Advertisements
Feeds:
Posts
Comments

Posts Tagged ‘mtDNA’


New Insights into mtDNA, mitochondrial proteins, aging, and metabolic control

Larry H. Bernstein, MD, FCAP, Curator

LPBI

 

Newly discovered proteins may protect against age-related illnesses  

The proteins could play a key role in the aging process and the onset of diseases linked to older age

BY Beth Newcomb   APRIL 13, 2016

http://news.usc.edu/98412/newly-discovered-proteins-may-protect-against-agings-illnesses/

http://news.usc.edu/files/2016/04/20160208_PinchasCohen_web-824×549.jpg

Pinchas Cohen led a team that identified tiny proteins that appear to play a role in controlling how the body ages. (Photo/Beth Newcomb)

A group of six newly discovered proteins may help to divulge secrets of how we age, potentially unlocking insights into diabetes, Alzheimer’s, cancer and other aging-related diseases.

The tiny proteins appear to play several big roles in our bodies’ cells, from decreasing the amount of damaging free radicals and controlling the rate at which cells die to boosting metabolism and helping tissues throughout the body respond better to insulin. The naturally occurring amounts of each protein decrease with age, leading researchers to believe that they play an important role in the aging process and the onset of diseases linked to older age.

The research team led by Pinchas Cohen, dean of the USC Davis School of Gerontology, identified the tiny proteins for the first time and observed their surprising origin from organelles in the cell called mitochondria and their game-changing roles in metabolism and cell survival. This latest finding builds upon prior research by Cohen and his team that uncovered two significant proteins, humanin and MOTS-c, hormones that appear to have significant roles in metabolism and diseases of aging.

Unlike most other proteins, humanin and MOTS-c are encoded in mitochondria, the structure within cells that produces energy from food, instead of in the cell’s nucleus where most genes are contained.

Key functions

Mitochondria have their own small collection of genes, which were once thought to play only minor roles within cells but now appear to have important functions throughout the body. Cohen’s team used computer analysis to see if the part of the mitochondrial genome that provides the code for humanin was coding for other proteins as well. The analysis uncovered the genes for six new proteins, which were dubbed small humanin-like peptides, or SHLPs, 1 through 6 (the name of this hardworking group of proteins is appropriately pronounced “schlep”).

After identifying the six SHLPs and successfully developing antibodies to test for several of them, the team examined both mouse tissues and human cells to determine their abundance in different organs as well as their functions. The proteins were distributed quite differently among organs, which suggests that the proteins have varying functions based on where they are in the body.

Of particular interest is SHLP 2, Cohen said. The protein appears to have profound insulin-sensitizing, anti-diabetic effects as well as potent neuro-protective activity that may emerge as a strategy to combat Alzheimer’s disease. He added that SHLP 6 is also intriguing, with a unique ability to promote cancer cell death and thus potentially target malignant diseases.

“Together with the previously identified mitochondrial peptides, the newly recognized SHLP family expands the understanding of the mitochondria as an intracellular signaling organelle that communicates with the rest of the body to regulate metabolism and cell fate,” Cohen said. “The findings are an important advance that will be ripe for rapid translation into drug development for diseases of aging.”

The study first appeared online in the journal Aging on April 10. Cohen’s research team included collaborators from the Albert Einstein College of Medicine; the findings have been licensed to the biotechnology company CohBar for possible drug development.

The research was supported by a Glenn Foundation Award and National Institutes of Health grants to Cohen (1P01AG034906, 1R01AG 034430, 1R01GM 090311, 1R01ES 020812) and an Ellison/AFAR postdoctoral fellowship to Kelvin Yen. Study authors Laura Cobb, Changhan Lee, Nir Barzilai and Pinchas Cohen are consultants and stockholders of CohBar Inc.

Feature: The man who wants to beat back aging

By Stephen S. Hall Sep. 16, 201

Nir Barzilai hopes to persuade FDA to bless the proposed anti-aging trial, which is unconventional in its goals and design.
http://www.sciencemag.org/news/2015/09/feature-man-who-wants-beat-back-aging

On a blazingly hot morning this past June, a half-dozen scientists convened in a hotel conference room in suburban Maryland for the dress rehearsal of what they saw as a landmark event in the history of aging research. In a few hours, the group would meet with officials at the U.S. Food and Drug Administration (FDA), a few kilometers away, to pitch an unprecedented clinical trial—nothing less than the first test of a drug to specifically target the process of human aging.

“We think this is a groundbreaking, perhaps paradigm-shifting trial,” said Steven Austad, chairman of biology at the University of Alabama, Birmingham, and scientific director of the American Federation for Aging Research (AFAR). After Austad’s brief introductory remarks, a scientist named Nir Barzilai tuned up his PowerPoint and launched into a practice run of the main presentation.

Barzilai is a former Israeli army medical officer and head of a well-known study of centenarians based at the Albert Einstein College of Medicine in the Bronx, New York. To anyone who has seen the ebullient scientist in his natural laboratory habitat, often in a short-sleeved shirt and always cracking jokes, he looked uncharacteristically kempt in a blue blazer and dress khakis. But his practice run kept hitting a historical speed bump. He had barely begun to explain the rationale for the trial when he mentioned, in passing, “lots of unproven, untested treatments under the category of anti-aging.” His colleagues pounced.

“Nir,” interrupted S. Jay Olshansky, a biodemographer of aging from the University of Illinois, Chicago. The phrase “anti-aging … has an association that is negative.”

“I wouldn’t dignify them by calling them ‘treatments,’” added Michael Pollak, director of cancer prevention at McGill University in Montreal, Canada. “They’re products.”

Barzilai, a 59-year-old with a boyish mop of gray hair, wore a contrite grin. “We know the FDA is concerned about this,” he conceded, and deleted the offensive phrase.

Then he proceeded to lay out the details of an ambitious clinical trial. The group—academics all—wanted to conduct a double-blind study of roughly 3000 elderly people; half would get a placebo and half would get an old (indeed, ancient) drug for type 2 diabetes called metformin, which has been shown to modify aging in some animal studies. Because there is still no accepted biomarker for aging, the drug’s success would be judged by an unusual standard—whether it could delay the development of several diseases whose incidence increases dramatically with age: cardiovascular disease, cancer, and cognitive decline, along with mortality. When it comes to these diseases, Barzilai is fond of saying, “aging is a bigger risk factor than all of the other factors combined.”

But the phrase “anti-aging” kept creeping into the rehearsal, and critics kept jumping in. “Okay,” Barzilai said with a laugh when it came up again. “Third time, the death penalty.”

The group’s paranoia about the term “anti-aging” captured both the audacity of the proposed trial and the cultural challenge of venturing into medical territory historically associated with charlatans and quacks. The metformin initiative, which Barzilai is generally credited with spearheading, is unusual by almost any standard of drug development. The people pushing for the trial are all academics, none from industry (although Barzilai is co-founder of a biotech company, CohBar Inc., that is working to develop drugs targeting age-related diseases). The trial would be sponsored by the nonprofit AFAR, not a pharmaceutical company. No one stood to make money if the drug worked, the scientists all claimed; indeed, metformin is not only generic, costing just a few cents a dose, but belongs to a class of drugs that has been part of the human apothecary for 500 years. Patient safety was unlikely to be an issue; millions of diabetics have taken metformin since the 1960s, and its generally mild side effects are well-known.

Finally, the metformin group insisted they didn’t need a cent of federal money to proceed (although they do intend to ask for some). Nor did they need formal approval from FDA to proceed. But they very much wanted the agency’s blessing. By recognizing the merit of such a trial, Barzilai believes,  FDA would make aging itself a legitimate target for drug development.

By the time the scientists were done, the rehearsal—which was being filmed for a television documentary—had the feel of a pep rally. They spoke with unguarded optimism. “What we’re talking about here,” Olshansky said, “is a fundamental sea change in how we look at aging and disease.” To Austad, it is “the key, potentially, to saving the health care system.”

As the group piled into a van for the drive to FDA headquarters, there was more talk about setting precedents and opening doors. So it was a little disconcerting when Austad led the delegation up to the main entrance of FDA—and couldn’t get the door open.   ……

Mitochondrial Peptides Found in a Preclinical Study Seen to Control Cell Metabolism

APRIL 13, 2016 BY MAGDALENA KEGEL  IN NEWS.
http://mitochondrialdiseasenews.com/2016/04/13/newly-discovered-mitochondrial-factors-might-give-insights-into-aging/

 

CohBar, a developer of mitochondria-based therapeutics, announced that preclinical research by its academic collaborators has found small humanin-like peptides (SHLPs) that can control metabolism and cell survival. The findings have implications for age-related diseases such as Alzheimer’s and cancer.

The study, “Naturally Occurring Mitochondrial-derived Peptides are Age-dependent Regulators of Apoptosis, Insulin Sensitivity, and Inflammatory Markers,” was the result of a joint effort between researchers at the University of Southern California (USC) and theInstitute for Aging Research at the Albert Einstein College of Medicine of Yeshiva University. The study was published in the journal Aging.

Researchers discovered the SHLPs by examining the genome of mitochondria with the help of a bioinformatics approach, which identified six peptides. The team then verified the presence of the factors and explored their function in laboratory animals.

CohBar, who have the exclusive license to develop SHLPs into therapeutics, works closely with its academic partners to explore the peptides in preclinical models.

While it was previously believed that mitochondria only have 37 genes, research has revealed that the mitochondrial genome is far more versatile, potentially harboring a multitude of new genes, which can encode peptides acting as cellular signaling factors. The peptides, it has turned out, have shown neuroprotective and anti-inflammatory effects, and act to protect cells in disease-modifying ways in preclinical models of aging.

CohBar’s goal is to bring these peptides to the market as therapies for age-related diseases, such as obesity, type 2 diabetes, cancer, atherosclerosis and neurodegenerative disorders.

“Together with the previously described mitochondrial-derived peptides humanin and MOTS-c, the SHLP family expands our understanding of the role that these peptides play in intracellular signaling throughout the body to regulate both metabolism and cell survival,” Pinchas Cohen, dean of the USC Leonard Davis School of Gerontology, founder and director of CohBar, and the study’s senior author, said in a press release. “These findings further illustrate the enormous potential that mitochondria-based therapeutics could have on treating age-associated diseases like Alzheimer’s and cancer.”

“The pre-clinical evidence continues to confirm that these peptides represent a new class of naturally occurring metabolic regulators,” added Simon Allen, CohBar’s CEO. “They form the foundation of our pipeline of first-in-class treatments for age-related diseases, and we are committed to rapidly advancing them through pre-clinical and clinical activities as we move forward.”

Naturally occurring mitochondrial-derived peptides are age-dependent regulators of apoptosis, insulin sensitivity, and inflammatory markers

Laura J. Cobb1,5, Changhan Lee2, Jialin Xiao2, Kelvin Yen2, Richard G. Wong2, Hiromi K. Nakamura1, ….., Derek M. Huffman4, Junxiang Wan2, Radhika Muzumdar3, Nir Barzilai4 , and Pinchas Cohen2
http://www.impactaging.com/papers/v8/n4/full/100943.html

Mitochondria are key players in aging and in the pathogenesis of age-related diseases. Recent mitochondrial transcriptome analyses revealed the existence of multiple small mRNAs transcribed from mitochondrial DNA (mtDNA). Humanin (HN), a peptide encoded in the mtDNA 16S ribosomal RNA region, is a neuroprotective factor. An in silico search revealed six additional peptides in the same region of mtDNA as humanin; we named these peptides small humanin-like peptides (SHLPs). We identified the functional roles for these peptides and the potential mechanisms of action. The SHLPs differed in their ability to regulate cell viability in vitro. We focused on SHLP2 and SHLP3 because they shared similar protective effects with HN. Specifically, they significantly reduced apoptosis and the generation of reactive oxygen species, and improved mitochondrial metabolism in vitro. SHLP2 and SHLP3 also enhanced 3T3-L1 pre-adipocyte differentiation. Systemic hyperinsulinemic-euglycemic clamp studies showed that intracerebrally infused SHLP2 increased glucose uptake and suppressed hepatic glucose production, suggesting that it functions as an insulin sensitizer both peripherally and centrally. Similar to HN, the levels of circulating SHLP2 were found to decrease with age. These results suggest that mitochondria play critical roles in metabolism and survival through the synthesis of mitochondrial peptides, and provide new insights into mitochondrial biology with relevance to aging and human biology.

Human mitochondrial DNA (mtDNA) is a double-stranded, circular molecule of 16,569 bp and contains 37 genes encoding 13 proteins, 22 tRNAs, and 2 rRNAs. Recent mitochondrial transcriptome analyses revealed the existence of small RNAs derived from mtDNA [1]. In 2001, Nishimoto and colleagues identified humanin (HN), a 24-amino-acid peptide encoded from the 16S ribosomal RNA (rRNA) region of mtDNA. HN is a potent neuroprotective factor capable of antagonizing Alzheimer’s disease (AD)-related cellular insults [2]. HN is a component of a novel retrograde signaling pathway from the mitochondria to the nucleus, which is distinct from mitochondrial signaling pathways, such as the SIRT4-AMPK pathway [3]. HN-dependent cellular protection is mediated in part by interacting with and antagonizing pro-apoptotic Bax-related peptides [4] and IGFBP-3 (IGF binding protein 3) [5].

Because of their involvement in energy production and free radical generation, mitochondria likely play a major role in aging and age-related diseases [68]. In fact, improvement of mitochondrial function has been shown to ameliorate age-related memory loss in aged mice [9]. Recent studies have shown that HN levels decrease with age, suggesting that HN could play a role in aging and age-related diseases, such as Alzheimer’s disease (AD), atherosclerosis, and diabetes. Along with lower HN levels in the hypothalamus, skeletal muscle, and cortex of older rodents, the circulating levels of HN were found to decline with age in both humans and mice [10]. Notably, circulating HN levels were found to be (i) significantly higher in long-lived Ames dwarf mice but lower in short-lived growth hormone (GH) transgenic mice, (ii) significantly higher in a GH-deficient cohort of patients with Laron syndrome, and (iii) reduced in mice and humans treated with GH or IGF-1 (insulin-like growth factor 1) [11]. Age-dependent declines in the circulating HN levels may be due to higher levels of reactive oxygen species (ROS) that contribute to atherosclerosis development. Using mouse models of atherosclerosis, it was found that HN-treated mice had a reduced disease burden and significant health improvements [12,13]. In addition, HN improved insulin sensitivity, suggesting clinical potential for mitochondrial peptides in diseases of aging [10]. The discovery of HN represents a unique addition to the spectrum of roles that mitochondria play in the cell [14,15]. A second mitochondrial-derived peptide (MDP), MOTS-c (mitochondrial open reading frame of the 12S rRNA-c), has also been shown to have metabolic effects on muscle and may also play a role in aging [16].

We further investigated mtDNA for the presence of other MDPs. Recent technological advances have led to the identification of small open reading frames (sORFs) in the nuclear genomes ofDrosophila[17,18] and mammals [19,20]. Therefore, we attempted to identify novel sORFs using the following approaches: 1) in silico identification of potential sORFs; 2) determination of mRNA expression levels; 3) development of specific antibodies against these novel peptides to allow for peptide detection in cells, organs, and plasma; 4) elucidating the actions of these peptides by performing cell-based assays for mitochondrial function, signaling, viability, and differentiation; and 5) delivering these peptides in vivo to determine their systemic metabolic effects. Focusing on the 16S rRNA region of the mtDNA where the humanin gene is located, we identified six sORFs and named them small humanin-like peptides (SHLPs) 1-6. While surveying the biological effects of SHLPs, we found that SHLP2 and SHLP3 were cytoprotective; therefore, we investigated their effects on apoptosis and metabolism in greater detail. Further, we showed that circulating SHLP2 levels declined with age, similar to HN, suggesting that SHLP2 is involved in aging and age-related disease progression.

SHLP2 and SHLP3 regulate the expression of metabolic and inflammatory markers

Epidemiological studies have demonstrated that increased levels of mediators of inflammation and acute-phase reactants, such as fibrinogen, C-reactive protein (CRP), and IL-6, correlate with the incidence of type 2 diabetes mellitus (T2DM) [3436]. In humans, anti-inflammatory drugs, such as aspirin and sodium salicylate, reduce fasting plasma glucose levels and ameliorate the symptoms of T2DM. In addition, anti-diabetic drugs, such as fibrates [37] and thiazolidinediones [38], have been found to lower some markers of inflammation. SHLP2 increased the levels of leptin, which is known to improve insulin sensitivity, but had no effect on the levels of the pro-inflammatory cytokines IL-6 and MCP-1. SHLP3 significantly increased the leptin levels, but also elevated IL-6 and MCP-1 levels, which could explain the lack of an in vivo insulin-sensitizing effect of SHLP3. The mechanism by which SHLPs regulate the expression of metabolic and inflammatory markers remains unclear and needs to be further investigated. Furthermore, SHLPs have different effects on inflammatory marker expression, suggesting differential regulation and function of individual SHLPs.

SHLP2 in aging

Mitochondria have been implicated in increased lifespan in several life-extending treatments [39,40]; however, it is not known whether the relationship is correlative or causative [40]. Additionally, it is well known that hormone levels change with aging. For example, levels of aldosterone, calcitonin, growth hormone, and IGF-I decrease with age. Circulating HN levels decline with age in humans and rodents, specifically in the hypothalamus and skeletal muscle of older rats. These changes parallel increases in the incidence of age-associated diseases such as AD and T2DM. The decline in circulating SHLP2 levels with age (Fig. 6), the anti-oxidative stress function of SHLP2 (Fig. 3C), and its neuroprotective effect (Fig. 6B) indicate that SHLP2 has a role in the regulation of aging and age-related diseases.

Conclusion

By analyzing the mitochondrial transcriptome, we found that sORFs from mitochondrial DNA encode functional peptides. We identified many mRNA transcripts within 13 protein-coding mitochondrial genes [1]. Such previously underappreciated sORFs have also been described in the nuclear genome [41]. The MDPs we describe here may represent retrograde communication signals from the mitochondria to the nucleus and may explain important aspects of mitochondrial biology that are implicated in health and longevity.

Larry, John Walker is working on mt proteins dynamics. His rotor – stator mechanism in ATPase synthase, a ‘complex’ that biologist accepted as energy generator is likely wrong. I was suppose to have met him in Germany few years ago. Energy in biological systems has nothing to do with heat. Heat is an outcome of a reaction, meaning that IR spectra accordingly to wave theory is a source of information memorized in water interference with carbon open systems within protein and glyo-proteins complexes as well as genome space-time outcomes. Physically speaking from a pure perspective of science ATP is highly unstable form of phosphate ‘chains’. It cannot hold energy, it is actually in contrary, it is like a resonator, trapping negativity, thus functioning as space propeller by expanding carbon skeleton of protein ‘machines’ Now, we don’t know what is ‘aging’ in a pure physical sense, except that we observe structural changes in what we call complexes. We we know is that proteins are not stationary structures, but highly dynamic forms of matter, seemingly occupying discrete and relative spaces. A piece of mt ATP ase could be discovered in the nucleus as transcription factor. Our notion of operational space in terms of electro dynamics from a motor – stator perspective is now translated toward defining semi conducting and supracoductive strings. The reality of which is so much more fascinating and beautiful as time progresses overally. There are spaces where time does not change, and there are spaces where time walks, and there are spaces, where time flies, and there are spaces where time runs. Amazing, indeed! The story of aging gets a lot deeper that science could even imagine, probably to roots of immortal energy- spaces. We know that matter is transient, that is nearly all living matter, replenishes of about 3 to 7 weeks.

Take a glass full of some kind of liquid, you know the mass of the glass and the mass of the liquid (say wine, beer, water, or milk) You also know to an approximate reality the composition of both. Now lift the glass full of liquid and let it break on a surface of your choice. Depending on the surface pieces of the glass would travel differential from a center projected by the vertical axis of your hand. What technology does today is recollecting those pieces and modelling them to fit in a form again that would resemble a holding device, a glass. The liquid we don’t know exactly how it spilled due the nature of its absorbancy of both surface physics and physical ‘state’ properties. Thus we can say how much approximate energy we have held thinking of m/z as time flight objectives. Each technology can read 1D and approximate the 2D, absolutely lacking computational methodology for 3D dynamic reality. Many scientists confuse space and volume. Volume is a one dimensional characteristic! So is crystalography! BY taking quantum chemical method computing principles following imaginative rules we could approach 2D, however , that is not enough to define 3D. Time we use as a reference frame of clocks we have invented in order to keep track of a sense to observable ‘change’ . But remember, time is absolute and parallel in continuity while energy is discrete , coming in quantum packages, realization of accumulated information. Information is highly redundant we see, so annotating information is an objective to modern days simulations that could predict outcomes of possible parallel realities we call worlds. One could ‘jump’ from one reality to another through guidance of light and water, but what remains unsolved is why people make mistakes, constantly by accusing in name of greed and power , or disobedience of commandments of the Lord!

On Thu, Apr 21, 2016 at 3:41 AM, Leaders in Pharmaceutical Business Intelligence (LPBI) Group wrote:

> larryhbern posted: “New Insights into mtDNA, mitochondrial proteins, > aging, and metabolic control Larry H. Bernstein, MD, FCAP, Curator LPBI > Newly discovered proteins may protect against age-related illnesses The > proteins could play a key role in the ” >

 

Metabolic features of the cell danger response
– Mitochondria in Health and Disease

Mitochondrion  Volume 16, May 2014, Pages 7–17     doi:10.1016/j.mito.2013.08.006

 

Highlights

  •  The Cell Danger Response (CDR) is defined in terms of an ancient metabolic response to threat.
  •  The CDR encompasses inflammation, innate immunity, oxidative stress, and the ER stress response.
  •  The CDR is maintained by extracellular nucleotide (purinergic) signaling.
  •  Abnormal persistence of the CDR lies at the heart of many chronic diseases.
  •  Antipurinergic therapy (APT) has proven effective in many chronic disorders in animal models

The cell danger response (CDR) is the evolutionarily conserved metabolic response that protects cells and hosts from harm. It is triggered by encounters with chemical, physical, or biological threats that exceed the cellular capacity for homeostasis. The resulting metabolic mismatch between available resources and functional capacity produces a cascade of changes in cellular electron flow, oxygen consumption, redox, membrane fluidity, lipid dynamics, bioenergetics, carbon and sulfur resource allocation, protein folding and aggregation, vitamin availability, metal homeostasis, indole, pterin, 1-carbon and polyamine metabolism, and polymer formation. The first wave of danger signals consists of the release of metabolic intermediates like ATP and ADP, Krebs cycle intermediates, oxygen, and reactive oxygen species (ROS), and is sustained by purinergic signaling. After the danger has been eliminated or neutralized, a choreographed sequence of anti-inflammatory and regenerative pathways is activated to reverse the CDR and to heal. When the CDR persists abnormally, whole body metabolism and the gut microbiome are disturbed, the collective performance of multiple organ systems is impaired, behavior is changed, and chronic disease results. Metabolic memory of past stress encounters is stored in the form of altered mitochondrial and cellular macromolecule content, resulting in an increase in functional reserve capacity through a process known as mitocellular hormesis. The systemic form of the CDR, and its magnified form, the purinergic life-threat response (PLTR), are under direct control by ancient pathways in the brain that are ultimately coordinated by centers in the brainstem. Chemosensory integration of whole body metabolism occurs in the brainstem and is a prerequisite for normal brain, motor, vestibular, sensory, social, and speech development. An understanding of the CDR permits us to reframe old concepts of pathogenesis for a broad array of chronic, developmental, autoimmune, and degenerative disorders. These disorders include autism spectrum disorders (ASD), attention deficit hyperactivity disorder (ADHD), asthma, atopy, gluten and many other food and chemical sensitivity syndromes, emphysema, Tourette’s syndrome, bipolar disorder, schizophrenia, post-traumatic stress disorder (PTSD), chronic traumatic encephalopathy (CTE), traumatic brain injury (TBI), epilepsy, suicidal ideation, organ transplant biology, diabetes, kidney, liver, and heart disease, cancer, Alzheimer and Parkinson disease, and autoimmune disorders like lupus, rheumatoid arthritis, multiple sclerosis, and primary sclerosing cholangitis.

The double face of mitochondrial dysfunction

Dmitry Knorre, Anna Zyrina, and Fedor Severin

pp 420-420

Full text | PDF

 

 

Flawed Mitochondrial DNA Could Undermine Stem Cell Therapies

http://www.genengnews.com/gen-news-highlights/flawed-mitochondrial-dna-could-undermine-stem-cell-therapies/81252622/

http://www.genengnews.com/Media/images/GENHighlight/thumb_Apr18_2016_OHSU_ConfocalMicroscopyImage7543773219.jpg

This is a confocal microscopy image of human fibroblasts derived from embryonic stem cells. The nuclei appear in blue, while smaller and more numerous mitochondria appear in red. [Shoukhrat Mitalipov]

Mutations in our mitochondrial DNA tend to be inconspicuous, but they can become more prevalent as we age. They can even vary in frequency from cell to cell. Naturally, some cells will be relatively compromised because they happen to have a higher percentage of mutated mitochondrial DNA. Such cells make a poor basis for stem cell lines. They should be excluded. But how?

To answer this question, a team of scientists scrutinized skin fibroblasts, blood cells, and induced pluripotent stem cells (iPSCs) for mitochondrial genome integrity. When the scientists tested the samples for mitochondrial DNA mutations, the levels of mutations appeared low. But when the scientists sequenced the iPS cell lines, they found higher numbers of mitochondrial DNA mutations, particularly in cells from patients over 60.

The scientists were led by Shoukhrat Mitalipov, Ph.D., director of the Center for Embryonic Cell and Gene Therapy at Oregon Health & Science University, and Taosheng Huang, M.D., a medical geneticist and director of the Mitochondrial Medicine Program at Cincinnati Children’s Hospital. The Mitalipov/Huang-led team also found higher percentages of mitochondria containing mutations within a cell. The higher the load of mutated mitochondrial DNA in a cell, the more compromised the cell’s function.

Since each iPSC line is created from a different cell, each line may contain different types of mitochondrial DNA mutations and mutation loads. To choose the least damaged line, the authors recommend screening multiple lines per patient. “It’s a good idea to check the iPS clones for mitochondrial DNA mutations and make sure you pick a good cell line,” said Dr. Huang.

This recommendation appeared April 14 in the journal Cell Stem Cell, in an article entitled, “Age-Related Accumulation of Somatic Mitochondrial DNA Mutations in Adult-Derived Human iPSCs.” This article holds that mitochondrial genome integrity is a vital readout in assessing the proficiency of patient-derived regenerative products destined for clinical applications.

“We found that pooled skin and blood mtDNA contained low heteroplasmic point mutations, but a panel of ten individual iPSC lines from each tissue or clonally expanded fibroblasts carried an elevated load of heteroplasmic or homoplasmic mutations, suggesting that somatic mutations randomly arise within individual cells but are not detectable in whole tissues,” wrote the article’s authors. “The frequency of mtDNA defects in iPSCs increased with age, and many mutations were nonsynonymous or resided in RNA coding genes and thus can lead to respiratory defects.”

Potential therapies using stem cells hold tremendous promise for treating human disease. However, defects in the mitochondria could undermine the iPS cells’ ability to repair damaged tissue or organs.

“If you want to use iPS cells in a human, you must check for mutations in the mitochondrial genome,” declared Dr. Huang. “Every single cell can be different. Two cells next to each other could have different mutations or different percentages of mutations.”

Prior to the creation of a therapeutic iPS cell line, a collection of cells is taken from the patient. These cells will be tested for mutations. If the tester uses Sanger sequencing, older technology that is not as sensitive as newer next-generation sequencing, any mutation that occurs in less than 20% of the sample will go undetected. But mitochondrial DNA mutations might occur in less than 20% of mitochondria in the pooled cells. As a result, mutation rates have not been well understood. “These mitochondrial mutations are actually hidden,” explained Dr. Mitalipov.

The mitochondrial genome is relatively small, containing just 37 genes, so screening should be feasible using next generation sequencing, Dr. Mitalipov added. “It should be relatively cheap and do-able.”

Dr. Mitalipov also commented on a more general point, the implications of the current study on illuminating the mechanisms of age-related disease: “Pathogenic mutations in our mitochondrial DNA have long been thought to be a driving force in aging and age-onset diseases, though clear evidence was missing. This foundational knowledge of how cells are damaged in the natural process of aging may help to illuminate the role of mutated mitochondria in degenerative disease.”

New Mitalipov paper on stem cell mitochondria: challenge for IPS cell field?

http://www.ipscell.com/tag/age-related-accumulation-of-somatic-mitochondrial-dna-mutations-in-adult-derived-human-ipscs/

A new paper from Shoukhrat Mitalipov’s lab on stem cell mitochondria points to a pattern whereby induced pluripotent stem (IPS) cells tend to have more problems if they are from older patients.

What does this paper mean for the stem cell field and could it impact more specifically the clinical applications of IPS cells?

http://i0.wp.com/www.ipscell.com/wp-content/uploads/2016/04/Mitalipov-mitochondrial-mutations.jpg?resize=300%2C295

Graphical Abstract, Kang, et al. 2016

The new paper Kang, et al is entitled “Age-Related Accumulation of Somatic Mitochondrial DNA Mutations in Adult-Derived Human iPSCs”.

This paper reminds us of the very important realities that mitochondria are key players in stem cell function and that mitochondria have their own genomes that impact that function. A lot of us don’t think about mitochondria and their genome as often as we should.

The paper came to three major scientific conclusions (this from the Highlights section of the paper and also see the graphical abstract for a visual sense of the results overall):

  • Human iPSC clones derived from elderly adults show accumulation of mtDNA mutations
  • Fewer mtDNA mutations are present in ESCs and iPSCs derived from younger adults
  • Accumulated mtDNA mutations can impact metabolic function in iPSCs

Importantly the team looked at IPS cells derived from both blood and skin cells and found that the former were less likely to have mitochondrial mutations.

This study suggests that those teams producing or working with human IPS cells (hIPSCs) should be screening the different lines for mitochondrial mutations. This excellent piece from Sara Reardon on the Mitalipov paper quotes IPS cell expert Jeanne Loring on this very point:

“It’s one of those things most of us don’t think about,” says Jeanne Loring, a stem-cell biologist at the Scripps Research Institute in La Jolla, California. Her lab is working towards using iPS cells to treat Parkinson’s disease, and Loring now plans to go back and examine the mitochondria in her cell lines. She suspects that it will be fairly easy for researchers to screen cells for use in therapies.”

Mitalipov goes further and suggests that his team’s new findings could support the use of human embryonic stem cells (hESC) derived by somatic cell nuclear transfer (SCNT) which would be expected to have mitochondria with fewer mutations. However, as Loring points out in the Reardon article, SCNT is really difficult to successfully perform and only a few labs in the world can do it at present. In that context, working with hIPSC and adding on the additional layer of mitochondrial DNA mutation screening could be more practical.

New York stem cell researcher Dieter Egli, however, is quoted that hIPSC have other differences with hESC as well such as epigenetic differences and he’s quoted in the Reardon piece, “It’s going to be very hard to find a cell line that’s perfect.”

One might reasonably ask both Egli and oneself, “What is a perfect cell line”?

In the end the best approach for use of human pluripotent stem cells of any kind is going to involve a balance between practicality of production and the potentially positive or negative traits of those cells as determined by rigorous validation screening.

With this new paper we’ve just learned more about another layer of screening that is needed. An interesting question is whether adult stem cells such as mesenchymal stromal/stem cells (MSC) also should be screened for mitochondrial mutations. They are often produced from patients who are getting up there in years. I hope that someone will publish on that too.

As to pluripotent cells, I expect that sometimes the best lines, meaning those most perfect for a given clinical application, will be hIPSC (autologous or allogeneic in some instances) and in other cases they may be hESC made from leftover IVF embryos. If SCNT-derived hESC can be more widely produced in an affordable manner and they pass validation as well then those (sometimes called NT-hESC) may also come into play clinically. So far that hasn’t happened for the SCNT cells, but it may over time.   …..

 Age-Related Accumulation of Somatic Mitochondrial DNA Mutations in Adult-Derived Human iPSCs

Eunju Kang, Xinjian Wang, Rebecca Tippner-Hedges, …, Don P. Wolf, Taosheng Huang, Shoukhrat Mitalipov
http://www.cell.com/cell-stem-cell/pdfExtended/S1934-5909(16)00067-9

In Brief Mitalipov, Huang, and colleagues show that human iPSCs derived from older adults carry more mitochondrial DNA mutations than those derived from younger individuals. Defects in metabolic function caused by mtDNA mutations suggest careful screening of hiPSC clones for mutational load before clinical application.

Highlights

  1. Human iPSC clones derived from elderly adults show accumulation of mtDNA mutations
  2. Fewer mtDNA mutations are present in ESCs and iPSCs derived from younger adults
  3. Accumulated mtDNA mutations can impact metabolic function in iPSCs

Kang et al., 2016, Cell Stem Cell 18, 1–12 May 5, 2016 ª2016 Elsevier Inc. http://dx.doi.org/10.1016/j.stem.2016.02.005

The genetic integrity of iPSCs is an important consideration for therapeutic application. In this study, we examine the accumulation of somatic mitochondrial genome (mtDNA) mutations in skin fibroblasts, blood, and iPSCs derived from young and elderly subjects (24–72 years). We found that pooled skin and blood mtDNA contained low heteroplasmic point mutations, but a panel of ten individual iPSC lines from each tissue or clonally expanded fibroblasts carried an elevated load of heteroplasmic or homoplasmic mutations, suggesting that somatic mutations randomly arise within individual cells but are not detectable in whole tissues. The frequency of mtDNA defects in iPSCs increased with age, and many mutations were non-synonymous or resided in RNA coding genes and thus can lead to respiratory defects. Our results highlight a need to monitor mtDNA mutations in iPSCs, especially those generated from older patients, and to examine the metabolic status of iPSCs destined for clinical applications.

Induced pluripotent stem cells (iPSCs) offer an unlimited source for autologous cell replacement therapies to treat age-associated degenerative diseases. Aging is generally characterized by increased DNA damage and genomic instability (Garinis et al., 2008; Lombard et al., 2005); thus, iPSCs derived from elderly subjects may harbor point mutations and larger genomic rearrangements. Indeed, iPSCs display increased chromosome aberrations (Mayshar et al., 2010), subchromosomal copy number variations (CNVs) (Abyzov et al., 2012; Laurent et al., 2011), and exome mutations (Johannesson et al., 2014), compared to natural embryonic stem cell (ESC) counterparts (Ma et al., 2014). The rate of mtDNA mutations is believed to be at least 10- to 20-fold higher than that observed in the nuclear genome (Wallace, 1994), and often both mutated and wild-type mtDNA (heteroplasmy) can coexist in the same cell (Rossignol et al., 2003). Large deletions are most frequently observed mtDNA abnormalities in aged post-mitotic tissues such as brain, heart, and muscle (Bender et al., 2006; Bua et al., 2006; Corral-Debrinski et al., 1992; Cortopassi et al., 1992; Mohamed et al., 2006) and have been implicated in aging and diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and diabetes (Larsson, 2010; Lin and Beal, 2006; Petersen et al., 2003; Wallace, 2005). In addition, mtDNA point mutations were reported in some tumors and replicating tissues (Chatterjee et al., 2006; Ju et al., 2014; Michikawa et al., 1999; Taylor et al., 2003). However, the extent of mtDNA defects in proliferating peripheral tissues commonly used for iPSC induction, such as skin and blood, is thought to be low and limited to common non-coding variants (Schon et al., 2012; Yao et al., 2015). Accumulation of mtDNA variants in these tissues with age was insignificant (Greaves et al., 2010; Hashizume et al., 2015). Several point mutations were identified in iPSCs generated from the newborn foreskin fibroblasts, although most of these variants were non-coding, common for the general population, and did not affect their metabolic activity (Prigione et al., 2011). Somatic mtDNA mutations may be under-reported secondary to the level of sample interrogation. …..

Figure 2. mtDNA Mutations in Skin Fibroblasts, Blood, and the iPSCs of a 72-YearOld B Subject (A) Sixteen mutations at low heteroplasmy levels were detected in the DNA of PF, while a panel of ten FiPSC lines carried nine mutations, including four that were homoplasmic. Gray rectangles define the mutations shared between PF and FiPSCs. (B) Venn diagram showing only one mutation in FiPSCs shared with PF. (C) All ten FiPSC lines carried between one and five high-heteroplasmy (>15%) mutations. (D) Mutation distribution in whole blood and BiPSCs was similar to that in PF and FiPSCs. Six mutations at low-heteroplasmy levels were observed in blood, while BiPSC lines displayed 21 mutations, including four over the 80% heteroplasmy level. (E) Venn diagram showing four mutations in BiPSCs shared with whole blood and the 17 novel variants. (F) Distribution of mutations in individual BiPSC lines. See also Figures S2 and S3; Table S1; Table S3, sheet 2; and Table S4, sheet 1   ….

Figure 4. Transmission and Distribution of Somatic mtDNA Mutations to iPSCs (A) A total of 112 mtDNA mutations were discovered in parental cells (PF, CF, and blood) from 11 subjects. Of these, 39 variants (35%) were found in corresponding 130 iPSC lines. Among non-transmitted, transmitted, and novel mutations in iPSCs, comparable percentages of variants (68%, 69%, and 79%, respectively) were coding mutations in protein, rRNA, or tRNA genes. This suggests that most pathogenic mutations do not affect iPSC induction. However, certain coding mutations including in ND3, ND4L, and 14 tRNA genes were not detected in iPSCs, suggesting possible pathogenicity. n, the number of mtDNA mutations. Blue font genes were detected in parental cells. (B–D) A total of 80 high heteroplasmic (>15%) variants were detected in the present study in 130 FiPSC or BiPSC lines from 11 subjects. (B) The majority of these variants (76%) were non-synonymous or frame-shift mutations in protein-coding genes or affected rRNA and tRNA genes. (C) More than half of the mutations (56%) were never reported in a database containing whole mtDNA sequences from 26,850 healthy subjects representing the general human population (http://www.mitomap.org/MITOMAP). (D) Most mutations (90%) were never reported in a database containing sequences from healthy subjects with corresponding mtDNA haplotypes. freq., frequent. See also Figure S5 and Tables S3 and S4. ….

sjwilliamspa

Mutations will accumulate over age in mitochondrial DNA, however the current study has the difficulty that the authors could not use patient-age-matched controls, in essence they could only compare induced pluripotent stem cells derived from different patients. This could confound the results but the result with higher frequency of mutation in mtDNA in cells reprogrammed from younger patients is interesting but might limit the ability of autologous regenerative therapy in older patients. However reprogramming, although the method not mentioned here although I am assuming by transfection with lentivirus is a rough procedure, involving multiple dedifferentiation steps. Therefore it is very understandable that cells obtained from elderly patients would respond less favorably to such a rough reprogramming regimen, especially if it produced a higher degree of ROS, which has been shown to alter mtDNA. This is why I feel it is more advantageous to obtain a stem cell population from fat cells and forgo the Oct4, htert, reprogramming with lentiviral vectors.

 

Advertisements

Read Full Post »


Depth Underwater and Underground

Writer and Curator: Larry H. Bernstein, MD, FCAP 

 

Introduction

Deep diving for mammals is dangerous for humans and land based animals for too long, and it has dangerous consequences, most notable in nitrogen emboli  with very deep underwater diving. Other mammals live in water and have adapted to a water habitat.  This is another topic that needs further exploration.

Deep diving has different meanings depending on the context. Even in recreational diving the meaning may vary:

In recreational diving, a depth below about 30 metres (98 ft), where nitrogen narcosis becomes a significant hazard for most divers, may be considered a “deep dive”

In technical diving, a depth below about 60 metres (200 ft) where hypoxic breathing gas becomes necessary to avoid oxygen toxicity may be considered a “deep dive”.

Early experiments carried out by Comex S.A. (Compagnie maritime d’expertises) using hydrox and trimix attained far greater depths than any recreational technical diving. One example being the Comex Janus IV open-sea dive to 501 metres (1,644 ft) in 1977. The open-sea diving depth record was achieved in 1988 by a team of Comex divers who performed pipe line connection exercises at a depth of 534 metres (1,752 ft) in the Mediterranean Sea as part of the Hydra 8 program. These divers needed to breathe special gas mixtures because they were exposed to very high ambient pressure (more than 50 times atmospheric pressure).

Then there is the adaptation to the water habitat as a living environment. The two main types of aquatic ecosystems are marine ecosystems and freshwater ecosystems.

http://en.wikipedia.org/wiki/Deep_diving

Marine ecosystems are part of the earth’s aquatic ecosystem. The habitats that make up this vast system range from the productive nearshore regions to the barren ocean floor. The marine waters may be fully saline, brackish or nearly fresh. The saline waters have a salinity of 35-50 ppt (= parts per thousand). The freshwater has a salinity of less than 0.5 ppt. The brackish water lies in between these 2. Marine habitats are situated from the coasts, over the continental shelf to the open ocean and deep sea. The ecosystems are sometimes linked with each other and are sometimes replacing each other in other geographical regions. The reason why habitats differ from another is because of the physical factors that influence the functioning and diversity of the habitats. These factors are temperature, salinity, tides, currents, wind, wave action, light and substrate.

Marine ecosystems are home to a host of different species ranging from planktonic organisms that form the base of the marine food web to large marine mammals. Many species rely on marine ecosystems for both food and shelter from predators. They are very important to the overall health of both marine and terrestrial environments. Coastal habitats are those above the spring high tide limit or above the mean water level in non-tidal waters.  They are close to the sea and include habitats such as coastal dunes and sandy shores, beaches , cliffs and supralittoral habitats. Coastal habitats alone account for approximately 30% of all marine biological productivity.

http://www.marbef.org/wiki/marine_habitats_and_ecosystems

All plant and animal life forms are included from the microscopic picoplankton all the way to the majestic blue whale, the largest creature in the sea—and for that matter in the world. It wasn’t until the writings of Aristotle from 384-322 BC that specific references to marine life were recorded. Aristotle identified a variety of species including crustaceans, echinoderms, mollusks, and fish.
Today’s classification system was developed by Carl Linnaeus external link as an important tool for use in the study of biology and for use in the protection of biodiversity. Without very specific classification information and a naming system to identify species’ relationships, scientists would be limited in attempts to accurately describe the relationships among species. Understanding these relationships helps predict how ecosystems can be altered by human or natural factors.

Preserving biodiversity is facilitated by taxonomy. Species data can be better analyzed to determine the number of different species in a community and to determine how they might be affected by environmental stresses. Family, or phylogenetic, trees for species help predict environmental impacts on individual species and their relatives.

http://marinebio.org/oceans/marine-taxonomy/

For generations, whales and other marine mammals have intrigued humans. 2,400 years ago, Aristotle, a Greek scientist and philosopher, recognized that whales are mammals, not fish, because they nurse their young and breathe air like other mammals. There are numerous myths and legends surrounding marine mammals. The Greeks believed that killing a dolphin was as bad as murdering a human. An Amazon legend said that river dolphins came to shore dressed as men to woo pretty girls during fiestas. During the Middle Ages, there were numerous legends surrounding the narwhals’ amazing tusk, which was thought to have come from the unicorn.

Insert movie

Marine mammals evolved from their land dwelling ancestors over time by developing adaptations to life in the water. To aid swimming, the body has become streamlined and the number of body projections has been reduced. The ears have shrunk to small holes in size and shape. Mammary glands and sex organs are not part of the external physiology, and posterior (hind) limbs are no longer present.

Mechanisms to prevent heat loss have also been developed. The cylindrical body shape with small appendages reduces the surface area to volume ratio of the body, which reduces heat loss. Marine mammals also have a counter current heat exchange mechanism created by convergent evolution external link where the heat from the arteries is transferred to the veins as they pass each other before getting to extremities, thus reducing heat loss. Some marine mammals also have a thick layer of fur with a water repellent undercoat and/or a thick layer of blubber that can’t be compressed. The blubber provides insulation, a food reserve, and aids with buoyancy. These heat loss adaptations can also lead to overheating for animals that spend time out of the water. To prevent overheating, seals or sea lions will swim close to the surface with their front flippers waving in the air. They also flick sand onto themselves to keep the sun from directly hitting their skin. Blood vessels can also be expanded to act as a sort of radiator.

One of the major behavioral adaptations of marine mammals is their ability to swim and dive. Pinnipeds swim by paddling their flippers while sirenians and cetaceans move their tails or flukes up and down.

Some marine mammals can swim at relatively high speeds. Sea lions swim up to 35 kph and orcas can reach 50 kph. The fastest marine mammal, however, is the common dolphin, which reaches speeds up to 64 kph. While swimming, these animals take very quick breaths. For example, fin whales can empty and refill their huge lungs in less than 2 seconds. Marine mammals’ larynx and esophagus close automatically when they open their mouths to catch prey during dives. Oxygen is stored in hemoglobin in the blood and in myoglobin in the muscles. The lungs are also collapsible so that air is pushed into the windpipe preventing excess nitrogen from being absorbed into the tissues. Decreasing pressure can cause excess nitrogen to expand in the tissues as animals ascend to shallower depths, which can lead to decompression sickness,  aka “the bends.” Bradycardia, the reduction of heart rate by 10 to 20%, also takes place to aid with slowing respiration during dives and the blood flow to non-essential body parts. These adaptations allow sea otters to stay submerged for 4 to 5 minutes and dive to depths up to 55 m. Pinnipeds can often stay down for 30 minutes and reach average depths of 150-250 m. One marine mammal with exceptional diving skills is the Weddell seal, which can stay submerged for at least 73 minutes at a time at depths up to 600 m. The length and depth of whale dives depends on the species. Baleen whales feed on plankton near the surface of the water and have no need to dive deeply so they are rarely seen diving deeper than 100 m external link. Toothed whales seek larger prey at deeper depths and some can stay down for hours at depths of up to 2,250 m external link.

http://marinebio.org/oceans/marine-mammals/

Human Experience

Albert Behnke: Nitrogen Narcosis

Casey A. Grover and David H. Grover
The Journal of Emergency Medicine, 2014; 46(2):225–227
http://dx.doi.org/10.1016/j.jemermed.2013.08.080

As early as 1826, divers diving to great depths noted that descent often resulted in a phenomenon of intoxication and euphoria. In 1935, Albert Behnke discovered nitrogen as the cause of this clinical syndrome, a condition now known as nitrogen narcosis. Nitrogen narcosis consists of the development of euphoria, a false sense of security, and impaired judgment upon underwater descent using compressed air below 34 atmospheres (99 to 132 feet). At greater depths, symptoms can progress to loss of consciousness. The syndrome remains relatively unchanged in modern diving when compressed air is used. Behnke’s use of non-nitrogencontaining gas mixtures subsequent to his discovery during the 1939 rescue of the wrecked submarine USS Squalus pioneered the use of non-nitrogencontaining gas mixtures, which are used by modern divers when working at great depth to avoid the effects of nitrogen narcosis.

Behnke’s first duty station as a licensed physician was as assistant medical officer for Submarine Division 20 in San Diego, which was then commanded by one of the Navy’s rising stars, Captain Chester W. Nimitz of World War II fame.
In this setting, Dr. Behnke spent his free time constructively by learning to dive, using the traditional ‘‘hard-hat’’ gear aboard the USS Ortalon, a submarine rescue vessel to which he also rotated. Diving was not a notable specialty of the Navy at the time, and the service was slow in developing the infrastructure for it. Dr. Behnke devoted his efforts to research on the topic of diving medicine, as well as developing a more sound understanding of the biophysics of diving. In 1932, he wrote a letter to the Surgeon General describing some of his observations on arterial gas embolism, which earned him some accolades from the Navy and resulted in his transfer to Harvard’s School of Public Health as a graduate fellow. After 2 years at Harvard, the Navy assigned duty to Dr. Behnke at the Navy’s submarine escape training tower at Pearl Harbor. He worked extensively here on developing techniques for rescuing personnel from disabled submarines on the sea floor. In 1937, he was one of three Navy physicians assigned to the Navy’s Experimental Diving Unit. This team worked on improving the rescue system, plus updating the diving recompression tables originally developed by the British in 1908.

The intoxicating effects of diving were first described by a French physician named Colladon in 1826, who reported that descent in a diving bell resulted in his feeling a ‘‘state of excitement as though I had drunk some alcoholic liquor’’.
The etiology of this phenomenon remained largely unknown until the 1930s, when the British military researcher Damant again highlighted the issue, and reported very unpredictable behavior in his divers during descents as deep as 320 feet during the British Admiralty Deep Sea diving trials. Two initial theories arose as to the etiology for this effect, the first being from psychological causes by Hill and Phillip in 1932, and the second being from oxygen toxicity by Haldane in 1935.

Dr. Behnke and his colleagues at the Harvard School of Public Health had another idea as to the etiology of this phenomenon. In 1935, based on observation of individuals in experiments with a pressure chamber, Dr. Behnke published an article in the American Journal of Physiology in which he posited that nitrogen was the etiology of the intoxicating effects of diving.

Nitrogen narcosis, described as ‘‘rapture of the deep’’ by Jacques Cousteau, still remains a relatively common occurrence in modern diving, despite major advances in diving technology since Behnke’s initial description of the pathophysiologic cause of the condition in 1935. The development of symptoms of this condition varies from diver to diver, but usually begins when a depth of 4 atmospheres (132 feet) is reached in divers using compressed air. More sensitive divers can develop symptoms at only 3 atmospheres (99 feet), and other divers may not be affected up to depths as high as 6 atmospheres (198 feet). Interestingly, tolerance to nitrogen narcosis can be developed by frequent diving and exposure to the effects of compressed air at depth.

  1. Acott C. A brief history of diving and decompression illness. SPUMS J 1999;29:98–109.
    2. Bornmann R. Dr. Behnke, founder of UHMS, dies. Pressure 1992; 21:14.
    3. Behnke AR, Thomson RM, Motley P. The psychologic effects from breathing air at 4 atmospheric pressures. Am J Physiol 1935; 112:554–8.
    4. Behnke AR, Johnson FS, Poppen JR, Motley P. The effect of oxygen on man at pressures from 1 to 4 atmospheres. AmJ Physiol 1934; 110:565–72.

Exhaled nitric oxide concentration and decompression-induced bubble formation: An index of decompression severity in humans?

J.-M. Pontier, Buzzacott, J. Nastorg, A.T. Dinh-Xuan, K. Lambrechts
Nitric Oxide 39 (2014) 29–34
http://dx.doi.org/10.1016/j.niox.2014.04.005

Introduction: Previous studies have highlighted a decreased exhaled nitric oxide concentration (FE NO) in divers after hyperbaric exposure in a dry chamber or following a wet dive. The underlying mechanisms of this decrease remain however unknown. The aim of this study was to quantify the separate effects of submersion, hyperbaric hyperoxia exposure and decompression-induced bubble formation on FE NO after a wet dive.
Methods: Healthy experienced divers (n = 31) were assigned to either

  • a group making a scuba-air dive (Air dive),
  • a group with a shallow oxygen dive protocol (Oxygen dive) or

a group making a deep dive breathing a trimix gas mixture (deep-dive).
Bubble signals were graded with the KISS score. Before and after each dive FE NO values were measured using a hand-held electrochemical analyzer.
Results: There was no change in post-dive values of FE NO values (expressed in ppb = parts per billion) in the Air dive group (15.1 ± 3.6 ppb vs. 14.3 ± 4.7 ppb, n = 9, p = 0.32). There was a significant decrease in post-dive values of FE NO in the Oxygen dive group (15.6 ± 6 ppb vs. 11.7 ± 4.7 ppb, n = 9, p = 0.009). There was an even more pronounced decrease in the deep dive group (16.4 ± 6.6 ppb vs. 9.4 ± 3.5 ppb, n = 13, p < 0.001) and a significant correlation between KISS bubble score >0 (n = 13) and percentage decrease in post-dive FE NO values (r = -0.53, p = 0.03). Discussion: Submersion and hyperbaric hyperoxia exposure cannot account entirely for these results suggesting the possibility that, in combination, one effect magnifies the other. A main finding of the present study is a significant relationship between reduction in exhaled NO concentration and dive-induced bubble formation. We postulate that exhaled NO concentration could be a useful index of decompression severity in healthy human divers.

Brain Damage in Commercial Breath-Hold Divers

Kiyotaka Kohshi, H Tamaki, F Lemaıtre, T Okudera, T Ishitake, PJ Denoble
PLoS ONE 9(8): e105006 http://dx.doi.org:/10.1371/journal.pone.0105006

Background: Acute decompression illness (DCI) involving the brain (Cerebral DCI) is one of the most serious forms of diving related injuries which may leave residual brain damage. Cerebral DCI occurs in compressed air and in breath-hold divers, likewise. We conducted this study to investigate whether long-term breath-hold divers who may be exposed to repeated symptomatic and asymptomatic brain injuries, show brain damage on magnetic resonance imaging (MRI).
Subjects and Methods: Our study subjects were 12 commercial breath-hold divers (Ama) with long histories of diving work in a district of Japan. We obtained information on their diving practices and the presence or absence of medical problems, especially DCI events. All participants were examined with MRI to determine the prevalence of brain lesions.
Results: Out of 12 Ama divers (mean age: 54.965.1 years), four had histories of cerebral DCI events, and 11 divers demonstrated ischemic lesions of the brain on MRI studies. The lesions were situated in the cortical and/or subcortical area (9 cases), white matters (4 cases), the basal ganglia (4 cases), and the thalamus (1 case). Subdural fluid collections were seen in 2 cases. Conclusion: These results suggest that commercial breath-hold divers are at a risk of clinical or subclinical brain injury which may affect the long-term neuropsychological health of divers.

Decompression illness

Richard D Vann, Frank K Butler, Simon J Mitchell, Richard E Moon
Lancet 2010; 377: 153–64

Decompression illness is caused by intravascular or extravascular bubbles that are formed as a result of reduction in environmental pressure (decompression). The term covers both arterial gas embolism, in which alveolar gas or venous gas emboli (via cardiac shunts or via pulmonary vessels) are introduced into the arterial circulation, and decompression sickness, which is caused by in-situ bubble formation from dissolved inert gas. Both syndromes can occur in divers, compressed air workers, aviators, and astronauts, but arterial gas embolism also arises from iatrogenic causes unrelated to decompression. Risk of decompression illness is
affected by immersion, exercise, and heat or cold. Manifestations range from itching and minor pain to neurological symptoms, cardiac collapse, and death. First aid treatment is 100% oxygen and definitive treatment is recompression to increased pressure, breathing 100% oxygen. Adjunctive treatment, including fluid administration and prophylaxis against venous thromboembolism in paralyzed patients, is also recommended. Treatment is, in most cases, effective although residual deficits can remain in serious cases, even after several recompressions.

Bubbles can have mechanical, embolic, and biochemical effects with manifestations ranging from trivial to fatal. Clinical manifestations can be caused by direct effects from extravascular (autochthonous) bubbles such as mechanical distortion of tissues causing pain, or vascular obstruction causing stroke-like signs and symptoms. Secondary effects can cause delayed symptom onset up to 24 h after surfacing. Endothelial damage by intravascular bubbles can cause capillary leak, extravasation of plasma, and haemoconcentration. Impaired endothelial function, as measured by decreased effects of vasoactive compounds, has been reported in animals and might occur in man. Hypotension can occur in severe cases. Other effects include platelet activation and deposition, leucocyte-endothelial adhesion, and possibly consequences of vascular occlusion believed to occur in thromboembolic stroke such as ischaemia-reperfusion injury, and apoptosis.

Classification of initial and of all eventual manifestations of decompression illness in 2346 recreational diving accidents reported to the Divers Alert Network from 1998 to 2004 For all instances of pain, 58% consisted of joint pain, 35% muscle pain, and 7% girdle pain. Girdle pain often portends spinal cord involvement. Constitutional symptoms included headache, lightheadedness, inappropriate fatigue, malaise, nausea or vomiting, and anorexia. Muscular discomfort included stiffness, pressure, cramps, and spasm but excluded pain. Pulmonary manifestations included dyspnoea and cough.

Other than depth and time, risk of decompression sickness is affected by other factors that affect inert gas exchange and bubble formation, such as immersion (vs dry hyperbaric chamber exposure), exercise, and temperature. Immersion decreases venous pooling and increases venous return and cardiac output. Warm environments improve peripheral perfusion by promoting vasodilation, whereas cool temperatures decrease perfusion through vasoconstriction. Exercise increases both peripheral perfusion and temperature. The effect of environmental conditions on risk of decompression sickness is dependent on the phase of the pressure exposure. Pressure, exercise, immersion, or a hot environment increase inert gas uptake and risk of decompression sickness. During decom-pression these factors increase inert gas elimination and therefore decrease the risk of decompression sickness. Conversely, uptake is reduced during rest or in a cold environment, hence a diver resting in a cold environment on the bottom has decreased risk of decompression sickness. Rest or low temperatures during decompression increase the risk. If exercise occurs after decompression when super-saturation is present, bubble formation increases and risk of decompression sickness rises.

Exercise at specific times before a dive can decrease the risk of serious decompression sickness in animals and incidence of venous gas emboli in both animals and man. The mechanisms of these effects are unknown but might involve modulation of nitric oxide production and effects on endothelium. Venous gas emboli and risk of decompression sickness increase slightly with age and body-mass index.

Arterial gas embolism should be suspected if a diver has a new onset of altered consciousness, confusion, focal cortical signs, or seizure during ascent or within a few minutes after surfacing from a compressed gas dive.

If the diver spends much time at depth and might have absorbed substantial inert gas before surfacing, arterial gas embolism and serious decompression sickness can coexist, and in such cases, spinal cord manifestations can predominate. Other organ systems, such as the heart, can also be affected, but the clinical diagnosis of gas embolism is not reliable without CNS manifestations. Arterial gas embolism is rare in altitude exposure; if cerebral symptoms occur after altitude exposure, the cause is usually decompression sickness.

Nondermatomal hypoaesthesia and truncal ataxia are common in neurological decompression sickness and can be missed by cursory examination. Pertinent information includes level of consciousness and mental status, cranial nerve function, and motor strength. Coordination can be affected disproportionately, and abnormalities can be detected by assessment of finger-nose movement, and, with eyes open and closed, ability to stand and walk and do heel-toe walking backwards and forwards. Many of these simple tests can be done on the scene by untrained companions.

Panel: Differential diagnosis of decompression illness
Inner-ear barotrauma
Middle-ear or maxillary sinus overinfl ation
Contaminated diving gas and oxygen toxic effects
Musculoskeletal strains or trauma sustained before, during, or after diving
Seafood toxin ingestion (ciguatera, pufferfish, paralytic shellfish poisoning)
Immersion pulmonary edema
Water aspiration
Decompression chamber

Decompression chamber

Decompression chamber. fluidic or pneumatic ventilator is shown at the left. The infusion pump is contained within a plastic cover, in which 100% nitrogen is used to decrease the fi re risk in the event of an electrical problem. The monitor screen is outside the chamber and can be seen through the viewing port. Photo from Duke University Medical Center, with permission.

Long-term outcomes of 69 divers with spinal cord decompressionsickness, by manifestation
n %
No residual symptoms 34 49·3
Any residual symptom 35 50·7
Mild paraesthesias, weakness, or pain 14 20·3
Some impairment of daily activities 21 30·4
Difficulty walking 11 15·9
Impaired micturition 13 18·8
Impaired defecation 15 21·7
Impaired sexual function 15 21·7

Decompression illness occurs in a small population but is an international problem that few physicians are trained to recognise or manage. Although its manifestations are often mild, the potential for permanent injury exists in severe cases, especially if unrecognised or inadequately treated. Emergency medical personnel should be aware of manifestations of decompression illness in the setting of a patient with a history of recent diving or other exposure to substantial pressure change, and should contact an appropriate consultation service for advice.

Diving Medicine: Contemporary Topics and Their Controversies

Michael B. Strauss and Robert C. Borer, Jr
Am J Emerg Med 2001; 19:232-238
http://dx.doi.org:/10.1053/ajem.2001.22654

SCUBA diving is a popular recreational sport. Although serious injuries occur infrequently, when they do knowledge of diving medicine and/or where to obtain appropriate consultation is essential. The emergency physician is likely to be the first physician contact the injured diver has. We discuss 8 subjects
in diving medicine which are contemporary, yet may have controversies associated with them. From this information the physician dealing primarily with the injured diver will have a basis for understanding and managing, as
well as where to find additional help, for his/her patients’ diving injuries.

Over the past 10 years, new knowledge and equipment improvements have made diving safer and more enjoyable. Estimates of actively participating sports divers show a striking increase over this time interval while the number of SCUBA diving deaths annually has remained nearly level at approximately 100. A further indicator of recreational diving safety is that reflected in the nearly constant number of diving injuries (1000 per annum) over the most recent 5 reported years, or approximately 0.53 to 3.4 incidents/10,000 dives.

Divers Alert Network.
The Divers Alert Network (DAN) is a nonprofit organization directed and staffed by experts in the specialty of diving medicine.6 DAN provides immediate consultation for both divers and physicians in the diagnosis and initial management of diving injuries. This 24-hour service is available free world-wide through a dedicated emergency telephone line: 1-919-684-4326. The DAN staff will also identify the nearest appropriate recompression treatment facility and knowledgeable physicians for an expedient referral. General diving medical inquiries can be answered during normal weekday hours either through an information telephone line: 1-919-684-2948 or through an interactive web site http://www.diversalertnetwork.org.

Use of 100% Oxygen for Initial, on the Scene, Management of Diving Accidents
The breathing of pure oxygen is crucial for the initial management of the diving related problems of arterial gas embolism (AGE), decompression sickness (DCS), pulmonary barotrauma (thoracic squeeze), aspiration pneumonitis, and hypoxic encephalopathy associated with near drowning. In 1985, Dick reported that in many cases the neurologic symptoms of AGE and DCS were resolved with the immediate breathing of pure oxygen on the surface. The breathing of pure oxygen reduces bubble size by increasing the differential pressure for the inert gas to diffuse out of the bubble and it also speeds the washout of inert gas from body tissues. The early elimination of the bubble prevents hypoxia and the interaction of the bubble with the blood vessel lining. This interaction leads to secondary problems of capillary leak, bleeding, inflammation, ischemia, and cell death. These secondary problems are the reasons not all DCS symptoms resolve with recompression chamber treatment. The immediate use of pure oxygen for the medical management of these diving problems is analogous to the use of cardiopulmonary resuscitation for the witnessed cardiac arrest; the sooner initiated the better the results.

Diving Education

Medical Fitness for Diving

Asthma has the potential risk for AGE. Neuman reviewed the subject of asthma and diving. He and his coauthors recommend that asthmatics who are asymptomatic, not on medications and have no exercised induced abnormality on pulmonary function studies be allowed to dive.

Conditions leading to loss of consciousness, such as insulin dependent diabetes and epilepsy, can result in drowning. Carefully controlled diving studies in diabetics, who are free from complications, are now defining the safe requirements for diving. Epilepsy remains as a disqualification except in individuals with a history of febrile seizures ending prior to 5 years of age.

Availability of Hyperbaric Oxygen Treatment Facilities

The availability of these chambers makes it possible for divers who become symptomatic after SCUBA diving to readily receive recompression treatment. This is important because the closer the initiation of recompression treatment to the onset of DCS (and AGE) signs and symptoms, the greater the likelihood of full recovery.

Improved Diving Equipment

Mixed and Rebreather Gas Diving
Mixed gas diving involves changing the breathing gas from air which has 20% oxygen to higher oxygen percentages (nitrox). As the amount of oxygen is increased in the gas mixture, the amount of the inert gas (nitrogen) is reduced. With oxygen enriched air there is less tissue deposition of inert gas per unit of time under water for any given depth. However, because of increased oxygen partial pressures, the seizure threshold for oxygen toxicity is lowered. For normal sports diving activities, oxygen toxicity with mixed gas diving is only a theoretical concern.

Decompression Illness is More Than Bubbles

When AGE occurs, DCS symptoms may be concurrent or appear during or after recompression treatment even though the decompression tables were not violated on the dive. When DCS occurs in this situation it appears resistant to recompression treatment (Neuman) perhaps because of the inflammatory reaction generated by the bubble-blood vessel interaction from the AGE. In cases of DCI where components of both DCS and AGE are suspected, the diver should be observed for a minimum of 24 hours after the recompression treatment is completed for the delayed onset of DCS.

No theory of DCS discounts the primary role of bubbles in this condition. However, new information suggests that there are precursors to bubble formation and post-bubbling events that occur as a consequence of the bubbles. As mentioned earlier, venous gas emboli are a common occurrence diving ascent and ordinarily are filtered out harmlessly by the lungs. Precursors to DCS include stasis, dehydration and too rapid of ascents. These conditions allow the ubiquitous VGE to enlarge, coalesce and occlude the venous side of the circulation. Massive venous bubbling to the lungs can cause pulmonary vessel obstruction described as the chokes. If right to left shunts occur in the heart, VGE can become AGE to the brain. If the arterial flow is slow enough and/or the gradients large enough, autochthonus (ie, spontaneous) bubbles can form in the arterial circulation and lead to any of the consequences of AGE. In such situations it could be difficult to determine whether the DCI event was from AGE or DCS even after careful analysis of the dive profile. Hollenbeck’s model for diving paraplegia includes the setting of venous stasis (Batson’s plexus of veins) in the spinal canal, bubble formation, bubble enlargement possibly from off gassing of the spinal cord, blood vessel occlusion, and venous side infarctions of the spinal cord.
Contemporary Management of DCS

Problem Intervention Effect
Bubble Recompression
with HBO
Reduce bubble size
1. Washout inert gas.
2. Change bubble composition by diffusion.
Stasis and dehydration Hydration: oral fluids if alert, IV fluids otherwise. Improve blood flow.
InflammationCell Ischemia ? Anti-inflammatory medicationsHBO Reduce interaction between bubble and blood vessel endothelium.
Improve oxygen availability to hypoxic tissues, reduce edema and also reduces the interaction between bubble and blood vessel endothelium.

.

Conclusions

We anticipate that in the future there will be further improvements for the safety and enjoyment of the recreational SCUBA diver. For example, the dive computer of the future will be able to individualize dive profiles for different personal medical parameters such as age, body composition and fitness level. Diver locators could quickly target a missing diver and save time and gas consumption as well as prevent serious diving mishaps. Drugs may be developed that would minimize the effect of bubbles interacting with body tissues and prevent DCS and AGE.

Extracorporeal membrane oxygenation therapy for pulmonary decompression illness

Yutaka Kondo, Masataka Fukami and Ichiro Kukita
Kondo et al. Critical Care 2014; 18:438 http://ccforum.com/content/18/3/438/10.1186/cc13935

Pulmonary decompression illness is rarely observed in clinical settings, and most patients die prior to hospitalization. We administered ECMO therapy to rescue a patient, even though this therapy has rarely been reported with good outcome in patients with decompression illness. In addition, we had to select venovenous ECMO even with the patient showing right ventricular failure. A lot of physicians may select venoarterial ECMO if the patient shows right ventricular failure, but the important physiological mechanism of pulmonary decompression illness is massive air embolism in the pulmonary arteries, and the bubbles diminish within the first 24 hours. The management of decompression illness therefore differs substantially from the usual right-sided heart failure.

Extremes of barometric pressure

Jane E Risdall, David P Gradwell
Anaesthesia and Intensive Care Medicine 16:2
Ascent to elevated altitude, commonly achieved through flight, by climbing or by residence in highland regions, exposes the individual to reduced ambient pressure. Although there are physical manifestations of this exposure as a consequence of Boyle’s law, the primary physiological challenge is of hypobaric hypoxia. The acute physiological and longer-term adaptive responses of the cardiovascular, respiratory, hematological and neurological systems to altitude are described, together with an outline of the presentation and management of acute mountain sickness, high-altitude pulmonary edema and high-altitude cerebral edema. While many millions experience modest exposure to altitude as a result of flight in pressurized aircraft, fewer individuals are exposed to increased ambient pressure. The pressure changes during diving and hyperbaric exposures result in greater changes in gas load and gas toxicity. Physiological effects include the consequences of increased work of breathing and redistribution of circulating volume. Neurological manifestations may be the direct result of pressure or a consequence of gas toxicity at depth. Increased tissue gas loads may result in decompression illness on return to surface or subsequent ascent in flight.

  • understand the physical effects of changes in ambient pressure and the physiological consequences on the cardiovascular respiratory and neurological systems
  • gain an awareness that exposure to reduced ambient pressure produces both acute and more chronic effects, with differing signs, symptoms and time to onset at various altitudes
  • develop an awareness of the toxic effects of ‘inert’ gases at increased ambient pressures and the pathogenesis and management of decompression illness

Decompression illness According to Henry’s law, at a constant temperature the amount of gas which dissolves in a liquid is proportional to the pressure of that gas or its partial pressure, if it is part of a mixture of gases. Breathing gases at increased ambient pressure will increase the amount of each gas dissolved in the fluid phases of body tissues. On ascent this excess gas has to be given up. If the ascent is controlled at a sufficiently slow rate, elimination will be via the respiratory system. If the ascent is too fast, excess gas may come out of solution and form free bubbles in the tissues or circulation. Bubbles may contain any of the gases in the breathing mixture, but it is the presence of inert gas bubbles (nitrogen or helium) that are thought most likely to give rise to problems, since the elimination of excess oxygen is achieved by metabolism as well as ventilation. These bubbles may act as venous emboli or may trigger inflammatory tissue responses giving rise to symptoms of decompression illness (DCI). Signs and symptoms of DCI may appear up to 48 hours after exposure to increased ambient pressure and include joint pains, motor and sensory deficits, dyspnoea, cough and skin rashes.

Neurological effects of deep diving

Marit Grønning, Johan A. Aarli
Journal of the Neurological Sciences 304 (2011) 17–21
http://dx.doi.org:/10.1016/j.jns.2011.01.021

Deep diving is defined as diving to depths more than 50 m of seawater (msw), and is mainly used for occupational and military purposes. A deep dive is characterized by the compression phase, the bottom time and the decompression phase. Neurological and neurophysiologic effects are demonstrated in divers during the compression phase and the bottom time. Immediate and transient neurological effects after deep dives have been shown in some divers. However, the results from the epidemiological studies regarding long term neurological effects from deep diving are conflicting and still not conclusive.

Possible immediate neurological effects of deep diving
Syndrome Pressure
Hyperoxia/oxygen seizures >152 kPa (5 msw)
HypoxiaHypercapnia
Nitrogen narcosis >354 kPa (25 msw)
High pressure nervous syndrome >1.6 MPa (150 msw)
Neurological decompression sickness

Neurological effects have been demonstrated, both clinically and neurophysiologically in divers during the compression phase and the bottom time. Studies of divers before and after deep dives have shown immediate and transient neurological effects in some divers. However, the results from the epidemiological and clinical studies regarding long term neurological effects from deep diving are conflicting and still not conclusive. Prospective clinical studies with sufficient power and sensitivity are needed to solve this important issue.

Today deep diving to more than 100 msw is routinely performed globally in the oil- and gas industry. In the North Sea remote underwater intervention and maintenance is performed by the use of remotely operated vehicles (ROV), both in conjunction to and as an alternative to manned underwater operations. There will, however, always be a need for human divers in the technically more advanced underwater operations and for contingency repair operations.

P300 latency indexes nitrogen narcosis

Barry Fowler, Janice Pogue and Gerry Porlier
Electroencephalography, and clinical Neurophysiology, 1990, 75:221-229

This experiment investigated the effects of nitrogen narcosis on reaction time (RT) and P300 latency and amplitude, Ten subjects breathed either air or a non-narcotic 20% oxygen-80% helium (heliox) mixture in a hyperbaric chamber at 6.5, 8.3 and 10 atmospheres absolute (ATA), The subjects responded under controlled accuracy conditions to visually presented male or female names in an oddball paradigm. Single-trial analysis revealed a strong relationship between RT and P300 latency, both of which were slowed in a dose-related manner by hyperbaric air but not by heliox. A clear-cut dose-response relationship could not be established for P300 amplitude. These results indicate that P300 latency indexes nitrogen narcosis and are interpreted as support for the slowed processing model of inert gas narcosis.

Adaptation to Deep Water Habitat

Effects of hypoxia on ionic regulation, glycogen utilization and antioxidative ability in the gills and liver of the aquatic air-breathing fish Trichogaster microlepis

Chun-Yen Huang, Hui-Chen Lina, Cheng-Huang Lin
Comparative Biochemistry and Physiology, Part A 179 (2015) 25–34
http://dx.doi.org/10.1016/j.cbpa.2014.09.001

We examined the hypothesis that Trichogaster microlepis, a fish with an accessory air-breathing organ, uses a compensatory strategy involving changes in both behavior and protein levels to enhance its gas exchange ability. This compensatory strategy enables the gill ion-regulatory metabolism to maintain homeostasis during exposure to hypoxia. The present study aimed to determinewhether ionic regulation, glycogen utilization and antioxidant activity differ in terms of expression under hypoxic stresses; fish were sampled after being subjected to 3 or 12 h of hypoxia and 12 h of recovery under normoxia. The air-breathing behavior of the fish increased under hypoxia. No morphological modification of the gills was observed. The expression of carbonic anhydrase II did not vary among the treatments. The Na+/K+-ATPase enzyme activity did not decrease, but increases in Na+/K+-ATPase protein expression and ionocyte levels were observed. The glycogen utilization increased under hypoxia as measured by glycogen phosphorylase protein expression and blood glucose level, whereas the glycogen content decreased. The enzyme activity of several components of the antioxidant system in the gills, including catalase, glutathione peroxidase, and superoxidase dismutase, increased in enzyme activity. Based on the above data, we concluded that T. microlepis is a hypoxia-tolerant species that does not exhibit ion-regulatory suppression but uses glycogen to maintain energy utilization in the gills under hypoxic stress. Components of the antioxidant system showed increased expression under the applied experimental treatments.

Divergence date estimation and a comprehensive molecular tree of extant cetaceans

Michael R. McGowen , Michelle Spaulding, John Gatesy
Molecular Phylogenetics and Evolution 53 (2009) 891–906
http://dx.doi.org/10.1016/j.ympev.2009.08.018

Cetaceans are remarkable among mammals for their numerous adaptations to an entirely aquatic existence, yet many aspects of their phylogeny remain unresolved. Here we merged 37 new sequences from the nuclear genes RAG1 and PRM1 with most published molecular data for the group (45 nuclear loci, transposons, mitochondrial genomes), and generated a supermatrix consisting of 42,335 characters. The great majority of these data have never been combined. Model-based analyses of the supermatrix produced a solid, consistent phylogenetic hypothesis for 87 cetacean species. Bayesian analyses corroborated odontocete (toothed whale) monophyly, stabilized basal odontocete relationships, and completely resolved branching events within Mysticeti (baleen whales) as well as the problematic speciose clade Delphinidae (oceanic dolphins). Only limited conflicts relative to maximum likelihood results were recorded, and discrepancies found in parsimony trees were very weakly supported. We utilized the Bayesian supermatrix tree to estimate divergence dates among lineages using relaxed-clock methods. Divergence estimates revealed rapid branching of basal odontocete lineages near the Eocene–Oligocene boundary, the antiquity of river dolphin lineages, a Late Miocene radiation of balaenopteroid mysticetes, and a recent rapid radiation of Delphinidae beginning [1]10 million years ago. Our comprehensive,  time calibrated tree provides a powerful evolutionary tool for broad-scale comparative studies of Cetacea.

Mitogenomic analyses provide new insights into cetacean origin and evolution

Ulfur Arnason, Anette Gullberg, Axel Janke
Gene 333 (2004) 27–34
http://dx.doi.org:/10.1016/j.gene.2004.02.010

The evolution of the order Cetacea (whales, dolphins, porpoises) has, for a long time, attracted the attention of evolutionary biologists. Here we examine cetacean phylogenetic relationships on the basis of analyses of complete mitochondrial genomes that represent all extant cetacean families. The results suggest that the ancestors of recent cetaceans had an explosive evolutionary radiation 30–35 million years before present. During this period, extant cetaceans divided into the two primary groups, Mysticeti (baleen whales) and Odontoceti (toothed whales). Soon after this basal split, the Odontoceti diverged into the four extant lineages, sperm whales, beaked whales, Indian river dolphins and delphinoids (iniid river dolphins, narwhals/belugas, porpoises and true dolphins). The current data set has allowed test of two recent morphological hypotheses on cetacean origin. One of these hypotheses posits that Artiodactyla and Cetacea originated from the extinct group Mesonychia, and the other that Mesonychia/Cetacea constitutes a sister group to Artiodactyla. The current results are inconsistent with both these hypotheses. The findings suggest that the claimed morphological similarities between Mesonychia and Cetacea are the result of evolutionary convergence rather than common ancestry.

The order Cetacea traditionally includes three suborders: the extinct Archaeoceti and the recent Odontoceti and Mysticeti. It is commonly believed that the evolution of ancestral cetaceans from terrestrial to marine (aquatic) life was accompanied by a fast and radical morphological adaptation. Such a scenario may explain why it was, for a long time, difficult to morphologically establish the position of Cetacea in the mammalian tree and even to settle whether Cetacea constituted a monophyletic group.

Biochemical analyses in the 1950s  and 1960s had shown a closer relationship between cetaceans and artiodactyls (even-toed hoofed mammals) than between cetaceans and any other eutherian order and karyological studies in the late 1960s and early 1970s unequivocally supported cetacean monophyly (Arnason, 1969, 1974). The nature of the relationship between cetaceans and artiodactyls was resolved in phylogenetic studies of mitochondrial (mt) cytochrome b (cytb) genes (Irwin and Arnason, 1994; Arnason and Gullberg, 1996) that placed Cetacea within the order Artiodactyla itself as the sister group of the Hippopotamidae (see also Sarich, 1993). The Hippopotamidae/ Cetacea relationship was subsequently supported in studies of nuclear data (Gatesy et al., 1996; Gatesy, 1997) and statistically established in analysis of complete mt genomes (Ursing and Arnason, 1998). The relationship has also been confirmed in analyses of combined nuclear and mt sequences (Gatesy et al., 1999; Cassens et al., 2000) and in studies of short interspersed repetitive elements (SINEs). Artiodactyla and Cetacea are now commonly referred to as Cetartiodactyla.

Previous analyses of the complete cytb gene of more than 30 cetacean species (Arnason and Gullberg, 1996) identified five primary lineages of recent cetaceans, viz., Mysticeti and the four odontocete lineages Physeteridae (sperm whales), Platanistidae (Indian river dolphins), Ziphiidae (beaked whales) and Delphinoidea (iniid river dolphins, porpoises, narwhals and dolphins). However, these studies left unresolved the relationships of the five lineages as well as those between the three delphinoid families Monodontidae (narwhals, belugas), Phocoenidae (porpoises) and Delphinidae (dolphins). Similarly, the relationships between the four mysticete families Balaenidae (right whales), Neobalaenidae (pygmy right whales), Eschrichtiidae (gray whales) and Balaenopteridae (rorquals) were not conclusively resolved in analyses of cytb genes.

Fig. (not shown). Cetartiodactyl relationships and the estimated times of their divergences. The tree was established on the basis of maximum likelihood analysis of the concatenated amino acid (aa) sequences of 12 mt protein-coding genes. Length of alignment 3610 aa. Support values for branches A–H are shown in the insert.
Cetruminantia (branch A) receives moderate support and Cetancodonta (B) strong support. Cetacea (C) splits into monophyletic Mysticeti (baleen whales) and monophyletic Odontoceti (toothed whales). Odontoceti has four basal lineages, Physeteridae (sperm whales: represented by the sperm and pygmy sperm whales), Ziphiidae (beaked whales: bottlenose and Baird’s beaked whales), Platanistidae (Indian river dolphins: Indian river dolphin) and Delphinoidea. Delphinoidea encompasses the families Iniidae (iniid river dolphins: Amazon river dolphin, La Plata dolphin), Monodontidae (narwhals/belugas: narwhal), Phocoenidae (porpoises: harbour porpoise) and Delphinidae (dolphins: white-beaked dolphin). The common odontocete branch and the branches separating the four cetacean lineages are short. These relationships are therefore somewhat unstable (cf. Section 3.1 and Table 1). Iniid river dolphins (F) are solidly nested within the Delphinoidea (E). Thus, traditional river dolphins (Platanistidae + Iniidae) do not form a monophyletic unit. Molecular estimates of divergence times (Sanderson 2002) were based on two calibration points, A/C-60 and O/M-35 (cf. Section 3.2). Due to the short lengths of internal branches, some estimates for these divergences overlap. NJ: neighbor joining; MP: maximum parsimony; LBP: local bootstrap probability; QP: quartet puzzling. The bar shows the number of aa substitutions per site.

The limited molecular resolution among basal cetacean lineages has been known for some time. Studies of hemoglobin and myoglobin (Goodman, 1989; Czelusniak et al., 1990) have either joined Physeteridae and Mysticeti to the exclusion of Delphinoidea (myoglobin data) or Mysticeti and Delphinoidea to the exclusion of Physeteridae (hemoglobin data). Thus, neither of the data sets identified monophyletic Odontoceti by joining the two odontocete lineages (Physeteridae and Delphinoidea) to the exclusion of Mysticeti. A similar instability was recognized and cautioned against in analyses of some mt data, notably, sequences of rRNA genes (Arnason et al., 1993b). The suggestion (Milinkovitch et al., 1993) of a sister group relationship between Physeteridae and the mysticete family Balaenopteridae (rorquals) was based on a myoglobin data set (which joins Physeteridae and Mysticeti to the exclusion of Delphinoidea) that was complemented with partial data of the mt 16S rRNA gene.

The cetancodont divergence times calculated using A/C-60 and O/M-35 as references have been included in Fig. 1. As a result of the short branches separating several cetacean lineages, the estimates of these divergences overlap. The same observation has been made in calculations based on SINE flanking sequences (Nikaido et al., 2001). There is a general consistency between the current and the flanking sequence datings, except for those involving the Balaenopteridae, which are somewhat younger in our analysis than in the SINEs study. The currently estimated age of the divergence between Hippopotamus and Cetacea (c53.5 MYBP) is consistent with the age (>50 MY) of the oldest archaeocete fossils identified so far (Bajpai and Gingerich, 1998). This suggests that the ages allocated to the two references, A/C-60 (the divergence between ruminant artiodactyls and cetancodonts) and O/M-35 (the divergence between odontocetes and mysticetes) are reasonably accurate.

The dating of the divergence between the blue and fin whales is of interest regarding hybridization between closely related mammalian species. Previous molecular analyses (Arnason et al., 1991b; Spilliaert et al., 1991) demonstrated the occurrence of hybridization between these two species. These studies, which were based on three hybrids (one female and two males), showed that either species could be the mother or father in these hybridizations. The two male hybrids had rudimentary testes, whereas the female hybrid was in her second pregnancy. This suggests that the blue and fin whales may be close to the limit for permissible species hybridization among mammals.

The current data set has allowed examination of the coherence between the molecular results and two prevalent morphological hypotheses related to cetacean evolution. The first hypothesis, which in essence originates from Van Valen (1966, 1968), postulates that monophyletic Artiodactyla and monophyletic Cetacea evolved separately from the extinct Palaeocene group Mesonychia. This hypothesis was recently reinforced in a morphological study (Thewissen et al., 2001) that included mesonychians, two archaeocete taxa (Ambuloocetus and Pakicetus) and some extant and fossil artiodactyls. The study of Thewissen et al. (2001) showed a sister group relationship between monophyletic Artiodactyla and monophyletic Cetacea, with Mesonychia as the basal sister group of Artiodactyla/Cetacea, a conclusion consistent with the palaeontological age of Mesonychia relative to that of Artiodactyla and Cetacea. The second hypothesis favours a sister group relationship between Mesonychia and Cetacea with the Mesonychia/Cetacea clade as the sister group of monophyletic Artiodactyla (O’Leary and Geisler, 1999; see also Gatesy and O’Leary, 2001).

Although the position of Mesonychia differs in the two morphological hypotheses, both correspond to a sister group relationship between Cetacea and monophyletic Artiodactyla among extant cetartiodactyls. Thus, both hypotheses can be tested against the current data set. The result of such a test has been included in Table 1, topology (m)(not shown). As evident, both these morphological hypotheses are incongruent with the mitogenomic findings.

Morphological studies have not provided an answer to the question whether mysticetes and odontocetes had separate origins among the archaeocetes (Fordyce and de Muizon, 2001). However, the long common cetacean branch and the short branches separating the five extant cetacean lineages strongly suggest an origin of modern cetaceans from the same archaeocete group (probably the Dorudontidae).

The limbs of Ambulocetus constitute somewhat of an evolutionary enigma. As evident in Thewissen et al.’s (1994) paper, Ambulocetus has very large hind limbs compared to its forelimbs, a difference that is less pronounced in later silhouette drawings of the animal. It is nevertheless evident that evolution from the powerful hindlimbs of Ambulocetus to their rudimentation in archaeocetes constitutes a remarkable morphological reversal if Ambulocetus is connected to the cetacean branch after the separation of the hippopotamid and cetacean lineages.

For natural reasons, systematic schemes have traditionally been based on external morphological characteristics. The rates of morphological and molecular evolution are rarely (if ever) strictly correlated, however, and this may give rise to inconsistency between traditional systematics and molecular findings. The emerging consensus that the order Cetacea resides within another traditional order, Artiodactyla, makes apparent the incongruity in cetartiodactyl nomenclature (Graur and Higgins, 1994). In this instance, a possible solution for maintaining reasonable consistency between nomenclature and phylogeny would be to recognize Cetartiodactyla as an order with three suborders: Suina, Tylopoda and Cetruminantia. According to such a scheme, Cetacea would (together with the Hippopotamidae) constitute a parvorder within the infraorder Cetancodonta.

Cytochrome b and Bayesian inference of whale phylogeny

Laura May-Collado, Ingi Agnarsson
Molecular Phylogenetics and Evolution 38 (2006) 344–354
http://dx.doi.org//10.1016/j.ympev.2005.09.019

In the mid 1990s cytochrome b and other mitochondrial DNA data reinvigorated cetacean phylogenetics by proposing many novel

and provocative hypotheses of cetacean relationships. These results sparked a revision and reanalysis of morphological datasets, and the collection of new nuclear DNA data from numerous loci. Some of the most controversial mitochondrial hypotheses have now become benchmark clades, corroborated with nuclear DNA and morphological data; others have been resolved in favor of more traditional views. That major conflicts in cetacean phylogeny are disappearing is encouraging. However, most recent papers aim specifically to resolve higher-level conflicts by adding characters, at the cost of densely sampling taxa to resolve lower-level relationships. No molecular study to date has included more than 33 cetaceans. More detailed molecular phylogenies will provide better tools for evolutionary studies. Until more genes are available for a high number of taxa, can we rely on readily available single gene mitochondrial data? Here, we estimate the phylogeny of 66 cetacean taxa and 24 outgroups based on Cytb sequences. We judge the reliability of our phylogeny based on the recovery of several deep-level benchmark clades. A Bayesian phylogenetic analysis recovered all benchmark clades and for the Wrst time supported Odontoceti monophyly based exclusively on analysis of a single mitochondrial gene. The results recover the monophyly, with the exception of only one taxa within Cetacea, and the most recently proposed super- and subfamilies. In contrast, parsimony never recovered all benchmark clades and was sensitive to a priori weighting decisions. These results provide the most detailed phylogeny of Cetacea to date and highlight the utility of both Bayesian methodology in general, and of Cytb in cetacean phylogenetics. They furthermore suggest that dense taxon sampling, like dense character sampling, can overcome problems in phylogenetic reconstruction.

Some long standing debates are all but resolved: our understanding of deeper level cetacean phylogeny has grown strong. However, the strong focus of most recent studies, aiming specifically to resolve these higher level conflicts by adding mostly characters rather than taxa, has left our understanding of lower level relationships among whale species lagging behind. Mitogenomic data, for example, is available only for 16 cetacean species, and no molecular study to date has included more than 33 cetaceans. It seems timely to focus on more detailed (genus, and species level) molecular phylogenies. These will provide better tools for detailed evolutionary studies, and are necessary to test existing morphological phylogenetic hypotheses, and current cetacean classification.

We judge the reliability of our phylogeny based on the recovery of the previously mentioned benchmark clades, in addition to the less controversial clades Perissodactyla, Euungulata (sensu Waddell et al., 2001; Perissodactyla+ Cetartiodactyla), Cetacea, and Mysticeti. Because Cytb is thought to be most reliable at lower taxonomic levels (due to high substitution rates), recovering ‘known’ deeper clades gives credibility to these new findings which have not been addressed by studies using few taxa. We compare the performance of Bayesian analyses versus parsimony under four different models, and briefly examine the sensitivity of the results to taxon sampling. We use our results to discuss agreement and remaining conflict in cetacean phylogenetics, and provide comments on current classification.

The Bayesian analysis recovered all seven benchmark clades. Support for five of the benchmark clades is high (100 posterior probabilities) but rather low for Cetancodonta (79) and marginal for the monophyly of Odontoceti. The analysis also recovered all but one family level, and most sub- and superfamily level cetacean taxa. The results broadly corroborate current cetacean classiffcation, while also pointing to some lower-level groups that may need redefinition.

Many recent cetacean phylogenetic studies include relatively few taxa, in part due to a focus on generating more characters to resolve higher level phylogenetics. While addressing crucial questions and providing the backbone for lower level phylogenies, such studies have limited utility for classification, and for comparative evolutionary studies. In some cases sparse taxon sampling may also confound the results. Of course, taxon sampling is usually simply constrained by the availability of character data, but for some reason many studies have opted to include only one, or a few outgroup taxa, even if many are available.

We find that as long as outgroup taxon sampling was extensive, Bayesian analyses of Cytb recovered all the a priori identified benchmark clades. When only a few outgroups were chosen, however, the Bayesian analysis negated Odontoceti monophyly, as have many previous parsimony analyses of mitochondrial DNA. Furthermore, in almost every detailed comparison possible our results mirror the findings O’Leary et al. (2004), the most ‘character-complete’ (but including relatively few cetacean taxa) analysis to date (37,000 characters from morphology, SINE, and 51 gene fragments). This result gives credibility to our findings, including previously untested lower level clades.

  • Monophyly and placement of Mysticeti (baleen whales).
  • Monophyly of Odontoceti (toothed whales)
  • Delphinoids
  • River Dolphins
  • Beaked and sperm whales

A major goal of phylogenetics is a phylogeny of life (i.e., many taxa), based on multiple lines of evidence (many characters of many types). However, when phylogenies based on relatively few characters can be judged reliable based on external evidence (taxonomic congruence with other phylogenies using many characters, but few taxa), they seem like very promising and useful ‘first guess’ hypotheses. The evolution of sexual dimorphism, echolocation, social behavior, and whistles and other communicative signals, and major ecological shifts (e.g., transition to fresh water) are among the numerous interesting questions in cetacean biology that this phylogeny can help answer.

Deep-diving sea lions exhibit extreme bradycardia in long duration dives

Birgitte I. McDonald1, and Paul J. Ponganis
The Journal of Experimental Biology (2014) 217, 1525-1534 http://dx.doi.org:/10.1242/jeb.098558

Heart rate and peripheral blood flow distribution are the primary determinants of the rate and pattern of oxygen store utilization and ultimately breath-hold duration in marine endotherms. Despite this, little is known about how otariids (sea lions and fur seals) regulate heart rate (fH) while diving. We investigated dive fH in five adult female California sea lions (Zalophus californianus) during foraging trips by instrumenting them with digital electrocardiogram (ECG) loggers and time depth recorders. In all dives, dive fH (number of beats/duration; 50±9 beats min−1) decreased compared with surface rates (113±5 beats min−1), with all dives exhibiting an instantaneous fH below resting (<54 beats min−1) at some point during the dive. Both dive fH and minimum instantaneous fH significantly decreased with increasing dive duration. Typical instantaneous fH profiles of deep dives (>100 m) consisted of:

(1) an initial rapid decline in fH resulting in the lowest instantaneous fH of the dive at the end of descent, often below 10 beats min−1 in dives longer than 6 min in duration;
(2) a slight increase in fH to ~10–40 beats min−1 during the bottom portion of the dive; and
(3) a gradual increase in fH during ascent with a rapid increase prior to surfacing.

Thus, fH regulation in deep-diving sea lions is not simply a progressive bradycardia. Extreme bradycardia and the presumed associated reductions in pulmonary and peripheral blood flow during late descent of deep dives should

(a) contribute to preservation of the lung oxygen store,
(b) increase dependence of muscle on the myoglobin-bound oxygen store,
(c) conserve the blood oxygen store and
(d) help limit the absorption of nitrogen at depth.

This fH profile during deep dives of sea lions may be characteristic of deep-diving marine endotherms that dive on inspiration as similar fH profiles have been recently documented in the emperor penguin, another deep diver that dives on inspiration.

The resting ƒH measured in this study (54±6 beats min−1) was lower than predicted for an animal of similar size (~80 beats min−1 for an 80 kg mammal). In part, this may be due to the fact that the sea lions were probably sleeping. The resting ƒH in our study was also lower than previous measurements in captive juvenile California sea lions (87±17 beats min−1, average mass 30 kg)  and wild Antarctic fur seals (78±5 beats min−1, body mass 30–50 kg). However, we found a significant negative relationship between mass and resting ƒH even with our small sample size of five sea lions (resting ƒH = –0.58 Mb +100.26, r2=0.81, F1,3=12.37, P=0.039). For a 30 kg sea lion, this equation predicts a resting ƒH of 83 beats min−1, which is similar to what was measured previously in juvenile sea lions, suggesting this equation may be useful in estimating resting ƒH in sea lions.

The sea lions exhibited a distinct sinus arrhythmia fluctuating between a minimum of 42±9 and a maximum of 87±12 beats min−1, comparable to the sinus arrhythmias described in other diving birds and mammals, including sea lions. The minimum instantaneous ƒH during the sinus arrhythmia was similar to the mean minimum ƒH in dives less than 3 min (37±7 beats min−1), indicating that in dives less than 3 min (estimated cADL), ƒH only decreased to levels observed during exhalation at rest. This is consistent with observations in emperor penguins and elephant seals, where it was proposed that in dives shorter than the aerobic dive limit (ADL) the reduction in ƒH is regulated by a mechanism of cardiorespiratory control similar to that governing the respiratory sinus arrhythmia, with a further reduction only occurring in dives longer than the ADL.

Fig. 3. (not shown) Instantaneous fH and dive depth profiles of a California sea lion (CSL12_2). Data are from (A) a short, shallow dive (1.3 min, 45 m), (B) a mid-duration dive (4.8 min, 239 m) and (C) a long-duration dive (8.5 min, 305 m). Minimum instantaneous fH reached 37 beats min−1 in the short dive
(A) 19 beats min−1 in the mid-duration dive
(B) and 7 beats min−1 in the long duration dive
(C) Prominent features typical of mid- and long-duration dives include

  • a surface interval tachycardia (pre- and post-dive);
  • a steady rapid decrease in fH during initial descent;
  • a gradual decline in fH towards the end of descent with the lowest fH of the dive at the end of descent;
  • a slight increase and sometimes variable fH during the bottom portion of the dive; and
  • a slow increase in fH during ascent,
  • often ending in a rapid increase just before surfacing.

We obtained the first diving ƒH data from wild sea lions on natural foraging trips, demonstrating how they regulate ƒH over a range of dive durations. Sea lions always decreased dive ƒH from surface ƒH values; however, individual sea lions exhibited different dive ƒH, accounting for a significant amount of the variation in the relationship between dive duration and ƒH (intra-individual correlation: 75–81%)). The individual differences in dive ƒH exhibited in this study suggest that different dive capacities of individual sea lions may partially account for the range of dive strategies exhibited in a previous study (Villegas-Amtmann et al., 2011). Despite the individual differences in ƒH, the pattern of the dive ƒH response was similar in all the sea lions. As predicted, sea lions only consistently displayed a true bradycardia on mid- to long- duration dives (>4 min) (Fig. 5A). Additionally, as seen in freely diving phocids, dive ƒH and minimum ƒH were negatively related to dive duration, with the longest duration dives having the lowest dive ƒH and displaying the most intense bradycardia, often below 10 beats min−1 (Fig. 5A,B).

Profiles of mean fH at 10 s intervals of dives

Profiles of mean fH at 10 s intervals of dives

Fig 4.  Profiles of mean fH at 10 s intervals of dives for (A) six duration categories and (B) five depth categories. Standard error bars are shown. Data were pooled from 461 dives performed by five sea lions. The number of dives in each category and the number of sea lions performing the dives in each category are provided in the keys.

The mild bradycardia and the dive ƒH profiles observed in the shorter duration dives (<3 min) were similar to those observed in trained juvenile California sea lions and adult Stellar sea lions, but much more intense than ƒH observed in freely diving Antarctic fur seals. Surprisingly, although dive ƒH of trained Steller sea lions was similar, Steller sea lions regularly exhibited lower minimum ƒH, with minimum ƒH almost always less than 20 beats min−1 in dives less than 2 min in duration. In the wild, California sea lions rarely exhibited a minimum ƒH less than 20 beats min−1 in similar duration dives (Fig. 5B), suggesting greater blood oxygen transport during these natural short-duration dives.

Fig. 5. (not shown)  fH decreases with increasing dive duration. Dive duration versus (A) dive fH (total number of beats/dive duration), (B) minimum instantaneous fH and (C) bottom fH (total beats at bottom of dive/bottom time) for California sea lions (461 dives from five sea lions).

Although California sea lions are not usually considered exceptional divers, they exhibited extreme bradycardia, comparable to that of the best diving phocids, during their deep dives. In dives greater than 6 min in duration, minimum ƒH was usually less than 10 beats min−1 and sometimes as low as 6 beats mins−1 (Fig. 5B), which is similar to extreme divers such as emperor penguins (3 beats min−1), elephant seals (3 beats min−1), grey seals (2 beats min−1) and Weddell seals (<10 beats min−1), and even as low as what was observed in forced submersion studies. Thus, similar to phocids, the extreme bradycardia exhibited during forced submersions is also a routine component of the sea lion’s physiological repertoire, allowing them to perform long-duration dives.

While the degree of bradycardia observed in long dives of California sea lions was similar to the extreme bradycardia observed in phocids, the ƒH profiles were quite different. In general, phocid ƒH decreases abruptly upon submergence. The intensity of the initial phocid bradycardia either remains relatively stable or intensifies as the dive progresses, and does not start to increase until the seal begins its ascent. In contrast, the ƒH profiles of sea lions were more complex, showing a more gradual decrease during descent, with the minimum ƒH of the dive usually towards the end of descent (Figs 3, 6). There was often a slight increase in ƒH during the bottom portion of the dive, and as soon as the sea lions started to ascend, the ƒH slowly started to increase, often becoming irregular during the middle of ascent, before increasing rapidly as the sea lion approached the surface.

Fig. 6. (not shown) Instantaneous fH and dive depth profiles of the longest dive (10.0 min, 385 m) from a California sea lion (CSL12_1). During this dive, instantaneous fH reached 7 beats min−1 and was less than 20 beats min−1 for over 5.5 min. Post-dive fH was high in the first 0.5–1 min after surfacing, but then declined to ~100 beats min−1 towards the end of the surface interval.

Implications for pulmonary gas exchange

The moderate dive ƒH in short, shallow dives compared with the much slower ƒH of deep long-duration dives suggests more pulmonary blood flow and greater potential for reliance on lung O2. Most of these dives were to depths of less than 100 m (well below the estimated depth of lung collapse near 200 m), so maintenance of a moderate ƒH during these dives may allow sea lions to maximise use of the potentially significant lung O2 stores (~16% of total body O2 stores) throughout the dive. This is supported by venous blood O2 profiles, where, occasionally, there was no decrease in venous blood O2 between the beginning and end of the dive; this can only occur if pulmonary gas exchange continues throughout the dive. Greater utilization of the lung O2 store in sea lions is consistent with higher dive ƒH in other species that both dive on inspiration and typically perform shallow dives (dolphins, porpoises, some penguin species), and in deeper diving species when they perform shallow dives (emperor penguins).

In deeper dives of sea lions, although ƒH was lower and bradycardia more extreme, the diving ƒH profiles suggest that pulmonary gas exchange is also important. In long-duration dives, even though ƒH started to decrease upon or shortly after submergence, the decrease was not as abrupt as in phocids. Additionally, in long deep dives, despite having overall low dive ƒH, there were more heart beats before resting ƒH was reached compared with short, shallow dives. In dives less than 3 min in duration, there were ~10–15 beats until instantaneous ƒH reached resting values. In longer duration dives (>3 min), there were usually ~30–40 beats before instantaneous ƒH reached resting values. We suggest the greater number of heart beats early in these deeper dives enables more gas exchange and blood O2 uptake at shallow depths, thus allowing utilisation of the postulated larger respiratory O2 stores in deeper dives The less abrupt decline in ƒH we observed in sea lions is similar to the more gradual declines documented in emperor penguins and porpoises, where it has also been proposed that the gradual decrease in ƒH allows them to maximise pulmonary gas exchange at shallower depths. However, as sea lions swam deeper, ƒH decreased further (Figs 3, 6), and by 200 m depth (the approximate depth of lung collapse, instantaneous ƒH was 14 beats min−1. Such an extreme decline in ƒH in conjunction with increased pulmonary shunting due to lung compression at greater depths will result in minimization of both O2 and N2 uptake by blood, even before the depth of full lung collapse (100% pulmonary shunt) is reached.

Implications for blood flow

ƒH is often used as a proxy to estimate blood flow and perfusion during diving because of the relative ease of its measurement. This is based on the assumption that stroke volume does not change during diving in sea lions, and, hence, changes in ƒH directly reflect changes in cardiac output. As breath-hold divers maintain arterial pressure while diving, changes in cardiac output should be associated with changes in peripheral vascular resistance and changes in blood flow to tissues. In Weddell seals, a decrease in cardiac output of ~85% during forced submersions resulted in an 80–100% decrease in tissue perfusion in all tissues excluding the brain, adrenal glands and lung. Sea lions exhibited extremely low instantaneous ƒH values that often remained low for significant portions of the dive (Figs 4, 6), suggesting severe decreases in tissue perfusion in dives greater than 5 min in duration. In almost all dives greater than 6 min in duration, instantaneous ƒH reached 10 beats min−1, and stayed below 20 beats min−1 for more than a minute. At a ƒH of 20 beats min−1, cardiac output will be ~36% of resting cardiac output and only about 18% of average surface cardiac output. At these levels of cardiac suppression, most of this flow should be directed towards the brain and heart.

Conclusions

We successfully obtained diving ƒH profiles from a deep-diving otariid during natural foraging trips. We found that

(1) ƒH decreases during all dives, but true and more intense bradycardia only occurred in longer duration dives and
(2) in the longest duration dives, ƒH and presumed cardiac output were as low as 20% of resting values.

We conclude that, although initial high ƒH promotes gas exchange early in deep dives, the extremely low ƒH in late descent of deep dives (a) preserves lung O2, (b) conserves blood O2, (c) increases the dependence of muscle on myoglobin-bound O2 and (d) limits N2 absorption at depth. This ƒH profile, especially during the late descent/early bottom phase of deep dives is similar to that of deep-diving emperor penguins, and may be characteristic of deep diving endotherms that dive on inspiration.

Dive duration was the fixed effect in all models, and to account for the lack of independence caused by having many dives from the same individual, individual (sea lion ID) was included as a random effect. Covariance and random effect structures of the full models were evaluated using Akaike’s information criterion (AIC) and examination of residual plots. AICs from all the tested models are presented with the best model in bold.

Additionally, dives were classified as short-duration (less than 3 min, minimum cADL), mid-duration (3–5 min, range of cADLs) or long-duration (>5 min) dives. Differences in pre-dive ƒH, dive ƒH, minimum ƒH, post-dive ƒH, and heart beats to resting between the categories were investigated using mixed effects ANOVA, followed by post hoc Tukey tests. In all models, dive duration category was the fixed effect and individual (sea lion ID) was included as a random effect. Model fit was accessed by examination of the residuals. All means are expressed ±s.d. and results of the Tukey tests were considered significant at P<0.05. Statistical analysis was performed in R.

Investigating Annual Diving Behaviour by Hooded Seals (Cystophora cristata) within the Northwest Atlantic Ocean

Julie M. Andersen, Mette Skern-Mauritzen, Lars Boehme
PLoS ONE 8(11): e80438. http://dx.doi.org:/10.1371/journal.pone.0080438

With the exception of relatively brief periods when they reproduce and molt, hooded seals, Cystophora cristata, spend most of the year in the open ocean where they undergo feeding migrations to either recover or prepare for the next fasting period. Valuable insights into habitat use and diving behavior during these periods have been obtained by attaching Satellite Relay Data Loggers (SRDLs) to 51 Northwest (NW) Atlantic hooded seals (33 females and 18 males) during icebound fasting periods (200422008). Using General Additive Models (GAMs) we describe habitat use in terms of First Passage Time (FPT) and analyze how bathymetry, seasonality and FPT influence the hooded seals’ diving behavior described by maximum dive depth, dive duration and surface duration. Adult NW Atlantic hooded seals exhibit a change in diving activity in areas where they spend .20 h by increasing maximum dive depth, dive duration and surface duration, indicating a restricted search behavior. We found that male and female hooded seals are spatially segregated and that diving behavior varies between sexes in relation to habitat properties and seasonality. Migration periods are described by increased dive duration for both sexes with a peak in May, October and January. Males demonstrated an increase in dive depth and dive duration towards May (post-breeding/pre-molt) and August–October (post-molt/pre-breeding) but did not show any pronounced increase in surface duration. Females dived deepest and had the highest surface duration between December and January (post-molt/pre-breeding). Our results suggest that the smaller females may have a greater need to recover from dives than that of the larger males. Horizontal segregation could have evolved as a result of a resource partitioning strategy to avoid sexual competition or that the energy requirements of males and females are different due to different energy expenditure during fasting periods.

Novel locomotor muscle design in extreme deep-diving whales

P. Velten, R. M. Dillaman, S. T. Kinsey, W. A. McLellan and D. A. Pabst
The Journal of Experimental Biology 216, 1862-1871
http://dx.doi.org:/10.1242/jeb.081323

Most marine mammals are hypothesized to routinely dive within their aerobic dive limit (ADL). Mammals that regularly perform deep, long-duration dives have locomotor muscles with elevated myoglobin concentrations that are composed of predominantly large, slow-twitch (Type I) fibers with low mitochondrial volume densities (Vmt). These features contribute to extending ADL by increasing oxygen stores and decreasing metabolic rate. Recent tagging studies, however, have challenged the view that two groups of extreme deep-diving cetaceans dive within their ADLs. Beaked whales (including Ziphius cavirostris and Mesoplodon densirostris) routinely perform the deepest and longest average dives of any air-breathing vertebrate, and short-finned pilot whales (Globicephala macrorhynchus) perform high-speed sprints at depth. We investigated the locomotor muscle morphology and estimated total body oxygen stores of several species within these two groups of cetaceans to determine whether they

(1) shared muscle design features with other deep divers and
(2) performed dives within their calculated ADLs.

Muscle of both cetaceans displayed high myoglobin concentrations and large fibers, as predicted, but novel fiber profiles for diving mammals. Beaked whales possessed a sprinterʼs fiber-type profile, composed of ~80% fast-twitch (Type II) fibers with low Vmt. Approximately one-third of the muscle fibers of short-finned pilot whales were slow-twitch, oxidative, glycolytic fibers, a rare fiber type for any mammal. The muscle morphology of beaked whales likely decreases the energetic cost of diving, while that of short-finned pilot whales supports high activity events. Calculated ADLs indicate that, at low metabolic rates, both beaked and short-finned pilot whales carry sufficient onboard oxygen to aerobically support their dives.

Serial cross-sections of the m. longissimus dorsi of Mesoplodon densirostris

Serial cross-sections of the m. longissimus dorsi of Mesoplodon densirostris

Fig. Serial cross-sections of the m. longissimus dorsi of Mesoplodon densirostris (A–D) and Globicephala macrorhynchus (E–H). Scale bars, 50μm. Muscle sections stained for the alkaline (A,E) and acidic (B,F) preincubations of myosin ATPase were used to distinguish Type I and II fibers. Muscle sections stained for succinate dehydrogenase (C,G) and α-glycerophosphate dehydrogenase (D,H) were used to distinguish glycolytic (gl), oxidative (o) and intermediate (i) fibers.

Previous studies of the locomotor muscles of deep-diving marine mammals have demonstrated that these species share a suite of adaptations that increase onboard oxygen stores while slowing the rate at which these stores are utilized, thus extending ADL. Their locomotor muscles display elevated myoglobin concentrations and are composed predominantly of large Type I fibers. Vmt are also lower in deep divers than in shallow divers or athletic terrestrial species. The results of this study indicate that beaked whales and short-finned pilot whales do not uniformly display these characteristics and that each possesses a novel fiber profile compared with those of other deep divers.

The phylogeny of Cetartiodactyla: The importance of dense taxon sampling, missing data, and the remarkable promise of cytochrome b to provide reliable species-level phylogenies

Ingi Agnarsson, Laura J. May-Collado
Molecular Phylogenetics and Evolution 48 (2008) 964–985
http://dx.doi.org:/10.1016/j.ympev.2008.05.046

We perform Bayesian phylogenetic analyses on cytochrome b sequences from 264 of the 290 extant cetartiodactyl mammals (whales plus even-toed ungulates) and two recently extinct species, the ‘Mouse Goat’ and the ‘Irish Elk’. Previous primary analyses have included only a small portion of the species diversity within Cetartiodactyla, while a complete supertree analysis lacks resolution and branch lengths limiting its utility for comparative studies. The benefits of using a single-gene approach include rapid phylogenetic estimates for a large number of species. However, single-gene phylogenies often differ dramatically from studies involving multiple datasets suggesting that they often are unreliable. However, based on recovery of benchmark clades—clades supported in prior studies based on multiple independent datasets—and recovery of undisputed traditional taxonomic groups, Cytb performs extraordinarily well in resolving cetartiodactyl phylogeny when taxon sampling is dense. Missing data, however, (taxa with partial sequences) can compromise phylogenetic accuracy, suggesting a tradeoff between the benefits of adding taxa and introducing question marks. In the full data, a few species with a short sequences appear misplaced, however, sequence length alone seems a poor predictor of this phenomenon as other taxa.

The mammalian superorder Cetartiodactyla (whales and eventoed ungulates) contains nearly 300 species including many of immense commercial importance (cow, pig, and sheep) and of conservation interest and aesthetic value (antelopes, deer, giraffe, dolphins, and whales) (MacDonald, 2006). Certain members of this superorder count among the best studied organisms on earth, whether speaking morphologically, behaviorally, physiologically or genetically. Understanding the interrelationships among cetartiodactyl species, therefore, is of obvious importance with equally short sequences were not conspicuously misplaced. Although we recommend awaiting a better supported phylogeny based on more character data to reconsider classification and taxonomy within Cetartiodactyla, the new phylogenetic hypotheses provided here represent the currently best available tool for comparative species-level studies within this group. Cytb has been sequenced for a large percentage of mammals and appears to be a reliable phylogenetic marker as long as taxon sampling is dense. Therefore, an opportunity exists now to reconstruct detailed phylogenies of most of the major mammalian clades to rapidly provide much needed tools for species-level comparative studies.

Our results support the following relationship among the four major cetartiodactylan lineages (((Tylopoda ((Cetancodonta (Ruminantia + Suina))), with variable support. This arrangement has not been suggested previously, to our knowledge (see review in O’Leary and Gatesy, 2008 and discussion).

Relationships among clades within Cetancodonta are identical to those found by May-Collado and Agnarsson (2006).

Within Ruminantia all our analyzes suggest the following relationships among families: (((((Tragulidae((((Antilocapridae(((Giraffidae(( Cervidae(Moschidae + Bovidae))))) with relatively high support, supporting the subdivision of Ruminantia into Tragulina and Pecora.
In the rare cases where our results are inconsistent with benchmark clades, ad hoc explanations seem reasonable. The placement of M. meminna (Tragulidae) within Bovidae is likely an artifact of missing data, although remarkably it is the only conspicuous misplacement of a species across the whole phylogeny at the family level (while three species appear to be misplaced at the subfamily level within Cervidae in the full analysis, see Fig. 5a). This is supported by the fact that the placement of Moschiola receives low support, and the removal of Moschiola prior to analysis increases dramatically the support for clades close to where it nested (not shown, analysis available from authors), suggesting it had a tendency to ‘jump around’. Two other possibilities cannot be ruled out, however. One, that possibly the available sequence in Genbank may be mislabeled. And second, it should be kept in mind that the validity of Tragulidae has never been tested with molecular data including more than two species.

Oxygen and carbon dioxide fluctuations in burrows of subterranean blind mole rats indicate tolerance to hypoxic–hypercapnic stresses

Imad Shams, Aaron Avivi, Eviatar Nevo
Comparative Biochemistry and Physiology, Part A 142 (2005) 376 – 382
http://dx.doi.org:/10.1016/j.cbpa.2005.09.003

The composition of oxygen (O2), carbon dioxide (CO2), and soil humidity in the underground burrows from three species of the Israeli subterranean mole rat Spalax ehrenbergi superspecies were studied in their natural habitat. Two geographically close populations of each species from contrasting soil types were probed. Maximal CO2 levels (6.1%) and minimal O2 levels (7.2%) were recorded in northern Israel in the breeding mounds of S. carmeli in a flooded, poor drained field of heavy clay soil with very high volumetric water content. The patterns of gas fluctuations during the measurement period among the different Spalax species studied were similar. The more significant differentiation in gas levels was not among species, but between neighboring populations inhabiting heavy soils or light soils: O2 was lower and CO2 was higher in the heavy soils (clay and basaltic) compared to the relatively light soils (terra rossa and rendzina). The extreme values of gas concentration, which occurred during the rainy season, seemed to fluctuate with partial flooding of the tunnels, animal digging activity, and over-crowded breeding mounds inhabited by a nursing female and her offspring. The gas composition and soil water content in neighboring sites with different soil types indicated large differences in the levels of hypoxic–hypercapnic stress in different populations of the same species. A growing number of genes associated with hypoxic stress have been shown to exhibit structural and functional differences between the subterranean Spalax and the aboveground rat (Rattus norvegicus), probably reflecting the molecular adaptations that Spalax went through during 40 million years of evolution to survive efficiently in the severe fluctuations in gas composition in the underground habitat.

map of the studied sites

map of the studied sites

Schematic map of the studied sites: S. galili (2n =52): 1— Rehania (chalk); 2— Dalton (basaltic); S. golani (2n =54): 3— Majdal Shams (terra tossa); 4—Masa’ada (basaltic soils); S. carmeli (2n =58): 5— Al-Maker (heavy clay); 6— Muhraqa (terra rossa).

Comparison of gas composition (O2 and CO2) and water content between light and heavy soils inhabited by S. carmeli

Comparison of gas composition (O2 and CO2) and water content between light and heavy soils inhabited by S. carmeli

Comparison of gas composition (O2 and CO2) and water content between light and heavy soils inhabited by S. carmeli, Al-Maker (heavy soil) and Muhraqa (light soil). AverageTSD of measurements in the burrows of approximately 10 animals at a given date is presented. **p <0.01, T-test and Mann– Whitney test).

Subterranean mammals, which live in closed underground burrow systems, experience an atmosphere that is different from the atmosphere above-ground. Gas exchange between these two atmospheres depends on diffusion through the soil, which in turn, depends on soil particle size, water content, and burrow depth. Heavy soils (clay and basaltic), hold water and have little air space for gas diffusion. A large deviation from external gas composition is found in the burrows of Spalax living in these soil types. The maximal measured concentration of CO2 was 6.1% in Spalax breeding mounds, which is one of the highest concentrations among studied mammals in natural conditions. At the same time 7.2% O2 was measured in water saturated heavy clay soil

seasonal variation from August to March in mean O2, CO2, and soil water content

seasonal variation from August to March in mean O2, CO2, and soil water content

Example of seasonal variation from August to March in mean O2, CO2, and soil water content (VWC) in the Al-Maker population (2n =58, heavy soil). Values are presented as mean TSD.

In this study new data were presented for a wild mammal that survives in an extreme hypoxic–hypercapnic environment. Interestingly, the very low concentrations of O2 experienced by Spalax are correlated with the expression pattern of hypoxia related genes.  So far, we have shown higher and longer-term mRNA expression of erythropoietin, the main factor that regulates the level of circulating red blood cells, in subterranean Spalax compared to the above-ground rat in response to hypoxic stress, as well as differences in the response of erythropoietin to hypoxia in different populations of Spalax experiencing different hypoxic stress in nature. We also demonstrated that erythropoietin pattern of expression is different in Spalax than in Rattus throughout development, a pattern suggesting more efficient hypoxic tolerance in Spalax starting as early as in the embryonic stages. Furthermore, vascular endothelial growth factor (VEGF), which is a critical angiogenic factor that responds to hypoxia, is constitutively expressed at maximal levels in Spalax muscles, the most energy consuming tissue during digging. This level is 1.6-fold higher than in Rattus muscles and is correlated with significantly higher blood vessel concentration in the Spalax muscles compared to the Rattus muscles. Likewise, myoglobin the globin involved in oxygen homeostasis in skeletal muscles, exhibits different expression pattern under normoxia and in response to hypoxia in Spalax muscles compared to rat muscles as well as between different populations of Spalax exposed to different hypoxic stress in nature (unpublished results). Similarly, neuroglobin, a brain-specific globin involved in reversible oxygen binding, i.e., presumably in cellular homeostasis, is expressed differently in the Spalax brain compared to Rattus brain. Like erythropoietin and myoglobin also neuroglobin is expressed differently in Spalax populations experiencing different oxygen supply (unpublished results). Furthermore, Spalax p53 harbors two amino acid substitutions in its binding domain, which are identical to mutations found in p53 of human cancer cells. These substitutions endow Spalax p53 with several-fold higher activation of cell arrest and DNA repair genes compared to human p53 and favor activation of DNA repair genes over apoptotic genes. The study of specific tumoral variants indicates that such preference of growth arrest over apoptosis possibly results as a response to the hypoxic environmental stress known in tumors. Differences in the structure of other molecules related to homeostasis, namely, hemoglobin, haptoglobin (Nevo, 1999), and cytoglobin (unpublished) were also observed in Spalax.

Stress, adaptation, and speciation in the evolution of the blind mole rat, Spalax, in Israel

Eviatar Nevo
Molecular Phylogenetics and Evolution 66 (2013) 515–525
http://dx.doi.org/10.1016/j.ympev.2012.09.008

Environmental stress played a major role in the evolution of the blind mole rat superspecies Spalax ehrenbergi, affecting its adaptive evolution and ecological speciation underground. Spalax is safeguarded all of its life underground from aboveground climatic fluctuations and predators. However, it encounters multiple stresses in its underground burrows including darkness, energetics, hypoxia, hypercapnia, food scarcity, and pathogenicity. Consequently, it evolved adaptive genomic, proteomic, and phenomic complexes to cope with those stresses. Here I describe some of these adaptive complexes, and their theoretical and applied perspectives. Spalax mosaic molecular and organismal evolution involves reductions or regressions coupled with expansions or progressions caused by evolutionary tinkering and natural genetic engineering. Speciation of Spalax in Israel occurred in the Pleistocene, during the last 2.00–2.35 Mya, generating four species associated intimately with four climatic regimes with increasing aridity stress southwards and eastwards representing an ecological speciational adaptive trend: (Spalax golani, 2n = 54?S. galili, 2n = 52?S. carmeli, 2n = 58?S. judaei, 2n = 60). Darwinian ecological speciation occurred gradually with relatively little genetic change by Robertsonian chromosomal and genic mutations. Spalax genome sequencing has just been completed. It involves multiple adaptive complexes to life underground and is an evolutionary model to a few hundred underground mammals. It involves great promise in the future for medicine, space flight, and deep-sea diving.

Stress is a major driving force of evolution (Parsons, 2005; Nevo, 2011). Parsons defined stress as the ‘‘environmental factor causing potential injurious changes to biological systems with a potential for impacts on evolutionary processes’’. The global climatic transition from the middle Eocene to the early Oligocene (45–35 Ma = Million years ago) led to extensive convergent evolution underground of small subterranean mammals across the planet (Nevo, 1999; Lacey et al., 2000; Bennett and Faulkes, 2000; Begall et al., 2007). The subterranean ecotope provided small mammals with shelter from predators and extreme aboveground climatic stressful fluctuations of temperature and humidity. However, they had to evolve genomic adaptive complexes for the immense underground stresses of darkness, energy for burrowing in solid soil, low productivity and food scarcity, hypoxia, hypercapnia, and high infectivity. These stresses have been described in Nevo (1999, 2011) and Nevo et al. (2001); and Nevo list of Spalax publication at http://evolution.haifa.ac.il with many cited references relevant to these stresses).

blind subterranean mole rat of the Spalax ehrenbergi superspecies

blind subterranean mole rat of the Spalax ehrenbergi superspecies

The blind subterranean mole rat of the Spalax ehrenbergi superspecies in Israel. An extreme example of adaptation to life underground

Circadian rhythm and genes

adaptive circadian genes. We identified the circadian rhythm of Spalax
(Nevo et al., 1982) and described, cloned, sequenced, and expressed several circadian genes in Spalax. These include Clock, MOP3, three Period (Per), and cryptochromes (Avivi et al., 2001, 2002, 2003). The Spalax circadian genes are differentially conserved, yet characterized by a significant number of amino acid substitutions. The glutamine-rich area of Clock, which is assumed to function in circadian rhythmicity, is expanded in Spalax compared with that of mice and humans and is different in amino acid composition from that of rats. All three Per genes of Spalax oscillate with a periodicity of 24 h in the suprachaismatic nucleus, eye, and Harderian gland and are expressed in peripheral organs. Per genes are involved in clock resetting. Spalax Per 3 is unique in mammals though its function is still unresolved. The Spalax Per genes contribute to the unique adaptive circadian rhythm to life underground. The cryptochrome (Cry) genes, found in animals and plants, act both as photoreceptors and as ingredients of the negative feedback mechanism of the biological Clock. The CRY 1 protein is significantly closer to the human homolog than to that of mice, as was also shown in parts of the immunogenetic system. Both Cry 1 and Cry 2 mRNAs were found in the SCN, eye, harderian gland, and in peripheral tissues. Remarkably, the distinctly hypertrophied harderian gland is central in Spalax’s unique underground circadian rhythmicity (Pevet et al., 1984).

  • Spalax eye mosaic evolution
  • Gene expression in the eye of Spalax
  • Brain evolution in Spalax to underground stresses
  • Spalax: four species in Israel

The morphological, physiological, and behavioral Spalax eye patterns are underlain by gene expression representing regressive and progressive associated transcripts. Regressive transcripts involve B-2 microglobulin, transketolase, four keratins, alpha enolase, and different heat shock proteins. Several proteins may be involved in eye degeneration. These include heat shock protein 90alpha (hsp90alpha), found also in the blind fish Astyanax mexicanus, two transcripts of programmed cell death proteins, oculospanin, and peripherin 2, both belonging to the Tetraspanin family, in which 60 different mutations cause eye degeneration in humans. Several progressive transcripts in the Spalax eye are found in the retina of many mammals involving gluthatione, peroxidase 4, B spectrin, and Ankyrin; the last two characterize rod cells in the retina. Some transcripts are involved in metabolic processing of retinal, a vertebrate key component in phototransduction, and a relative of vitamin A.

cross section of the developing eye of the mole rat

cross section of the developing eye of the mole rat

Light micrographs showing cross section of the developing eye of the mole rat Spalax ehrenbergi. (A) Optic cup and lens vesicle initially develop normally (x100). (B) Eye at a later embryonic stage. Note appearance of iris-ciliary body rudiment (arrows), and development of the lens nucleus (L). ON, optic nerve (x100). (C) Eye at a still later fetal stage. Note massive growth of the iris-ciliary body complex colobomatous opening (arrow) (x100). (D) Early postnatal stage. The iris-ciliary body complex completely fills the chamber. The lens is vascularized and vacuolated (x100). (E) Adult eye. Eyelids are completely closed and pupil is absent. Note atrophic appearance of the optic disc region (arrow) (x65). (F) Higher magnification of the adult retina. The different retinal layers are retained: PE, pigment epithelium: RE, receptor layer; ON, outer nuclear layer: IN, inner nuclear layer; GC, ganglion cell layer (x500) (from Sanyal et al., 1990, Fig. 1).

The brains of subterranean mammals underwent dramatic evolution in accordance with underground stresses for digging and photoperiodic perception associated with vibrational, tactile, vocal, olfactory, and magnetic communication systems replacing sight, as is seen in Spalax. The brain of Spalax is twice as large as that of the laboratory rat of the same body size. The somatosensory region in the isocortex of Spalax is 1.7 times, the thalamic nuclei 1.3 times, and the motor cortex 3.1 times larger than in the sighted laboratory rat Rattus norvegicus matched to body size.

The ecological stress determinant in Spalax brain evolution is highlighted by the four species of the Spalax ehrenbergi superspecies in Israel. They differentiated chromosomally (by means of Robertsonian mutations and fission), allopatrically, and clinally southwards into four species associated with different climatic regimes, following the gradient of increasing aridity stress and decreasing predictability southwards towards the desert: Spalax galili (2n = 52) ->S. golani (2n = 54)->S. carmeli (2n = 58)->S. judaei (2n = 60), and eastwards S. galili ->S. golani (2n = 52–>54) (Fig. 2). This chromosomal speciation trend southwards is associated with the regional aridity stress southwards (and eastwards) in Israel, budding new species adapted genomically, proteomically, and phenomically (i.e., in morphology, physiology, and behavior) to increasing stresses of higher solar radiation, temperature, and drought southwards (Nevo, 1999; Nevo et al., 2001; Nevo
list of Spalax at http://evolution.haifa.ac.il). A uniquely recent discovery of incipient sympatric ecological speciation at a microscale in Spalax triggered by local stresses occurs within Spalax galili.

retinal input to primary visual structures in Spalax

retinal input to primary visual structures in Spalax

Relative degree of retinal input to primary visual structures in Spalax, hamster, rat, and Spalacopus cyanus (South American Octodontidae, ‘‘coruro’’). These rodents are of similar body size (120–140 g). B. Relative degree of change in the proportions of retinal input to different primary visual structures in Spalax compared with measures obtained in other rodents. A relative progressive development in Spalax is seen in structures involved in photoperiodic and neuroendocrine functions (SCN, BNST).The main regressive feature is the drastic relative reduction of retinal input to the superior colliculus. The main regressive feature is the drastic reduction of retinal input to the superior colliculus. The relative size of other visual structures in Spalax is modified compared to that of the other species. c. Comparison of the absolute size (volume, mm3 x 10-4) of visual structures in Spalax and other rodents. The size of the SCN is equivalent in all species. The vLGN and dLGN are reduced by 87–93% in Spalax. The retino-recipient layers of the superior colliculus are reduced by 97%. Abbreviations: SCN: suprachiasmatic nucleus; BNST: bed nucleus of the stria terminalis; dLGN: dorsal lateral geniculate nucleus; SC: superior colliculus [From Cooper et al., 1993 (Fig 3)].

Subterranean life has a high energetic cost if an animal has to burrow in order to obtain its food. For a 150 g Thomomys bottae, burrowing 1 m may be 360–3400 times more expensive energetically than moving the same distance on the surface (Vleck, 1979). Mean rates of oxygen consumption during burrowing at 22 oC are from 2.8 to 7.1 times the RMR. Vleck developed a model examining the energetics of foraging by burrowing and found that, in the desert, Thomomys adjusts the burrow segment length to minimize the cost of burrowing. Since burrowing becomes less economic as body size increases, Vleck (1981) predicted that the maximum possible body size that a subterranean mammal can attain depends on a balance between habitat productivity and the cost of burrowing in local soils. Vleck’s cost of burrowing hypothesis has been verified in multiple cases. Heth (1989) demonstrated longer burrows in the rendzina soil and shorter ones in the terra rossa soil, associating lower productivity in the former for Spalax.

Food is a limiting factor for subterranean mammals. The abundance and distribution of food explain some of the ecological, physiological, and behavioral characteristics of subterranean mammals. In a field test of Spalax foraging strategy, we concluded that Spalax was a generalist due to the constraints of the subterranean ecotope. Restricted foraging time primarily during the winter when soil is wet, and the high energetic investment of tunneling to get to food items is significantly reduced than in summertime.
We also identified a decrease in the basic metabolic rate towards the desert, i.e., economizing energetics. The maintenance of adequate O2 transport in a subterranean mammal confronting hypoxia requires adaptation along the O2 transport system, achieved by increasing the flow of O2 in the convection systems (ventilation and perfusion) and by reduction of oxygen pressure (PO2) gradients at the diffusion barriers (lung blood, blood-tissue (Arieli, 1990). The PO2 gradient between blood capillaries and respiring mitochondria capillaries is large, and any adaptation at this level could be significant for O2 transport. Reduction of diffusion distance in a muscle can be achieved, like in Spalax, by increasing the number of capillaries that surround muscle fiber or by reducing fiber areas.

Geographic distribution in Israel of the four chromosomal species belonging to the S. ehrenbergi superspecies

Geographic distribution in Israel of the four chromosomal species belonging to the S. ehrenbergi superspecies

Geographic distribution in Israel of the four chromosomal species belonging to the S. ehrenbergi superspecies that are separated by narrow hybrid zones (2n = 52, 54, 58, and 60, now named as S. galili, S. golani, S. carmeli, and S. judaei, respectively; see Nevo et al., 2001).

Spalacid evolution, based on mtDNA, is driven by climatic oscillations and stresses. The underground ecotope provided subterranean mammals with shelter from extreme climate (temperature and humidity) fluctuations, and predators. However, they had to extensively and intensively adapt to the multiple underground stresses (darkness, energetic, low productivity and
food scarcity, hypoxia, hypercapnia, and high infectivity). All subterranean mammals, including spalacids as an extreme case, share convergent molecular and organismal adaptations to their shared unique underground ecotope. Evolution underground, as exemplified here in spalacids, led to mosaic molecular and organismal evolutionary syndromes to cope with multiple stresses.

Speciation involves all rates – from gradual to rapid. Subterranean mammals, with the spalacid example discussed above, provide uniquely rich evolutionary global tests of speciation and adaptation, convergence, regression, progression, and mosaic evolutionary processes. Adaptation and speciation underground was one of the most dramatic natural experiments verifying Darwinian evolution.

The Spalax genome sequencing has just been completed. It is being analyzed and will soon be published in 2012. This will be a milestone in understanding how numerous mammals across the globe, who found underground shelter from climatic fluctuations and stresses above ground, cope with the new suite of stresses they encountered underground, demanding a new engineering overhaul on all organizational levels, selecting for adaptive complexes to cope with the new underground stresses. The main current and future challenges are to compare and contrast genome sequences and identify the genomic basis of adaptation and speciation.

This global Cenozoic experiment could answer the following open questions: How heterozygous is the whole genome? How prevalent are retrotransposons and what is their functional role? How many genes are involved in the Spalax genome and how are they regulated? What are the genic and regulatory networks resisting the multiple stresses underground? How much of the Spalax genome is conserved and how much is reorganized to cope with the underground stresses? How is the solitary blind mole rat, Spalax, different from the social naked mole rat Heterocephalus? How are the processes of reduction, expansion, and genetic tinkering and engineering reflected across the genome? How effective is copy number variation in regulation? Is there similarity in the transcriptomes of subterranean mammals? How could we harness the rich genome repertoire of Spalax to revolutionize medicine, especially in the realm of hypoxia tolerance and the related major diseases of the western world, e.g., cancer, stroke, and cardiovascular diseases? What is the phylogenetic origin of Spalax? How much of the Spalax genome represents its phylogenetic roots and how much of coding and noncoding genomic regions are shared with other subterranean mammals across the globe in adapting to life underground?

The Atmospheric Environment of the Fossorial Mole Rat (Spalax Ehrenbergi): Effects of Season, Soil Texture, Rain, Temperature and Activity

  1. Arieli
    Comp Biochen Physiol. 1978; 63A:569-5151. The fossorial mole rat (Spalax ehrenbergi) may inhabit heavy soil with low gas permeability.
  2. Air composition in burrows in heavy soil deviates from atmospheric air more than that of burrows in light soil.
  3. In winter and spring O2 and CO2 concentrations in breeding mounds were 16.5% O2 and 2.5-3x CO2 and the extreme values measured were 14.0% O2 and 4.8% Cot.
  4. Hypoxia and hypercapnia in the burrow develop shortly after rain and when ambient temperature drops.
  5. Composition of the burrows air is influenced by the solubility of CO2 in soil water and by faster penetration of oxygen than outflowing of CO2.

Hypo-osmotic stress-induced physiological and ion-osmoregulatory responses in European sea bass (Dicentrarchus labrax) are modulated differentially by nutritional status

Amit Kumar Sinha, AF Dasan, R Rasoloniriana, N Pipralia, R Blust, G De Boeck
Comparative Biochemistry and Physiology, Part A 181 (2015) 87–99
http://dx.doi.org/10.1016/j.cbpa.2014.11.024

We investigated the impact of nutritional status on the physiological, metabolic and ion-osmoregulatory performance of European sea bass (Dicentrarchus labrax)when acclimated to seawater (32 ppt), brackishwater (20 and 10 ppt) and hyposaline water (2.5 ppt) for 2 weeks. Following acclimation to different salinities, fish were either fed or fasted (unfed for 14 days). Plasma osmolality, [Na+], [Cl−] and muscle water contentwere severely altered in fasted fish acclimated to 10 and 2.5 ppt in comparison to normal seawater-acclimated fish, suggesting ion regulation and acid–base balance disturbances. In contrast to feed-deprived fish, fed fish were able to avoid osmotic perturbation more effectively. This was accompanied by an increase in Na+/K+-ATPase expression and activity, transitory activation of H+-ATPase (only at 2.5 ppt) and down-regulation of Na+/K+/2Cl− gene expression. Ammonia excretion rate was inhibited to a larger extent in fasted fish acclimated to low salinities while fed fish were able to excrete efficiently. Consequently, the build-up of ammonia in the plasma of fed fish was relatively lower. Energy stores, especially glycogen and lipid, dropped in the fasted fish at low salinities and progression towards the anaerobic metabolic pathway became evident by an increase in plasma lactate level. Overall, the results indicate no osmotic stress in both feeding treatments within the salinity range of 32 to 20 ppt. However, at lower salinities (10–2.5 ppt) feed deprivation tends to reduce physiological, metabolic, ion-osmo-regulatory and molecular compensatory mechanisms and thus limits the fish’s abilities to adapt to a hypo-osmotic environment.

The absence of ion-regulatory suppression in the gills of the aquatic air-breathing fish Trichogaster lalius during oxygen stress

Chun-Yen Huang, Hsueh-Hsi Lin, Cheng-Huang Lin, Hui-Chen Lin
Comparative Biochemistry and Physiology, Part A 179 (2015) 7–16
http://dx.doi.org/10.1016/j.cbpa.2014.08.017

The strategy for most teleost to survive in hypoxic or anoxic conditions is to conserve energy expenditure, which can be achieved by suppressing energy-consuming activities such as ion regulation. However, an air-breathing fish can cope with hypoxic stress using a similar adjustment or by enhancing gas exchange ability, both behaviorally and physiologically. This study examined Trichogaster lalius, an air-breathing fish without apparent gill modification, for their gill ion-regulatory abilities and glycogen utilization under a hypoxic  treatment. We recorded air-breathing frequency, branchial morphology, and the expression of ion-regulatory proteins (Na+/K+-ATPase and vacuolar-type H+-ATPase) in the 1st and 4th gills and labyrinth organ (LO), and the expression of glycogen utilization (GP, glycogen phosphorylase protein expression and glycogen content) and other protein responses (catalase, CAT; carbonic anhydrase II, CAII; heat shock protein 70, HSP70; hypoxia-inducible factor-1α, HIF-1α; proliferating cell nuclear antigen, PCNA; superoxidase dismutase, SOD) in the gills of T. lalius after 3 days in hypoxic and restricted conditions. No morphological modification of the 1st and 4th gills was observed. The air breathing behavior of the fish and CAII protein expression both increased under hypoxia. Ion-regulatory abilities were not suppressed in the hypoxic or restricted groups, but glycogen utilization was enhanced within the groups. The expression of HIF-1α, HSP70 and PCNA did not vary among the treatments. Regarding the antioxidant system, decreased CAT enzyme activity was observed among the groups. In conclusion, during hypoxic stress, T. lalius did not significantly reduce energy consumption but enhanced gas exchange ability and glycogen expenditure.

The combined effect of hypoxia and nutritional status on metabolic and ionoregulatory responses of common carp (Cyprinus carpio)

Sofie Moyson, HJ Liew, M Diricx, AK Sinha, R Blusta, G De Boeck
Comparative Biochemistry and Physiology, Part A 179 (2015) 133–143
http://dx.doi.org/10.1016/j.cbpa.2014.09.017

In the present study, the combined effects of hypoxia and nutritional status were examined in common carp (Cyprinus carpio), a relatively hypoxia tolerant cyprinid. Fish were either fed or fasted and were exposed to hypoxia (1.5–1.8mgO2 L−1) at or slightly above their critical oxygen concentration during 1, 3 or 7 days followed by a 7 day recovery period. Ventilation initially increased during hypoxia, but fasted fish had lower ventilation frequencies than fed fish. In fed fish, ventilation returned to control levels during hypoxia, while in fasted fish recovery only occurred after reoxygenation. Due to this, C. carpio managed, at least in part, to maintain aerobic metabolism during hypoxia: muscle and plasma lactate levels remained relatively stable although they tended to be higher in fed fish (despite higher ventilation rates). However, during recovery, compensatory responses differed greatly between both feeding regimes: plasma lactate in fed fish increased with a simultaneous breakdown of liver glycogen indicating increased energy use, while fasted fish seemed to economize energy and recycle decreasing plasma lactate levels into increasing liver glycogen levels. Protein was used under both feeding regimes during hypoxia and subsequent recovery: protein levels reduced mainly in liver for fed fish and in muscle for fasted fish. Overall, nutritional status had a greater impact on energy reserves than the lack of oxygen with a lower hepatosomatic index and lower glycogen stores in fasted fish. Fasted fish transiently increased Na+/K+-ATPase activity under hypoxia, but in general ionoregulatory balance proved to be only slightly disturbed, showing that sufficient energy was left for ion regulation.

The effect of temperature and body size on metabolic scope of activity in juvenile Atlantic cod Gadus morhua L.

Bjørn Tirsgaard, Jane W. Behrens, John F. Steffensen
Comparative Biochemistry and Physiology, Part A 179 (2015) 89–94
http://dx.doi.org/10.1016/j.cbpa.2014.09.033

Changes in ambient temperature affect the physiology and metabolism and thus the distribution of fish. In this study we used intermittent flow respirometry to determine the effect of temperature (2, 5, 10, 15 and 20 °C) and wet body mass (BM) (~30–460 g) on standard metabolic rate (SMR, mg O2 h−1), maximum metabolic rate (MMR, mg O2 h−1) and metabolic scope (MS, mg O2 h−1) of juvenile Atlantic cod. SMR increased with BM irrespectively of temperature, resulting in an average scaling exponent of 0.87 (0.82–0.92). Q10 values were 1.8–2.1 at temperatures between 5 and 15 °C but higher (2.6–4.3) between 2 and 5 °C and lower (1.6–1.4) between 15 and 20 °C in 200 and 450 g cod. MMR increased with temperature in the smallest cod (50 g) but in the larger cod MMR plateaued between 10, 15 and 20 °C. This resulted in a negative correlation between the optimal temperature for MS (Topt) and BM, Topt being respectively 14.5, 11.8 and 10.9 °C in a 50, 200 and 450 g cod. Irrespective of BM cold water temperatures resulted in a reduction (30–35%) of MS whereas the reduction of MS at warm temperatures was only evident for larger fish (200 and 450 g), caused by plateauing of MMR at 10 °C and above. Warm temperatures thus seem favorable for smaller (50 g) juvenile cod, but not for larger conspecifics (200 and 450 g).

Read Full Post »


The Life and Work of Allan Wilson

Curator: Larry H. Bernstein, MD, FCAP

 

Allan Charles Wilson (18 October 1934 – 21 July 1991) was a Professor of Biochemistry at the University of California, Berkeley, a pioneer in the use of molecular approaches to understand evolutionary change and reconstruct phylogenies, and a revolutionary contributor to the study of human evolution. He was one of the most controversial figures in post-war biology; his work attracted a great deal of attention both from within and outside the academic world. He is the only New Zealander to have won the MacArthur Fellowship.

He is best known for experimental demonstration of the concept of the molecular clock (with his doctoral student Vincent Sarich), which was theoretically postulated by Linus Pauling and Emile Zuckerkandl, revolutionary insights into the nature of the molecular anthropology of higher primates and human evolution, called Mitochondrial Eve hypothesis (with his doctoral students Rebecca L. Cann and Mark Stoneking).

Allan Wilson was born in Ngaruawahia, New Zealand, and raised on his family’s rural dairy farm at Helvetia, Pukekohe, about twenty miles south of Auckland. At his local Sunday School, the vicar’s wife was impressed by young Allan’s interest in evolution and encouraged Allan’s mother to enroll him at the elite King’s College secondary school in Auckland. There he excelled in mathematics, chemistry, and sports.

Wilson already had an interest in evolution and biochemistry, but intended to be the first in his family to attend university by pursuing studies in agriculture and animal science. Wilson met Professor Campbell Percy McMeekan, a New Zealand pioneer in animal science, who suggested that Wilson attend the University of Otago in southern New Zealand to further his study in biochemistry rather than veterinary science. Wilson gained a BSc from the University of Otago in 1955, majoring in both zoology and biochemistry.

The bird physiologist Donald S. Farner met Wilson as an undergraduate at Otago and invited him to Washington State University at Pullman as his graduate student. Wilson obliged and completed a master’s degree in zoology at WSU under Farner in 1957, where he worked on the effects of photoperiod on the physiology of birds.

Wilson then moved to the University of California, Berkeley, to pursue his doctoral research. At the time the family thought Allan would only be gone two years. Instead, Wilson remained in the United States, gaining his PhD at Berkeley in 1961 under the direction of biochemist Arthur Pardee for work on the regulation of flavin biosynthesis in bacteria. From 1961 to 1964, Wilson studied as a post-doc under biochemist Nathan O. Kaplan at Brandeis University in Waltham, Massachusetts. In Kaplan’s lab, working with lactate and malate dehydrogenases, Wilson was first introduced to the nascent field of molecular evolution. Nate Kaplan was one of the very earliest pioneers to address phylogenetic problems with evidence from protein molecules, an approach that Wilson later famously applied to human evolution and primate relationships. After Brandeis, Wilson returned to Berkeley where he set up his own lab in the Biochemistry department, remaining there for the rest of his life.

Wilson joined the UC Berkeley faculty of biochemistry in 1964, and was promoted to full professor in 1972. His first major scientific contribution was published as Immunological Time-Scale For Hominid Evolution in the journal Science in December 1967. With his student Vincent Sarich, he showed that evolutionary relationships of the human species with other primates, in particular the Great Apes (chimpanzees, gorillas, and orangutans), could be inferred from molecular evidence obtained from living species, rather than solely from fossils of extinct creatures.

Their microcomplement fixation method (see complement system) measured the strength of the immune reaction between an antigen (serum albumin) from one species and an antibody raised against the same antigen in another species. The strength of the antibody-antigen reaction was known to be stronger between more closely related species: their innovation was to measure it quantitatively among many species pairs as an “immunological distance”. When these distances were plotted against the divergence times of species pair with well-established evolutionary histories, the data showed that the molecular difference increased linearly with time, in what was termed a “molecular clock”. Given this calibration curve, the time of divergence between species pairs with unknown or uncertain fossil histories could be inferred. Most controversially, their data suggested that divergence times between humans, chimpanzees, and gorillas were on the order of 3~5 million years, far less than the estimates of 9~30 million years accepted by conventional paleoanthropologists from fossil hominids such as Ramapithecus. This ‘recent origin’ theory of human/ape divergence remained controversial until the discovery of the “Lucy” fossils in 1974.

Wilson and another PhD student Mary-Claire King subsequently compared several lines of genetic evidence (immunology, amino acid differences, and protein electrophoresis) on the divergence of humans and chimpanzees, and showed that all methods agreed that the two species were >99% similar.[4][19] Given the large organismal differences between the two species in the absence of large genetic differences, King and Wilson argued that it was not structural gene differences that were responsible for species differences, but gene regulation of those differences, that is, the timing and manner in which near-identical gene products are assembled during embryology and development. In combination with the “molecular clock” hypothesis, this contrasted sharply with the accepted view that larger or smaller organismal differences were due to large or smaller rates of genetic divergence.

In the early 1980s, Wilson further refined traditional anthropological thinking with his work with PhD students Rebecca Cann and Mark Stoneking on the so-called “Mitochondrial Eve” hypothesis.[20] In his efforts to identify informative genetic markers for tracking human evolutionary history, he focused on mitochondrial DNA (mtDNA) — genes that are found in mitochondria in the cytoplasm of the cell outside the nucleus. Because of its location in the cytoplasm, mtDNA is passed exclusively from mother to child, the father making no contribution, and in the absence of genetic recombination defines female lineages over evolutionary timescales. Because it also mutates rapidly, it is possible to measure the small genetic differences between individual within species by restriction endonuclease gene mapping. Wilson, Cann, and Stoneking measured differences among many individuals from different human continental groups, and found that humans from Africa showed the greatest inter-individual differences, consistent with an African origin of the human species (the so-called “Out of Africa” hypothesis). The data further indicated that all living humans shared a common maternal ancestor, who lived in Africa only a few hundreds of thousands of years ago.

This common ancestor became widely known in the media and popular culture as the Mitochondrial Eve. This had the unfortunate and erroneous implication that only a single female lived at that time, when in fact the occurrence of a coalescent ancestor is a necessary consequence of population genetic theory, and the Mitochondrial Eve would have been only one of many humans (male and female) alive at that time.[2][3] This finding was, like his earlier results, not readily accepted by anthropologists. Conventional hypothesis was that various human continental groups had evolved from diverse ancestors, over several million of years since divergence from chimpanzees. The mtDNA data, however, strongly suggested that all humans descended from a common, quite recent, African mother.

Wilson became ill with leukemia, and after a bone marrow transplant, died on Sunday, 21 July 1991, at the Fred Hutchinson Memorial Cancer Research Center in Seattle. He had been scheduled to give the keynote address at an international conference the same day. He was 56, at the height of his scientific recognition and powers.

Wilson’s success can be attributed to his strong interest and depth of knowledge in biochemistry and evolutionary biology, his insistence of quantification of evolutionary phenomena, and has early recognition of new molecular techniques that could shed light on questions of evolutionary biology. After development of quantitative immunological methods, his lab was the first to recognize restriction endonuclease mapping analysis as a quantitative evolutionary genetic method, which led to his early use of DNA sequencing, and the then-nascent technique of PCR to obtain large DNA sets for genetic analysis of populations. He trained scores of undergraduate, graduate (34 people, 17 each of men and women, received their doctoral degrees in his lab), and post-doctoral students in molecular evolutionary biology, including sabbatical visitors from six continents. His lab published more than 300 technical papers, and was recognized as a mecca for those wishing to enter the field of molecular evolution in the 1970s and 1980s.

The Allan Wilson Centre for Molecular Ecology and Evolution was established in 2002 in his honour to advance knowledge of the evolution and ecology of New Zealand and Pacific plant and animal life, and human history in the Pacific. The Centre is under the Massey University, at Palmerston North, New Zealand, and is a national collaboration involving the University of Auckland, Victoria University of Wellington, the University of Otago, University of Canterbury and the New Zealand Institute for Plant and Food Research.

A 41-minutes documentary film of his life entitled Allan Wilson, Evolutionary: Biochemist, Biologist, Giant of Molecular Biology was released by Films Media Group in 2008.

 

Allan Charles Wilson. 18 October 1934 — 21 July 1991

Rebecca L. Cann

Department of Cell and Molecular Biology, University of Hawaii at Manoa, Biomedical Sciences Building T514, 1960 East–West Rd, Honolulu, HI 96822, USA

Abstract

Allan Charles Wilson was born on 18 October 1934 at Ngaruawahia, New Zealand. He died in Seattle, Washington, on 21 July 1991 while undergoing treatment for leukemia.  Allan was known as a pioneering and highly innovative biochemist, helping to define the field of molecular evolution and establish the use of a molecular clock to measure evolutionary change between living species. The molecular clock, a method of measuring the timescale of evolutionary change between two organisms on the basis of the number of mutations that they have accumulated since last sharing a common genetic ancestor, was an idea initially championed by Émile Zuckerkandl and Linus Pauling (Zuckerkandl & Pauling 1962), on the basis of their observations that the number of changes in an amino acid sequence was roughly linear with time in the aligned hemoglobin proteins of animals. Although it is now not unusual to see the words ‘molecular evolution’ and ‘molecular phylogeny’ together, when Allan formed his own biochemistry laboratory in 1964 at the University of California, Berkeley, many scientists in the field of evolutionary biology considered these ideas complete heresy. Allan’s death at the relatively young age of 56 years left behind his wife, Leona (deceased in 2009), a daughter, Ruth (b. 1961), and a son, David (b. 1964), as well his as mother, Eunice (deceased in 2002), a younger brother, Gary Wilson, and a sister, Colleen Macmillan, along with numerous nieces, nephews and cousins in New Zealand, Australia and the USA. In this short span of time, he trained more than 55 doctoral students and helped launch the careers of numerous postdoctoral fellows.

Allan Charles Wilson, Biochemistry; Molecular Biology: Berkeley

1934-1991

Professor

The sudden death of Allan Wilson, of leukemia, on 21 July 1991, at the age of 56, and at the height of his powers, robbed the Berkeley campus and the international scientific community of one of its most active and respected leaders.

Read Full Post »

Introduction to Translational Medicine (TM) – Part 1: Translational Medicine


Introduction to Translational Medicine (TM) – Part 1: Translational Medicine

Author and Curator: Larry H Bernstein, MD, FCAP

and

Curator: Aviva Lev-Ari, PhD, RN 

 

This document in the Series A: Cardiovascular Diseases e-Series Volume 4: Translational and Regenerative Medicine,  is a measure of the postgenomic and proteomic advances in the laboratory to the practice of clinical medicine.  The Chapters are preceded by several videos by prominent figures in the emergence of this transformative change.  When I was a medical student, a large body of the current language and technology that has extended the practice of medicine did not exist, but a new foundation, predicated on the principles of modern medical education set forth by Abraham Flexner, was sprouting.  The highlights of this evolution were:

  • Requirement for premedical education in biology, organic chemistry, physics, and genetics.
  • Medical education included two years of basic science education in anatomy, physiology, pharmacology, and pathology prior to introduction into the clinical course sequence of the last two years.
  • Post medical graduate education was an internship year followed by residency in pediatrics, OBGyn, internal medicine, general surgery, psychiatry, neurology, neurosurgery, pathology, radiology, and anesthesiology, emergency medicine.
  • Academic teaching centers were developing subspecialty centers in ophthalmology, ENT and head and neck surgery, cardiology and cardiothoracic surgery, and hematology, hematology/oncology, and neurology.
  • The expansion of postgraduate medical programs included significant postgraduate funding for programs by the National Institutes of Health, and the NIH had faculty development support in a system of peer-reviewed research grant programs in medical and allied sciences.

The period after the late 1980s saw a rapid expansion of research in genomics and drug development to treat emerging threats of infectious diseases as US had a large worldwide involvement after the end of the Vietnam War, and drug resistance was increasingly encountered (malaria, tick borne diseases, salmonellosis, pseudomonas aeruginosa, staphylococcus aureus, etc.).

Moreover, the post-millenium found a large, dwindling population of veterans who had served in WWII and Vietnam, and cardiovascular, musculoskeletal,  dementias, and cancer were now more common.  The Human Genome Project was undertaken to realign the existing knowledge of gene structure and genetic regulation with the needs for drug development, which was languishing in development failures due to unexpected toxicities.

A substantial disconnect existed between diagnostics and pharmaceutical development, which had been over-reliant on modification of known organic structures to increase potency and reduce toxicity.  This was about to change with changes in medical curricula, changes in residency programs and physicians cross-training in disciplines, and the emergence of bio-pharma, based on the emerging knowledge of the cell function, and at the same time, the medical profession was developing an evidence-base for therapeutics, and more pressure was placed on informed decision-making.

The great improvement in proteomics came from GCLC/MS-MS and is described in the video interview with Dr. Gyorgy Marko-Varga, Sweden, in video 1 of 3 (Advancing Translational Medicine).  This is a discussion that is focused on functional proteomics role in future diagnostics and therapy, involving a greater degree of accuracy in mass spectrometry (MS) than can be obtained by antibody-ligand binding, and is illustrated below, the last emphasizing the importance of information technology and predictive analytics

Thermo ScientificImmunoassays and LC–MS/MS have emerged as the two main approaches for quantifying peptides and proteins in biological samples. ELISA kits are available for quantification, but inherently lack the discriminative power to resolve isoforms and PTMs.

To address this issue we have developed and applied a mass spectrometry immunoassay–selected reaction monitoring (Thermo Scientific™ MSIA™ SRM technology) research method to quantify PCSK9 (and PTMs), a key player in the regulation of circulating low density lipoprotein cholesterol (LDL-C).

A Day in the (Future) Life of a Predictive Analytics Scientist

 

By Lars Rinnan, CEO, NextBridge   April 22, 2014

A look into a normal day in the near future, where predictive analytics is everywhere, incorporated in everything from household appliances to wearable computing devices.

During the test drive (of an automobile), the extreme acceleration makes your heart beat so fast that your personal health data sensor triggers an alarm. The health data sensor is integrated into the strap of your wrist watch. This data is transferred to your health insurance company, so you say a prayer that their data scientists are clever enough to exclude these abnormal values from your otherwise impressive health data. Based on such data, your health insurance company’s consulting unit regularly gives you advice about diet, exercise, and sleep. You have followed their advice in the past, and your performance has increased, which automatically reduced your insurance premiums. Win-win, you think to yourself, as you park the car, and decide to buy it.

In the clinical presentation at Harlan Krumholtz’ Yale Symposium, Prof. Robert Califf, Director of the Duke University Translational medicine Clinical Research Institute, defines translational medicine as effective translation of science to clinical medicine in two segments:

  1. Adherence to current standards
  2. Improving the enterprise by translating knowledge

He says that discrepancies between outcomes and medical science will bridge a gap in translation by traversing two parallel systems.

  1. Physician-health organization
  2. Personalized medicine

He emphasizes that the new basis for physician standards will be legitimized in the following:

  1. Comparative effectiveness (Krumholtz)
  2. Accountability

Some of these points are repeated below:

WATCH VIDEOS ON YOUTUBE

https://www.youtube.com/watch?v=JFdJRh9ZPps#t=678  Harlan Krumholtz

https://www.youtube.com/watch?v=JFdJRh9ZPps#t=678  complexity

https://www.youtube.com/watch?v=JFdJRh9ZPps#t=678  integration map

https://www.youtube.com/watch?v=JFdJRh9ZPps#t=678  progression

https://www.youtube.com/watch?v=JFdJRh9ZPps#t=678  informatics

An interesting sidebar to the scientific medical advances is the huge shift in pressure on an insurance system that has coexisted with a public system in Medicare and Medicaid, initially introduced by the health insurance industry for worker benefits (Kaiser, IBM, Rockefeller), and we are undertaking a formidable change in the ACA.

The current reality is that actuarially, the twin system that has existed was unsustainable in the long term because it is necessary to have a very large pool of the population to spread the costs, and in addition, the cost of pharmaceutical development has driven consolidation in the industry, and has relied on the successes from public and privately funded research.

https://www.youtube.com/watch?v=X6J_7PvWoMw#t=57  Corbett Report Nov 2013

(1979 ER Brown)  UCPress  Rockefeller Medicine Men

https://www.youtube.com/watch?v=X6J_7PvWoMw#t=57   Liz Fowler VP of Wellpoint (designed ACA)

I shall digress for a moment and insert a video history of DNA, that hits the high points very well, and is quite explanatory of the genomic revolution in medical science, biology, infectious disease and microbial antibiotic resistance, virology, stem cell biology, and the undeniability of evolution.

DNA History

https://www.youtube.com/watch?v=UUDzN4w8mKI&list=UUoHRSQ0ahscV14hlmPabkVQ

As I have noted above, genomics is necessary, but not sufficient.  The story began as replication of the genetic code, which accounted for variation, but the accounting for regulation of the cell and for metabolic processes was, and remains in the domain of an essential library of proteins. Moreover, the functional activity of proteins, at least but not only if they are catalytic, shows structural variants that is characterized by small differences in some amino acids that allow for separation by net charge and have an effect on protein-protein and other interactions.

Protein chemistry is so different from DNA chemistry that it is quite safe to consider that DNA in the nucleotide sequence does no more than establish the order of amino acids in proteins. On the other hand, proteins that we know so little about their function and regulation, do everything that matters including to set what and when to read something in the DNA.

Jose Eduardo de Salles Roselino

Chapters 2, 3, and 4 sequentially examine:

  • The causes and etiologies of cardiovascular diseases
  • The diagnosis, prognosis and risks determined by – biomarkers in serum, circulating cells, and solid tissue by contrast radiography
  • Treatment of cardiovascular diseases by translation of science from bench to bedside, including interventional cardiology and surgical repair

These are systematically examined within a framework of:

  • Genomics
  • Proteomics
  • Cardiac and Vascular Signaling
  • Platelet and Endothelial Signaling
  • Cell-protein interactions
  • Protein-protein interactions
  • Post-Translational Modifications (PTMs)
  • Epigenetics
  • Noncoding RNAs and regulatory considerations
  • Metabolomics (the metabolome)
  • Mitochondria and oxidative stress

 

Read Full Post »


Warburg Effect Revisited

Reporter: Larry H. Bernstein, MD, FCAP

We have previously covered the Warburg Effect, and there has been a number of comments about the chicken or the egg!  There is an underlying factor that makes it difficult to comprehend that the initiation of cancer is mutation driven, although we are clear that smoking and a number of environmental factors are instigators of the change.  The main problem that I have referred to is the chemical, thermodynamic, and evolutionary state of our existence.  I strongly refer to the work of Ilya Prigogene.  There is a progressive series of changes over time, and it is not possible to determine the initial state.  Consequently, a progressive series of adaptations progresses, involving gene expression, non-genetic changes, and metabolic equilibrium that is maintained, but becomes non-adaptive.

Previous discussions at LPI are:

AMPK Is a Negative Regulator of the Warburg Effect and Suppresses Tumor Growth In Vivo
Reporter-Curator: Stephen J. Williams, Ph.D.
https://pharmaceuticalintelligence.com/2013/03/12/ampk-is-a-negative-regulator-of-the-warburg-effect-and-suppresses-tumor-growth-in-vivo/

Is the Warburg Effect the Cause or the Effect of Cancer: A 21st Century View?
Author: Larry H. Bernstein, MD, FCAP
https://pharmaceuticalintelligence.com/2012/10/17/is-the-warburg-effect-the-cause-or-the-effect-of-cancer-a-21st-century-view/

Otto Warburg, A Giant of Modern Cellular Biology
Reporter: Larry H Bernstein, MD, FCAP
https://pharmaceuticalintelligence.com/2012/11/02/otto-warburg-a-giant-of-modern-cellular-biology/

Targeting Mitochondrial-bound Hexokinase for Cancer Therapy
Author: Ziv Raviv, PhD
https://pharmaceuticalintelligence.com/2013/04/06/targeting-mito…cancer-therapy

Portrait of a great scientist and mentor: Nathan Oram Kaplan
Writer and Curator, Larry H Bernstein, MD, FCAP
https://pharmaceuticalintelligence.com/2013/01/26/portrait-of-a-great-scientist-and-mentor-nathan-oram-kaplan/

Quantum Biology And Computational Medicine
Author and Curator, Larry H Bernstein, MD, FCAP
https://pharmaceuticalintelligence.com/2013/04/03/quantum-biology-and-computational-medicine/

Ubiquitin-Proteosome pathway, Autophagy, the Mitochondrion, Proteolysis and Cell Apoptosis: Part III
Curator: Larry H Bernstein, MD, FCAP
https://pharmaceuticalintelligence.com/2013/02/14/ubiquinin-proteosome-pathway-autophagy-the-mitochondrion-proteolysis-and-cell-apoptosis-reconsidered/

Differentiation Therapy – Epigenetics Tackles Solid Tumors
Author-Writer: Stephen J. Williams, Ph.D.
https://pharmaceuticalintelligence.com/2013/01/03/differentiation-therapy-epigenetics-tackles-solid-tumors/

Prostate Cancer Cells: Histone Deacetylase Inhibitors Induce Epithelial-to-Mesenchymal Transition
Reporter-Curator: Stephen J. Williams, Ph.D.
https://pharmaceuticalintelligence.com/2012/11/30/histone-deacetylase-inhibitors-induce-epithelial-to-mesenchymal-transition-in-prostate-cancer-cells/

Mitochondrial Damage and Repair under Oxidative Stress
Curator: Larry H Bernstein, MD, FCAP
https://pharmaceuticalintelligence.com/2012/10/28/mitochondrial-damage-and-repair-under-oxidative-stress/

Mitochondria: Origin from oxygen free environment, role in aerobic glycolysis, metabolic adaptation
Curator: Larry H Bernsatein, MD, FCAP
https://pharmaceuticalintelligence.com/2012/09/26/mitochondria-origin-from-oxygen-free-environment-role-in-aerobic-glycolysis-metabolic-adaptation/

Nitric Oxide has a ubiquitous role in the regulation of glycolysis -with a concomitant influence on mitochondrial function
Curator, Larry H. Bernstein, MD, FCAP
https://pharmaceuticalintelligence.com/2012/09/16/nitric-oxide-has-a-ubiquitous-role-in-the-regulation-of-glycolysis-with-a-concomitant-influence-on-mitochondrial-function/

Potential Drug Target: Glucolysis Regulation – Oxidative stress-responsive microRNA-320
Reporter: Aviva Lev-Ari, PhD, RN
https://pharmaceuticalintelligence.com/2012/07/25/potential-drug-target-glucolysis-regulation-oxidative-stress-responsive-microrna-320/

Expanding the Genetic Alphabet and Linking the Genome to the Metabolome
Reporter& Curator: Larry Bernstein, MD, FCAP
https://pharmaceuticalintelligence.com/2012/09/24/expanding-the-genetic-alphabet-and-linking-the-genome-to-the-metabolome/

What can we expect of tumor therapeutic response?
Author: Larry H. Bernstein, MD, FCAP
https://pharmaceuticalintelligence.com/2012/12/05/what-can-we-expect-of-tumor-therapeutic-response/

A Second Look at the Transthyretin Nutrition Inflammatory Conundrum
Larry H. Bernstein, MD, FACP
https://pharmaceuticalintelligence.com/2012/12/03/a-second-look-at-the-transthyretin-nutrition-inflammatory-conundrum/

Radoslav Bozov
Date: 3/26/2013
Subject: RE: comment
The process of genomic evolution cannot be revealed throughout comparative genomics as structural data representation does not illuminate either the integral path of particles-light interference, as Richard Feynman suggests, in stable forms of matter such as interference/entanglement of the nature of particles/strings/waves to first approximation as I have claimed. Towards the compressibility principle realization, I have claimed that DNA would be entropic- favorable stable state going towards absolute ZERO temp in the space defined itself. In other words themodynamics measurement in subnano discrete space would go negative towards negativity. DNA is sort of like a cold melting/growing crystal, quite stable as it appears not due to hydrogen bonding , but due to interference of C-N-O. That force is contradicted via proteins onto which we now know large amount of negative quantum redox state carbon attaches. Chemistry is just a language as it is math following certain rules based on observation. Most stable states are most observed ones. The more locally one attempts to observe, the more hidden variables would emerge as a consequence of discrete energy spaces opposing continuity of matter/time. Still, stability emerges out of non stability states. And if life was in absolute stability, there will be neither feelings nor freedom. What is feelings and freedom is a far reaching philosophical question with sets of implications, to one may be a driving car, to another riding a horse or a bicycle etc cetera or simply seeing the unobservable …No wonder genome size differs among organisms and even tissue types as an outcome of carbon capacity.

 PIM2 phosphorylates PKM2 and promotes Glycolysis in Cancer Cells

Yu Z, Huang L, Zhang T, Yang F, Xie L, Liu J, Song S, Miao P, Zhao L, Zhao X, Huang G.
Shanghai Jiao Tong University, China;
J Biol Chem. 2013 Oct 18. [Epub ahead of print]

  • Pyruvate kinase M2 (PKM2) is a key player in the Warburg effect of cancer cells.
  •  the mechanisms of regulating PKM2 are not fully elucidated.
  •  we identified the serine/threonine protein kinase PIM2, a known oncogene,
    • as a novel binding partner of PKM2.

The interaction between PIM2 and PKM2 was confirmed by multiple biochemical approaches in vitro and in cultured cells. Importantly, we found that

  • PIM2 could directly phosphorylate PKM2 on the Thr454 residue, resulting in
    • an increase of PKM2 protein levels.

Compared to wild-type, PKM2 with the phosphorylation-defective mutation

  • displayed a reduced effect on glycolysis, co-activating HIF-1α and β-catenin, and cell proliferation,
  • while enhanced mitochondria respiration and chemotherapeutic sensitivity of cancer cells.

These findings demonstrate that PIM2-dependent phosphorylation of PKM2 is critical for regulating the Warburg effect in cancer,

    • highlighting PIM2 as a potential therapeutic target.

KEYWORDS: Cancer, Cell proliferation, Glycolysis, Pyruvate kinase, phosphorylation
PMID: 24142698

Different mtDNA mutations modify tumor progression in dependence of the degree of respiratory complex I impairment.

Iommarini L, Kurelac I, Capristo M, Calvaruso MA, Giorgio V, Bergamini C, Ghelli A, et al.
Dipartimento di Farmacia e Biotecnologie (FABIT).
Hum Mol Genet. 2013 Nov 11. [Epub ahead of print]

Mitochondrial DNA mutations are currently investigated as modifying factors impinging on tumor growth and aggressiveness,

  • having been found in virtually all cancer types and
  • most commonly affecting genes encoding mitochondrial complex I (CI) subunits.

It is still unclear whether they exert a pro- or anti-tumorigenic effect.

We here analyzed the impact of three homoplasmic mtDNA mutations (m.3460G>A/MT-ND1, m.3571insC/MT-ND1 and m.3243A>G/MT-TL1) on osteosarcoma progression,

  • chosen since they induce different degrees of oxidative phosphorylation impairment.

In fact, the m.3460G>A/MT-ND1 mutation caused only a reduction in CI activity, whereas

  • the m.3571insC/MT-ND1 and the m.3243A>G/MT-TL1 mutations induced a severe structural and functional CI alteration.

As a consequence, this severe CI dysfunction determined an energetic defect associated with a compensatory increase in glycolytic metabolism and AMP-activated protein kinase activation.

Osteosarcoma cells carrying such marked CI impairment

  • displayed a reduced tumorigenic potential both in vitro and in vivo, when compared with cells with mild CI dysfunction, suggesting that
  • mtDNA mutations may display diverse impact on tumorigenic potential depending on
  • the type and severity of the resulting oxidative phosphorylation dysfunction.

The modulation of tumor growth was independent from reactive oxygen species production but correlated with

  • hypoxia-inducible factor 1α stabilization, indicating that
  • structural and functional integrity of CI and oxidative phosphorylation are required for hypoxic adaptation and tumor progression.

PMID: 24163135 [PubMed – as supplied by publisher]

 Systematic Identification of Molecular Subtype-Selective Vulnerabilities in Non-Small-Cell Lung Cancer

Hyun Seok Kim, Saurabh Mendiratta, Jiyeon Kim, Chad Victor Pecot, Jill E. Larsen, et al.
Cell, 24 Oct 2013; 155 (3): 552-566, doi:10.1016/j.cell.2013.09.041
Systematic isolation of context-dependent vulnerabilities in NSCLC

Highlights

  1. NLRP3 mutations drive addiction to FLIP expression
  2. Lysosome maturation is a metabolic bottleneck for KRAS/LKB1 tumors
  3. Selective sensitivity to an indolotriazine discriminates a NSCLC expression subtype

NSCLC expression subtype

Read Full Post »


Author and Curator: Ritu Saxena, Ph.D.

Introduction: Mitochondrial fission & fusion

Mitochondria, double membranous and semi-autonomous organelles, are known to convert energy into forms that are usable to the cell. Apart from being sites of cellular respiration, multiple roles of mitochondria have been emphasized in processes such as cell division, growth and cell death. Mitochondria are semi-autonomous in that they are only partially dependent on the cell to replicate and grow. They have their own DNA, ribosomes, and can make their own proteins. Mitochondria have been discussed in several posts published in the Pharmaceutical Intelligence blog.

Mitochondria do not exist as lone organelles, but are part of a dynamic network that continuously undergoes fusion and fission in response to various metabolic and environmental stimuli. Nucleoids, the assemblies of mitochondrial DNA (mtDNA) with its associated proteins, are distributed during fission in such a way that each mitochondrion contains at least one nucleoid. Mitochondrial fusion and fission within a cell is speculated to be involved in several functions including mtDNA DNA protection, alteration of cellular energetics, and regulation of cell division.

Proteins involved in mitochondrial fission & fusion

Multiple mitochondrial membrane GTPases that regulate mitochondrial networking have recently been identified. They are classified as fission and fusion proteins:

Fusion proteins: Members of dynamin family of protein, mitofusin 1 (Mfn-1) and mitofusin 2 (Mfn-2), are involved in fusion between mitochondria by tethering adjacent mitochondria. These proteins have two transmembrane segments that anchor them in the mitochondrial outer membrane. Mutations in Mitofusin proteins gives rise to fragmented mitochondria, but this can be reversed by mutations in mammalian Drp1. Mitochondrial inner membranes are fused by dynamin family members called Opa1.

Fission proteins: Another member of the dynamin family of proteins, dynamin-related protein 1 (Drp-1) mediates fission of mitochondria. Drp-1 is activated by phosphorylation. Drp-1 proteins are largely cytosolic, but cycle on and off of mitochondria as needed for fission. Fission is a complex process and involves a series of well-defined stages and proteins. Cytosolic Drp-1 is activated by calcineurin or other cytosolic signaling proteins after which it translocates to the mitochondrial tubules where it assembles into foci through its interaction with another protein, hFis1. Once Drp-1 rings assemble on the constricted spots, outer membrane of mitochondria undergoes fission through GTP hydrolysis. Drp-1 is now left bound to one of the newly formed mitochondrial ends after which it slowly disassembles before returning to the cytoplasm.

Control of mitochondrial fission & fusion

  • Mitochondrial fission and fusion are controlled by several regulatory mechanisms. Few of which are mentioned as follows:
  • Drp-1 activation by Cdk1/Cyclin B mediated phosphorylation during mitosis – triggers fission
  • Drp-1 inactivation by cAMP-dependent protein kinase (PKA) in quiescent cells- prevents fission
  • Drp-1 activation after reversal of PKA phosphorylation by Calcineurin- triggers fission
  • Ubiquination of fission and fusion proteins by E3 ubiquitin ligase- alters fission
  • Sumoylation of fission proteins – regulates fission

Imparied mitochondrial fission leads to loss of mtDNA

Mitochondrial fission plays an important role in mitochondrial and cellular homeostasis. It was reported by Parone et al (2008) that preventing mitochondrial fission by down-regulating expression of Drp-1 lead to loss of mtDNA and mitochondrial dysfunction. An increase in cellular reactive oxygen species (ROS) was observed. Other cellular implications included depletion of cellular ATP, inhibition of cell proliferation and autophagy. The observations were made in HeLa cells.

MicroRNA regulation of mitochondrial fission

Although several factors have been attributed to the regulation of mitochondrial fission, the mechanism still remains poorly understood. Recently, regulation of mitochondrial fission via miRNAs has become a topic of interest. Following miRNAs have been found to be involved in mitochondrial fission:

  • miR-484:  Wang et al (2012) demonstrated that miR-484 was able to regulate mitochondrial fission by suppressing the translation of a fission protein Fis1, leading to inhibition of Fis1-mediated fission and apoptosis in cardiomyocytes and in the adrenocortical cancer cells. The authors showed that Fis1 is necessary for mitochondrial fission and apoptosis, and is upregulated during anoxia, whereas miR-484 is downregulated. Underlying mechanism involved transactivation of miR-484 by a transcription factor, Foxo3a and miR-484 is able to attenuate Fis1 upregulation and mitochondrial fission, by binding to the amino acid coding sequence of Fis1 and inhibiting its translation.
  • miR-499: miR-499 was reported by Wang et al (2011) to be able to directly target both the α- and β-isoforms of the calcineurin catalytic subunit. Suppression of calcineurin-mediated dephosphorylation of  Drp-1 lead to inhibition of the fission machinery ultimately resulting in the inhibition of cardiomyocyte apoptosis. miR-499 levels, by altering mitochondrial fusion were able affect the severity of myocardial infarction and cardiac dysfunction induced by ischemia-reperfusion. Modulation of miR-499 expression could provide a therapeutic approach for myocardial infarction treatment.
  • miR-30: It was reported by Li et al (2010) that miR-30 family members were able to inhibit mitochondrial fission and also the resulting apoptosis. While exploring the underlying molecular mechanism, the authors identified that miR-30 family members can suppress p53 expression. When cell received apoptotic stimulation, p53 was found to transcriptionally activate the fission protein, Drp-1. Drp-1 was able to induce mitochondrial fission. miR-30 family members were observed to inhibit mitochondrial fission through attenuation of p53 expression and its downstream target Drp-1.

Mitochondrial fission & fusion as a therapeutic target

Since alteration of mitochondrial fission and fusion have been reported to affect various cellular processes including apoptosis, proliferation, ATP consumption, the proteins involved in the process of fission and fusion might be harnessed as therapeutic target.

Mentioned below is a description of research where dynamics of the mitochondrial organelle has been utilized as a therapeutic target:

Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer

A recent article published by Rehman et al (2012) in the FASEB journal drew much attention after interesting observations were made in the mitochondria of lung adenocarcinoma cells. The mitochondrial network of these cells exhibited both impaired fusion and enhanced fission. It was also found that the fragmented phenotype in multiple lung adenocarcinoma cell lines was associated with both a down-regulation of the fusion protein, Mfn-2 and an upregulation of expression of fission protein, Drp-1. The imbalance of Drp-1/Mfn-2 expression in human lung cancer cell lines was reported to promote a state of mitochondrial fission. Similar increase in Drp-1 and decrease in Mfn-2 was observed in the tissue samples from patients compared to adjacent healthy lung. Authors used complementary approaches of Mfn-2 overexpression, Drp-1 inhibition, or Drp-1 knockdown and were able to observe reduction of cancer cell proliferation and an increase spontaneous apoptosis. Thus, the study identified mitochondrial fission and Drp-1 activation as a novel therapeutic target in lung cancer.

Image

Reference:

Research articles-

http://www.ncbi.nlm.nih.gov/pubmed/20556877

http://www.ncbi.nlm.nih.gov/pubmed?term=18806874

http://www.ncbi.nlm.nih.gov/pubmed/22510686

http://www.ncbi.nlm.nih.gov/pubmed/21186368

http://www.ncbi.nlm.nih.gov/pubmed?term=20062521

http://www.ncbi.nlm.nih.gov/pubmed?term=22321727

News brief:

http://www.uchospitals.edu/news/2012/20120221-mitochondria.html

http://news.uchicago.edu/article/2012/02/23/energy-network-within-cells-may-be-new-target-cancer-therapy

http://www.doctortipster.com/7881-mitochondria-could-represent-a-new-target-for-cancer-therapy-according-to-new-study.html

Related reading:

Reviewer: Larry H Bernstein, MD, FACP

https://pharmaceuticalintelligence.com/2012/10/28/mitochondrial-damage-and-repair-under-oxidative-stress/

Author and Curator: Larry H Bernstein, MD, FACP https://pharmaceuticalintelligence.com/2012/09/26/mitochondria-origin-from-oxygen-free-environment-role-in-aerobic-glycolysis-metabolic-adaptation/

Reporter and Editor: Larry H Bernstein, MD, FACP

https://pharmaceuticalintelligence.com/2012/09/16/nitric-oxide-has-a-ubiquitous-role-in-the-regulation-of-glycolysis-with-a-concomitant-influence-on-mitochondrial-function/

Author and Reporter: Ritu Saxena, PhD

https://pharmaceuticalintelligence.com/2012/09/10/%CE%B2-integrin-emerges-as-an-important-player-in-mitochondrial-dysfunction-associated-gastric-cancer/

Author: Ritu Saxena, PhD

https://pharmaceuticalintelligence.com/2012/09/01/mitochondria-and-cancer-an-overview/

Author and Reporter: Ritu Saxena, PhD

https://pharmaceuticalintelligence.com/2012/08/14/mitochondrial-mutation-analysis-might-be-1-step-away/

Reporter: Venkat S. Karra, PhD

https://pharmaceuticalintelligence.com/2012/08/14/detecting-potential-toxicity-in-mitochondria/

Reporter: Aviva Lev-Ari, PhD, RN https://pharmaceuticalintelligence.com/2012/08/01/mitochondrial-mechanisms-of-disease-in-diabetes-mellitus/

Author and Curator: Ritu Saxena, PhD; Consultants: Aviva Lev-Ari, PhD, RN and Pnina G. Abir-Am, PhD

https://pharmaceuticalintelligence.com/2012/07/09/mitochondria-more-than-just-the-powerhouse-of-the-cell/

Read Full Post »


Mitochondrial Damage and Repair under Oxidative Stress

Curator: Larry H Bernstein, MD, FCAP

 


Keywords: Mitochondria, mitochondrial dysfunction, electron transport chain, mtDNA, oxidative stress, oxidation-reduction, NO, DNA repair, lipid peroxidation, thiols, ROS, RNS, sulfur,base excision repair, ferredoxin.
Summary: The mitochondrion is the energy source for aerobic activity of the cell, but it also has regulatory functions that will be discussed. The mitochondrion has been discussed in other posts at this site. It has origins from organisms that emerged from an anaerobic environment, such as the bogs and marshes, and may be related to the chloroplast. The aerobic cell was an advance in evolutionary development, but despite the energetic advantage of using oxygen, the associated toxicity of oxygen abundance required adaptive changes. Most bacteria that reduce nitrate (producing nitrite, nitrous oxide or nitrogen) are called facultative anaerobes use electron acceptors such as ferric ions, sulfate or carbon dioxide which become reduced to ferrous ions, hydrogen sulfide and methane, respectively, during the oxidation of NADH (reduced nicotinamide adenine dinucleotide is a major electron carrier in the oxidation of fuel molecules).

The underlying problem we are left with is oxidation-reduction reactions that are necessary for catabolic and synthetic reactions, and that cumulatively damage the organism associated with cancer, cardiovascular disease, neurodegerative disease, and inflammatory overload. Aerobic organisms tolerate have evolved mechanisms to repair or remove damaged molecules or to prevent or deactivate the formationof toxic species that lead to oxidative stress and disease. However, the normal balance between production of pro-oxidant species and destruction by the antioxidant defenses is upset in favor of overproduction of the toxic species, which leads to oxidative stress and disease. How this all comes together is the topic of choice.

Schematic diagram of the mitochondrial .

The transformation of energy is central to mitochondrial function. The system of energetics includes:

  • the enzymes of the Kreb’s citric acid or TCA cycle,
  • some of the enzymes involved in fatty acid catabolism (β-oxidation), and
  • the proteins needed to help regulate these systems,

central to mitochondrial physiology through the production of reducing equivalents. Reducing equivalents are also used for anabolic reactions.
Electron Transport Chain
It also houses the protein complexes involved in the electron transport component of oxidative phosphorylation and proteins involved in substrate and ion transport. The chemical energy contained in both fats and amino acids can also be converted into NADH and FADH2 through mitochondrial pathways. The major mechanism for harvesting energy from fats is β-oxidation; the major mechanism for harvesting energy from amino acids and pyruvate is the TCA cycle. Once the chemical energy has been transformed into NADH and FADH2, these compounds are fed into the mitochondrial respiratory chain.
Under physiological conditions, electrons generally enter either through complex I (NADH-mediated, examined in vitro using substrates such as glutamate/malate) or complex II (FADH2-mediated, examined in vitro using succinate).

Electrons are then sequentially passed through a series of electron carriers.

The progressive transfer of electrons (and resultant proton pumping) converts the chemical energy stored in carbohydrates, lipids, and amino acids into potential energy in the form of the proton gradient. The potential energy stored in this gradient is used to phosphorylate ADP forming ATP.
Redox-Cycling

In redox cycling the reductant is continuously regenerated, thereby providing substrate for the “auto-oxidation” reaction.

When partially oxidized compounds are enzymatically reduced, the auto-oxidative generation of superoxide and other ROS to start again. Several enzymes

  •  NADPH-cytochrome P450 reductase,
  • NADPH-cytochrome b5 reductase [EC 1.6.2.2]
  • NADPH-ubiquinone oxidoreductase [EC 1.6.5.3], and
  • xanthine oxidase [EC 1.2.3.2]),

can reduce quinones into semiquinones in a single electron process.

The semiquinone can then reduce dioxygen to superoxide during its oxidation to a quinone.

Redox cycling is thought to play a role in carcinogenesis. The naturally occurring estrogen metabolites (the catecholestrogens) have been implicated in hormone-induced cancer, possibly as a result of their redox cycling and production of ROS. It is thought that diethylstilbestrol causes the production of the mutagenic lesion 8-hydroxy-2’deoxyguanosine. It can also cause DNA strand breakage.

Another oxidative reaction that is associated with H2O2 is a significant problem for living organisms as a consequence of the reaction between hydrogen peroxide and oxidizable metals, the Fenton reaction [originally described in the oxidation of an α-hydroxy acid to an α-keto acid in the presence of hydrogen peroxide (or hypochlorite) and low levels of iron salts (Fenton (1876, 1894)).
Chemical Reactions and Biological Significance

The hydroxyl free radical is so aggressive that it will react within 5 (or so) molecular diameters from its site of production. The damage caused by it, therefore, is very site specific. Biological defenses have evolved that reduce the chance that the hydroxyl free radical will be produced to repair damage. An antioxidant would have to occur at the site of hydroxyl free radical production and be at sufficient concentration to be effective.

Some endogenous markers have been proposed as a useful measures of total “oxidative stress” e.g., 8-hydroxy-2’deoxyguanosine in urine. The ideal scavenger

  • must be non-toxic,
  • have limited or no biological activity,
  • readily reach the site of hydroxyl free radical production,
  • react rapidly with the free radical, be specific for this radical, and
  • neither the scavenger nor its product(s) should undergo further metabolism.

Unlike oxygen, nitrogen does not possess unpaired electrons and is therefore considered diamagnetic. Nitrogen does not possess available d orbitals so it is limited to a valency of 3. In the presence of oxygen, nitrogen can produce Nitric oxide which occurs physiologically with the immune system which, when activated, can produce large quantities of nitric oxide.

Nitric oxide is produced by stepwise oxidation of L-arginine catalyzed by nitric oxide synthase (NOS). Nitric oxide is formed from the guanidino nitrogen of the L-arginine in a reaction that

  • consumes five electrons and
  • requires flavin adenine dinucleotide (FAD),
  • flavin mononucleotide (FMN) tetrahydrobiopterin (BH4), and
  • iron protoporphyrin IX as cofactors.

The primary product of NOS activity may be the nitroxyl anion that is then converted to nitric oxide by electron acceptors.

NOS cDNAs show homology with the cytochrome P450 reductase family. Based on molecular genetics there appears to be at least three distinct forms of NOS:

  • A Ca2+/calmodulin-requiring constitutive enzyme (c-NOS; ncNOS or type I)
  • A calcium-independent inducible enzyme (i-NOS; type II), which is primarily involved in the mediation of the cellular immune response; and
  • A second Ca2+/calmodulin-requiring constitutive enzyme found in aortic and umbilical endothelia (ec-NOS or type III)

This has been discussed extensively in this series of posts. Recently, a mitochondrial form of the enzyme, which appears to be similar to the endothelial form, has been found in brain and liver tissue. Although the exact role of nitric oxide in the mitochondrion remains elusive, it may play a role in the regulation of cytochrome oxidase.
Nitric Oxide
Nitric oxide appears to regulate its own production through a negative feedback loop. The binding of nitric oxide to the heme prosthetic group of NOS inhibits this enzyme, and c-NOS and ec-NOS are much more sensitive to this regulation than i-NOS. It appears that in the brain, NO can regulate its own synthesis and therefore the neurotransmission process.

  • On the one hand, inhibition of ec-NOS will prevent the cytotoxicity associated with excessive nitric oxide production.
  • On the other, the insensitivity of i-NOS to nitric oxide will enable high levels of nitric oxide to be produced for cytotoxic effects.

Endogenous inhibitors of NOS (guanidino-substituted derivatives of arginine) occur in vivo as a result of post-translational modification of protein contained arginine residues by S-adenosylmethionine. The dimethylarginines (NG,NG-dimethyl-L-arginine and NG,N’G-dimethyl-L-arginine) occurs in tissue proteins, plasma, and urine of humans and they are thought to act as both regulators of NOS activity and reservoirs of arginine for the synthesis of nitric oxide.
It has been calculated that even though membrane makes up about 3% of the total tissue volume, 90% of the reaction of nitric oxide with oxygen occurs within this compartment. Thus the membrane is an important site for nitric oxide chemistry.
There are two major aspects to nitric oxide chemistry.

  • It can undergo single electron oxidation and reduction reactions producing nitrosonium and nitroxyl
  • Having a single unpaired electron in its π*2p molecular orbital it will react readily with other molecules that also have unpaired electrons, such as free radicals and transition metals.

Examples of the reaction of nitric oxide with radical species include:

  • Nitric oxide will react with oxygen to form the peroxynitrite (nitrosyldioxyl) radical (ONO2)
  • and with superoxide to form the powerful oxidizing and nitrating agent, peroxynitrite anion (ONO2-). Peroxynitrite causes damage to many important biomolecules

Importance:

  • nitrosothiols that are important in the regulation of blood pressure terminates lipid peroxidation
  • 3-nitrosotyrosine and/or 4-O-nitrosotyrosine can affect the activity of enzymes that utilize tyrosyl radicals
  • rapidly reacts with oxyhemoglobin, the primary route of its destruction in vivo
  • the reaction between nitric oxide and transition metal complexes

During the last reaction a “ligand” bond is formed (the unpaired electron of nitric oxide is partially transferred to the metal cation),

 resulting in a nitrosated (nitrosylated) complex.

For example, such complexes can be formed with free iron ions,

iron bound to heme or iron located in iron-sulfur clusters.

Ligand formation allows nitric oxide to act as a signal, activating some enzymes while inhibiting others. Thus, the binding of nitric oxide to the Fe (II)-heme of guanylate (guanalyl) cyclase [GTP-pyrophosphate lyase: cyclizing] is the signal transduction mechanism. Guanylate cyclase exists as cytosolic and membrane-bound isozymes.
Thiol-Didulfide Redox Couple

The thiol-disulfide redox couple is very important to oxidative metabolism. For example, GSH is a reducing cofactor for glutathione peroxidase, an antioxidant enzyme responsible for the destruction of hydrogen peroxide.

The importance of the antioxidant role of the thiol-disulfide redox couple:

Thiols and disulfides can readily undergo exchange reactions, forming mixed disulfides. Thiol-disulfide exchange is biologically very important. For example,

  • GSH can react with protein cystine groups and influence the correct folding of proteins.
  • GSH may also play a direct role in cellular signaling through thiol-disulfide exchange reactions with membrane bound receptor proteins
  •                        the insulin receptor complex)
  •                        transcription factors (e.g., nuclear factor κB)
  •                        and regulatory proteins in cells

Conditions that alter the redox status of the cell can have important consequences on cellular function.

The generation of ROS by redox cycling is only one possible explanation for the action of many drugs. Rifamycin not only owes its activity to ROS generation but also to its ability to block bacterial RNA synthesis as well. Quinones (and/or semiquinones) can also form adducts with nucleophiles, especially thiols. These adducts may act as toxins directly or indirectly through the inhibition of key enzymes (e.g., by reacting with essential cysteinyl residues) or the depletion of GSH.
DNA Adduct Formation

By far the most intense research in this field has been directed towards the chemistry and biology of DNA adduct formation. Attack of the free bases and nucleosides by pro-oxidants can yield a wide variety of adducts and DNA-protein cross-links. Such attack usually occurs

  • at the C-4 and C-8 position of purines and
  • C-5 and C-6 of pyrimidines.

Hydroxyl free radical-induced damage to purine bases and nucleosides can proceed through a C-8-hydroxy N-7 radical intermediate, and then either undergo oxidation with the production of an 8-hydroxy purine, or reduction, probably by cellular thiols, followed by ring opening and the formation of FAPy (formamido-pyrimidine) metabolites (hydroxyl free radical-induced damage to guanosine). Although most research has focused on 8-hydroxy-purine adducts a growing number of publications are attempting to measure the FAPy derivative.

Nitrosation of the Amines of the Nucleic Acid Bases.

Primary aromatic amines produce deaminated products, while secondary amines form N-nitroso compounds.
Formation of Peroxynitrite from Nitric Oxide.

Peroxynitrite shows complex reactivity

  • with DNA initiating DNA strand breakage, oxidation (e.g., formation of 8-hydroxyguanine, 8-OH2’dG, (5-hydroxymethyl)-uracil, and FAPyGua),
  • nitration (e.g., 8-nitroguanine), and
  • deamination of bases.

Peroxynitrite can also promote the production of lipid peroxidation related active carbonyls and cause the activation of NAD+ ADP-ribosyltransferase.

Modification of Guanine
Although all DNA bases can be oxidatively damaged, it is the modification of guanine that is the most frequent. 8OH2’dG is the most abundant DNA adduct. This can affect its hydrogen bonding between base-pairs. These base-pair substitutions are usually found clustered into areas called “hot spots”. Guanine normally binds to cytosine.

8OH2’dG, however, can form hydrogen bonds with adenine. The formation of 8OH2’dG in DNA can therefore result in a G→T transversion.

8-Hydroxyguanine was also shown to induce codon 12 activation of c-Ha-ras and K-ras in mammalian systems. G→T transversions are also the most frequent hot spot mutations found in the p53 supressor gene which is associated with human tumors.

Other mechanisms by which ROS/RNS can lead to mutations have been
proposed. Direct mechanisms include:

  • conformational changes in the DNA template that reduces the accuracy of replication by DNA polymerases
  • altered methylation of cytosine that affects gene control

Indirect mechanisms include:

  • Oxidative damage to proteins, including DNA polymerases and repair enzymes.
  • Damage to lipids causes the production of mutagenic carbonyl compounds
  • Misalignment mutagenesis (“slippery DNA”)
DNA Mismatch Repair 5

DNA Mismatch Repair 5 (Photo credit: Allen Gathman)

Repair of ROS/RNS-induced DNA Damage
The repair of damaged DNA is an ongoing and continuous process involving a
number of repair enzymes. Damaged DNA appears to be mended by two major mechanisms:

  1. base excision repair (BER) and
  2. nucleotide excision repair (NER)

Isolated DNA is found to contain low levels of damaged bases, so it appears that these repair processes are not completely effective.
Base Excision Repair

BER is first started by DNA glycosylases which recognize specific base
modifications (e.g., 8OH2’dG). For example,

  • Formamido-pyrimidine-DNA glycosylase (Fpg protein) recognizes damaged purines such as 8-oxoguanine and FAPyGua.
  • Damaged pyrimidines are recognized by endonuclease III, which acts as both a glycosylase and AP endonuclease.
  • Glycosylases cleave the N-glycosylic bond between the damaged base and the sugar

Following the glycosylase step, AP endonucleases then remove the 3′-deoxyribose moiety by cleavage of the phosphodiester bonds thereby generating a 3’-hydroxyl group that can then be extended by DNA polymerase.

The final step in mending damaged DNA is the rejoining of the free ends of DNA by a DNA ligase. It also appears that the presence of 8-oxoguanine modified bases in DNA is not only a result of ROS attack on this macromolecule. Oxidized nucleosides and nucleotides from free cellular pools can also be incorporated into DNA by polymerases and cause AT to CG base substitution mutations.

Mitochondrial DNA Repair

The mitochondrion genome encodes the various complexes of the electron transport chain, but contains no genetic information for DNA repair enzymes. These enzymes must be obtained from the nucleus. As mitochondria are continuously producing DNA damaging pro-oxidant species, effective DNA repair mechanisms must exist within the mitochondrial matrix in order for these organelles to function. Mitochondria have a short existence, and excessively damaged mitochondria will be quickly removed. Mitochondria contain many BER enzymes and are proficient at repair, but they do not appear to repair damaged DNA by NER mechanisms.

Single Strand DNA Damage and PARP Activation

Single strand DNA breakage activates NAD+ ADP-ribosyltransferase (PARP). PARP is a protein-modifying, nucleotide-polymerizing enzyme and is found at high levels in the nucleus. Activated PARP

  1. cleaves NAD+ into ADP-ribose and nicotinamide
  2. then attaches the ADP-ribose units to a variety of nuclear proteins (including histones and its own automodification domain).
  3. then polymerizes the initial ADP-ribose modification with other ADP-ribose units to form the nucleic acid-like polymer, poly (ADP) ribose.

PARP only appears to be involved with BER and not NER. In BER PARP does not appear to play a direct role but rather it probably helps by keeping the chromatin in a conformation that enables other repair enzymes to be effective. It may also provide temporary protection to DNA molecules while it is being repaired. Conflicting evidence suggests that PARP may not be an important DNA repair enzyme as cells from a PARP knockout mouse model have normal repair characteristics.

Activation of PARP can be dangerous to the cell. For each mole of ADP-ribose transferred, one mole of NAD+ is consumed, and through the regeneration of NAD+ four ATP molecules are wasted. Thus the activation of PARP can rapidly deplete a cell’s energy store and even lead to cell death. Some researchers suggest that this may be one mechanism whereby cells with excessive DNA damage are effectively removed. However, a variety of diseases may involve PARP overactivation including

  • circulatory shock,
  • CNS injury,
  • diabetes,
  • drug-induced cytotoxicity, and
  • inflammation.

The Indirect Pathway.
This (mutation) pathway does not involve oxidative damage to the protein per se. This process involves oxidative damage to the DNA molecule encoding the protein. Thus pro-oxidants can cause changes in the base sequence of the DNA molecule. If such base modification is in a coding region of DNA (exon) and not corrected, the DNA molecule may be transcribed incorrectly. Translation of the mutant mRNA can result in a mutant protein containing a wrong amino acid in its primary sequence. If this modified amino acid occurs in an essential part of the protein (e.g., the active site of an enzyme or a portion that alters folding), the function of that protein may be impaired. Fortunately, unlike modified DNA
that can pass from cell to cell during mitosis thereby continuing the production of mutant protein, damage to a protein is non-replicating and stops with its destruction.

The Direct Pathway

This (post-translational) pathway involves the action of a pro-oxidant on a protein resulting in

  • modification of amino acid residues,
  • the formation of carbonyl adducts,
  • cross-linking and
  • polypeptide chain fragmentation.

Such changes often result in altered protein conformation and/or activity. Proteins will produce a variety of carbonyl products when exposed to metal-based systems (metal/ascorbate and metal/hydrogen peroxide) in vitro. For example, histidine yields aspartate, asparagine and 2-oxoimidazoline, while proline produces glutamate, pyroglutamate, 4-hydroxyproline isomers, 2-pyrrolidone and γ-aminobutyric acid. Metal-based systems and other pro-oxidant conditions can oxidize methionine to its sulfoxide.

This portion of the presentation is endebted to THE HANDBOOK OF REDOX
BIOCHEMISTRY, Ian N. Acworth, August 2003, esa. (inacworth@esainc.com).
We shall now identify more recent work related to this presentation.

Oxygen and Oxidative Stress

The reduction of oxygen to water proceeds via one electron at a time. In the mitochondrial respiratory chain, Complex IV (cytochrome oxidase) retains all partially reduced intermediates until full reduction is achieved. Other redox centres in the electron transport chain, however, may leak electrons to oxygen, partially reducing this molecule to superoxide anion (O2_•). Even though O2_• is not a strong oxidant, it is a precursor of most other reactive oxygen species, and it also becomes involved in the propagation of oxidative chain reactions. Despite the presence of various antioxidant defences, the mitochondrion appears to be the main intracellular source of these oxidants. This review describes the main mitochondrial sources of reactive species and the antioxidant defences that evolved to prevent oxidative damage in all the mitochondrial compartments.

Reactive oxygen species (ROS) is a phrase used to describe a variety of molecules and free radicals (chemical species with one unpaired electron) derived from molecular oxygen. Molecular oxygen in the ground state is a bi-radical, containing two unpaired electrons in the outer shell (also known as a triplet state).

Since the two single electrons have the same spin, oxygen can only react with one electron at a time and therefore it is not very reactive with the two electrons in a chemical bond.

On the other hand, if one of the two unpaired electrons is excited and changes its spin, the resulting species (known as singlet oxygen) becomes a powerful oxidant as the two electrons with opposing spins can quickly react with other pairs of electrons, especially double bonds.

The formation of OH• is catalysed by reduced transition metals, which in turn may be re-reduced by O2 -•, propagating this process. In addition, O2-• may react with other radicals including nitric oxide (NO•) in a reaction controlled by the rate of diffusion of both radicals. The product, peroxynitrite, is also a very powerful oxidant. The oxidants derived from NO• have been recently called reactive nitrogen species (RNS).

‘Oxidative stress’ is an expression used to describe various deleterious processes resulting from an imbalance between the excessive formation of ROS and/or RNS and limited antioxidant defences.

  • Whilst small fluctuations in the steady-state concentration of these oxidants may actually play a role in intracellular signalling,
  • uncontrolled increases in the steady-state concentrations of these oxidants lead to free radical mediated chain reactions

which indiscriminately target

  • proteins,
  • lipids,
  • polysaccharides.

In vivo, O2-• is produced both enzymatically and nonenzymatically.

Enzymatic sources include

  • NADPH oxidases located on the cell membrane of
  • polymorphonuclear cells,
  • macrophages and
  • endothelial cells and
  • cytochrome P450-dependent oxygenases.

The proteolytic conversion of xanthine dehydrogenase to xanthine oxidase provides another enzymatic source of both O2 -• and H2O2 (and therefore constitutes a source of OH•) and has been proposed to mediate deleterious processes in vivo.

Given the highly reducing intramitochondrial environment, various respiratory components, including flavoproteins, iron–sulfur clusters and ubisemiquinone, are thermodynamically capable of transferring one electron to oxygen. Moreover, most steps in the respiratory chain involve single-electron reactions, further favouring the monovalent reduction of oxygen. On the other hand, the mitochondrion possesses various antioxidant defences designed to eliminate both O2- • and H2O2.

The rate of O2 -• formation by the respiratory chain is controlled primarily by mass action, increasing both when electron flow slows down (increasing the concentration of electron donors, R•) and when the concentration of oxygen increases (eqn (1); Turrens et al. 1982).

d[O2]/dt = k [O2] [R•].

The energy released as electrons flow through the respiratory chain is converted into a H+ gradient through the inner mitochondrial membrane (Mitchell, 1977). This gradient, in turn, dissipates through the ATP synthase complex (Complex V) and is responsible for the turning of a rotor-like protein complex required for ATP synthesis. In the absence of ADP,

  • the movement of H+ through ATP synthase ceases and
  • the H+ gradient builds up
  • causing electron flow to slow down and
  • the respiratory chain to become more reduced (State IV respiration).

Mitochondrial Antioxidant Defences

The deleterious effects resulting from the formation of ROS in the mitochondrion are, to a large extent, prevented by various antioxidant systems. Superoxide is enzymatically converted to H2O2 by a family of metalloenzymes called superoxide dismutases (SOD). Since O2-• may either reduce transition metals, which in turn can react with H2O2 producing OH• or spontaneously react with NO• to produce peroxynitrite, it is important to maintain the steady-state concentration of O2-• at the lowest possible level. Thus, although the dismutation of O2-• to H2O2 and O2 can also occur spontaneously, the role of SODs is to increase the rate of the reaction to that of a diffusion-controlled process.

The mitochondrial matrix contains a specific form of SOD, with manganese in the active site, which eliminates the O2 -• formed in the matrix or on the inner side of the inner membrane. The expression of MnSOD is further induced by agents that cause oxidative stress, including radiation and hyperoxia, in a process mediated by the oxidative activation of the nuclear transcription factor NFkB .

Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol 2003; 552(2): 335–344. DOI: 10.1113/jphysiol.2003.049478. http://www.jphysiol.org

This is the png made of the file Etc2.svg The ...

Reactive Oxygen Species and Control of Apoptosis

Reactive oxygen species (ROS) are products of normal metabolism and xenobiotic exposure, and depending on their concentration, ROS can be beneficial or harmful to cells and tissues.

  • At physiological low levels, ROS function as “redox messengers” in intracellular signaling and regulation, whereas
  • excess ROS induce oxidative modification of cellular macromolecules, inhibit protein function, and promote cell death.

Additionally, various redox systems, such as

  • the glutathione,
  • thioredoxin, and
  • pyridine nucleotide redox couples,
  • NADPH and antioxidant defense
  • NAD+ and the function of sirtuin proteins

participate in cell signaling and modulation of cell function, including apoptotic cell death. Cell apoptosis is initiated by extracellular and intracellular signals via two main pathways,

  1. the death receptor and
  2. the mitochondria-mediated pathways.

ROS and JNK-mediated apoptotic signaling

              GSH redox status and apoptotic signaling

Various pathologies can result from oxidative stress-induced apoptotic signaling that is consequent to

  • ROS increases and/or antioxidant decreases,
  • disruption of intracellular redox homeostasis, and
  • irreversible oxidative modifications of lipid, protein, or DNA.

We focus on several key aspects of ROS and redox mechanisms in apoptotic signaling and highlight the gaps in knowledge and potential avenues for further investigation. A full understanding of the redox control of apoptotic initiation and execution could underpin the development of therapeutic interventions targeted at oxidative stress-associated disorders.

Circu, M. L.; Aw, T. Y., Reactive oxygen species, cellular redox systems, and apoptosis, Free Radic. Biol. Med. 2010. FRB-10057; pp 14. doi:10.1016/j.freeradbiomed.2009.12.022

Assembly of Iron-sulfur (FeyS) Clusters

Iron-sulfur (FeyS) cluster-containing proteins catalyze a number of electron transfer and metabolic reactions. The components and molecular mechanisms involved in the assembly of the FeyS clusters have been identified only partially. In eukaryotes, mitochondria have been proposed to execute a crucial task in the generation of intramitochondrial and extramitochondrial FeyS proteins. Herein, we identify the essential ferredoxin Yah1p of Saccharomyces cerevisiae mitochondria as a central component of the FeyS protein biosynthesis machinery. Depletion of Yah1p by regulated gene expression resulted in a

30-fold accumulation of iron within mitochondria,

similar to what has been reported for other components involved in FeyS protein biogenesis. Yah1p was shown to be required for the assembly of FeyS proteins both inside mitochondria and in the cytosol. Apparently, at least one of the steps of FeyS cluster biogenesis within mitochondria requires reduction by ferredoxin. Our findings lend support to the idea of a primary function of mitochondria in the biosynthesis of FeyS proteins outside the organelle. To our knowledge, Yah1p is the first member of the ferredoxin family for which a function in FeyS cluster formation has been established. A similar role may be predicted for the bacterial homologs that are encoded within iron-sulfur cluster assembly (isc) operons of prokaryotes.
H Lange, A Kaut, G Kispal, and R Lill. A mitochondrial ferredoxin is essential for biogenesis of cellular iron-sulfur proteins. PNAS 2000; 97(3): 1050–1055.

DNA Charge Transport

Damaged bases in DNA are known to lead to errors in replication and transcription, compromising the integrity of the genome. The authors proposed a model where repair proteins containing redoxactive [4Fe-4S] clusters utilize DNA charge transport (CT) as a first step in finding lesions. In this model, the population of sites to search is reduced by a localization of protein in the vicinity of lesions. Here, we examine this model using single-molecule atomic force microscopy (AFM). XPD, a 5′-3′ helicase involved in nucleotide
excision repair, contains a [4Fe-4S] cluster and exhibits a DNA bound redox potential that is physiologically relevant.

In AFM studies, they observe the redistribution of XPD onto kilobase DNA strands containing a single base mismatch, which is not a specific substrate for XPD but, like a lesion, inhibits CT. They also provide evidence for DNA-mediated signaling between XPD and Endonuclease III (EndoIII), a base excision repair glycosylase that also contains a [4Fe-4S] cluster.

  • When XPD and EndoIII are mixed together, they coordinate in relocalizing onto the mismatched strand.
  • However, when a CT-deficient mutant of either repair protein is combined with the CT-proficient repair partner, no relocalization occurs.

The data presented here indicate that XPD, an archaeal protein from the NER pathway, may cooperate with other proteins that are proficient at DNA CT to localize in the vicinity of damage. XPD, a superfamily 2 DNA helicase with 5′-3′ polarity, is a component of TFIIH that is essential for repair of bulky lesions generated by exogenous sources such as UV light and chemical carcinogens. XPD contains a conserved [4Fe-4S] cluster suggested to be conformationally controlled by ATP binding and hydrolysis.

Mutations in the iron-sulfur domain of XPD can lead to diseases including TTD and XP, yet the function of the [4Fe-4S] cluster appears to be unknown.

Electrochemical studies have shown that when BER proteins MutY and EndoIII bind to DNA, their [4Fe-4S] clusters are activated toward one electron oxidation. XPD exhibits a DNA-bound midpoint potential similar to that of EndoIII and MutY when bound to DNA (approximately 80 mV vs. NHE), indicative of a possible role for the [4Fe-4S] cluster in DNA-mediated CT.

For EndoIII we have also already determined a direct correlation between the ability of proteins to redistribute in the vicinity of mismatches as measured by AFM, and the CT proficiency of the proteins measured electrochemically. Thus, we may utilize single-molecule AFM as a tool to probe the redistribution of proteins in the vicinity of base lesions and in so doing, the proficiency of the protein to carry out DNA CT.

Here we show that, like the BER protein EndoIII, XPD, involved both in transcription and NER, redistributes in the vicinity of a lesion. Importantly, this ability to relocalize is associated with the ability of XPD to carry out DNA CT. The mutant L325V is defective in its ability to carry out DNA CTand this XPD mutant also does not redistribute effectively onto the mismatched strand.

These data not only indicate a general link between the ability of a repair protein to carry out DNA CT and its ability to redistribute onto DNA strands near lesions but also provide evidence for coordinated DNA CT between different repair proteins in their search for damage in the genome. These data also provide evidence that two different repair proteins, each containing a [4Fe-4S] cluster at similar DNA bound potential, can communicate with one another through DNA-mediated CT.

Sontz PA, Mui TP, Fuss JO, Tainer JA, and Barton JK. DNA charge transport as a first step in coordinating the detection of lesions by repair proteins. PNAS 2012; 109(6):1856–1861. doi:10.1073/pnas.1120063109/-/ DCSupplemental. http://www.pnas.org/lookup/suppl/

Janus Bifron 

The signaling function of mitochondria is considered with a special emphasis on their role in the regulation of redox status of the cell, possibly determining a number of pathologies including cancer and aging. The review summarizes the transport role of mitochondria in energy supply to all cellular compartments (mitochondria as an electric cable in the cell), the role of mitochondria in plastic metabolism of the cell including synthesis of

  • heme,
  • steroids,
  • iron-sulfur clusters, and
  • reactive oxygen and nitrogen species.

Mitochondria also play an important role in the Ca2+-signaling and the regulation of apoptotic cell death. Knowledge of mechanisms responsible for apoptotic cell death is important for the strategy for prevention of unwanted degradation of postmitotic cells such as cardiomyocytes and neurons.

In accordance with P. Mitchell’s chemiosmotic concept, vectorial transmembrane transfer of electrons and protons is accompanied by generation of electrochemical difference of proton electrochemical potential on the inner mitochondrial membrane; its utilization by ATP synthase induces conformational rearrangements resulting in ATP synthesis from ADP and inorganic phosphate. Details of the mechanism responsible for ATP synthesis are given elsewhere.

Membrane potential (DY) generated across the inner mitochondrial membrane is the component of the transmembrane electrochemical potential of H+ ions (DμH+), which provides ATP synthesis together with the concentration component (DpH). Maintenance of constant membrane potential is a vitally important precondition for functioning of mitochondria and the cell. Under conditions of limited supply of the cell with oxygen (hypoxia) and inability to carry out aerobic ATP synthesis, mitochondria become ATP consumers (rather than generators) and ATP is hydrolyzed by mitochondrial ATPase, and this is accompanied by generation of membrane potential.

Redox homeostasis, i.e. the sum of redox components (including proteins, low molecular weight redox components such as NAD/NADH, flavins, coenzymes Q, oxidized and reduced substrates, etc.) is one of important preconditions for normal cell functioning.

Single-strand and double-strand DNA damage

Single-strand and double-strand DNA damage (Photo credit: Wikipedia)

Mitochondria generate such potent regulators of redox potential as

  • superoxide anion,
  • hydrogen peroxide,
  • nitric oxide,
  • peroxynitrite, etc.

They are actively involved in regulation of cell redox potential and consequently

  • control proteolysis,
  • activation of transcription,
  • changes in mitochondrial DNA (mDNA),
  • cell metabolism, and
  • cell differentiation.

Zorov DB, Isaev NK, Plotnikov EY, Zorova LD, et al. The Mitochondrion as Janus Bifrons. Biochemistry (Moscow) 2007; 72(10): 1115-1126. ISSN 0006-2979.
DOI: 10.1134/S0006297907100094

Structure of the human mitochondrial genome.

Structure of the human mitochondrial genome. (Photo credit: Wikipedia)

Gene Expression Associated with Oxidoreduction and Mitochondria
The naked mole-rat (Heterocephalus glaber) is a long-lived, cancer resistant rodent and there is a great interest in identifying the adaptations responsible for these and other of its unique traits. We employed RNA sequencing to compare liver gene expression profiles between naked mole-rats and wild-derived mice. Our results indicate that genes associated with oxidoreduction and mitochondria were expressed at higher relative levels in naked mole-rats. The largest effect is nearly

300-fold higher expression of epithelial cell adhesion molecule (Epcam), a tumour-associated protein.

Also of interest are the

  • protease inhibitor, alpha2-macroglobulin (A2m), and the
  • mitochondrial complex II subunit Sdhc,

both ageing-related genes found strongly over-expressed in the naked mole-rat.

These results hint at possible candidates for specifying species differences in ageing and cancer, and in particular suggest complex alterations in mitochondrial and oxidation reduction pathways in the naked mole-rat. Our differential gene expression analysis obviated the need for a reference naked mole-rat genome by employing a combination of Illumina/Solexa and 454 platforms for transcriptome sequencing and assembling transcriptome contigs of the non-sequenced species. Overall, our work provides new research foci and methods for studying the naked mole-rat’s fascinating characteristics.

C Yu, Y Li, A Holmes, K Szafranski, CG Faulkes, et al. RNA Sequencing Reveals Differential Expression of Mitochondrial and Oxidation reduction Genes in the Long-Lived Naked Mole-Rat When Compared to Mice. PLoS ONE 2011; 6(11): 1-9. e26729. http://www.plosone.org

The complete set of viable deletion strains in Saccharomyces cerevisiae was screened for sensitivity of mutants to five oxidants to identify cell functions involved in resistance to oxidative stress. This screen identified a unique set of mainly constitutive functions providing the first line of defense against a particular oxidant; these functions are very dependent on the nature of the oxidant. Most of these functions are distinct from those involved in repair and recovery from damage, which are generally induced in response to stress, because there was little correlation between mutant sensitivity and
the reported transcriptional response to oxidants of the relevant gene. The screen identified 456 mutants sensitive to at least one of five different types of oxidant, and these were ranked in order of sensitivity. Many genes identified were not previously known to have a role in resistance to reactive oxygen species. These encode functions including

  • protein sorting,
  • ergosterol metabolism,
  • autophagy, and
  • vacuolar acidification.

two mutants were sensitive to all oxidants examined,
12 were sensitive to at least four,

Different oxidants had very different spectra of deletants that were sensitive. These findings highlight the specificity of cellular responses to different oxidants:

  • No single oxidant is representative of general oxidative stress.
  • Mitochondrial respiratory functions were overrepresented in mutants sensitive to H2O2, and
  • vacuolar protein-sorting mutants were enriched in mutants sensitive to diamide.

Core functions required for a broad range of oxidative-stress resistance include

  • transcription,
  • protein trafficking, and
  • vacuolar function.

GW Thorpe, CS Fong, N Alic, VJ Higgins, and IW Dawes. Cells have distinct mechanisms to maintain protection against different reactive oxygen species: Oxidative-stress-response genes. PNAS 2004;101: 6564–6569. http://www.pnas.org cgi doi 10.1073 pnas.0305888101
Subcellular Thiol Redox State in Complex I Deficiency

Isolated complex I deficiency is the most common enzymatic defect of the oxidative phosphorylation (OXPHOS) system, causing a wide range of clinical phenotypes. Th authers reported before that the rates at which reactive oxygen species (ROS)-sensitive dyes are converted into their fluorescent oxidation products are markedly increased in cultured skin fibroblasts of patients with nuclear-inherited isolated complex I deficiency.

Using videoimaging microscopy we show here that these cells also display a marked increase in NAD(P)H autofluorescence. Linear regression analysis revealed a negative correlation with the residual complex I activity and a positive correlation with the oxidation rates of the ROS sensitive dyes (5-(and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein and hydroethidine for a large cohort of 10 patient cell lines.

On the other hand, video-imaging microscopy of cells selectively expressing reduction-oxidation sensitive GFP1 in either the mitochondrial matrix or cytosol showed the absence of any detectable change in thiol redox state. In agreement with this result, neither the glutathione nor the glutathione disulfide content differed significantly between patient and healthy fibroblasts.

Finally, video-rate confocal microscopy of cells loaded with C11-BODIPY581/591 demonstrated that the extent of lipid peroxidation, which is regarded as a measure of oxidative damage, was not altered in patient fibroblasts. Our results indicate that fibroblasts of patients with isolated complex I deficiency maintain their thiol redox state despite marked increases in ROS production.

S Verkaart, WJH Koopman, J Cheek, SE van Emst-de Vries. Mitochondrial and cytosolic thiol redox state are not detectably altered in isolated human NADH:ubiquinone oxidoreductase deficiency. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease 2007; 1772(9): 1041. DOI : 10.1016/j.bbadis.2007.05.004

  • Mitochodrial mtDNA and Cancer
  • Mitochondrial research has recently been driven by the

identification of mitochondria-associated diseases and 
the role of mitochondria in apoptosis.

Moreover, mitochondria have been implicated in the process of carcinogenesis because of their vital role in

  • energy production,
  • nuclear-cytoplasmic signal integration and
  • control of metabolic pathways.

At some point during neoplastic transformation, there is an increase in reactive oxygen species (ROS), which damage the mitochondrial genome. This accelerates the somatic mutation rate of mitochondrial DNA.

Mitochondrial characteristics

There are several biological characteristics which cast mitochondria and, in particular, the mitochondrial genome, as a biological tool for early detection and monitoring of neoplasia and its potential progression. These vital characteristics are important in cancer research, as not all neoplasias become malignant. Mitochondria are archived in the cytoplasm of the ovum and as such do not recombine.

This genome has an accelerated mutation rate, by comparison with the nucleus, and accrues somatic mutations in tumour tissue. Moreover, mitochondrial DNA (mtDNA) has a high copy number in comparison with the nuclear archive of DNA. There are potentially thousands of mitochondrial genomes per cell, which enables detection of important biomarkers, even at low levels. In addition, mtDNA can be heteroplasmic, which means that disease-associated mutations occur in a subset of the genomes.

The presence of heteroplasmy is an indication of disease and is found in many human tumours. Identification of low levels of heteroplasmy may allow unprecedented early identification and monitoring of neoplastic progression to malignancy.

Coding for just 13 enzyme complex subunits, 22 transfer RNAs and two ribosomal RNAs, the mitochondrial genome is packaged in a compact 16,569 base pair (bp) circular molecule. These products participate in the critical electron transport process of ATP production. Collectively, mitochondria generate 80 per cent of the chemical fuel which fires cellular metabolism.

As a result, nuclear investment in the mitochondria is high — that is, several thousand nuclear genes control this organelle in order to accomplish the complex interactions required to maintain a network of pathways, which coordinate energy demand and supply.

It has been proposed that these mutations may serve as an early indication of potential cancer development and may represent a means for tracking tumour progression.

Does this provide a potential utility in that these mutations may be used for the identification and monitoring of neoplasia and malignant transformation where appropriate body fluids or non-invasive tissue access is available for mtDNA recovery? Specifically discussed are:

  • prostate,
  • breast,
  • colorectal,
  • skin and
  • lung cancers

There are many important questions yet to be addressed: such as

  • the relationship between mtDNA and the actual disease;
  • are mutations causative or merely a reflection of nuclear instability?
  • And, are these processes independent events?

Alterations in the non-coding D-loop suggest genome instability;
however, as studies focus more on the coding regions of the
mitochondrial genome,

Particularly in the case of nonsynonymous mutations in the genes
contributing products to the electron transport process, metabolic
implications are evident. Moreover, mutations in mitochondrial
transfer RNAs indicate the possibility of a global mitochondrial
translational shut down.

RL Parr, GD Dakubo, RE Thayer, K McKenney, MA Birch-Machin. Mitochondrial DNA as a potential tool for early cancer detection. HUMAN GENOMICS 2006; 2(4). 252–257.
Mitochondrial DNA (mtDNA) is particularly prone to oxidation due to the lack of histones and a deficient mismatch repair system. This explains an increased mutation rate of mtDNA that results in heteroplasmy, e.g., the coexistence of the mutant and wild-type mtDNA molecules within the same mitochondrion. Hyperglycemia is a key risk factor not only for diabetes-related disease, but also for cardiovascular and all-cause mortality. One can assume an increase in the risk of cardiovascular disease by 18% for each unit (%) glycated hemoglobin HbA1c. In the Glucose Tolerance in Acute Myocardial Infarction study of patients with acute coronary syndrome, abnormal glucose tolerance was the strongest independent predictor of subsequent cardiovascular complications and death. In the Asian Pacific Study, fasting plasma glucose was shown to be an independent predictor of cardiovascular events up to a level of 5.2 mmol/L.

Glucose level fluctuations and hyperglycemia are triggers for inflammatory responses via increased mitochondrial superoxide production and endoplasmic reticulum stress. Inflammation leads to insulin resistance and β-cell dysfunction, which further aggravates hyperglycemia. The molecular pathways that integrate hyperglycemia, oxidative stress, and diabetic vascular complications have been most clearly described in the pathogenesis of endothelial dysfunction, which is considered as the first step in atherogenesis according to the response to injury hypothesis.

  • In diabetes mellitus,
  • glycotoxicity,
  • advanced oxidative stress,
  • collagen cross-linking, and
  • accumulation of lipid peroxides

in foam macrophage cells and arterial wall cells may significantly

  • decrease the mutation threshold,
  • endothelial dysfunction,
  • promoting atherosclerosis.

Alterations in mitochondrial DNA (mtDNA), known as homoplasmic and heteroplasmic mutations, may influence mitochondrial OXPHOS capacity, and in turn contribute to the magnitude of oxidative stress in micro- and macrovascular networks in diabetic patients.
The authors critically consider the impact of mtDNA mutations on the pathogenesis of cardiovascular diabetic complications.

Mutation Threshhold

Although cells may harbor mutant mtDNA, the expression of disease is dependent on the percent of alleles bearing mutations. Modeling confirms that an upper threshold level might exist for mutations beyond which the mitochondrial population collapses, with a subsequent decrease in ATP. This decrease in ATP results in the phenotypic expression of disease. It is estimated that in many patients with clinical manifestations of mitochondrial disorders, the proportion of mutant DNA exceeds 50%.

For the MELAS (mitochondrial encephalopathy, lactic acidosis and stroke-like syndrome)-causing mutation m.3243 A>G in the mitochondrial gene encoding tRNALeu, which is also associated with diabetes plus deafness, a strong correlation between the level of mutational heteroplasmy and documented disease has been found. Increased percentages of mutant mtDNA in muscle cells (up to 71%) can lead to mitochondrial myopathy. Levels of heteroplasmy of over 80% may lead to recurrent stroke and mutation levels of 95% have been associated with MELAS.

Regardless of the type of mutation or the level of heteroplasmy in affected mitochondria, unrepaired damage leads to a decrease in ATP, which in turn causes the phenotypic manifestation of disease. The manifestation of disease not only depends on the ATP level but also on the tissue affected. Various tissues have differing levels of demand on OXPHOS capacity. To evaluate a tissue threshold, Leber’s hereditary optic neuropathy can be used as a model for mitochondrial neurodegenerative disease. For neural and skeletal muscle tissues, the tissue threshold should be as high as or higher than 90% of
damaged (mutated) mtDNA. To induce mitochondrial malfunctions, the tissue threshold of the cardiac muscle is estimated to be significantly lower (approximately 64%-67%). In chronic vascular disease such as atherosclerosis, a mutation threshold in the affected vessel wall (e.g., in the postmortem aortic atherosclerotic plaques) was observed to be significantly lower. For example, for mutations m.3256 C>T, m.12315 G>A, m.15059 G>A, and m.15315 G>A, the heteroplasmy range of 18%-66% in the atherosclerotic lesions was 2-3.5-fold that in normal vascular tissue.

Mitochondrial stress and insulin resistance

  • Mitochondrial damage precedes the development of atherosclerosis and tracks the extent of the lesion in apoE-null mice, and
  • mitochondrial dysfunction caused by heterozygous deficiency of a superoxide dismutase increases atherosclerosis and vascular mitochondrial damage in the same model.

Blood vessels destined to develop atherosclerosis may be characterized by inefficient ATP production due to the uncoupling of respiration and OXPHOS. Blood vessels have regions of hypoxia, which lower the ratio of state 3 (phosphorylating) to state 4 (nonphosphorylating) respiration. Human atherosclerotic lesions have been known for decades to be deficient in essential fatty acids, a condition that causes respiratory uncoupling and atherosclerosis.

The finding by Kokaze et al.  helps to explain, at least in part, the anti-atherogenic effect of the allele m. 5178A due to its relation with the favorable lipid profile. The nucleotide change causes leucine-to-methionine substitution at codon 237 (Leu-237Met) of the NADH dehydrogenase subunit 2 located in the loop between 7th and 8th transmembrane domains of the mitochondrial protein. Given that this methionine residue is exposed at the surface of respiratory Complex I, this residue may be available as an efficient oxidant scavenger. Complex I

  • accepts electrons from NADH,
  • transfers them to ubiquinone, and
  • uses the energy released to pump protons across the mitochondrial inner membrane.

Thus, the Leu237Met replacement in the ND2 subunit might have a protective effect against oxidative damage to mitochondria.

Most fatty acid oxidation, which is promoted by peroxisome proliferator-activated receptor α (PPARα) activation, occurs in the mitochondria. Mitochondrial effects could explain why PPARα- deficient mice are protected from diet-induced insulin resistance and atherosclerosis as well as glucocorticoid induced insulin resistance and hypertension. Caloric restriction,

  • improves features of insulin resistance,
  • increases mitochondrial biogenesis and, surprisingly,
  • enhances the efficiency of ATP production.

Dysfunctional mitochondria in cultured cells can be rescued by transfer of mitochondria from adult stem cells, raising the possibility of restoration of normal bioenergetics in the vasculature to treat atherosclerosis associated with insulin resistance.
Chistiakov DA, Sobenin IA, Bobryshev YV, Orekhov AN. Mitochondrial dysfunction and mitochondrial DNA mutations in atherosclerotic complications in diabetes. World J Cardiol 2012; 4(5): 148-156. ISSN 1949-8462 (online). doi:10.4330/wjc.v4.i5.148. http://www.wjgnet.com/1949-8462/full/v4/i5/148.htm

Read Full Post »

Older Posts »