure that Medicare Advantage and Part D plans have more tools to negotiate lower drug prices, and the agency is also considering a policy that would require pharmacy rebates to be passed on to seniors to lower their drug costs at the pharmacy counter.

“President Trump is following through on his promise to bring tougher negotiation to Medicare and bring down drug costs for patients, without restricting patient access or choice,” said HHS Secretary Alex Azar. “By bringing the latest tools from the private sector to Medicare Part D, we can save money for taxpayers and seniors, improve access to expensive drugs many seniors need, and expand their choice of plans. The Part D proposals complement efforts to bring down costs in Medicare Advantage and in Medicare Part B through negotiation, all part of the President’s plan to put American patients first by bringing down prescription-drug prices and out-of-pocket costs.”

In the twelve years since the Part D program was launched, many of the tools outlined in today’s proposal have been developed in the commercial health insurance marketplace, and the result has been lower costs for patients. Seniors in Medicare also deserve to benefit from these approaches to reducing costs, so today CMS is proposing to modernize the Medicare Advantage and Part D programs and remove barriers that keep plans from leveraging these tools.

“In designing today’s proposal, foremost in the agency’s mind was the impact on patients, and the proposal is yet another action CMS has taken to deliver on President Trump and Secretary Azar’s commitment on drug prices,” said CMS Administrator Seema Verma. “Today’s changes will provide seniors with more plan options featuring lower costs for prescription drugs, and seniors will remain in the driver’s seat as they can choose the plan that works best for them. The result will be increasing access to the medicines that seniors depend on by lowering their out-of-pocket costs.”

Private plan options for receiving Medicare benefits are increasing in popularity, with almost 37 percent of Medicare beneficiaries expected to enroll in Medicare Advantage in 2019, and Part D enrollment increasing year-over-year as well. The programs are driven by market competition; plans compete for beneficiaries’ business, and each enrollee chooses the plan that best meets his or her needs. Consumer choice puts pressure on plans to improve quality and lower costs.  Premiums in both Medicare Advantage and Part D are projected to decline next year.

Today’s proposed changes include:

  • Providing Part D plans with greater flexibility to negotiate discounts for drugs in “protected” therapeutic classes, so beneficiaries who need these drugs will see lower costs;
  • Requiring Part D plans to increase transparency and provide enrollees and their doctors with a patient’s out-of-pocket cost obligations for prescription drugs when a prescription is written;
  • Codifying a policy similar to the one implemented for 2019 to allow “step therapy” in Medicare Advantage for Part B drugs, encouraging access to high-value products including biosimilars; and
  • Implementing a statutory requirement, recently signed by President Trump, that prohibits pharmacy gag clauses in Part D.

CMS is also considering for a future plan year, which may be as early as 2020, a policy that would ensure that enrollees pay the lowest cost for the prescription drugs they pick up at a pharmacy, after taking into account back-end payments from pharmacies to plans.

Medicare Advantage and Part D will continue to protect patient access, as both programs are embedded with robust beneficiary protections. These include CMS’s review of Part D plan formularies, an expedited appeals process, and a requirement for plans to cover two drugs in every therapeutic class.

CMS looks forward to receiving comments on these proposals and other policies under consideration.

For a blog post on the proposed rule by Secretary Azar and Administrator Verma, please visit: https://www.cms.gov/blog/proposed-changes-lower-drug-prices-medicare-advantage-and-part-d.

For a fact sheet on the proposed rule, please visit: https://www.cms.gov/newsroom/fact-sheets/contract-year-cy-2020-medicare-advantage-and-part-d-drug-pricing-proposed-rule-cms-4180-p.

The proposed rule (CMS-4180-P) can be downloaded from the Federal Register at: https://s3.amazonaws.com/public-inspection.federalregister.gov/2018-25945.pdf

###

Get CMS news at cms.gov/newsroom, sign up for CMS news via email and follow CMS on Twitter CMS Administrator @SeemaCMS

SOURCE

https://www.cms.gov/newsroom/press-releases/cms-takes-action-lower-prescription-drug-costs-modernizing-medicare?mc_cid=ca8901d1c5&mc_eid=32328d8919

Read Full Post »

Older Posts »