Author and Curator: Ritu Saxena, Ph.D.
Consultants: Aviva Lev-Ari, PhD, RN and Pnina G. Abir-Am, PhD
CONTENT:
Section I : Mitochondrial diseases and molecular understanding
Section II : Diagnosis and therapy of mitochondrial diseases
Section III: Mitochondria, metabolic syndrome and research
I. MITOCHONDRIAL DISEASES and MOLECULAR UNDERSTANDING
Mitochondrial cytopathy in adults – current understanding:
Mitochondrial cytopathies are a diverse group of inherited and acquired disorders that result in inadequate energy production leading to illnesses. Several syndromes have been linked to mutations in mitochondrial DNA. Some key features common to mitochondrial diseases are listed as follows:
- Diverse manifestations of mitochondrial diseases: Although all mitochondrial diseases have the same characteristic of inadequate energy production as compared to the demand, they seem to show diverse manifestations in the form of organs being affected, age of onset and the rate of progression. Reason lies in the unique genetic makeup of mitochondria. The percentage of mtDNA carrying defects varies when the ovum divides and one daughter cells receiving more defective mtDNA and the other receiving less. Hence, successive divisions may lead to accumulation of defects in one of the developing organs or tissues. Since the process in which defective mtDNA becomes concentrated in an organ is random, this may account for the differing manifestations among patients with the same genetic defect. Also, somatic mutations and mutations occurring as a result of exposure to environmental toxins may cause mitochondrial diseases.
As stated by Robert K. Naviaux, founder and co-director of the Mitochondrial and Metabolic Disease Center (MMDC) at the University of California, San Diego;
“It is a hallmark of mitochondrial diseases that identical mtDNA mutations may not produce identical diseases…the converse is also true, different mutations can lead to the same diseases.”
- Postmitotic tissues are more vulnerable to mitochondrial diseases: Postmitotic tissues such as those in the brain, muscles, nerves, retinas, and kidneys, are vulnerable for several reasons. Apart from the fact that these tissues have high-energy demands, healthier neighboring cells unlike that observed in skin cannot replace the diseased cells. Thus, mutations in mtDNA accumulate over a period of time resulting in progressive dysfunction of individual cells and hence the organ itself.
- High rate of mtDNA mutation: MtDNA mutates at rate that is six-seven times higher than the rate of mutation of nuclear DNA. First reason is the absence of histones on mtDNA and second is the exposure of mtDNA to free radicals due to their close proximity to electron transport chain. Additionally, lack of DNA repair enzymes results in mutant tRNA, rRNA and protein transcripts
Spectrum of mitochondrial diseases:
Following is the list of mitochondrial diseases occurring as a result of either mtDNA mutations, alteration in mitochondrial function or those diseases that sometimes might be associated with mitochondrial dysfunction.
- Disorders associated with mtDNA mutations-
MELAS, MERRF, NARP, Myoneurogastrointestinal disorder and encephalopathy (MNGIE), Pearson Marrow syndrome Kearns-Sayre-CPEO, Leber hereditary optic neuropathy (LHON), Aminoglycoside-associated deafness, Diabetes with deafness
- Mendelian disorders of mitochondrial function related to fuel homeostasis-
Luft disease, Leigh syndrome (Complex I, COX, PDH), Alpers Disease, MCAD, SCAD, SCHAD, VLCAD, LCHAD, Glutaric aciduria II, Lethal infantile cardiomyopathy, Friedreich ataxia, Maturity onset diabetes of young Malignant hyperthermia, Disorders of ketone utilization, mtDNA depletion syndrome, Reversible COX deficiency of infancy, Various defects of the Krebs Cycle, Pyruvate dehydrogenase deficiency, Pyruvate carboxylase deficiency, Fumarase deficiency, Carnitine palmitoyl transferase deficiency
- Disorders sometimes associated with mitochondrial function-
Hemochromatosis, Wilson disease, Batten disease, Huntington disease, Menkes disease, Lesch-Nyhan syndrome, Aging, Type II diabetes mellitus, Atherosclerotic heart disease, Parkinson disease, Alzheimer dementia, Congestive heart failure, Niacin-responsive hypercholesterolemia, Postpartum cardiomyopathy, Alcoholic myopathy, Cancer metastasis, Irritable bowel syndrome Gastroparesis-GI dysmotility, Multiple sclerosis, Systemic lupus erythematosis, Rheumatoid arthritis.
II. DIAGNOSIS AND THERAPY OF MITOCHONDRIAL DISEASES
Diagnosis:
Owing to the diversity of symptoms, there is no accepted criterion for diagnosis. Also, due to overlapping symptoms of several diseases with those of mitochondrial dysfunction illnesses, it is important to evaluate the patient for other conditions. A diagnosis could involve combination of molecular genetic, pathologic, or biochemical data in a patient who has clinical features consistent with the diagnosis including mutational analysis on blood lymphocytes and possibly muscle biopsy for visual and biochemical analysis.
The two main biochemical features in most mtDNA disorders are:
- Respiratory chain deficiency and
- Lactic acidosis.
Skeletal muscle is chosen to study the pathogenic consequence of mtDNA mutations because of the formation of ragged-red fibers (RRF) through mitochondrial proliferation and massive mitochondrial accumulation in many pathogenic situations. RRF can be detected in two ways. Mitochondrial fibers in a subset of these fibers are shown by red or purple stained area by Gomori trichrome stain; the normal or less-affected fibers stain blue or turquoise. Deep purple areas show accumulations of mitochondria as activity of succinate dehydrogenase (SDH) in the case of mitochondrial mutation.
The primary care physician should remember this relatively simple rule of thumb: “When a common disease has features that set it apart from the pack, or involves 3 or more organ systems, think mitochondria.”
Treatment:
There are no cures for mitochondrial diseases; therefore, the treatment is focused on alleviating symptoms and enabling normal functioning of the affected organs. Most patients have used cofactor and vitamins; however, there is no overwhelming evidence that they are helpful in most patients.
- Coenzyme Q10 (CoQ10) is the best-known cofactor used in treating mitochondrial cytopathies with no known side effects. CoQ10, residing in the inner mitochondrial membrane, functions as the mobile electron carrier and is a powerful antioxidant with benefits such as reduction in lactic acid levels, improved muscle strength, decreased muscle fatigue and so on.
- Levocarnitine (L-carnitine, carnitine), is a cofactor required for the metabolism of fatty acids. Levocarnitine therapy improves strength, reversal of cardiomyopathy, and improved gastrointestinal motility, which can be a major benefit to those with poor motility due to their disease. Intestinal cramping and pain are the major side effects.
- Creatine phosphate, synthesized from creatine can accumulate in small amounts in the body, and can act as storage for a high-energy phosphate bond. Muscular creatine may be depleted in mitochondrial cytopathy, and supplemental creatine phosphate has been shown to be helpful in some patients with weakness due to their disease.
- B Vitamin, are necessary for the function of several enzymes associated with energy production. The need for supplemental B vitamin therapy is not proven, aside from rare cases of thiamine (vitamin B1)-responsive pyruvate dehydrogenase deficiency.
Research – Restriction enzyme for gene therapy of Mitochondria diseases:
Mitochondrial DNA (mtDNA) is the only extrachromosomal DNA in humans and defects in this genome are now recognized as important causes of various diseases. Presently, there is no effective treatment for patients suffering from diseases that harbor mutations in mtDNA.
Tanaka et al discovered a gene therapy method to treat a mitochondrial disease associated with mtDNA heteroplasmy. Heteroplasmy is where mutant and wild-type mtDNA molecules co-exist within cells. This syndrome of neurogenic muscle weakness, ataxia and retinitis pigmentosa (NARP) is caused by mutations in mtDNA leading to amino acid replacement in the resulting protein that codes for a subunit of mitochondrial ATP synthase. Level of mutant mtDNA is crucial for the disease as above a certain threshold level of mtDNA, the disease becomes biochemically and clinically apparent. Authors hypothesized that a possible method to treat patients was by selectively destroying mutant mtDNA, thereby only allowing propagation of wild-type mtDNA. Since restriction endonucleases can recognize highly specific sequences, they were utilized for gene therapy. Tanaka et al utilized Sma1, a restriction endonuclease to destroy mutant mtDNA, leading to increase in wild-type mtDNA levels.
Thus, authors concluded, “ the present results indicate that the use of a mitochondrion-targeted restriction enzyme which specifically recognizes a mutant mtDNA provides a novel strategy for gene therapy of mitochondrial diseases.”
III. MITOCHONDRIA, METABOLIC SYNDROME & RESEARCH
Mitochondria:
Mitochondria are double-membrane organelles located in the cytoplasm and often referred to as the “powerhouse” of the cell. In simple terms, they convert energy into forms that are usable by the cell. Mitochondria are semi-autonomous in that they are only partially dependent on the cell to replicate and grow. They have their own DNA, ribosomes, and can make their own proteins. They are the sites of cellular respiration that generates fuel for the cell’s activities. Mitochondria are also involved in other cell processes such as cell division, cellular growth and cell death. Multiple essential cellular functions are mediated by thousands of mitochondrial-specific proteins, encoded by both the nuclear and mitochondrial genomes.
Interestingly, mitochondria take on many different shapes and along with serving several different metabolic functions. In fact, each mitochondrion’s shape is characteristic of the specialized cell in which it resides. The number of mitochondria too varies in difference cell types, with as high as 500-2000 in some nucleated cells and as low as zero in RBCs and 2-6 in platelets.
The standard sequence to which all human mtNDNA is compared is referred to as the “Cambridge Sequence.” It was sequenced from several different human mtDNAs by a Medical Research Council (MRC) labora- tory based at Cambridge, UK, in 1981 and as a part of this work, Fred Sanger, the received his second Nobel Prize. Several variations in the form of polymorphisms are observed from the Cambridge sequence in the mtDNA of different individuals.
Metabolic syndrome:
Metabolic syndrome is a cluster of conditions — increased blood pressure, a high blood sugar level, excess body fat around the waist or abnormal cholesterol levels — that occur together, increasing your risk of heart disease, stroke and diabetes. Metabolic syndrome is becoming more and more common in the United States. In the future, it may overtake smoking as the leading risk factor for heart disease. In general, a person who has metabolic syndrome is twice as likely to develop heart disease and five times as likely to develop diabetes as someone who doesn’t have metabolic syndrome.
The five conditions described below are metabolic risk factors. You must have at least three metabolic risk factors to be diagnosed with metabolic syndrome.
- A large waistline. This also is called abdominal obesity or “having an apple shape.” Excess fat in the stomach area is a greater risk factor for heart disease than excess fat in other parts of the body, such as on the hips.
- A high triglyceride level (or you’re on medicine to treat high triglycerides). Triglycerides are a type of fat found in the blood.
- A low HDL cholesterol level (or you’re on medicine to treat low HDL cholesterol). HDL sometimes is called “good” cholesterol. This is because it helps remove cholesterol from your arteries. A low HDL cholesterol level raises your risk for heart disease.
- High blood pressure (or you’re on medicine to treat high blood pressure). Blood pressure is the force of blood pushing against the walls of your arteries as your heart pumps blood. If this pressure rises and stays high over time, it can damage your heart and lead to plaque buildup.
- High fasting blood sugar (or you’re on medicine to treat high blood sugar). Mildly high blood sugar may be an early sign of diabetes.
Role of Mitochondria in Metabolic Syndrome & Diabetes:
Impaired mitochondrial function has recently emerged as a potential causes of insulin resistance and/or diabetes progression, risk factors of metabolic syndrome.
Mitochondria plays several key functions including generation of ATP, and generating metabolites via Tricarboxylic acid cycle that function in cytosolic pathways, oxidative catabolism of amino acids, ketogenesis, urea cycle; the generation of reactive oxygen species (ROS); the control of cytoplasmic calcium; and the synthesis of all cellular Fe/S clusters, protein cofactors essential for cellular functions such as protein translation and DNA repair. These roles define the mitochondria to be involved in metabolic homeostasis and hence, a major candidate for metabolic syndrome and its associated risk factor including diabetes, obesity and insulin resistance.
Research and Therapeutic relevance:
Understanding the underlying molecular mechanism of aberrant role of mitochondria is important in developing therapeutic agents for mitochondria-associated diseases. In the recent issue of Mitonews, several papers have been published using the products of MitoSciences, which describe research pertaining to the importance of mitochondria in obesity and diabetes. Some recent research articles based on mitochondrial research (also mentioned in MitoNews) have been briefly discussed here:
- Metabolic inflexibility and Metabolic syndrome: Metabolic inflexibility is defined as the failure of insulin-resistant patients to appropriately adjust mitochondrial fuel selection in response to nutritional cues. Although the phenomenon has been emphasized an important aspect of metabolic syndrome, the molecular mechanisms have not yet been fully deciphered. In a recent article by Muoio et al, published in Cell Metabolism journal, essential role of the mitochondrial matrix enzyme, carnitine acetyltransferase (CrAT) has been identified in regulating substrate switching and glucose tolerance. CrAT regulates mitochondrial and intracellular Carbon trafficking by converting acetyl-CoA to its membrane permeant acetylcarnitine ester. Using muscle muscle-specific Crat knockout mice, primary human skeletal myocytes, and human subjects undergoing L-carnitine supplementation, authors have suggested a model wherein CrAT combats nutrient stress, promotes metabolic flexibility, and enhances insulin action by permitting mitochondrial efflux of excess acetyl moieties that otherwise inhibit key regulatory enzymes such as pyruvate dehydrogenase. These findings offer therapeutically relevant insights into the molecular basis of metabolic inflexibility.
- Rosiglitazone and obesity: Eepicardial adipose tissue (EAT) has been described in humans as a functioning brown adipose tissue (BAT) and has been shown in animal models to have a lower glucose oxidation rate and higher fatty acid (FA) metabolism. In obese individuals, epicardial adipose tissue (EAT) is “hypertrophied”. EAT is a source of BAT may be a source of proinflamatory cytokines. Distel et al published their studies using a rat model of obesity and insulin resistance treated with rosiglitazone. They observed that rosiglitazone, promoted a BAT phenotype in the EAT depot characterized by an increase in the expression levels of genes encoding proteins involved in mitochondrial processing and density PPARγ coactivator 1 alpha (PGC-1α), NADH dehydrogenase 1 and cytochrome oxidase (COX4) resulting in significant up-regulation of PGC1-α and COX4 protein. The authors concluded that PPAR-γ agonist could induce a rapid browning of the EAT that probably contributes to the increase in lipid turnover. Thus, important insights into the mechanism of fat metabolism and involvement of mitochondrial proteins with a therapy were presented in the article.
- Mitochondrial dysfunction and diabetic neuropathy: Animal models of diabetic neuropathy show that mitochondrial dysfunction occurs in sensory neurons that may contribute to distal axonopathy. The adenosine monophosphate-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) signalling axis senses the metabolic demands of cells and regulates mitochondrial function. Studies in muscle, liver and cardiac tissues have shown that the activity of AMPK and PGC-1α is decreased under hyperglycaemia. Chowdhury et al using type 1 and type 2 diabetic rat and mice models studied the hypothesis that deficits in AMPK/PGC-1 signalling in sensory neurons underlie impaired axonal plasticity, suboptimal mitochondrial function and development of neuropathy. The authors have shown there is a significant reduction in phospho-AMPK, phopho-ACC, total PGC-1α, NDUFS3and COXIV in sensory neurons of the dorsal root ganglia of 14 week old diabetic mice with marked signs of thermal hypoalgesia. These results were associated with an impaired neuronal bioenergetic profile and a decrease in the activity of mitochondrial complex I, complex IV and citrate synthase. The fact that resveratrol treatment reversed the changes observed in vitro and in vivo suggest that the development of distal axonopathy in diabetic neuropathy is linked to nutrient excess and mitochondrial dysfunction via defective signalling of the AMPK/PGC-1α pathway.
- ROS and diabetes: Mitochondria generated reactive oxygen species (ROS) has been associated with kidney damage occurring in diabetes. Rosca et al, published an article investigating the source and site of ROS production by kidney cortical tubule mitochondria in streptozotocin-induced type 1 diabetes in rats. The authors observed that in diabetic mitochondria, the fatty acid oxidation enzymes were elevated with increased oxidative phosphorylation and increased ROS production. The authors observed ROS production with fatty acid oxidation remained unchanged by limiting electron flow in ETC complexes, changes in ETC substrate processing and that the ROS supported by pyruvate also remained unaltered. The authors hence concluded that mitochondrial fatty acid oxidation is the source of increased ROS production in kidney cortical tubules in early diabetes
Sources:
http://www.ncbi.nlm.nih.gov/pubmed/11453081
http://health.cat/open.php?url=http://biochemgen.ucsd.edu/mmdc/ep-3-10.pdf
http://findarticles.com/p/articles/mi_go2827/is_n6_v27/ai_n28687375/
http://www.columbiamitodiagnostics.org/images/Mitobrochure.pdf
http://www.ncbi.nlm.nih.gov/pubmed?term=12372991
http://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0004546/
http://www.mayoclinic.com/health/metabolic%20syndrome/DS00522
http://www.nhlbi.nih.gov/health/health-topics/topics/ms/
http://www.ncbi.nlm.nih.gov/pubmed?term=22560225
http://www.ncbi.nlm.nih.gov/pubmed?term=%20%20%20%2022575275
http://www.ncbi.nlm.nih.gov/pubmed?term=%20%20%20%2022561641
excellent
[…] Mitochondria: More than just the “powerhouse of the cell” (pharmaceuticalintelligence.com) […]
[…] On 5th of July, I discussed the general overview of varied mitochondrial functions, diseases, diagnosis and the current research focused on treatment of mitochondrial diseases in a post titled “Mitochondria: More than just the powerhouse of the cell”. http://pharmaceuticalintelligence.com/2012/07/09/mitochondria-more-than-just-the-powerhouse-of-the-c… […]
[…] http://pharmaceuticalintelligence.com/2012/07/09/mitochondria-more-than-just-the-powerhouse-of-the-c… […]
[…] http://pharmaceuticalintelligence.com/2012/07/09/mitochondria-more-than-just-the-powerhouse-of-the-c… […]
[…] Author and Curator: Ritu Saxena, PhD; Consultants: Aviva Lev-Ari, PhD, RN and Pnina G. Abir-Am, PhD http://pharmaceuticalintelligence.com/2012/07/09/mitochondria-more-than-just-the-powerhouse-of-the-c… […]
PUT IT IN CONTEXT OF CANCER CELL MOVEMENT
The contraction of skeletal muscle is triggered by nerve impulses, which stimulate the release of Ca2+ from the sarcoplasmic reticuluma specialized network of internal membranes, similar to the endoplasmic reticulum, that stores high concentrations of Ca2+ ions. The release of Ca2+ from the sarcoplasmic reticulum increases the concentration of Ca2+ in the cytosol from approximately 10-7 to 10-5 M. The increased Ca2+ concentration signals muscle contraction via the action of two accessory proteins bound to the actin filaments: tropomyosin and troponin (Figure 11.25). Tropomyosin is a fibrous protein that binds lengthwise along the groove of actin filaments. In striated muscle, each tropomyosin molecule is bound to troponin, which is a complex of three polypeptides: troponin C (Ca2+-binding), troponin I (inhibitory), and troponin T (tropomyosin-binding). When the concentration of Ca2+ is low, the complex of the troponins with tropomyosin blocks the interaction of actin and myosin, so the muscle does not contract. At high concentrations, Ca2+ binding to troponin C shifts the position of the complex, relieving this inhibition and allowing contraction to proceed.
Figure 11.25
Association of tropomyosin and troponins with actin filaments. (A) Tropomyosin binds lengthwise along actin filaments and, in striated muscle, is associated with a complex of three troponins: troponin I (TnI), troponin C (TnC), and troponin T (TnT). In (more ) Contractile Assemblies of Actin and Myosin in Nonmuscle Cells
Contractile assemblies of actin and myosin, resembling small-scale versions of muscle fibers, are present also in nonmuscle cells. As in muscle, the actin filaments in these contractile assemblies are interdigitated with bipolar filaments of myosin II, consisting of 15 to 20 myosin II molecules, which produce contraction by sliding the actin filaments relative to one another (Figure 11.26). The actin filaments in contractile bundles in nonmuscle cells are also associated with tropomyosin, which facilitates their interaction with myosin II, probably by competing with filamin for binding sites on actin.
Figure 11.26
Contractile assemblies in nonmuscle cells. Bipolar filaments of myosin II produce contraction by sliding actin filaments in opposite directions. Two examples of contractile assemblies in nonmuscle cells, stress fibers and adhesion belts, were discussed earlier with respect to attachment of the actin cytoskeleton to regions of cell-substrate and cell-cell contacts (see Figures 11.13 and 11.14). The contraction of stress fibers produces tension across the cell, allowing the cell to pull on a substrate (e.g., the extracellular matrix) to which it is anchored. The contraction of adhesion belts alters the shape of epithelial cell sheets: a process that is particularly important during embryonic development, when sheets of epithelial cells fold into structures such as tubes.
The most dramatic example of actin-myosin contraction in nonmuscle cells, however, is provided by cytokinesisthe division of a cell into two following mitosis (Figure 11.27). Toward the end of mitosis in animal cells, a contractile ring consisting of actin filaments and myosin II assembles just underneath the plasma membrane. Its contraction pulls the plasma membrane progressively inward, constricting the center of the cell and pinching it in two. Interestingly, the thickness of the contractile ring remains constant as it contracts, implying that actin filaments disassemble as contraction proceeds. The ring then disperses completely following cell division.
Figure 11.27
Cytokinesis. Following completion of mitosis (nuclear division), a contractile ring consisting of actin filaments and myosin II divides the cell in two.
http://www.ncbi.nlm.nih.gov/books/NBK9961/
This is good. I don’t recall seeing it in the original comment. I am very aware of the actin myosin troponin connection in heart and in skeletal muscle, and I did know about the nonmuscle work. I won’t deal with it now, and I have been working with Aviral now online for 2 hours.
I have had a considerable background from way back in atomic orbital theory, physical chemistry, organic chemistry, and the equilibrium necessary for cations and anions. Despite the calcium role in contraction, I would not discount hypomagnesemia in having a disease role because of the intracellular-extracellular connection. The description you pasted reminds me also of a lecture given a few years ago by the Nobel Laureate that year on the mechanism of cell division.
PUT IT IN CONTEXT OF CANCER CELL MOVEMENT
The contraction of skeletal muscle is triggered by nerve impulses, which stimulate the release of Ca2+ from the sarcoplasmic reticuluma specialized network of internal membranes, similar to the endoplasmic reticulum, that stores high concentrations of Ca2+ ions. The release of Ca2+ from the sarcoplasmic reticulum increases the concentration of Ca2+ in the cytosol from approximately 10-7 to 10-5 M. The increased Ca2+ concentration signals muscle contraction via the action of two accessory proteins bound to the actin filaments: tropomyosin and troponin (Figure 11.25). Tropomyosin is a fibrous protein that binds lengthwise along the groove of actin filaments. In striated muscle, each tropomyosin molecule is bound to troponin, which is a complex of three polypeptides: troponin C (Ca2+-binding), troponin I (inhibitory), and troponin T (tropomyosin-binding). When the concentration of Ca2+ is low, the complex of the troponins with tropomyosin blocks the interaction of actin and myosin, so the muscle does not contract. At high concentrations, Ca2+ binding to troponin C shifts the position of the complex, relieving this inhibition and allowing contraction to proceed.
Figure 11.25
Association of tropomyosin and troponins with actin filaments. (A) Tropomyosin binds lengthwise along actin filaments and, in striated muscle, is associated with a complex of three troponins: troponin I (TnI), troponin C (TnC), and troponin T (TnT). In (more ) Contractile Assemblies of Actin and Myosin in Nonmuscle Cells
Contractile assemblies of actin and myosin, resembling small-scale versions of muscle fibers, are present also in nonmuscle cells. As in muscle, the actin filaments in these contractile assemblies are interdigitated with bipolar filaments of myosin II, consisting of 15 to 20 myosin II molecules, which produce contraction by sliding the actin filaments relative to one another (Figure 11.26). The actin filaments in contractile bundles in nonmuscle cells are also associated with tropomyosin, which facilitates their interaction with myosin II, probably by competing with filamin for binding sites on actin.
Figure 11.26
Contractile assemblies in nonmuscle cells. Bipolar filaments of myosin II produce contraction by sliding actin filaments in opposite directions. Two examples of contractile assemblies in nonmuscle cells, stress fibers and adhesion belts, were discussed earlier with respect to attachment of the actin cytoskeleton to regions of cell-substrate and cell-cell contacts (see Figures 11.13 and 11.14). The contraction of stress fibers produces tension across the cell, allowing the cell to pull on a substrate (e.g., the extracellular matrix) to which it is anchored. The contraction of adhesion belts alters the shape of epithelial cell sheets: a process that is particularly important during embryonic development, when sheets of epithelial cells fold into structures such as tubes.
The most dramatic example of actin-myosin contraction in nonmuscle cells, however, is provided by cytokinesisthe division of a cell into two following mitosis (Figure 11.27). Toward the end of mitosis in animal cells, a contractile ring consisting of actin filaments and myosin II assembles just underneath the plasma membrane. Its contraction pulls the plasma membrane progressively inward, constricting the center of the cell and pinching it in two. Interestingly, the thickness of the contractile ring remains constant as it contracts, implying that actin filaments disassemble as contraction proceeds. The ring then disperses completely following cell division.
Figure 11.27
Cytokinesis. Following completion of mitosis (nuclear division), a contractile ring consisting of actin filaments and myosin II divides the cell in two.
http://www.ncbi.nlm.nih.gov/books/NBK9961/
This is good. I don’t recall seeing it in the original comment. I am very aware of the actin myosin troponin connection in heart and in skeletal muscle, and I did know about the nonmuscle work. I won’t deal with it now, and I have been working with Aviral now online for 2 hours.
I have had a considerable background from way back in atomic orbital theory, physical chemistry, organic chemistry, and the equilibrium necessary for cations and anions. Despite the calcium role in contraction, I would not discount hypomagnesemia in having a disease role because of the intracellular-extracellular connection. The description you pasted reminds me also of a lecture given a few years ago by the Nobel Laureate that year on the mechanism of cell division.
PUT IT IN CONTEXT OF CANCER CELL MOVEMENT
The contraction of skeletal muscle is triggered by nerve impulses, which stimulate the release of Ca2+ from the sarcoplasmic reticuluma specialized network of internal membranes, similar to the endoplasmic reticulum, that stores high concentrations of Ca2+ ions. The release of Ca2+ from the sarcoplasmic reticulum increases the concentration of Ca2+ in the cytosol from approximately 10-7 to 10-5 M. The increased Ca2+ concentration signals muscle contraction via the action of two accessory proteins bound to the actin filaments: tropomyosin and troponin (Figure 11.25). Tropomyosin is a fibrous protein that binds lengthwise along the groove of actin filaments. In striated muscle, each tropomyosin molecule is bound to troponin, which is a complex of three polypeptides: troponin C (Ca2+-binding), troponin I (inhibitory), and troponin T (tropomyosin-binding). When the concentration of Ca2+ is low, the complex of the troponins with tropomyosin blocks the interaction of actin and myosin, so the muscle does not contract. At high concentrations, Ca2+ binding to troponin C shifts the position of the complex, relieving this inhibition and allowing contraction to proceed.
Figure 11.25
Association of tropomyosin and troponins with actin filaments. (A) Tropomyosin binds lengthwise along actin filaments and, in striated muscle, is associated with a complex of three troponins: troponin I (TnI), troponin C (TnC), and troponin T (TnT). In (more ) Contractile Assemblies of Actin and Myosin in Nonmuscle Cells
Contractile assemblies of actin and myosin, resembling small-scale versions of muscle fibers, are present also in nonmuscle cells. As in muscle, the actin filaments in these contractile assemblies are interdigitated with bipolar filaments of myosin II, consisting of 15 to 20 myosin II molecules, which produce contraction by sliding the actin filaments relative to one another (Figure 11.26). The actin filaments in contractile bundles in nonmuscle cells are also associated with tropomyosin, which facilitates their interaction with myosin II, probably by competing with filamin for binding sites on actin.
Figure 11.26
Contractile assemblies in nonmuscle cells. Bipolar filaments of myosin II produce contraction by sliding actin filaments in opposite directions. Two examples of contractile assemblies in nonmuscle cells, stress fibers and adhesion belts, were discussed earlier with respect to attachment of the actin cytoskeleton to regions of cell-substrate and cell-cell contacts (see Figures 11.13 and 11.14). The contraction of stress fibers produces tension across the cell, allowing the cell to pull on a substrate (e.g., the extracellular matrix) to which it is anchored. The contraction of adhesion belts alters the shape of epithelial cell sheets: a process that is particularly important during embryonic development, when sheets of epithelial cells fold into structures such as tubes.
The most dramatic example of actin-myosin contraction in nonmuscle cells, however, is provided by cytokinesisthe division of a cell into two following mitosis (Figure 11.27). Toward the end of mitosis in animal cells, a contractile ring consisting of actin filaments and myosin II assembles just underneath the plasma membrane. Its contraction pulls the plasma membrane progressively inward, constricting the center of the cell and pinching it in two. Interestingly, the thickness of the contractile ring remains constant as it contracts, implying that actin filaments disassemble as contraction proceeds. The ring then disperses completely following cell division.
Figure 11.27
Cytokinesis. Following completion of mitosis (nuclear division), a contractile ring consisting of actin filaments and myosin II divides the cell in two.
http://www.ncbi.nlm.nih.gov/books/NBK9961/
This is good. I don’t recall seeing it in the original comment. I am very aware of the actin myosin troponin connection in heart and in skeletal muscle, and I did know about the nonmuscle work. I won’t deal with it now, and I have been working with Aviral now online for 2 hours.
I have had a considerable background from way back in atomic orbital theory, physical chemistry, organic chemistry, and the equilibrium necessary for cations and anions. Despite the calcium role in contraction, I would not discount hypomagnesemia in having a disease role because of the intracellular-extracellular connection. The description you pasted reminds me also of a lecture given a few years ago by the Nobel Laureate that year on the mechanism of cell division.
PUT IT IN CONTEXT OF CANCER CELL MOVEMENT
The contraction of skeletal muscle is triggered by nerve impulses, which stimulate the release of Ca2+ from the sarcoplasmic reticuluma specialized network of internal membranes, similar to the endoplasmic reticulum, that stores high concentrations of Ca2+ ions. The release of Ca2+ from the sarcoplasmic reticulum increases the concentration of Ca2+ in the cytosol from approximately 10-7 to 10-5 M. The increased Ca2+ concentration signals muscle contraction via the action of two accessory proteins bound to the actin filaments: tropomyosin and troponin (Figure 11.25). Tropomyosin is a fibrous protein that binds lengthwise along the groove of actin filaments. In striated muscle, each tropomyosin molecule is bound to troponin, which is a complex of three polypeptides: troponin C (Ca2+-binding), troponin I (inhibitory), and troponin T (tropomyosin-binding). When the concentration of Ca2+ is low, the complex of the troponins with tropomyosin blocks the interaction of actin and myosin, so the muscle does not contract. At high concentrations, Ca2+ binding to troponin C shifts the position of the complex, relieving this inhibition and allowing contraction to proceed.
Figure 11.25
Association of tropomyosin and troponins with actin filaments. (A) Tropomyosin binds lengthwise along actin filaments and, in striated muscle, is associated with a complex of three troponins: troponin I (TnI), troponin C (TnC), and troponin T (TnT). In (more ) Contractile Assemblies of Actin and Myosin in Nonmuscle Cells
Contractile assemblies of actin and myosin, resembling small-scale versions of muscle fibers, are present also in nonmuscle cells. As in muscle, the actin filaments in these contractile assemblies are interdigitated with bipolar filaments of myosin II, consisting of 15 to 20 myosin II molecules, which produce contraction by sliding the actin filaments relative to one another (Figure 11.26). The actin filaments in contractile bundles in nonmuscle cells are also associated with tropomyosin, which facilitates their interaction with myosin II, probably by competing with filamin for binding sites on actin.
Figure 11.26
Contractile assemblies in nonmuscle cells. Bipolar filaments of myosin II produce contraction by sliding actin filaments in opposite directions. Two examples of contractile assemblies in nonmuscle cells, stress fibers and adhesion belts, were discussed earlier with respect to attachment of the actin cytoskeleton to regions of cell-substrate and cell-cell contacts (see Figures 11.13 and 11.14). The contraction of stress fibers produces tension across the cell, allowing the cell to pull on a substrate (e.g., the extracellular matrix) to which it is anchored. The contraction of adhesion belts alters the shape of epithelial cell sheets: a process that is particularly important during embryonic development, when sheets of epithelial cells fold into structures such as tubes.
The most dramatic example of actin-myosin contraction in nonmuscle cells, however, is provided by cytokinesisthe division of a cell into two following mitosis (Figure 11.27). Toward the end of mitosis in animal cells, a contractile ring consisting of actin filaments and myosin II assembles just underneath the plasma membrane. Its contraction pulls the plasma membrane progressively inward, constricting the center of the cell and pinching it in two. Interestingly, the thickness of the contractile ring remains constant as it contracts, implying that actin filaments disassemble as contraction proceeds. The ring then disperses completely following cell division.
Figure 11.27
Cytokinesis. Following completion of mitosis (nuclear division), a contractile ring consisting of actin filaments and myosin II divides the cell in two.
http://www.ncbi.nlm.nih.gov/books/NBK9961/
This is good. I don’t recall seeing it in the original comment. I am very aware of the actin myosin troponin connection in heart and in skeletal muscle, and I did know about the nonmuscle work. I won’t deal with it now, and I have been working with Aviral now online for 2 hours.
I have had a considerable background from way back in atomic orbital theory, physical chemistry, organic chemistry, and the equilibrium necessary for cations and anions. Despite the calcium role in contraction, I would not discount hypomagnesemia in having a disease role because of the intracellular-extracellular connection. The description you pasted reminds me also of a lecture given a few years ago by the Nobel Laureate that year on the mechanism of cell division.
PUT IT IN CONTEXT OF CANCER CELL MOVEMENT
The contraction of skeletal muscle is triggered by nerve impulses, which stimulate the release of Ca2+ from the sarcoplasmic reticuluma specialized network of internal membranes, similar to the endoplasmic reticulum, that stores high concentrations of Ca2+ ions. The release of Ca2+ from the sarcoplasmic reticulum increases the concentration of Ca2+ in the cytosol from approximately 10-7 to 10-5 M. The increased Ca2+ concentration signals muscle contraction via the action of two accessory proteins bound to the actin filaments: tropomyosin and troponin (Figure 11.25). Tropomyosin is a fibrous protein that binds lengthwise along the groove of actin filaments. In striated muscle, each tropomyosin molecule is bound to troponin, which is a complex of three polypeptides: troponin C (Ca2+-binding), troponin I (inhibitory), and troponin T (tropomyosin-binding). When the concentration of Ca2+ is low, the complex of the troponins with tropomyosin blocks the interaction of actin and myosin, so the muscle does not contract. At high concentrations, Ca2+ binding to troponin C shifts the position of the complex, relieving this inhibition and allowing contraction to proceed.
Figure 11.25
Association of tropomyosin and troponins with actin filaments. (A) Tropomyosin binds lengthwise along actin filaments and, in striated muscle, is associated with a complex of three troponins: troponin I (TnI), troponin C (TnC), and troponin T (TnT). In (more ) Contractile Assemblies of Actin and Myosin in Nonmuscle Cells
Contractile assemblies of actin and myosin, resembling small-scale versions of muscle fibers, are present also in nonmuscle cells. As in muscle, the actin filaments in these contractile assemblies are interdigitated with bipolar filaments of myosin II, consisting of 15 to 20 myosin II molecules, which produce contraction by sliding the actin filaments relative to one another (Figure 11.26). The actin filaments in contractile bundles in nonmuscle cells are also associated with tropomyosin, which facilitates their interaction with myosin II, probably by competing with filamin for binding sites on actin.
Figure 11.26
Contractile assemblies in nonmuscle cells. Bipolar filaments of myosin II produce contraction by sliding actin filaments in opposite directions. Two examples of contractile assemblies in nonmuscle cells, stress fibers and adhesion belts, were discussed earlier with respect to attachment of the actin cytoskeleton to regions of cell-substrate and cell-cell contacts (see Figures 11.13 and 11.14). The contraction of stress fibers produces tension across the cell, allowing the cell to pull on a substrate (e.g., the extracellular matrix) to which it is anchored. The contraction of adhesion belts alters the shape of epithelial cell sheets: a process that is particularly important during embryonic development, when sheets of epithelial cells fold into structures such as tubes.
The most dramatic example of actin-myosin contraction in nonmuscle cells, however, is provided by cytokinesisthe division of a cell into two following mitosis (Figure 11.27). Toward the end of mitosis in animal cells, a contractile ring consisting of actin filaments and myosin II assembles just underneath the plasma membrane. Its contraction pulls the plasma membrane progressively inward, constricting the center of the cell and pinching it in two. Interestingly, the thickness of the contractile ring remains constant as it contracts, implying that actin filaments disassemble as contraction proceeds. The ring then disperses completely following cell division.
Figure 11.27
Cytokinesis. Following completion of mitosis (nuclear division), a contractile ring consisting of actin filaments and myosin II divides the cell in two.
http://www.ncbi.nlm.nih.gov/books/NBK9961/
This is good. I don’t recall seeing it in the original comment. I am very aware of the actin myosin troponin connection in heart and in skeletal muscle, and I did know about the nonmuscle work. I won’t deal with it now, and I have been working with Aviral now online for 2 hours.
I have had a considerable background from way back in atomic orbital theory, physical chemistry, organic chemistry, and the equilibrium necessary for cations and anions. Despite the calcium role in contraction, I would not discount hypomagnesemia in having a disease role because of the intracellular-extracellular connection. The description you pasted reminds me also of a lecture given a few years ago by the Nobel Laureate that year on the mechanism of cell division.
PUT IT IN CONTEXT OF CANCER CELL MOVEMENT
The contraction of skeletal muscle is triggered by nerve impulses, which stimulate the release of Ca2+ from the sarcoplasmic reticuluma specialized network of internal membranes, similar to the endoplasmic reticulum, that stores high concentrations of Ca2+ ions. The release of Ca2+ from the sarcoplasmic reticulum increases the concentration of Ca2+ in the cytosol from approximately 10-7 to 10-5 M. The increased Ca2+ concentration signals muscle contraction via the action of two accessory proteins bound to the actin filaments: tropomyosin and troponin (Figure 11.25). Tropomyosin is a fibrous protein that binds lengthwise along the groove of actin filaments. In striated muscle, each tropomyosin molecule is bound to troponin, which is a complex of three polypeptides: troponin C (Ca2+-binding), troponin I (inhibitory), and troponin T (tropomyosin-binding). When the concentration of Ca2+ is low, the complex of the troponins with tropomyosin blocks the interaction of actin and myosin, so the muscle does not contract. At high concentrations, Ca2+ binding to troponin C shifts the position of the complex, relieving this inhibition and allowing contraction to proceed.
Figure 11.25
Association of tropomyosin and troponins with actin filaments. (A) Tropomyosin binds lengthwise along actin filaments and, in striated muscle, is associated with a complex of three troponins: troponin I (TnI), troponin C (TnC), and troponin T (TnT). In (more ) Contractile Assemblies of Actin and Myosin in Nonmuscle Cells
Contractile assemblies of actin and myosin, resembling small-scale versions of muscle fibers, are present also in nonmuscle cells. As in muscle, the actin filaments in these contractile assemblies are interdigitated with bipolar filaments of myosin II, consisting of 15 to 20 myosin II molecules, which produce contraction by sliding the actin filaments relative to one another (Figure 11.26). The actin filaments in contractile bundles in nonmuscle cells are also associated with tropomyosin, which facilitates their interaction with myosin II, probably by competing with filamin for binding sites on actin.
Figure 11.26
Contractile assemblies in nonmuscle cells. Bipolar filaments of myosin II produce contraction by sliding actin filaments in opposite directions. Two examples of contractile assemblies in nonmuscle cells, stress fibers and adhesion belts, were discussed earlier with respect to attachment of the actin cytoskeleton to regions of cell-substrate and cell-cell contacts (see Figures 11.13 and 11.14). The contraction of stress fibers produces tension across the cell, allowing the cell to pull on a substrate (e.g., the extracellular matrix) to which it is anchored. The contraction of adhesion belts alters the shape of epithelial cell sheets: a process that is particularly important during embryonic development, when sheets of epithelial cells fold into structures such as tubes.
The most dramatic example of actin-myosin contraction in nonmuscle cells, however, is provided by cytokinesisthe division of a cell into two following mitosis (Figure 11.27). Toward the end of mitosis in animal cells, a contractile ring consisting of actin filaments and myosin II assembles just underneath the plasma membrane. Its contraction pulls the plasma membrane progressively inward, constricting the center of the cell and pinching it in two. Interestingly, the thickness of the contractile ring remains constant as it contracts, implying that actin filaments disassemble as contraction proceeds. The ring then disperses completely following cell division.
Figure 11.27
Cytokinesis. Following completion of mitosis (nuclear division), a contractile ring consisting of actin filaments and myosin II divides the cell in two.
http://www.ncbi.nlm.nih.gov/books/NBK9961/
This is good. I don’t recall seeing it in the original comment. I am very aware of the actin myosin troponin connection in heart and in skeletal muscle, and I did know about the nonmuscle work. I won’t deal with it now, and I have been working with Aviral now online for 2 hours.
I have had a considerable background from way back in atomic orbital theory, physical chemistry, organic chemistry, and the equilibrium necessary for cations and anions. Despite the calcium role in contraction, I would not discount hypomagnesemia in having a disease role because of the intracellular-extracellular connection. The description you pasted reminds me also of a lecture given a few years ago by the Nobel Laureate that year on the mechanism of cell division.
I actually consider this amazing blog , âSAME SCIENTIFIC IMPACT: Scientific Publishing –
Open Journals vs. Subscription-based « Pharmaceutical Intelligenceâ, very compelling plus the blog post ended up being a good read.
Many thanks,Annette
I actually consider this amazing blog , âSAME SCIENTIFIC IMPACT: Scientific Publishing –
Open Journals vs. Subscription-based « Pharmaceutical Intelligenceâ, very compelling plus the blog post ended up being a good read.
Many thanks,Annette
I actually consider this amazing blog , âSAME SCIENTIFIC IMPACT: Scientific Publishing –
Open Journals vs. Subscription-based « Pharmaceutical Intelligenceâ, very compelling plus the blog post ended up being a good read.
Many thanks,Annette
I actually consider this amazing blog , âSAME SCIENTIFIC IMPACT: Scientific Publishing –
Open Journals vs. Subscription-based « Pharmaceutical Intelligenceâ, very compelling plus the blog post ended up being a good read.
Many thanks,Annette
I actually consider this amazing blog , âSAME SCIENTIFIC IMPACT: Scientific Publishing –
Open Journals vs. Subscription-based « Pharmaceutical Intelligenceâ, very compelling plus the blog post ended up being a good read.
Many thanks,Annette
I actually consider this amazing blog , âSAME SCIENTIFIC IMPACT: Scientific Publishing –
Open Journals vs. Subscription-based « Pharmaceutical Intelligenceâ, very compelling plus the blog post ended up being a good read.
Many thanks,Annette
I actually consider this amazing blog , âSAME SCIENTIFIC IMPACT: Scientific Publishing –
Open Journals vs. Subscription-based « Pharmaceutical Intelligenceâ, very compelling plus the blog post ended up being a good read.
Many thanks,Annette
I actually consider this amazing blog , âSAME SCIENTIFIC IMPACT: Scientific Publishing –
Open Journals vs. Subscription-based « Pharmaceutical Intelligenceâ, very compelling plus the blog post ended up being a good read.
Many thanks,Annette
I actually consider this amazing blog , âSAME SCIENTIFIC IMPACT: Scientific Publishing –
Open Journals vs. Subscription-based « Pharmaceutical Intelligenceâ, very compelling plus the blog post ended up being a good read.
Many thanks,Annette
I actually consider this amazing blog , âSAME SCIENTIFIC IMPACT: Scientific Publishing –
Open Journals vs. Subscription-based « Pharmaceutical Intelligenceâ, very compelling plus the blog post ended up being a good read.
Many thanks,Annette
I actually consider this amazing blog , âSAME SCIENTIFIC IMPACT: Scientific Publishing –
Open Journals vs. Subscription-based « Pharmaceutical Intelligenceâ, very compelling plus the blog post ended up being a good read.
Many thanks,Annette
This is very insightful. There is no doubt that there is the bias you refer to. 42 years ago, when I was postdocing in biochemistry/enzymology before completing my residency in pathology, I knew that there were very influential mambers of the faculty, who also had large programs, and attracted exceptional students. My mentor, it was said (although he was a great writer), could draft a project on toilet paper and call the NIH. It can’t be true, but it was a time in our history preceding a great explosion. It is bizarre for me to read now about eNOS and iNOS, and about CaMKII-á, â, ã, ä – isoenzymes. They were overlooked during the search for the genome, so intermediary metabolism took a back seat. But the work on protein conformation, and on the mechanism of action of enzymes and ligand and coenzyme was just out there, and became more important with the research on signaling pathways. The work on the mechanism of pyridine nucleotide isoenzymes preceded the work by Burton Sobel on the MB isoenzyme in heart. The Vietnam War cut into the funding, and it has actually declined linearly since.
A few years later, I was an Associate Professor at a new Medical School and I submitted a proposal that was reviewed by the Chairman of Pharmacology, who was a former Director of NSF. He thought it was good enough. I was a pathologist and it went to a Biochemistry Review Committee. It was approved, but not funded. The verdict was that I would not be able to carry out the studies needed, and they would have approached it differently. A thousand young investigators are out there now with similar letters. I was told that the Department Chairmen have to build up their faculty. It’s harder now than then. So I filed for and received 3 patents based on my work at the suggestion of my brother-in-law. When I took it to Boehringer-Mannheim, they were actually clueless.
This is very insightful. There is no doubt that there is the bias you refer to. 42 years ago, when I was postdocing in biochemistry/enzymology before completing my residency in pathology, I knew that there were very influential mambers of the faculty, who also had large programs, and attracted exceptional students. My mentor, it was said (although he was a great writer), could draft a project on toilet paper and call the NIH. It can’t be true, but it was a time in our history preceding a great explosion. It is bizarre for me to read now about eNOS and iNOS, and about CaMKII-á, â, ã, ä – isoenzymes. They were overlooked during the search for the genome, so intermediary metabolism took a back seat. But the work on protein conformation, and on the mechanism of action of enzymes and ligand and coenzyme was just out there, and became more important with the research on signaling pathways. The work on the mechanism of pyridine nucleotide isoenzymes preceded the work by Burton Sobel on the MB isoenzyme in heart. The Vietnam War cut into the funding, and it has actually declined linearly since.
A few years later, I was an Associate Professor at a new Medical School and I submitted a proposal that was reviewed by the Chairman of Pharmacology, who was a former Director of NSF. He thought it was good enough. I was a pathologist and it went to a Biochemistry Review Committee. It was approved, but not funded. The verdict was that I would not be able to carry out the studies needed, and they would have approached it differently. A thousand young investigators are out there now with similar letters. I was told that the Department Chairmen have to build up their faculty. It’s harder now than then. So I filed for and received 3 patents based on my work at the suggestion of my brother-in-law. When I took it to Boehringer-Mannheim, they were actually clueless.
This is very insightful. There is no doubt that there is the bias you refer to. 42 years ago, when I was postdocing in biochemistry/enzymology before completing my residency in pathology, I knew that there were very influential mambers of the faculty, who also had large programs, and attracted exceptional students. My mentor, it was said (although he was a great writer), could draft a project on toilet paper and call the NIH. It can’t be true, but it was a time in our history preceding a great explosion. It is bizarre for me to read now about eNOS and iNOS, and about CaMKII-á, â, ã, ä – isoenzymes. They were overlooked during the search for the genome, so intermediary metabolism took a back seat. But the work on protein conformation, and on the mechanism of action of enzymes and ligand and coenzyme was just out there, and became more important with the research on signaling pathways. The work on the mechanism of pyridine nucleotide isoenzymes preceded the work by Burton Sobel on the MB isoenzyme in heart. The Vietnam War cut into the funding, and it has actually declined linearly since.
A few years later, I was an Associate Professor at a new Medical School and I submitted a proposal that was reviewed by the Chairman of Pharmacology, who was a former Director of NSF. He thought it was good enough. I was a pathologist and it went to a Biochemistry Review Committee. It was approved, but not funded. The verdict was that I would not be able to carry out the studies needed, and they would have approached it differently. A thousand young investigators are out there now with similar letters. I was told that the Department Chairmen have to build up their faculty. It’s harder now than then. So I filed for and received 3 patents based on my work at the suggestion of my brother-in-law. When I took it to Boehringer-Mannheim, they were actually clueless.
This is very insightful. There is no doubt that there is the bias you refer to. 42 years ago, when I was postdocing in biochemistry/enzymology before completing my residency in pathology, I knew that there were very influential mambers of the faculty, who also had large programs, and attracted exceptional students. My mentor, it was said (although he was a great writer), could draft a project on toilet paper and call the NIH. It can’t be true, but it was a time in our history preceding a great explosion. It is bizarre for me to read now about eNOS and iNOS, and about CaMKII-á, â, ã, ä – isoenzymes. They were overlooked during the search for the genome, so intermediary metabolism took a back seat. But the work on protein conformation, and on the mechanism of action of enzymes and ligand and coenzyme was just out there, and became more important with the research on signaling pathways. The work on the mechanism of pyridine nucleotide isoenzymes preceded the work by Burton Sobel on the MB isoenzyme in heart. The Vietnam War cut into the funding, and it has actually declined linearly since.
A few years later, I was an Associate Professor at a new Medical School and I submitted a proposal that was reviewed by the Chairman of Pharmacology, who was a former Director of NSF. He thought it was good enough. I was a pathologist and it went to a Biochemistry Review Committee. It was approved, but not funded. The verdict was that I would not be able to carry out the studies needed, and they would have approached it differently. A thousand young investigators are out there now with similar letters. I was told that the Department Chairmen have to build up their faculty. It’s harder now than then. So I filed for and received 3 patents based on my work at the suggestion of my brother-in-law. When I took it to Boehringer-Mannheim, they were actually clueless.