Feeds:
Posts
Comments

Posts Tagged ‘Biopharmaceutical’

A Timeline of Dr. Gottlieb’s Tenure at the FDA: 2017-2019

Reporter: Stephen J. Williams, Ph.D.

 

From FiercePharma.com

FDA chief Scott Gottlieb steps down, leaving pet projects behind

Scott Gottlieb FDA
FDA Commissioner Scott Gottlieb was appointed by President Trump in 2017. (FDA)

Also under his command, the FDA took quick and decisive action on drug costs. The commissioner worked to boost generic approvals and crack down on regulatory “gaming” that stifles competition. He additionally blamed branded drug companies for an “anemic” U.S. biosimilars market and recently blasted insulin pricing.

His sudden departure will likely leave many agency efforts to lower costs up in the air. After the news broke, many pharma watchers posted on Twitter that Gottlieb’s resignation is a loss for the industry.

During his tenure as FDA commissioner, Gottlieb’s name had been floated for HHS chief when former HHS secretary Tom Price resigned due to a travel scandal, but Gottlieb said he was best suited for the FDA commissioner job. Now, former Eli Lilly executive Alex Azar serves as HHS secretary, and on Tuesday afternoon, Azar praised Gottlieb for his work at the agency.

Also read from FiercePharma:

Gottlieb’s quick goodbye triggers investor panic, biopharma bewilderment and at least one good riddance

AUDIT Podcast

An emergency Scott Gottlieb podcast

 

Why is Scott Gottlieb quitting the FDA? Who will replace him?

 

A Timeline of Dr. Gottlieb’s Tenure at the FDA

From FiercePharma.com

New FDA commissioner Gottlieb unveils price-fighting strategies

Scott Gottlieb
New FDA commissioner Scott Gottlieb laid out some approaches the agency will take to fight high prices.

UPDATED 3/19/2019

Dr. Norman E. Sharpless was named acting commissioner of the Food and Drug Administration on Tuesday. For the last 18 months, he had been director of the National Cancer Institute.CreditTom Williams/CQ Roll Call, via Getty Images
Image
Dr. Norman E. Sharpless was named acting commissioner of the Food and Drug Administration on Tuesday. For the last 18 months, he had been director of the National Cancer Institute.CreditCreditTom Williams/CQ Roll Call, via Getty Images

WASHINGTON — Dr. Norman E. (Ned) Sharpless, director of the National Cancer Institute, will serve as acting commissioner of the Food and Drug Administration, Alex M. Azar III, secretary of health and human services, announced on Tuesday.

Dr. Sharpless temporarily will fill the post being vacated by Dr. Scott Gottlieb, who stunned public health experts, lawmakers and consumer groups last week when he abruptly announced that he was resigningfor personal reasons.

Dr. Sharpless has been director of the cancer center, part of the National Institutes of Health, since October 2017. He is also chief of the aging biology and cancer section in the National Institute on Aging’s Laboratory of Genetics and Genomics. His research focuses on the relationship between aging and cancer, and development of new treatments for melanoma, lung cancer and breast cancer.

“Dr. Sharpless’s deep scientific background and expertise will make him a strong leader for F.D.A.,” said Mr. Azar, in a statement. “There will be no let up in the agency’s focus, from ongoing efforts on drug approvals and combating the opioid crisis to modernizing food safety and addressing the rapid rise in youth use of e-cigarettes.”

Dr. Douglas Lowy, known for seminal research on the link between human papillomavirus and multiple cancer types including cervical, and ultimately leading to development of a vaccine, will be named head of the NCI to replace Dr. Sharpless. Dr. Lowy currently is Deputy Director of the NCI.

Other posts on the Food and Drug Administration and FDA Approvals during Dr. Gotlieb’s Tenure on this Open Access Journal Include:

 

Regulatory Affairs: Publications on FDA-related Issues – Aviva Lev-Ari, PhD, RN

FDA Approves La Jolla’s Angiotensin 2

In 2018, FDA approved an all-time record of 62 new therapeutic drugs (NTDs) [Not including diagnostic imaging agents, included are combination products with at least one new molecular entity as an active ingredient] with average Peak Sales per NTD $1.2Billion.

Alnylam Announces First-Ever FDA Approval of an RNAi Therapeutic, ONPATTRO™ (patisiran) for the Treatment of the Polyneuropathy of Hereditary Transthyretin-Mediated Amyloidosis in Adults

FDA: Rejects NDA filing: “clinical and non-clinical pharmacology sections of the application were not sufficient to complete a review”: Celgene’s Relapsing Multiple Sclerosis Drug – Ozanimod

Expanded Stroke Thrombectomy Guidelines: FDA expands treatment window for use (Up to 24 Hours Post-Stroke) of clot retrieval devices (Stryker’s Trevo Stent) in certain stroke patients

In 2017, FDA approved a record number of 19 personalized medicines — 16 new molecular entities and 3 gene therapies – PMC’s annual analysis, titled Personalized Medicine at FDA: 2017 Progress Report

FDA Approval marks first presentation of bivalirudin in frozen, premixed, ready-to-use formulation

Skin Regeneration Therapy One of First Tissue Engineering Products Evaluated by FDA

FDA approval on 12/1/2017 of Amgen’s evolocumb (Repatha) a PCSK9 inhibitor for the prevention of heart attacks, strokes, and coronary revascularizations in patients with established cardiovascular disease

FDA Approval of Anti-Depression Digital Pill Tracks Use When Swallowed and transmits to MDs Smartphone – A Breakthrough in Medication Remote Compliance Monitoring

Medical Devices Early Feasibility FDA’s Pathway – Accelerated Recruitment for Randomized Clinical Trials: Replacement and Repair of Mitral Valves

Novartis’ Kymriah (tisagenlecleucel), FDA approved genetically engineered immune cells, would charge $475,000 per patient, will use Programs that Payers will pay only for Responding Patients 

FDA has approved the world’s first CAR-T therapy, Novartis for Kymriah (tisagenlecleucel) and Gilead’s $12 billion buy of Kite Pharma, no approved drug and Canakinumab for Lung Cancer (may be?)

FDA: CAR-T therapy outweigh its risks tisagenlecleucel, manufactured by Novartis of Basel – 52 out of 63 participants — 82.5% — experienced overall remissions – young patients with Leukaemia [ALL]

‘Landmark FDA approval bolsters personalized medicine’ by Edward Abrahams, PhD, President, PMC

Read Full Post »

New anti-Malarial treatment

Larry H. Bernstein, MD, FCAP, Curator

LPBI

 

Malaria Proteasome Inhibitors Could Reverse Parasite Drug Resistance

http://www.genengnews.com/gen-news-highlights/malaria-proteasome-inhibitors-could-reverse-parasite-drug-resistance/81252358/

 

http://www.genengnews.com/Media/images/GENHighlight/thumb_108676_web2680362491.jpg

This structure (bottom left) of the malaria parasite’s proteasome, obtained using the revolutionary Cryo-Electron Microscopy technique, enabled the design of a specific inhibitor (front) against the mosquito-borne malaria parasite (pictured at back). [University of Melbourne]

 

  • With media attention recently focused on the spread of the Zika virus, it’s easy to forget about the mosquito-borne disease that has been credited with killing one out of every two people who have ever lived—malaria. Currently, close to 50 percent of the world’s population live in malaria-endemic areas, leading to between 200–500 million new cases and close to 500,000 deaths annually (mostly children under the age of five).

    Adding to the complexities of trying to control this disease is that resistance to the most effective antimalarial drug, artemisinin, has developed in Southeast Asia, with fears it will soon reach Africa. Artemisinin-resistant species have spread to six countries in five years.

    A collaborative team of scientists from Stanford University, University of California, San Francisco, University of Melbourne, and the MRC in Cambridge have used cutting-edge technology to design a smarter drug to combat the resistant strain.

    “Artemisinin causes damage to the proteins in the malaria parasite that kill the human cell, but the parasite has developed a way to deal with that damage. So new drugs that work against resistant parasites are desperately needed,” explained coauthor Leann Tilley, Ph.D., professor and deputy head of biochemistry and molecular biology in the Bio21 Molecular Science and Biotechnology Institute at The University of Melbourne.

    Malaria is caused by the protozoan parasite from the genus Plasmodium. Five different species are known to cause malaria in humans, with P. falciparum infection leading to the most deaths. The parasite is transmitted through the bite of the female mosquito and ultimately ends up residing within the host’s red blood cells (RBCs)—replicating and then bursting forth to invade more RBCs in a recurrently timed cycle.

    “This penetration/replication/breakout cycle is rapid—every 48 hours—providing the opportunity for large numbers of mutations that can produce drug resistance,” said senior study author Matthew Bogyo, Ph.D., professor in the department of pathology at Stanford Medical School. “Consequently, several generations of antimalarial drugs have long since been rendered useless.”

    The compound that investigators developed targets the parasites proteasome—a protein degradation pathway that removes surplus or damaged proteins through a cascade of proteolytic reactions.

    “The parasite’s proteasome is like a shredder that chews up damaged or used-up proteins. Malaria parasites generate a lot of damaged proteins as they switch from one life stage to another and are very reliant on their proteasome, making it an excellent drug target,” Dr. Tilley noted.

    The scientists purified the proteasome from the malaria parasite and examined its activity against hundreds of different peptide sequences. From this, they were able to design inhibitors that selectively targeted the parasite proteasome while sparing the human host enzymes.

    The findings from this study were published recently in Nature through an article titled “Structure- and function-based design of Plasmodium-selective proteasome inhibitors.”

    Additionally, scientists at the MRC used a new technique called Single-Particle Cryo-Electron Microscopy to generate a three-dimensional, high-resolution structure of a protein, based on thousands composite images.

    The researchers tested the new drug in red blood cells infected with parasites and found that it was as effective at killing the artemisinin resistant parasites as it was for the sensitive parasites.

    “The compounds we’ve derived can kill artemisinin-resistant parasites because those parasites have an increased need for highly efficient proteasomes,” Dr. Bogyo commented. “So, combining the proteasome inhibitor with artemisinin should make it possible to block the onset of resistance. That will, in turn, allow the continued use of that front-line malaria treatment, which has been so effective up until now.”

    “The new proteasome inhibitors actually complement artemisinin drugs,” Dr. Tilley added. “Artemisinins cause protein damage and proteasome inhibitors prevent the repair of protein damage. A combination of the two provides a double whammy and could rescue the artemisinins as antimalarials, restoring their activity against resistant parasites.”

    The scientists were excited by their results, as they may provide a much-needed strategy to combat the growing levels of resistance for this deadly pathogen. However, the researchers tempered their exuberance by noting that many more drug libraries needed to be screened before clinical trials can begin.

    “The current drug is a good start, but it’s not yet suitable for humans. It needs to be able to be administered orally and needs to last a long time in the blood stream,” Dr. Tilley concluded.

Read Full Post »

Philly Biotech Scene: November 2015 PCCI Meeting Showcasing ViFant (Penn Center For Innovation)

Reporter: Stephen J. Williams, PhD

Meeting Announcement: Pharmaceutical Consultant Consortium International Announces Presentation by ViFant and Penn Center For Innovation

As announced on the PCCI website:

PCCI invites you to attend a presentation by:

VIFANT (Penn Center for Innovation)

Monday, November 9, 2015, 6:30PM; at the Chesterbrook (Wayne, PA) Embassy Suites Hotel (directions below)

Sponsored by:

To register please click on www.rxpcci.com and follow directions

Vifant is committed to delivering innovative, cost-effective, mobile solutions for the early identification of vision impairment in verbal, non-verbal and pre-verbal patients as young as two months of age.

Early detection of vision problems improves treatment outcome, simplifies treatment and may prevent irreversible neurological damage and blindness. Accurate vision testing in pre-verbal and non-verbal patients is an unmet goal of pediatricians, family doctors, ophthalmologists, early education programs and parents who are interested in discovering vision programs in infants and children as early as possible in order to optimize vision outcomes. Unfortunately, only one-third of all children in the US have had a vision screening test or visual examination prior to entering school as  existing early childhood screening devices detect only risk factors with high false-positive and false-negative rates.

Vifant’s vision acuity test app uses the established principle of optcokinetic nystagmus (OKN) which is the eyes’ reflexive, spontaneous  response to moving patterns that does not need to be instructed or learned. The app is downloaded to a mobile tablet form and the tablet’s front-facing camera and screen provide stimulus and detection of eye movement to allow for identification of the eyes’ response to moving targets. The Vifant vision acuity test is patent protected and is reimbursable under the existing CPT code 99174. In addition to conventional points of service, Vifant’s mobility and ease of use fit well in a telemedicine strategy broadening the patient pool that will benefit from the test.

PROGRAM

6:30: Cocktails and Dinner; there will be a cash bar and a special two-entrée buffet

8:30 Beth DeSouza, CEO, will deliver the Company”s “Elevator” pitch to the group.

8:20: A panel will address three major issues crucial to helping the Company reach the next level. Vifant has submitted the following questions:

  1. Reimbursement challenges and opportunities:Does return on investment on early detection and intervention for a large number of patients outweigh costly treatments later from the payers perspectives and therefore warrant coverage in health plans? What is the role of consumers (parents, caretakers) as payers.
  2. Business model: Subscription fee per HCP or fee per test? Is there a play for remote result interpretation (telemedicine) right away or should it wait?
  3. Competitive landscape: What will be the competitors’ response to Vifant’s entry into the pediatric vision screening space.

 9:00: Q&A session

Remember to register: click on www.rxpcci.com and follow directions

Dinner price for members is a flat $40; Parking is free!

Lifetime dues for new members are still $100; join PCCI and your first dinner will be ON US!

Bring a friend and/or a business colleague! You know that our meetings a livelier and more interesting than ever.

The Embassy Suites Hotel provides an excellent facility, more room and a fine menu.

Every PCCI meeting is webcast. The webcast recording of the PCCI meetings will be posted on the PCCI website “rxpcci.com” and webcast live via the internet during the event.

Directions: Take Rt 202 to the Chesterbrook exit (that’s two exits South of the Devon exit), turn Right at the end of the Exit ramp and you’ll see the hotel at your Right. If you are going North on 202, get off at the Chesterbrook Exit and turn Left at the traffic light and drive back over Rt 202. You’ll see the hotel at your Right. Proceed to the traffic light and turn Right into the parking lot of the hotel. Their phone is: 610 647 6700.

Read Full Post »

English: Cancer cells photographed by camera a...

Reported by: Dr. Venkat S. Karra, Ph.D.

Cancer remains the second leading cause of death by disease. Hundreds of new medicines to treat cancer are now being developed for lessening the burden of cancer to patients, their families and society.

Biopharmaceutical researchers are now working on 981 medicines for cancer. Many are high-tech weapons to fight the disease, while some involve innovative research into using existing medicines in new ways, the report says.

Recent developments in early detection and a steady stream of new and improved treatments suggesting that cancer is a manageable chronic disease (not a deadly one any more). Families and patients alike are with increasing expectations from the industry for more and better treatment options and America’s biopharmaceutical research companies are responding to that.

America’s biopharmaceutical research companies are working on many new cutting-edge approaches to fight cancer. They include:

• A medicine that interferes with the metabolism of cancer cells by depriving them of the energy provided by glucose.
• A medicine for acute myeloid leukemia (AML) that inhibits cancer cells with a mutation found in about a third of AML sufferers.
• A therapy that uses nanotechnology to target the delivery of medicines to cancer cells, potentially overcoming some limitations of existing treatments.

Read more….

http://www.phrma.org/sites/default/files/1000/phrmamedicinesindevelopmentcancer2012.pdf

 

Read Full Post »

%d bloggers like this: