Feeds:
Posts
Comments

Archive for the ‘CANCER BIOLOGY & Innovations in Cancer Therapy’ Category


Pharmacotyping Pancreatic Cancer Patients in the Future: Two Approaches – ORGANOIDS by David Tuveson and Hans Clevers and/or MICRODOSING Devices by Robert Langer

Curator: Aviva Lev-Ari, PhD, RN

 

This curation provides the resources for edification on Pharmacotyping Pancreatic Cancer Patients in the Future

 

  • Professor Hans Clevers at Clevers Group, Hubrecht University

https://www.hubrecht.eu/onderzoekers/clevers-group/

  • Prof. Robert Langer, MIT

http://web.mit.edu/langerlab/langer.html

Langer’s articles on Drug Delivery

https://scholar.google.com/scholar?q=Langer+on+Drug+Delivery&hl=en&as_sdt=0&as_vis=1&oi=scholart&sa=X&ved=0ahUKEwixsd2w88TTAhVG4iYKHRaIAvEQgQMIJDAA

organoids, which I know you’re pretty involved in with Hans Clevers. What are your plans for organoids of pancreatic cancer?

Organoids are a really terrific model of a patient’s tumour that you generate from tissue that is either removed at the time of surgery or when they get a small needle biopsy. Culturing the tissue and observing an outgrowth of it is usually successful and when you have the cells, you can perform molecular diagnostics of any type. With a patient-derived organoid, you can sequence the exome and the RNA, and you can perform drug testing, which I call ‘pharmacotyping’, where you’re evaluating compounds that by themselves or in combination show potency against the cells. A major goal of our lab is to work towards being able to use organoids to choose therapies that will work for an individual patient – personalized medicine.

Organoids could be made moot by implantable microdevices for drug delivery into tumors, developed by Bob Langer. These devices are the size of a pencil lead and contain reservoirs that release microdoses of different drugs; the device can be injected into the tumor to deliver drugs, and can then be carefully dissected out and analyzed to gain insight into the sensitivity of cancer cells to different anticancer agents. Bob and I are kind of engaged in a friendly contest to see whether organoids or microdosing devices are going to come out on top. I suspect that both approaches will be important for pharmacotyping cancer patients in the future.

From the science side, we use organoids to discover things about pancreatic cancer. They’re great models, probably the best that I know of to rapidly discover new things about cancer because you can grow normal tissue as well as malignant tissue. So, from the same patient you can do a comparison easily to find out what’s different in the tumor. Organoids are crazy interesting, and when I see other people in the pancreatic cancer field I tell them, you should stop what you’re doing and work on these because it’s the faster way of studying this disease.

SOURCE

Other related articles on Pancreatic Cancer and Drug Delivery published in this Open Access Online Scientific Journal include the following:

 

Pancreatic Cancer: Articles of Note @PharmaceuticalIntelligence.com

Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/05/26/pancreatic-cancer-articles-of-note-pharmaceuticalintelligence-com/

Keyword Search: “Pancreatic Cancer” – 275 Article Titles

https://pharmaceuticalintelligence.wordpress.com/wp-admin/edit.php?s=Pancreatic+Cancer&post_status=all&post_type=post&action=-1&m=0&cat=0&paged=1&action2=-1

Keyword Search: Drug Delivery: 542 Articles Titles

https://pharmaceuticalintelligence.wordpress.com/wp-admin/edit.php?s=Drug+Delivery&post_status=all&post_type=post&action=-1&m=0&cat=0&paged=1&action2=-1

Keyword Search: Personalized Medicine: 597 Article Titles

https://pharmaceuticalintelligence.wordpress.com/wp-admin/edit.php?s=Personalized+Medicine&post_status=all&post_type=post&action=-1&m=0&cat=0&paged=1&action2=-1

  • Cancer Biology & Genomics for Disease Diagnosis, on Amazon since 8/11/2015

http://www.amazon.com/dp/B013RVYR2K

 

 

VOLUME TWO WILL BE AVAILABLE ON AMAZON.COM ON MAY 1, 2017

Advertisements

Read Full Post »


How Immunotherapy may sometimes make Cancer worse?

Reporter: Aviva Lev-Ari, PhD, RN

 

A potential explanation is

Advances in Brief Cancer Cell Motility-inhibitory Protein in the Dunning Adenocarcinoma Model1 (2013)

by James L. Mohler , Elaine N. Broskie , Dipak J. Ranparia , Et Al , Contact The Aacr Publications , L. Mohler , Elaine N. Broskie , Dipak J. Ranparia , Yousuf Sharief , William B. Coleman , Cary J. Smith

1 comment

  1. Avatar for Elaine Broskie
    Elaine Broskie2017-04-08 08:22 PM

    Some cancer cells may just be more differentiated and therefore easier to kill with immunotherapy. Simultaneously since they are more differentiated they may be the sort of cells that hold more rogue cancer cells in check. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.326.7968

 

How Immunotherapy may sometimes make Cancer worse?

Warning signs

Kurzrock began asking around, collecting anecdotes about people — and even about laboratory mice — whose tumours had advanced rapidly after treatment with an immunotherapy. Even after collecting examples from several sources, she felt nervous about releasing her results. “We thought, ‘Who’s going to publish this? They’re not going to believe us,’” she says.

Meanwhile, researchers at the Gustave Roussy Institute in Villejuif, France, had stumbled on the same problem. Charles Ferté, an oncologist at the institute, recalls attending a meeting in which several physicians reported bizarre responses to PD-1 treatment. “Some friends and colleagues were saying, ‘I treated lung patients with that drug and the tumour completely exploded in two weeks’,” says Ferté.

Ferté and his colleagues decided to launch a systematic study of tumour growth in their patients. Last November, they published their results: of 131 people who received anti-PD-1 therapies, 9% developed what the investigators called “hyperprogressive” disease, with accelerated tumour growth1. The phenomenon appeared to be more common in people over the age of 65.

On 28 March, Kurzrock and her colleagues published their data from 155 people treated with PD-1 inhibitors and other immunotherapies2. Six of the people had extra copies of MDM2 or MDM4 and 10 had mutations in a gene called EGFR, which is associated with cancer. The team did not see any correlation between age and rapidly worsening disease, but they did notice that tumours grew faster in four of those with the extra MDM2 or MDM4 genes, and in two of the people with EGFR mutations.

SOURCE

6 APRIL 2017 | VOL 544 | NATURE

http://www.nature.com/news/promising-cancer-drugs-may-speed-tumours-in-some-patients-1.21755

Read Full Post »


The Rutgers Global Health Institute, part of Rutgers Biomedical and Health Sciences, Rutgers University, New Brunswick, New Jersey – A New Venture Designed to Improve Health and Wellness Globally  

Author: Gail S. Thornton, M.A.

Co-Editor: The VOICES of Patients, Hospital CEOs, HealthCare Providers, Caregivers and Families: Personal Experience with Critical Care and Invasive Medical Procedures

 

The newly formed Rutgers Global Health Institute, part of Rutgers Biomedical and Health Sciences (RBHS) of Rutgers University, New Brunswick, New Jersey (http://rbhs.rutgers.edu/), represents a new way of thinking by providing positive health outcomes to potential patients around the world affected by disease and/or by a negative environmental impact. The goal of the Institute is three-fold:

  • to improve the health and wellness of individuals and populations around the world,
  • to create a healthier world through innovation, engineering, and technology, and
  • to educate involved citizens and effective leaders in global health.

Richard G. Marlink, M.D., a former Harvard University professor recognized internationally for research and leadership in the fight against AIDS, was recently appointed as the inaugural Henry Rutgers Professor of Global Health and Director of the Rutgers Global Health Institute.

The Rutgers Global Health Institute was formed last year after research by the University into the most significant health issues affecting under-served and under-developed populations. While conducting research for its five-year strategic plan, the RBHS looked for bold and ambitious ways that they could take advantage of the changing health care environment and band together to tackle the world’s leading health and environmental causes, contributing to the betterment of society. One of the results was the formation of the Rutgers Global Health Institute, supporting cross-functionally Rutgers faculty, scientists, and clinicians who represent the best in their respective fields of health innovation, research and patient care related to global health.

More broadly, the RBHS, created in 2013, is one of the nation’s leading – and largest — academic health centers that provides health care education, research and clinical service and care. It is an umbrella organization that encompasses eight schools – Ernest Mario School of Pharmacy, Graduate School of Biomedical Sciences, New Jersey Medical School, Robert Wood Johnson Medical School, Rutgers School of Dental Medicine, School of Health Professions, School of Nursing and School of Public Health.

In addition, the RBHS encompasses six centers and institutes that provide cancer treatment and research, neuroscience, advanced biotechnology and medicine, environmental and occupational health and health care policy and aging research. Those centers and institutes are the Brain Health Institute, Center for Advanced Biotechnology and Medicine, Environmental and Occupational Health Sciences Institute, Institute for Health, Health Care Policy and Aging Research, Rutgers Cancer Institute of New Jersey, and Rutgers Institute for Translational Medicine and Research. And lastly, the RBHS includes the University Behavioral Health Care.

 

Rutgers Institute For Health Building

Image SOURCE: Photograph courtesy of the Rutgers Global Health Institute, Rutgers Biomedical and Health Sciences, Rutgers University, New Brunswick, New Jersey.   

 

Below is my interview with the Inaugural Henry Rutgers Professor of Global Health and Director of the Rutgers Global Health Institute Richard G. Marlink, M.D., which occurred in April, 2017.

You were recently appointed as the inaugural Henry Rutgers Professor of Global Health and Director of the new Rutgers Global Health Institute at Rutgers Biomedical and Health Sciences (RBHS). What are the goals of the new Institute?

Dr. Marlink: The overarching goal of the Rutgers Global Health Institute is to improve the health and wellness of individuals and populations in need both here and around the world, to create a healthier world through innovation, engineering, and technology, and to educate involved citizens and effective leaders in global health. We will do that by building on the aspiration of our originating organization — RBHS, which is to be recognized as one of the best academic health centers in the U.S., known for its education, research, clinical care, and commitment to improving access to health care and reducing health care disparities.

As the newly formed Rutgers Global Health Institute, we are embarking on an ambitious agenda to take advantage of the changing health care environment. Working across schools and disciplines at Rutgers University, we plan to have a significant impact within at least four signature programs identified by RBHS, which are cancer, environmental and occupational health, infection and inflammation, and public health. We also will include all other parts of Rutgers, as desired, beyond RBHS.

My background as a global health researcher, physician, and leader of grassroots health care delivery will help develop programs to undertake global health initiatives that assist populations locally and around the world. I believe that involved citizens, including students, can greatly impact major societal issues.

A key role in the strategic growth of Rutgers Biomedical and Health Sciences – an umbrella organization for eight schools, four centers and institutes and a behavioral health network — is to broaden the Rutgers University’s presence in the public health community globally to improve health and wellness. How will the new Rutgers Global Health Institute be part of this growth?

Dr. Marlink: Our RBHS Chancellor Brian Strom [M.D., M.P.H.] believes that we are positioned to become one of the finest research universities in the country, working cross-functionally with our three campuses in Newark, Camden and New Brunswick. In developing the strategic plan, Dr. Strom notes that we become much stronger and more capable and productive by leveraging our strengths to collaborate and working together across disciplines to best serve the needs of our community locally and globally.

Specifically, we are formulating plans to focus on these areas: old and new infectious disease epidemics; the expanding burden of noncommunicable diseases in poor populations; the social and environmental threats to health, poverty and humanitarian crises; and inadequate local and developing country health systems. We will support the development of global health research programs university-wide, the recruitment of faculty with interests in global health, and the creation of a web-based global health resource center for faculty and students with interests in these areas.

We are still a very young part of RBHS, and of Rutgers overall, so our plans are a work in progress. As tangible examples of our commitment to improving health and wellness globally, we plan to enhance global public health by establishing links between global public health and environmental and occupational health faculty in studies related to air pollution, climate change, and pesticide health.

Another example the Institute has in the works is expanding links with the School of Engineering. In fact, we are creating a senior-level joint faculty position with the School of Engineering and Rutgers-New Brunswick. Still other plans involve forging collaborative relationships between the Rutgers Cancer Program, under the auspices of Rutgers Cancer Institute of New Jersey, which is New Jersey’s only National Cancer Institute (NCI)-designated comprehensive cancer center, and other organizations and partners around the world, especially in poor and less-developed countries.

How is the Rutgers Global Health Institute strategically prepared for changing the health care paradigm?

Dr. Marlink: We intend to be an international global health leader in the health sciences, in public health, and in other related, but non-biomedical professions. This means that we will incorporate our learnings from laboratory sciences and the clinical, behavioral, and public health sciences, as well as from engineering, business, economics, law, and social sciences. This broad approach is critical in this health care environment as accountability for patient care is shifting to large groups of providers. Health care will be more value-driven and our health care teams must work collaboratively to be innovative. Our focus on health care is now also population-based, rather than only individual-based, and we are moving from large regional centers toward community centers, even in small and remote areas of the world. We are encouraged by rapid changes in technology that will provide new opportunities for shared knowledge, patient care and research.

Additionally, we are exploring ways to identify and recruit key faculty who will increase our breadth and depth of key disease areas as well as provide guidance on how to pursue science grants from the National Institute of Health (NIH)-funded program project grants and specialized research programs.

Currently, Rutgers University receives NIH funding for research in public health, population health, health promotion, wellness, health behavior, preventive medicine, and global health.

As a researcher, scholar and leader of grassroots health care delivery, how have your past positions prepared you for this new challenge? Your last position was the Bruce A. Beal, Robert L. Beal, and Alexander S. Beal Professor of the Practice of Public Health at Harvard University’s T.H. Chan School of Public Health and Executive Director of the Harvard AIDS Initiative.

Dr. Marlink: I have been a global health practitioner, researcher, and executive leader for almost three decades. I am trained in medical oncology and HIV medicine and have conducted clinical, epidemiological and implementation research in Africa since 1985. I was first introduced to global health when finishing my Hematology/Oncology fellowship at what is now the Beth Israel Deaconess Medical Center in the mid-1980’s in Boston.

During my Hematology/Oncology fellowship and after the co-organizing the first, hospital-based AIDS care clinic in the New England region, I was trying to learn the ropes in virology and molecular biology in the laboratory group of Max Essex at Harvard University. During that time in the mid-1980s, our laboratory group along with Senegalese and French collaborators discovered the first evidence for the existence of a new human retrovirus, HIV-2, a distinct second type of human AIDS virus, with its apparent origins in West Africa.

As a clinician, I was able to assist in Senegal, helping set up clinical care and create a research cohort in Dakar for hundreds of women sex workers infected with this new human retrovirus and care for them and their families. I discovered that a little can go a long way in poor settings, such as in Senegal. I became hooked on helping create solutions to help people in poor settings in Africa and elsewhere. Long-term partnerships and friendships have subsequently been made in many developing countries. Throughout my career, I have built successful partnerships with many governments, companies, and non-profit organizations, and those relationships have been the foundation to build successful public health partnerships in poor regions of the world.

In the 1990s, I helped create the Botswana-Harvard Partnership for HIV Research and Education (BHP). Through this partnership, the Government of Botswana and BHP have worked together to combat the AIDS epidemic in Botswana. Under my direction, and in partnership with the Botswana Ministry of Health, BHP launched the KITSO AIDS Training Program in 1999. Kitso is the Setswana word for ‘knowledge.”

KITSO is the national training program for physicians, nurses, and pharmacists, which has trained more than 14,000 health professionals in HIV/AIDS care and antiretroviral treatment. KITSO training modules address issues, such as antiretroviral therapy, HIV/AIDS-related disease management, gender-specific HIV issues, task-sharing, supportive and palliative care, and various psychosocial and counseling themes.

In addition, I was the Botswana County Director for Harvard Chan School’s 3-country President’s Emergency Plan AIDS Relief (PEPFAR) grant, The Botswana PEPFAR effort includes a Clinical and Laboratory Master Training Program and the creation of the Botswana Ministry of Health’s Monitoring and Evaluation Unit. Concurrently, I was the Principal Investigator of Project HEART in five African countries with the Elizabeth Glaser Pediatric AIDS Foundation.

Also in Botswana, in 2000, I was a co-founder of a distinct partnership involving a large commitment to the Government of Botswana from the Bill and Melinda Gates and Merck Foundations.  This commitment continues as an independent non-governmental organization (NGO) to provide support for various AIDS prevention and care efforts in Botswana and the region.

All these global health experiences, it seems, have led me to my new role at the Rutgers Global Health Institute.

What is your advice for ways that the business community or university students can positively impact major societal issues?

Dr. Marlink: My advice is to be optimistic and follow that desire to want to make a difference. Margaret Mead, the American cultural anthropologist, said years ago, “Never doubt that a small group of thoughtful, committed citizens can change the world; indeed, it’s the only thing that ever has.” I believe that to be our guiding principle as we embark on this new initiative.

I also believe that students should become specialized in specific areas prior to going fully into “global health,” as they develop in their careers, since they will then add more value later. For example, students should be grounded in the theory of global health in their undergraduate studies and then develop a specialization, such as becoming a statistician, economist, or medical doctor, to make a longer and greater impact in improving global health. As for the business community, we are looking for committed individuals who are specialized in specific areas to bring their knowledge to our organization, as partners in the fight against disease, improving the environment, or helping with humanitarian issues. We are committed to improving health and wellness, increasing access to the best health care, and reducing health disparities.

What is it about your current role that you enjoy the most?

Dr. Marlink: I enjoy building research, learning, and clinical programs, as I have in the HIV arena since the early 1980s. At that time, there were limited resources and funding, but a willingness among universities, non-governmental organizations, hospitals and the pharmaceutical industry to make a difference. Today in my new role, I’d like all of us to have an impact on health and wellness for those in need – to build programs from the ground up while partnering with organizations with the same goal in mind. I know it can be done.

Over my career, when I have a patient here or in a developed country who has been diagnosed with cancer, but is cured or in remission, that puts a huge smile on my face and in my heart. It also impacts you for the rest of your life. Or when I see an infant born without HIV because of the local country programs that are put in place, that also makes me feel so fulfilled, so happy.

I have worked with many talented individuals who have become great friends and partners over my career who have helped create a positive life for under-served populations around the world. We need to remember that progress happens with one person at a time or one program at a time. That’s how you truly improve health around the world.

 

Headshot - 2016

Image SOURCE: Photograph of Inaugural Henry Rutgers Professor of Global Health and Director of the Rutgers Global Health Institute at Rutgers Biomedical and Health Sciences, courtesy of Rutgers University, New Brunswick, New Jersey.

Richard G. Marlink, M.D.
Inaugural Henry Rutgers Professor of Global Health

Director of the Rutgers Global Health Institute

Rutgers Biomedical and Health Sciences

Richard G. Marlink, M.D., a Harvard University professor recognized internationally for research and leadership in the fight against AIDS, was recently appointed as the inaugural Henry Rutgers Professor of Global Health and Director of a new Rutgers Global Health Institute at Rutgers Biomedical and Health Sciences (RBHS). His role is to develop the strategic growth of RBHS by broadening the Rutgers University’s presence in the public health community to improve health and wellness.

Previously, Dr. Marlink was the Bruce A. Beal, Robert L. Beal, and Alexander S. Beal Professor of the Practice of Public Health at Harvard’s T.H. Chan School of Public Health and Executive Director of the Harvard AIDS Initiative.

At the start of the AIDS epidemic, Dr. Marlink was instrumental in setting up the first, hospital-based HIV/AIDS clinic in Boston, Massachusetts, and studied the impact of the HIV virus in west and central Africa. After helping to start the Botswana-Harvard Partnership in 1996, he founded the Kitso AIDS Training Program, which would become Botswana’s national AIDS training program. Kitso means knowledge in the local Setswana language.

Dr. Marlink was the principal investigator for the Tshepo Study, the first large-scale antiretroviral treatment study in Botswana, in addition to conducting other clinical and epidemiological studies in the region. Also in Botswana, he was the country director for Harvard’s contribution to the joint Botswana and United States governments’ HIV/AIDS and TB training, monitoring and evaluation PEPFAR effort.

In the mid-1980s in Senegal, Dr. Marlink was part of the team of Senegalese, French and American researchers who discovered and then studied the second type of human AIDS virus, HIV-2. Since then, he has been involved in multiple HIV/AIDS care, treatment and prevention programs in many African countries, including in Botswana, Côte d’Ivoire (Ivory Coast), Democratic Republic of the Congo, Kenya, Lesotho, Malawi, Mozambique, Rwanda, Senegal, South Africa, Swaziland, Tanzania, Uganda, Zambia and Zimbabwe. He has also organized initiatives to enhance HIV/AIDS care in Brazil, Puerto Rico and Thailand.

Dr. Marlink has served as the scientific director, the vice president for implementation and the senior adviser for medical and scientific affairs at the Elizabeth Glaser Pediatric AIDS Foundation, where he was principal investigator of Project HEART, a five-country CDC/PEPFAR effort in Africa. That project began in 2004 and by 2011 had placed more than 1 million people living with HIV into care clinics. More than 565,000 of these people were placed on life-saving antiretroviral treatment.

Since 2000, Dr. Marlink has been the founding member of the board of directors of the African Comprehensive HIV/AIDS Partnerships, a public-partnership among the government of Botswana and the Bill and Melinda Gates and Merck Foundations to provide ongoing support for numerous HIV/AIDS prevention, care and treatment efforts in that country.

He has authored or co-authored more than 130 scientific articles; written a textbook, Global AIDS Crisis: A Reference Handbook; and co-edited the book, AIDS in Africa, 2nd Edition. Additionally, he served as chief editor for two special supplements to the journal AIDS and as executive editor of the seminal 320-author, three-volume textbook, From the Ground Up: A Guide to Building Comprehensive HIV/AIDS Care Programs in Resource Limited Settings.

A trained fellow in hematology/oncology at the Beth Israel Deaconess Medical Center at Harvard Medical School, Dr. Marlink received his medical degree from the University of New Mexico and his bachelor’s degree from Brown University.

 

Editor’s note:

We would like to thank Marilyn DiGiaccobe, head of Partnerships and Strategic Initiatives, at the Rutgers Global Health Institute, for the help and support she provided during this interview.

 

REFERENCE/SOURCE

Rutgers Biomedical and Health Sciences (http://rbhs.rutgers.edu/)

Other related articles

Retrieved from https://aids.harvard.edu/ 

Retrieved from http://b.3cdn.net/glaser/515eaa8068b5e71d44_mlbrof7xw.pdf 

Other related articles were published in this Open Access Online Scientific Journal include the following: 

2016

CRISPR/Cas9 and HIV1 

https://pharmaceuticalintelligence.com/2016/04/16/crisprcas9-and-hiv1/

Concerns About Viruses

https://pharmaceuticalintelligence.com/2016/01/29/concerns-about-viruses/

CD-4 Therapy for Solid Tumors

https://pharmaceuticalintelligence.com/2016/05/02/cd-4-therapy-for-solid-tumors/

Novel Discoveries in Molecular Biology and Biomedical Science

https://pharmaceuticalintelligence.com/2016/05/30/novel-discoveries-in-molecular-biology-and-biomedical-science/

Scientists eliminate HIV1 DNA from the genome and prevent reinfection

https://pharmaceuticalintelligence.com/2016/03/23/scientists-eliminate-hiv1-dna-from-the-genome-and-prevent-reinfection/

Double Downside of HIV CRISPR therapy

https://pharmaceuticalintelligence.com/2016/04/09/double-downside-of-hiv-crispr-therapy/

2015

Where Infection meets with Cancer: Kaposi’s sarcoma (KS) is the most common cancer in HIV-1-infected persons and is caused by one of only 7 human cancer viruses, i.e., human herpesvirus 8 (HHV-8)

https://pharmaceuticalintelligence.com/2015/10/20/where-infection-meets-with-cancer-kaposis-sarcoma-ks-is-the-most-common-cancer-in-hiv-1-infected-persons-and-is-caused-by-one-of-only-7-human-cancer-viruses-i-e-human-herpesvirus-8-hhv/

Antibody shows promise as treatment for HIV

https://pharmaceuticalintelligence.com/2015/04/09/antibody-shows-promise-as-treatment-for-hiv/

2014

AIDS: Origin of HIV pandemic ‘was 1920s Kinshasa’

https://pharmaceuticalintelligence.com/2014/10/10/aids-origin-of-hiv-pandemic-was-1920s-kinshasa/

2013

Scientists discover how AIDS virus enters key immune cells

https://pharmaceuticalintelligence.com/2013/12/31/scientists-discover-how-aids-virus-enters-key-immune-cells/

Heroes in Medical Research: Dr. Robert Ting, Ph.D. and Retrovirus in AIDS and Cancer

https://pharmaceuticalintelligence.com/2013/04/17/heroes-in-medical-research-dr-robert-ting-ph-d-and-retrovirus-in-aids-and-cancer/

2012

Nanotechnology and HIV/AIDS treatment

https://pharmaceuticalintelligence.com/2012/12/25/nanotechnology-and-hivaids-treatment/

HIV vaccine: Caltech puts us One step further

https://pharmaceuticalintelligence.com/2012/08/31/hiv-vaccine-caltech-puts-us-one-step-further/

Bone Marrow Transplant Eliminates Signs of HIV Infection

https://pharmaceuticalintelligence.com/2012/07/29/bone-marrow-transplant-eliminates-signs-of-hiv-infection/

Getting Better: Documentary Videos on Medical Progress — in Surgery, Leukemia, and HIV/AIDS

https://pharmaceuticalintelligence.com/2012/08/23/getting-better-documentary-videos-on-medical-progress-in-surgery-leukemia-and-hivaids/

Read Full Post »


Expedite Use of Agents in Clinical Trials: New Drug Formulary Created – The NCI Formulary is a public-private partnership between NCI, part of the National Institutes of Health, and pharmaceutical and biotechnology companies

Reporter: Aviva Lev-Ari, PhD, RN

 

Wednesday, January 11, 2017

New Drug Formulary Will Help Expedite Use of Agents in Clinical Trials

The National Cancer Institute (NCI) today launched a new drug formulary (the “NCI Formulary”) that will enable investigators at NCI-designated Cancer Centers to have quicker access to approved and investigational agents for use in preclinical studies and cancer clinical trials. The NCI Formulary could ultimately translate into speeding the availability of more-effective treatment options to patients with cancer.

The NCI Formulary is a public-private partnership between NCI, part of the National Institutes of Health, and pharmaceutical and biotechnology companies. It is also one of NCI’s efforts in support of the Cancer Moonshot, answering Vice President Biden’s call for greater collaboration and faster development of new therapies for patients. The availability of agents through the NCI Formulary will expedite the start of clinical trials by alleviating the lengthy negotiation process — sometimes up to 18 months — that has been required for investigators to access such agents on their own.

“The NCI Formulary will help researchers begin testing promising drug combinations more quickly, potentially helping patients much sooner,” said NCI Acting Director Douglas Lowy, M.D. “Rather than spending time negotiating agreements, investigators will be able to focus on the important research that can ultimately lead to improved cancer care.”

The NCI Formulary launched today with fifteen targeted agents from six pharmaceutical companies:

  • Bristol-Myers Squibb
  • Eli Lilly and Company
  • Genentech
  • Kyowa Hakko Kirin
  • Loxo Oncology
  • Xcovery Holding Company LLC

“The agreements with these companies demonstrate our shared commitment to expedite cancer clinical trials and improve outcomes for patients,” said James Doroshow, M.D., NCI Deputy Director for Clinical and Translational Research. “It represents a new drug development paradigm that will enhance the efficiency with which new treatments are discovered.”

The establishment of the NCI Formulary will enable NCI to act as an intermediary between investigators at NCI-designated Cancer Centers and participating pharmaceutical companies, facilitating and streamlining the arrangements for access to and use of pharmaceutical agents. Following company approval, investigators will be able to obtain agents from the available formulary list and test them in new preclinical or clinical studies, including combination studies of formulary agents from different companies.

The NCI Formulary leverages lessons learned through NCI’s Cancer Therapy Evaluation Program (CTEP) and the NCI-MATCH trial, a study in which targeted agents from different companies are being tested alone or in combination in patients with genetic mutations that are targeted by these drugs. As the use of genomic sequencing data becomes more common in selecting cancer therapies, requests for access to multiple targeted agents for the conduct of clinical trials are becoming more common.

“We are very pleased that several additional pharmaceutical companies have already pledged a willingness to participate and are in various stages of negotiation with NCI,” said Dr. Doroshow, who is also director of NCI’s Division of Cancer Treatment and Diagnosis. “By the end of 2017, we expect to have doubled the number of partnerships and drugs available in the NCI Formulary.”

CTEP staff continue to discuss the NCI Formulary with pharmaceutical companies to make additional proprietary agents available for studies initiated by investigators at NCI-designated Cancer Centers.

The Formulary will complement NIH’s plans for another new public-private partnership in oncology, the Partnership to Accelerate Cancer Therapies (PACT). Through PACT, the NIH, U.S. Food and Drug Administration, biopharmaceutical groups in the private sector, foundations, and cancer advocacy organizations will come together to support new research projects to accelerate progress in cancer research as part of the Cancer Moonshot. PACT research will center on the identification and validation of biomarkers of response and resistance to cancer therapies, with special emphasis on immunotherapies. PACT will also establish a platform for selecting and testing combination therapies. PACT is expected to launch in 2017.

About the National Cancer Institute (NCI): NCI leads the National Cancer Program and the NIH’s efforts to dramatically reduce the prevalence of cancer and improve the lives of cancer patients and their families, through research into prevention and cancer biology, the development of new interventions, and the training and mentoring of new researchers. For more information about cancer, please visit the NCI website at cancer.gov or call NCI’s Cancer Information Service at 1-800-4-CANCER.

About the National Institutes of Health (NIH): NIH, the nation’s medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

SOURCE

https://www.nih.gov/news-events/news-releases/new-drug-formulary-will-help-expedite-use-agents-clinical-trials

Read Full Post »


One blood sample can be tested for a comprehensive array of cancer cell biomarkers: R&D at WPI

Curator: Marzan Khan, B.Sc

 

A team of mechanical engineers at Worcester Polytechnic Institute (WPI) have developed a fascinating technology – a liquid biopsy chip that captures and detects metastatic cancer cells, just from a small blood sample of cancer patients(1). This device is a recent development in the scientific field and holds tremendous potential that will allow doctors to spot signs of metastasis for a variety of cancers at an early stage and initiate an appropriate course of treatment(1).

Metastasis occurs when cancer cells break away from their site of origin and spread to other parts of the body via the lymph or the bloodstream, where they give rise to secondary tumors(2). By this time, the cancer is at an advanced stage and it becomes increasingly difficult to fight the disease. The cells that are shed by primary and metastatic cancers are called circulating tumor cells (CTCs) and their numbers lie in the range of 1–77,200/m(3). The basis of the liquid biopsy chip test is to capture these circulating tumor cells in the patient’s blood and identify the cell type through specific interaction with antibodies(4).

The chip is comprised of individual test units or small elements, about 3 millimeters wide(4). Each small element contains a network of carbon nanotube sensors in a well which are functionalized with antibodies(4). These antibodies will bind cell-surface antigens or protein markers unique for each type of cancer cell. Specific interaction between a cell surface protein and its corresponding antibody is a thermodynamic event that causes a change in free energy which is transduced into electricity(3). This electrical signature is picked up by the semi-conducting carbon nanotubes and can be seen as electrical spikes(4). Specific interactions create an increase in electrical signal, whereas non-specific interactions cause a decrease in signal or no change at all(4). Capture efficiency of cancer cells with the chip has been reported to range between 62-100%(4).

The liquid biopsy chip is also more advanced than microfluidics for several reasons. Firstly, the nanotube-chip arrays can capture as well as detect cancer cells, while microfluidics can only capture(4). Samples do not need to be processed for labeling or fixation, so the cell structures are preserved(4). Unlike microfluidics, these nanotubes will also capture tiny structures called exosomes spanning the nanometer range that are produced from cancer cells and carry the same biomarkers(4).

Pancreatic cancer is the fourth leading cause of cancer-associated deaths in the United states, with a survival window of 5 years in only 6% of the cases with treatment(5). In most patients, the disease has already metastasized at the time of diagnosis due to the lack of early-diagnostic markers, affecting some of the major organs such as liver, lungs and the peritoneum(5,6). Despite surgical resection of the primary tumor, the recurrence of local and metastatic tumors is rampant(5). Metastasis is the major cause of mortality in cancers(5). The liquid biopsy chip, that identifies CTCs can thus become an effective diagnostic tool in early detection of cancer as well as provide information into the efficacy of treatment(3). At present, ongoing experiments with this device involve testing for breast cancers but Dr. Balaji Panchapakesan and his team of engineers at WPI are optimistic about incorporating pancreatic and lung cancers into their research.

REFERENCES

1.Nanophenotype. Researchers build liquid biopsy chip that detects metastatic cancer cells in blood: One blood sample can be tested for a comprehensive array of cancer cell biomarkers. 27 Dec 2016. Genesis Nanotechnology,Inc

https://genesisnanotech.wordpress.com/2016/12/27/researchers-build-liquid-biopsy-chip-that-detects-metastatic-cancer-cells-in-blood-one-blood-sample-can-be-tested-for-a-comprehensive-array-of-cancer-cell-markers/

2.Martin TA, Ye L, Sanders AJ, et al. Cancer Invasion and Metastasis: Molecular and Cellular Perspective. In: Madame Curie Bioscience Database [Internet]. Austin (TX): Landes Bioscience; 2000-2013.

https://www.ncbi.nlm.nih.gov/books/NBK164700/

3.F Khosravi, B King, S Rai, G Kloecker, E Wickstrom, B Panchapakesan. Nanotube devices for digital profiling of cancer biomarkers and circulating tumor cells. 23 Dec 2013. IEEE Nanotechnology Magazine 7 (4), 20-26

Nanotube devices for digital profiling of cancer biomarkers and circulating tumor cells

4.Farhad Khosravi, Patrick J Trainor, Christopher Lambert, Goetz Kloecker, Eric Wickstrom, Shesh N Rai and Balaji Panchapakesan. Static micro-array isolation, dynamic time series classification, capture and enumeration of spiked breast cancer cells in blood: the nanotube–CTC chip. 29 Sept 2016. Nanotechnology. Vol 27, No.44. IOP Publishing Ltd

http://iopscience.iop.org/article/10.1088/0957-4484/27/44/44LT03/meta

5.Seyfried, T. N., & Huysentruyt, L. C. (2013). On the Origin of Cancer Metastasis. Critical Reviews in Oncogenesis18(1-2), 43–73.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597235/

6.Deeb, A., Haque, S.-U., & Olowoure, O. (2015). Pulmonary metastases in pancreatic cancer, is there a survival influence? Journal of Gastrointestinal Oncology6(3), E48–E51. http://doi.org/10.3978/j.issn.2078-6891.2014.114

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4397254/

Other related articles published in this Open Access Online Scientific Journal include the following:

 

Liquid Biopsy Chip detects an array of metastatic cancer cell markers in blood – R&D @Worcester Polytechnic Institute, Micro and Nanotechnology Lab

Reporters: Tilda Barliya, PhD and Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/12/28/liquid-biopsy-chip-detects-an-array-of-metastatic-cancer-cell-markers-in-blood-rd-worcester-polytechnic-institute-micro-and-nanotechnology-lab/

 

Trovagene’s ctDNA Liquid Biopsy urine and blood tests to be used in Monitoring and Early Detection of Pancreatic Cancer

Reporters: David Orchard-Webb, PhD and Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/07/06/trovagenes-ctdna-liquide-biopsy-urine-and-blood-tests-to-be-used-in-monitoring-and-early-detection-of-pancreatic-cancer/

 

Liquid Biopsy Assay May Predict Drug Resistance

Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2015/11/06/liquid-biopsy-assay-may-predict-drug-resistance/


New insights in cancer, cancer immunogenesis and circulating cancer cells

Larry H. Bernstein, MD, FCAP, Curator

https://pharmaceuticalintelligence.com/2016/04/15/new-insights-in-cancer-cancer-immunogenesis-and-circulating-cancer-cells/

 

Prognostic biomarker for NSCLC and Cancer Metastasis

Larry H. Bernstein, MD, FCAP, Curato

https://pharmaceuticalintelligence.com/2016/03/24/prognostic-biomarker-for-nsclc-and-cancer-metastasis/

 

Monitoring AML with “cell specific” blood test

Larry H. Bernstein, MD, FCAP, Curator

https://pharmaceuticalintelligence.com/2016/01/23/monitoring-aml-with-cell-specific-blood-test/

 

Diagnostic Revelations

Larry H. Bernstein, MD, FCAP, Curator

https://pharmaceuticalintelligence.com/2015/11/02/diagnostic-revelations/

 

Circulating Biomarkers World Congress, March 23-24, 2015, Boston: Exosomes, Microvesicles, Circulating DNA, Circulating RNA, Circulating Tumor Cells, Sample Preparation

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2015/03/03/circulating-biomarkers-world-congress-march-23-24-2015-boston-exosomes-microvesicles-circulating-dna-circulating-rna-circulating-tumor-cells-sample-preparation/

 

 

 

Read Full Post »


A novel 5-gene pancreatic adenocarcinoma classifier: Meta-analysis of transcriptome data – Clinical Genomics Research @BIDMC

Curator: Tilda Barliya, PhD

Analysis of  Bhasin et al paper and Literature search

Table 1: 5-genes classifiers as biomarkers for PDAC:

Gene symbol Gene name Subcellular localization
ECT2 Epithelial cell transforming sequence 2 oncogene Nucleus, cytoplasm
AHNAK2 AHNAKE nucleoprotein 2 Plasma membrane, cytoplasm
POSTN Periostin, osteoblast specific factor Extracellular space
TMPRSS4 Transmembrane protease, serine 4 Plasma membrane

 

SERPINB5 Serpin peptidase inhibitor, clade B (ovalbumin) member 5 Extracellular space


Introduction
:

  • Bhasin et al, conducted a beautiful study using a powerful meta-analysis from different sources to identify the “important/classifier” genes associated with Pancreatic Cancer (PDAC).
  • The authors identified 5 genes that were considered as good classifiers (table 1).
  • It is important to note that the meta-analysis was performed on tissue and microdissection samples.
  • In their summary, the authors aim to validate these genes in blood/urine samples.
  • While these genes might be over expressed in tissue samples it may not be true to their existence in blood and careful examination and validation is required.
  • Liquid biopsies are emerging as the go-to use tools for disease detection, mostly aimed for early diagnosis.
  • Liquid biopsies are non-invasive biopsies of blood, urine (potentially saliva) and their “exotic” components, i.e miRNA, exosomes etc.
  • Since Liquid biopsies are non-invasive, they are painless and patients are more complied.
  • It is important to note that there is a gap between the expression of a gene or a protein in tissue section and their expression in the blood and may not necessarily correlate.
  • It will be very interesting to follow their research and future outcomes.

Additional References:

  • TMPRSS4: an emerging potential therapeutic target in cancer.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4453593/

  • The tumour trail left in blood

http://www.nature.com/nature/journal/v532/n7598/full/532269a.html

Aashir Awan, PhD, wrote on 12/28/2016

I was wondering if these same 5 genes were upregulated in the pancreatic ductal adenocarcinoma cell lines that are available out there.  In doing cell biology work, there is always a dilemma whether cancer cell lines correctly re-capitulate in vivo tumors or not.  Personally, I prefer primary cell lines to do analysis but this finding can be used to test primary vs cell line.  In addition, I’ve attached the gene network for Ect2.  If you look carefully, the two big proteins that jump out are RACGAP1 and KIF23.  I think in designing therapies, combinatorial targets can yield the best outcomes.  Drugs directed towards two or more targets would seem ideal in my opinion.

ect2

Gene Network for Ect2

Original Research
Oncotarget. 2016 Apr 26;7(17):23263-81. doi: 10.18632/oncotarget.8139.

Meta-analysis of transcriptome data identifies a novel 5-gene pancreatic adenocarcinoma classifier.

Abstract

PURPOSE:

Pancreatic ductal adenocarcinoma (PDAC) is largely incurable due to late diagnosis. Superior early detection biomarkers are critical to improving PDAC survival and risk stratification.

EXPERIMENTAL DESIGN:

Optimized meta-analysis of PDAC transcriptome datasets identified and validated key PDAC biomarkers. PDAC-specific expression of a 5-gene biomarker panel was measured by qRT-PCR in microdissected patient-derived FFPE tissues. Cell-based assays assessed impact of two of these biomarkers, TMPRSS4 and ECT2, on PDAC cells.

RESULTS:

A 5-gene PDAC classifier (TMPRSS4, AHNAK2, POSTN, ECT2, SERPINB5) achieved on average 95% sensitivity and 89% specificity in discriminating PDAC from non-tumor samples in four training sets and similar performance (sensitivity = 94%, specificity = 89.6%) in five independent validation datasets. This classifier accurately discriminated PDAC from chronic pancreatitis (AUC = 0.83), other cancers (AUC = 0.89), and non-tumor from PDAC precursors (AUC = 0.92) in three independent datasets. Importantly, the classifier distinguished PanIN from healthy pancreas in the PDX1-Cre;LSL-KrasG12D PDAC mouse model. Discriminatory expression of the PDAC classifier genes was confirmed in microdissected FFPE samples of PDAC and matched surrounding non-tumor pancreas or pancreatitis. Notably, knock-down of TMPRSS4 and ECT2 reduced PDAC soft agar growth and cell viability and TMPRSS4 knockdown also blocked PDAC migration and invasion.

CONCLUSIONS:

This study identified and validated a highly accurate 5-gene PDAC classifier for discriminating PDAC and early precursor lesions from non-malignant tissue that may facilitate early diagnosis and risk stratification upon validation in prospective clinical trials. Cell-based experiments of two overexpressed proteins encoded by the panel, TMPRSS4 and ECT2, suggest a causal link to PDAC development and progression, confirming them as potential therapeutic targets.

KEYWORDS:

bioinformatics; biomarkers; meta-analysis; pancreatic cancer; transcriptome

PMID:
26993610
PMCID:
PMC5029625
DOI:
10.18632/oncotarget.8139

SOURCE

Oncotarget, Vol. 7, No. 17 – Referred as PDF, above

 

BIDMC Researchers Discover Early Indicators of Pancreatic Cancer

LibermannBhasin_PancreasCancerStudy

Markers may help doctors detect pancreatic cancer before it becomes deadly

In photo: First author Manoj Bhasin, PhD, and co-senior author Towia Libermann, PhD, Co-Director and Director of BIDMC’s Genomics, Proteomics, Bioinformatics and Systems Biology Center.

SOURCE

http://www.bidmc.org/News/PRLandingPage/2016/March/Libermann-Pancreatic-Cancer-Research-2016.aspx

BOSTON – Pancreatic cancer, the fourth leading cause of cancer death in the United States, is often diagnosed at a late stage, when curative treatment is no longer possible. A team led by investigators at Beth Israel Deaconess Medical Center (BIDMC) has now identified and validated an accurate 5-gene classifier for discriminating early pancreatic cancer from non-malignant tissue. Described online in the journal Oncotarget, the finding is a promising advance in the fight against this typically fatal disease.

“Pancreatic cancer is a devastating disease with a death rate close to the incidence rate,” said co-senior author Towia Libermann, PhD, Director of the Genomics, Proteomics, Bioinformatics and Systems Biology Center at BIDMC and Associate Professor of Medicine at Harvard Medical School (HMS). “Because more than 90 percent of pancreatic cancer cases are diagnosed at the metastatic stage, when there are only limited therapeutic options, earlier diagnosis is anticipated to have a major impact on extending life expectancy for patients. There has been a lack of reliable markers, early indicators and risk factors associated with pancreatic cancer, but this new way of differentiating between healthy and malignant tissue offers hope for earlier diagnosis and treatment.”

The investigators used a number of publicly available gene expression datasets for pancreatic cancer and developed a strategy to reanalyze these datasets together, applying rigorous statistical criteria to compare different datasets from different laboratories and different platforms with each other. The team then selected a subset of data for developing a panel for differentiating between pancreatic cancer and healthy pancreas tissue and thereafter applied this “Pancreatic Cancer Predictor” to the remaining datasets for independent validation to confirm the accuracy of the markers.

After demonstrating and independently validating that a 5-gene pancreatic cancer predictor discriminated between cancerous and healthy tissue, the researchers applied the predictor to datasets that also included benign lesions of the pancreas, including pancreatitis and early stage cancer. The predictor accurately differentiated pancreatic cancer, benign pancreatic lesions, early stage pancreatic cancer and healthy tissue. The predictor achieved on average 95 percent sensitivity and 89 percent specificity in discriminating pancreatic cancer from non-tumor samples in four training sets and similar performance (94 percent sensitivity, 90 percent specificity) in five independent validation datasets.

“Using innovative data normalization and gene selection approaches, we combined the statistical power of multiple genomic studies and masked their variability and batch effects to identify robust early diagnostic biomarkers of pancreatic cancer,” said first author Manoj Bhasin, PhD, Co-Director of BIDMC’s Genomics, Proteomics, Bioinformatics and Systems Biology Center and Assistant Professor of Medicine at HMS.

“The identification and initial validation of a highly accurate 5-gene pancreatic cancer biomarker panel that can discriminate late and early stages of pancreatic cancer from normal pancreas and benign pancreatic lesions could facilitate early diagnosis of pancreatic cancer,” said co-senior author Roya Khosravi-Far, PhD, Associate Professor of Pathology at BIDMC. “Our findings may open a window of opportunity for earlier diagnosis and, consequently, earlier intervention and more effective treatment of this deadly cancer, leading to higher survival rates.”

The first diagnostic application of the panel may be for analyses of fine needle biopsies routinely used for diagnosing pancreatic cancer and for determining the malignant potential of mostly benign pancreatic cysts that can sometimes be precursors of pancreatic cancer. In addition to providing a new tool for diagnoses, the research may also lead to new insights into how pancreatic cancer arises.

“Because these five genes are ‘turned on’ so early in the development of pancreatic cancer, they may play roles as drivers of this disease and may be exciting targets for therapies,” said Libermann. Most of the five genes—named TMPRSS4, AHNAK2, POSTN, ECT2 and SERPINB5—have been linked to migration, invasion, adhesion, and metastasis of pancreatic or other cancers.

The scientists next plan to evaluate the precise roles of the five genes and to validate the accuracy of their diagnostic assay in a prospective clinical study. “Moving forward, we will explore the potential to convert this tissue-based diagnostic into a noninvasive blood or urine test,” Libermann said.

“To further enhance the diagnostic power of this biomarker, we plan to expand it by including non-coding RNAs, proteins, metabolites and mutations associated with pancreatic cancer. This will result in development of the first of its kind biomarker that gauges pancreatic cancer alterations from multiple genomic angles for making highly accurate diagnoses,” added Bhasin. Such an inexpensive and simple test could help transform the landscape of pancreatic cancer and help prevent many of the estimated 330,000 deaths that it causes worldwide each year.

Study coauthors include BIDMC investigators Kenneth Ndebele, Octavian Bucur, Eric Yee, Jessica Plati, Andrea Bullock, Xuesong Gu, Eduardo Castan, Peng Zhang, Robert Najarian, Maria Muraru and Rebecca Miksad, and the University of Nebraska-Lincoln’s Hasan H. Otu. The work was supported by the National Institutes of Health, National Cancer Institute and Ben and Rose Cole Charitable Pria Foundation.

SOURCE

http://www.bidmc.org/News/PRLandingPage/2016/March/Libermann-Pancreatic-Cancer-Research-2016.aspx

Read Full Post »


Liquid Biopsy Chip detects an array of metastatic cancer cell markers in blood – R&D @Worcester Polytechnic Institute,  Micro and Nanotechnology Lab

Reporters: Tilda Barliya, PhD and Aviva Lev-Ari, PhD, RN
bold face added by ALA

Static micro-array isolation, dynamic time series classification, capture and enumeration of spiked breast cancer cells in blood: the nanotube–CTC chip

Farhad Khosravi1, Patrick J Trainor2, Christopher Lambert3, Goetz Kloecker4, Eric Wickstrom5, Shesh N Rai2,6 and Balaji Panchapakesan1

Published 29 September 2016© 2016 IOP Publishing Ltd
Nanotechnology, Volume 27, Number 44

Nanotechnology (2016). DOI: 10.1088/0957-4484/27/44/44LT03

Researchers build liquid biopsy chip that detects metastatic cancer cells in blood: One blood sample can be tested for a comprehensive array of cancer cell markers.

“Imagine going to the doctor for your yearly physical,” he said. “You have blood drawn and that one can be tested for a comprehensive array of cancer cell markers. Cancers would be caught at their earliest stage and other stages of development, and doctors would have the necessary protein or genetic information from these captured to customize your treatment based on the specific markers for your cancer. This would really be a way to put your health in your own hands.”

[T]he WPI device is also highly effective in separating cancer cells from the other cells and material in the blood through differential settling.

“White blood cells, in particular, are a problem, because they are quite numerous in blood and they can be mistaken for cancer cells,” he said. “Our device uses what is called a passive leukocyte depletion strategy. Because of density differences, the tend to settle to the bottom of the wells (and this only happens in a narrow window), where they encounter the antibodies. The remainder of the blood contents stays at the top of the wells and can simply be washed away.”

In addition to capturing tumor cells, Panchapakesan says the chip will also latch on to tiny structures called exosomes, which are produced by cancers cells and carry the same markers. “These highly elusive 3-nanometer structures are too small to be captured with other types of liquid biopsy devices, such as microfluidics, due to shear forces that can potentially destroy them,” he noted. “Our chip is currently the only device that can potentially capture circulating tumor cells and exosomes directly on the chip, which should increase its ability to detect metastasis. This can be important because emerging evidence suggests that tiny proteins excreted with exosomes can drive reactions that may become major barriers to effective cancer drug delivery and treatment.”

The device developed by Panchapakesan’s team includes an array of tiny elements, each about a tenth of an inch (3 millimeters) across. Each element has a well, at the bottom of which are antibodies attached to carbon nanotubes. Each well holds a specific antibody that will bind selectively to one type of cancer cell type, based on genetic markers on its surface. By seeding elements with an assortment of antibodies, the device could be set up to capture several different cancer cells types using a single blood sample. In the lab, the researchers were able to fill a total of 170 wells using just under 0.3 fluid ounces (0.85 milliliter) of blood. Even with that small sample, they captured between one and a thousand cells per device, with a capture efficiency of between 62 and 100 percent.

The carbon nanotubes used in the device act as semiconductors. When a cancer cell binds to one of the attached antibodies, it creates an electrical signature that can be detected. These signals can be used to identify which of the elements in the array have captured cancer cells. Those individual arrays can then be removed and taken to a lab, where the captured cells can be stained and identified under a microscope. In the lab, the binding and electrical signature generation process took just a few minutes, suggesting the possibility of getting same-day results from a blood test using the chip, Panchapakesan says.

SOURCE

https://genesisnanotech.wordpress.com/2016/12/27/researchers-build-liquid-biopsy-chip-that-detects-metastatic-cancer-cells-in-blood-one-blood-sample-can-be-tested-for-a-comprehensive-array-of-cancer-cell-markers/

Balaji Panchapakesan – List of Recent Publications

 

Static micro-array isolation, dynamic time series classification, capture and enumeration of spiked breast cancer cells in blood: the nanotube–CTC chip

F Khosravi, PJ Trainor, C Lambert, G Kloecker, E Wickstrom, SN Rai, …
Nanotechnology 27 (44), 44LT03
  2016
A Thermoacoustic Model for High Aspect Ratio Nanostructures

MS Loeian, RW Cohn, B Panchapakesan
Actuators 5 (4), 23
  2016
Spatially Nonuniform Heating and the Nonlinear Transient Response of Elastomeric Photomechanical Actuators

RW Cohn, B Panchapakesan
Actuators 5 (2), 16
  2016
Ultraflexible nanostructures and implications for future nanorobots

RW Cohn, B Panchapakesan
SPIE Commercial+ Scientific Sensing and Imaging, 98590B-98590B-7
  2016
Label-free capture of breast cancer cells spiked in buffy coats using carbon nanotube antibody micro-arrays

F Khosravi, P Trainor, SN Rai, G Kloecker, E Wickstrom, …
Nanotechnology 27 (13), 13LT02
2 2016
Chromatic Mechanical Response in 2-D Layered Transition Metal Dichalcogenide (TMDs) based Nanocomposites

V Rahneshin, F Khosravi, DA Ziolkowska, JB Jasinski, B Panchapakesan
Scientific Reports 6
  2016
Classification of biosensor time series using dynamic time warping: applications in screening cancer cells with characteristic biomarkers

SN Rai, PJ Trainor, F Khosravi, G Kloecker, B Panchapakesan
Open access medical statistics 2016 (6), 21
1 2016
STIMULI-RESPONSIVE POLYMER COMPOSITES

J Loomis, B Panchapakesan
US Patent 20,150,361,241
  2015
MoS2 actuators: reversible mechanical responses of MoS2-polymer nanocomposites to photons

X Fan, F Khosravi, V Rahneshin, M Shanmugam, M Loeian, J Jasinski, …
Nanotechnology 26 (26), 261001
6 2015
Programmable Skins based on Core-Shell Microsphere/Nanotube/Polymer Composites

B Panchapakesan, C Onal, J Loomis
MRS Proceedings 1800, mrss15-2136299
  2015
Photothermal nanopositioners based on graphene nanocomposites

J Loomis, B Panchapakesan
SPIE NanoScience+ Engineering, 91700B-91700B-9
  2014
Nanotube liquid crystal elastomers: photomechanical response and flexible energy conversion of layered polymer composites

X Fan, BC King, J Loomis, EM Campo, J Hegseth, RW Cohn, E Terentjev, …
Nanotechnology 25 (35), 355501
6 2014
Vacuum filtration based formation of liquid crystal films of semiconducting carbon nanotubes and high performance transistor devices

B King, B Panchapakesan
Nanotechnology 25 (17), 175201
15 2014
2013 Index IEEE Nanotechnology Magazine Vol. 7

C Chen, H Chen, L Chen, C Chng, M Chua, C Chui, J Gao, V Gau, …
  2014
Nanotube Devices for Digital Profiling: A focus on cancer biomarkers and circulating tumor cells.

F Khosravi, B King, S Rai, G Kloecker, E Wickstrom, B Panchapakesan
IEEE Nanotechnology Magazine 7 (4), 20-26
4 2013
Nanotube devices for digital profiling of cancer biomarkers and circulating tumor cells

F Khosravi, B King, B Panchapakesan, S Rai, G Kloecker, E Wickstrom
The 7th IEEE International Conference on Nano/Molecular Medicine and …
1 2013
Graphene/elastomer composite-based photo-thermal nanopositioners

J Loomis, X Fan, F Khosravi, P Xu, M Fletcher, RW Cohn, …
Scientific reports 3
32 2013
Methods for fabricating polymer composites

B Panchapakesan
US Patent App. 13/889,121
1 2013
Stimuli-responsive transformation in carbon nanotube/expanding microsphere? polymer composites

J Loomis, P Xu, B Panchapakesan
Nanotechnology 24 (18), 185703
9 2013
Synergism in Binary (MWNT, SLG) Nano-carbons in Polymer Nano-composites: A Raman Study

P Xu, J Loomis, B King, B Panchapakesan
MRS Proceedings 1505, mrsf12-1505-w17-01
  2013
Show more

Read Full Post »

Older Posts »