Posts Tagged ‘Cell Biology’

New avenues for research in membrane biology reveals the mobility of protein at work

Curator and Reporter: Dr. Premalata Pati, Ph.D., Postdoc

Membrane proteins (MPs) are proteins that exist in the plasma membrane and conduct a variety of biological functions such as ion transport, substrate transport, and signal transduction. MPs undergo function-related conformational changes on time intervals spanning from nanoseconds to seconds. Many MP structures have been solved thanks to recent developments in structural biology, particularly in single-particle cryo-Electron Microscopy (cryo-EM). Obtaining time-resolved dynamic information on MPs in their membrane surroundings, on the other hand, remains a significant difficulty.

OmpG (Open state) in a fully hydrated dimyristoylphosphatidylcholine (DMPC) bilayer. The protein is shown in light green cartoon. Lipids units are depicted in yellow, while their phosphate and choline groups are illustrated as orange and green van der Waals spheres, respectively. Potassium and chloride counterions are shown in green and purple, respectively. A continuous and semi-transparent cyan representation is used for water.

Weill Cornell Medicine (WCM) researchers have found that they can record high-speed protein movements while linking them to function. The accomplishment should allow scientists to examine proteins in more depth than ever before, and in theory, it should allow for the development of drugs that work better by hitting their protein targets much more effectively.

The researchers utilized High-Speed Atomic Force Microscopy (HS-AFM) to record the rapid motions of a channel protein and published in a report in Nature Communications on July 16. Such proteins generally create channel or tube-like structures in cell membranes, which open to allow molecules to flow under particular conditions. The researchers were able to record the channel protein’s rapid openings and closings with the same temporal resolution as single channel recordings, a typical technique for recording the intermittent passage of charged molecules through the channel.

Senior author Simon Scheuring, professor of physiology and biophysics in anesthesiology at WCM, said,

There has been a significant need for a tool like this that achieves such a high bandwidth that it can ‘see’ the structural variations of molecules as they work.

Researchers can now produce incredibly detailed photographs of molecules using techniques like X-ray crystallography and electron microscopy, showing their structures down to the atomic scale. The average or dominant structural positionings, or conformations, of the molecules, are depicted in these “images,” which are often calculated from thousands of individual photos. In that way, they’re similar to the long-exposure still photos from the dawn of photography.

Many molecules, on the other hand, are flexible and always-moving machinery rather than fixed structures. Scientists need to generate videos, not still photos, to reveal how such molecules move as they work, to see how their motion translates to function to catch their critical functional conformations, which may only exist for a brief moment. Current techniques for dynamic structural imaging, on the other hand, have several drawbacks, one of which being the requirement for fluorescent tags to be inserted on the molecules being photographed in many cases.

Scheuring and his lab were early adopters of the tag-free HS-AFM approach for studying molecular dynamics. The technology, which can photograph molecules in a liquid solution similar to a genuine cellular environment, employs an extremely sensitive probe, similar to a record player’s stylus, to feel its way over a molecule and therefore build up a picture of its structure. Standard HS-AFM isn’t quick enough to capture the high-speed dynamics of many proteins, but Scheuring and colleagues have developed a modified version, HS-AFM height spectroscopy (HS-AFM-HS), that works much faster by collecting dynamic changes in only one dimension: height.

The researchers used HS-AFM-HS to record the opening and closing of a relatively simple channel protein, OmpG, found in bacteria and widely studied as a model channel protein in the new study, led by the first author Raghavendar Reddy Sanganna Gari, a postdoctoral research associate in Scheuring’s laboratory. They were able to monitor OmpG gating at an effective rate of roughly 20,000 data points per second, seeing how it transitioned from open to closed states or vice versa as the acidity of the surrounding fluid varied.

More significantly, they were able to correlate structural dynamics with functional dynamics in a membrane protein of this size for the first time in a partnership with Crina Nimigean, professor of physiology and biophysics in anesthesiology, and her group at WCM.

The demonstration opens the door for a wider application of this method in basic biology and drug development.

Sanganna Gari stated,

We’re now in an exciting period of HS-AFM technology, for example using this technique to study how some drugs modulate the structural dynamics of the channel proteins they target.

Main Source

Technique reveals proteins moving as they work. By Jim Schnabel in Cornell Chronicle, August 16, 2021.


Other Related Articles published in this Open Access Online Scientific Journal include the following:

Cryo-EM disclosed how the D614G mutation changes SARS-CoV-2 spike protein structure.

Reporter: Dr. Premalata Pati, Ph.D., Postdoc


Proteins, Imaging and Therapeutics

Larry H Bernstein, MD, FCAP, Curator, LPBI


From High-Throughput Assay to Systems Biology: New Tools for Drug Discovery

Curator: Stephen J. Williams, PhD


Imaging break-through: Fusion of microscopy and mass spectrometry produces detailed map of protein distribution

Reporter: Aviva Lev-Ari, PhD, RN


Advanced Microscopic Imaging

Larry H Bernstein, MD, FCAP, Curator, LPBI


Read Full Post »

Biologists Wondered—How Old are Cells in an Organism?

Reporter: Irina Robu, PhD

Scientists form Salk Institute discovered that the mouse brain, live and pancreas contain populations of cells and proteins with extremely long lifespans with some as old as neurons. The research was published in Cell Metabolism on June 6, 2019. The general idea is that most neurons in the brain do not divide during adulthood and experience a long lifespan and age-related decline. Yet, due to limitations the lifespan of cells outside of the brain was difficult to determine.

However, the researchers knew very well that neurons are not replaced during the lifespan, they used them as control to compare other non-dividing cells. The team used an electron isotope labeling with hybrid imaging method to visualize and quantify cell and protein age and turnover in the brain, pancreas and liver in the young and old rodent models.

To confirm that their method is correct, the scientist determined first the age of the neurons and then realized that the cells that line blood vessels, endothelial cells were as old as neurons. According to this research, it means that some non-neuronal cells do not replicate themselves throughout the lifespan. The pancreas, the organ responsible for maintaining blood sugar levels and secreting digestive enzymes showed cells of all ages. Still, some beta cells, replicate during the lifetime and are relatively young, while others do not divide and were long lived. Yet, delta cells found in stomach do not divide at all.
Unlike other type of cells, the liver cells have the capacity to regenerate during adulthood. The researchers expected to observe young liver cells, however the majority of liver cells were found to be as old as the animal, while the cells that line blood vessels and stellate like cells, another liver type cell were short lived.

But on the molecular level, a selection of long-lived cells contains protein complexes displaying age mosaicism. Due to the modern visualizing technologies, scientists were able to pinpoint the age of the cells and their supra-molecular complexes precisely. The ultimate goal to determining the age of the cells and sub-cellular structures is to provide insights into cell maintenance and repair mechanism and utilize these mechanisms to prevent or delay old age-linked decline of organs with limited cell regeneration.



Read Full Post »

First Haploid Human Stem Cells

Reported: Irina Robu, PhD

Most of the cells in our body are diploid, which indicate they carry two sets of chromosomes—one from each parent. So far, scientists have only succeeded in generating haploid embryonic stem cells—which comprise a single set of chromosomes in non-human mammals such as mice, rats and monkeys. Nevertheless, scientists have tried to isolate and duplicate these haploid ESCs in humans, which would allow them to work with one set of human chromosomes as opposed to a mixture from both parents.

Scientists from Hebrew from The Hebrew University of Jerusalem, Columbia University Medical Center (CUMC) and The New York Stem Cell Foundation Research Institute (NYSCF) were successful in generating a new type of embryonic stem cells that has a single copy of the human genome, instead of two copies which is typically found in normal stem cells.

This landmark was finally obtained by Ido Sagi, working as a PhD student at the Hebrew University of Jerusalem which was successful in isolating and maintaining haploid embryonic stem cells in humans. Unlike in mice, these haploid stem cells were capable to differentiate into various cell types such as brain, heart and pancreas, although holding a single set of chromosomes. Sagi and his advisor, Prof. Nissim Benvenisty showed that this new human stem cell type will play an important role in human genetic and medical research.  This new human cell type cell type will aid in understanding human development and it will make genetic screening simpler and more precise, by examining a single set of chromosomes.

Based on this research, the Technology Transfer arm of the Hebrew University, started a new company New Stem, which is developing a diagnostic kit for predicting resistance to chemotherapy treatments. By gathering a broad library of human pluripotent stem cells with various genetic makeups and mutations. The company is planning to use this kit for personalized medication and future therapeutic and reproductive products.



Other related articles published in this Open Access Online Scientific Journal include the following:

Ido Sagi – PhD Student @HUJI, 2017 Kaye Innovation Award winner for leading research that yielded the first successful isolation and maintenance of haploid embryonic stem cells in humans.

Reporter: Aviva Lev-Ari, PhD, RN

Ido Sagi – PhD Student @HUJI, 2017 Kaye Innovation Award winner for leading research that yielded the first successful isolation and maintenance of haploid embryonic stem cells in humans.



Read Full Post »

Cellular Guillotine Created for Studying Single-Cell Wound Repair

Reporter: Irina Robu, PhD

Using the century-old cutting method, it would take a researcher five hours to cut 100 cells, and by the time they were done, the cells they cut first would be well on their way to healing.

In an effort to comprehend how a single cell heal, mechanical engineer Sing Tand developed a microscopic guillotine that proficiently cuts cells into two.

Tang, who is an assistant professor of mechanical engineering at Stanford University knew that finding a way to competently slice the cell in two could lead to engineering self-healing materials and machines. In order, to efficiently slice a cell in two he developed a tool that could cut 150 cells in just over 2 minutes, and the cuts were much more standardized and synchronized in the stage of their repair process. They attained this rate by creating a scaled-up version of their tool with eight identical parallel channels that run simultaneously. Being able to efficiently study cell healing could eventually help scientists study and treat a variety of human diseases such as cancer and neurodegenerative diseases. Prior to Tang’s cellular guillotine, scientists used to slice cells by hand under a microscope using a glass needle which is a method that can lead to errors.

Tang’s method can be the Holy Grail of engineering self-healing materials and machines.



Read Full Post »

Nanostraws Developed at Stanford Sample a Cell’s Contents without Damage

Reporter: Irina Robu, PhD

Cells within our bodies change over time and divide, with thousands of chemical reactions happening within cell daily. Nicholas Melosh, Associate Professor of Materials Science and Engineering, developed a new, non-destructive system for sampling cells with nanoscale straws which could help uncover mysteries about how cells function.

Currently, cells are sampled via lysing which ruptures the cell membrane which means that it can’t ever be sampled again. The sample system that Dr. Melosh invented banks on, on tiny tubes 600 times smaller than a strand of hair that allow researchers to sample a single cell at a time. The nanostraws penetrate a cell’s outer membrane, without damaging it, and draw out proteins and genetic material from the cell’s salty interior.

The Nanostraw sampling technique, according to Melosh, will knowingly impact our understanding of cell development and could result to much safer and operational medical therapies because the technique allows for long term, non-destructive monitoring. The sampling technique could also inform cancer treatments and answer questions about why some cancer cells are resistant to chemotherapy while others are not. The sampling platform on which the nanostraws are grown is tiny, similar to the size of a gumball. It’s called the Nanostraw Extraction (NEX) sampling system, and it was designed to mimic biology itself.

The goal of developing this technology was to make an impact in medical biology by providing a platform that any lab could build.



Read Full Post »

Spermatogenic Defects in Sex Reversed Mice

Reporter and Curator: Dr. Sudipta Saha, Ph.D.


“Sex reversed” (Sxr) is an inherited form of sex reversal that causes XX and XO mice to develop as phenotypically normal males. Adult XYSxra mice exhibit varying degrees of spermatogenic deficiency but are usually fertile, while XOSxra mice have severe spermatogenic failure and are always sterile. The present quantitative spermatogenic analysis reports when these anomalies first appear during puberty. The results demonstrate that in XYSxra mice there was increased degeneration of pachytene spermatocytes and, to a lesser extent, meiotic metaphase stages. On average, there were only one-half the number of spermatids compared with the XY controls. The defect in XOSxra mice appeared a little later, with an almost complete arrest and degeneration during the meiotic metaphases.


A minority of XYSxra mice are sterile, and these may have testes as small as those from XOSxra mice. Adult XOSxra mice have consistently small testes and are invariably sterile. The reported results document the testicular defects in XYSxra and XOSxra testes as they first arise during puberty. The only other quantitative data on XYSxra and XOSxra spermatogenesis are for adult mice. A previous report described XYSxra testes as being a “mosaic” of normal and defective spermatogenesis. Recently a more extensive analysis was carried out of adult XYSxra and XOSxra testes. Once again there is good agreement with the present results in that the spermatogenic failure in XYSxra testes was predominantly between pachytene and diplotene, while in XOSxra testes the block was predominantly during the meiotic metaphases. To explain the spermatogenic anomalies in XYSxra and XOSxra testes, Burgoyne and Baker (1984) invoked the “meiotic pairing site” hypothesis of Miklos (1974). The other notable feature of the present study was the demonstration that the testicular deficiency is manifested earlier (with respect to age and spermatogenic stage) in XYSxra testes than in XOSxra testes. Krzanowska (1989) recently reported increased levels of X-Y univalence in pubertal XY males. So, it is suggested that this reduced efficiency of X-Y pairing at puberty that leads to the increased incidence of diploid spermatids in pubertal XYSxra males and to the presence of diploid spermatids in pubertal XY males. The other feature of pubertal XYSxra testes that deserves mention is the increase in the number of differentiating spermatogonia.


The conclusion is that most of the spermatogenic deficiencies in XYSxra and XOSxra testes can be explained in terms of the “meiotic pairing site” hypothesis, which links spermatogenic failure with sex chromosome univalence during meiosis. In XYSxra testes a variable proportion of pachytene spermatocytes have the X and Y unpaired, and the elimination of these cells explains the variable reduction in testis size and fertility. In XOSxra testes all spermatocytes have a univalent sex chromosome, accounting for the almost total spermatogenic block in these mice. It is suggested that the affected spermatocytes are eliminated earlier in XYSxra testes than in XOSxra testes, because two univalent sex chromosomes have more unpaired sites than the univalent X alone.




Sutcliffe M. J., Darling S. M., Burgoyne P. S. (1991) Spermatogenesis in XY, XYSxra and XOSxra Mice: A quantitative analysis of spermatogenesis throughout puberty. Molecular Reprod. Dev. 30(2), 81–89.


Burgoyne P. S., Baker T. G. (1984) Meiotic pairing and gametogenic failure. In CW Evans and HG Dickinson (eds): “Controlling Events in Meiosis (38th Symp SOC Exp Biol).” Cambridge Company of Biologists, pp 349-362.


Miklos G. L. G. (1974) Sex-chromosome pairing and male fertility. Cytogen. Cell Genet. 13, 558-577.


Krzanowska H (1989) X-Y chromosome dissociation in mouse strains differing in efficiency of spermatogenesis: Elevated frequency of univalents in pubertal males. Gamete. Res. 23, 357-365.

Read Full Post »

3D “Squeeze” Helps Adult Cells Become Stem Cells

Reported by: Irina Robu, PhD

Scientists based at Ecole Polytechnique Fédérale de Lausanne led by Matthias Lutolf have been engineering 3D extracellular matrices—gels. These scientists report that they have developed a gel that boosts the ability of normal cells to revert into stem cells by simply “squeezing” them.

The detail of the scientists’ work appeared in Nature Materials, January 11, 2015 in an article entitled, “Defined three-dimensional microenvironments boost induction of pluripotency.” According to the authors they find that the physical cell confinement imposed by the 3D microenvironment boosts reprogramming through an accelerated mesenchymal-to-epithelial transition and increased epigenetic remodeling. They concluded that 3D microenvironmental signals act synergistically with reprogramming transcription factors to increase somatic plasticity.

The researchers discovered that they could reprogram the cells faster and more efficiently  by simply adjusting the composition, hence the stiffness and density of the surrounding gel. As a result, the gel exerts different forces on the cells, “squeezing” them.

The scientists propose that the 3D environment is key to this process, generating mechanical signals that work together with genetic factors to make the cell easier to transform into a stem cell. The technique can be applied to a large number of cells to produce stem cells on an industrial scale.




Read Full Post »

brown adipocyte protein CIDEA promotes lipid droplet fusion

Larry H. Bernstein, MD, FCAP, Curator





The brown adipocyte protein CIDEA promotes lipid droplet fusion via a phosphatidic acid-binding

Parker, Nicholas T Ktistakis, Ann M Dixon, Judith Klein-Seetharaman, Susan Henry, Mark Christian Dirk Dormann, Gil-Soo Han, Stephen A Jesch, George M Carman, Valerian Kagan, et al.

eLife 2015;10.7554/eLife.07485     http://dx.doi.org/10.7554/eLife.07485


Maintenance of energy homeostasis depends on the highly regulated storage and release of triacylglycerol primarily in adipose tissue and excessive storage is a feature of common metabolic disorders. CIDEA is a lipid droplet (LD)-protein enriched in brown adipocytes promoting the enlargement of LDs which are dynamic, ubiquitous organelles specialized for storing neutral lipids. We demonstrate an essential role in this process for an amphipathic helix in CIDEA, which facilitates embedding in the LD phospholipid monolayer and binds phosphatidic acid (PA). LD pairs are docked by CIDEA trans-complexes through contributions of the N-terminal domain and a C-terminal dimerization region. These complexes, enriched at the LD-LD contact site, interact with the cone-shaped phospholipid PA and likely increase phospholipid barrier permeability, promoting LD fusion by transference of lipids. This physiological process is essential in adipocyte differentiation as well as serving to facilitate the tight coupling of lipolysis and lipogenesis in activated brown fat.


Evolutionary pressures for survival in fluctuating environments that expose organisms to times of both feast and famine have selected for the ability to efficiently store and release energy in the form of triacyclglycerol (TAG). However, excessive or defective lipid storage is a key feature of common diseases such as diabetes, atherosclerosis and the metabolic syndrome (1). The organelles that are essential for storing and mobilizing intracellular fat are lipid droplets (LDs) (2). They constitute a unique cellular structure where a core of neutral lipids is stabilized in the hydrophilic cytosol by a phospholipid monolayer embedding LD-proteins. While most mammalian 46 cells present small LDs (<1 Pm) (3), white (unilocular) adipocytes contain a single giant LD occupying most of their cell volume. In contrast, brown (multilocular) adipocytes hold multiple LDs of lesser size, increasing the LD surface/volume ratio which facilitates the rapid consumption of lipids for adaptive thermogenesis (4).

The exploration of new approaches for the treatment of metabolic disorders has been stimulated by the rediscovery of active brown adipose tissue (BAT) in adult humans (5, 6) and by the induction of multilocular brown-like cells in white adipose tissue (WAT) (7). The multilocular morphology of brown adipocytes is a defining characteristic of these cells along with expression of genes such as Ucp1. The acquisition of a unilocular or multilocular phenotype is likely to be controlled by the regulation of LD growth. Two related proteins, CIDEA and CIDEC promote LD enlargement in adipocytes (8-10), with CIDEA being specifically found in BAT. Together with CIDEB, they form the CIDE (cell death-inducing DFF45-like effector) family of LD-proteins, which have emerged as important metabolic regulators (11).

Different mechanisms have been proposed for LD enlargement, including in situ neutral lipid synthesis, lipid uptake and LD-LD coalescence (12-14). The study of CIDE 62 proteins has revealed a critical role in the LD fusion process in which a donor LD progressively transfers its content to an acceptor LD until it is completely absorbed (15). However, the underlying mechanism by which CIDEC and CIDEA facilitate the interchange of triacylglycerol (TAG) molecules between LDs is not understood. In the present study, we have obtained a detailed picture of the different steps driving this LD enlargement process, which involves the stabilization of LD pairs, phospholipid binding, and the permeabilization of the LD monolayer to allow the transference of lipids.


CIDEA expression mimics the LD dynamics observed during the differentiation of brown adipocytes

Phases of CIDEA activity: LD targeting, LD-LD docking and LD growth

A cationic amphipathic helix in C-term drives LD targeting

The amphipathic helix is essential for LD enlargement

LD-LD docking is induced by the formation of CIDEA complexes

CIDEC differs from CIDEA in its dependence on the N-term domain

CIDEA interacts with Phosphatidic Acid

PA is required for LD enlargement


The Cidea gene is highly expressed in BAT, induced in WAT following cold exposure (46), and is widely used by researchers as a defining marker to discriminate brown or brite adipocytes from white adipocytes (7, 28). As evidence indicated a key role in the LD biology (47) we have characterized the mechanism by which CIDEA promotes LD enlargement, which involves the targeting of LDs, the docking of LD pairs and the transference of lipids between them. The lipid transfer step requires the interaction of CIDEA and PA through a cationic amphipathic helix. Independently of PA-binding, this helix is also responsible for anchoring CIDEA in the LD membrane. Finally, we demonstrate that the docking of LD pairs is driven by the formation of CIDEA complexes involving the N-term domain and a C-term interaction site.

CIDE proteins appeared during vertebrate evolution by the combination of an ancestor N-term domain and a LD-binding C-term domain (35). In spite of this, the full process of LD enlargement can be induced in yeast by the sole exogenous expression of 395 CIDEA, indicating that in contrast to SNARE-triggered vesicle fusion, LD fusion by lipid transference does not require the coordination of multiple specific proteins (48). Whereas vesicle fusion implicates an intricate restructuring of the phospholipid bilayers, LD fusion is a spontaneous process that the cell has to prevent by tightly controlling their phospholipid composition (23). However, although phospholipid-modifying enzymes have been linked with the biogenesis of LDs (49, 50), the implication of phospholipids in physiologic LD fusion processes has not been previously described.

Complete LD fusion by lipid transfer can last several hours, during which the participating LDs remain in contact. Our results indicate that both the N-term domain and a C-term dimerization site (aa 126-155) independently participate in the docking of LD pairs by forming trans interactions (Fig. 7). Certain mutations in the dimerization sites that do not eliminate the interaction result in a decrease on the TAG transference efficiency, reflected on the presence of small LDs docked to enlarged LDs. This suggests that in addition to stabilizing the LD-LD interaction, the correct conformation of the 409 CIDEA complexes is necessary for optimal TAG transfer. Furthermore, the formation of stable LD pairs is not sufficient to trigger LD fusion by lipid transfer. In fact, although LDs can be tightly packed in cultured adipocytes, no TAG transference across neighbour LDs is observed in the absence of CIDE proteins (15), showing that the phospholipid monolayer acts as a barrier impermeable to TAG. Our CG-MD simulations indicate that certain TAG molecules can escape the neutral lipid core of the LD and be integrated within the aliphatic chains of the phospholipid monolayer. This could be a transition state 416 prior to the TAG transference and our data indicates that the docking of the amphipathic helix in the LD membrane could facilitate this process. However, the infiltrated TAGs in LD membranes in the presence of mutant helices, or even in the absence of docking, suggests that this is not enough to complete the TAG transference.

To be transferred to the adjacent LD, the TAGs integrated in the hydrophobic region of the LD membrane should cross the energy barrier defined by the phospholipid polar heads, and the interaction of CIDEA with PA could play a role in this process, as suggested by the disruption of LD enlargement by the mutations preventing PA-binding (K167E/R171E/R175E) and the inhibition of CIDEA after PA depletion. The minor effects observed with more conservative substitutions in the helix, suggests that the presence of positive charges is sufficient to induce TAG transference by attracting anionic phospholipids present in the LD membrane. PA, which requirement is indicated by our PA-depletion experiments, is a cone-shaped anionic phospholipid which could locally destabilize the LD monolayer by favoring a negative membrane curvature incompatible with the spherical LD morphology (51). Interestingly, while the zwitterion PC, the main component of the monolayer, stabilizes the LD structure (23), the negatively charged PA promote their coalescence (29). This is supported by our CD-MD results which resulted in a deformation of the LD shape by the addition of PA. We propose a model in which the C-term amphipathic helix positions itself in the LD monolayer and interacts with PA molecules in its vicinity, which might include trans interactions with PA in the adjacent LD. The interaction with PA disturbs the integrity of the phospholipid barrier at the LD-LD interface, allowing the LD to LD transference of TAG molecules integrated in the LD membrane (Fig. 7). Additional alterations in the LD composition could be facilitating TAG transference, as differentiating adipocytes experience a reduction in saturated fatty acids in the LD phospholipids (52), and in their PC/PE ratio (53) which could increase the permeability of the LD membranes, and we previously observed that a change in the molecular structures of TAG results in an altered migration pattern to the LD surface (32).

During LD fusion by lipid transfer, the pressure gradient experienced by LDs favors TAG flux from small to large LDs (15). However, the implication of PA, a minor component of the LD membrane, could represent a control mechanism, as it is plausible that the cell could actively influence the TAG flux direction by differently regulating the levels of PA in large and small LDs, which could be controlled by the activity of enzymes such as AGPAT3 and LIPIN-1J (13, 30). This is a remarkable possibility, as a switch in the favored TAG flux direction could promote the acquisition of a multilocular phenotype and facilitate the browning of WAT (24). Interestingly, Cidea mRNA is the LD protein- encoding transcript that experiences the greatest increase during the cold-induced process by which multilocular BAT-like cells appear in WAT (24). Furthermore, in BAT, cold exposure instigates a profound increase in CIDEA protein levels that is independent of transcriptional regulation (54). The profound increase in CIDEA is coincident with elevated lipolysis and de novo lipogenesis that occurs in both brown and white adipose tissues after E-adrenergic receptor activation (55). It is likely that CIDEA has a central role in coupling these processes to package newly synthesized TAG in LDs for subsequent lipolysis and fatty acid oxidation. Importantly, BAT displays high levels of glycerol kinase activity (56, 57) that facilitates glycerol recycling rather than release into the blood stream, following induction of lipolysis (58), which occurs in WAT. Hence, the reported elevated glycerol released from cells depleted of CIDEA (28) is likely to be a result of decoupling lipolysis from the ability to efficiently store the products of lipogenesis in LDs and therefore producing a net increase in detected extracellular glycerol. This important role of CIDEA is supported by the marked depletion of TAG in the BAT of Cidea null mice following overnight exposure to 4 °C (28) and our findings that CIDEA-dependent LD enlargement is maintained in a lipase negative yeast strain.

Cidea and the genes that are required to facilitate high rates of lipolysis and lipogenesis are associated with the “browning” of white fat either following cold exposure (46) or in genetic models such as RIP140 knockout WAT (59). The induction of a brown- like phenotype in WAT has potential benefits in the treatment and prevention of metabolic disorders (60). Differences in the activity and regulation of CIDEC and CIDEA could also be responsible for the adoption of unilocular or multilocular phenotypes. In addition to their differential interaction with PLIN1 and 5, we have observed that CIDEC is more resilient to the deletion of the N-term than CIDEA, indicating that it may be less sensitive to regulatory posttranslational modifications of this domain. This robustness of CIDEC activity together with its potentiation by PLIN1, could facilitate the continuity of the LD enlargement in white adipocytes until the unilocular phenotype is achieved. In contrast, in brown adipocytes expressing CIDEA the process would be stopped at the multilocular stage for example due to post-translational modifications that modulate the function or stability of the protein or alteration of the PA levels in LDs.

Read Full Post »

Early Diagnosis

Reporter: Stephen J. Williams, Ph.D.

This post contains a curation of all Early Diagnosis posts on this site as well as a curation of the Early Detection Research Network.

Early Research Detection Network (EDRN)

Welcome to EDRN

The Early Detection Research Network (EDRN), an initiative of the National Cancer Institute (NCI), brings together dozens of institutions to help accelerate the translation of biomarker information into clinical applications and to evaluate new ways of testing cancer in its earliest stages and for cancer risk.

Getting Started…

Check out the EDRN Highlights — a listing of our accomplishments and milestones.


► Scientific Components ► For Public, Patients, Advocates
► Collaborative Opportunities (how to join EDRN) ► For Researchers


Highlights of the accomplishments of the Early Detection Research Network.

A brief list of major EDRN-developed assays that have been adapted for clinical use is described in the table below:

Detection/Biomarker Assay Discovery Refine/Adapt for Clin Use Clinical Validation Clinical Translation
Blood proPSA FDA approved
Urine PCA3 FDA approved
OVA1™ for Ovarian Cancer FDA approved
ROMA Algorithm for CA125 and HE4 Tests for Pelvic Mass Malignancies FDA approved
Blood/DCP and AFP-L3 for Hepatocellular Carcinoma FDA approved
Blood GP73 Together with AFP-L3 used  for monitoring cirrhotic patients for HCC in China
MiPS (Mi Prostate Score Urine test), Multiplex analysis of T2-ERG gene fusion, PCA3 and serum PSA In CLIA Lab
FISH to detect T2S:Erg fusion for Prostate Cancer In CLIA Lab
GSTP1 methylation for repeat biopsies in prostate cancer In CLIA Lab
Mitochondrial deletion for detection of prostate cancer In CLIA Lab
Somalogic 12-marker panel for Lung Cancer In CLIA Lab
80-gene panel for Lung Cancer In CLIA Lab
Vimentin Methylation Marker for Colon Cancer In CLIA Lab
Galectin-3 ligand for detection of adenomas and colon cancer In CLIA Lab
8-gene panel for Barrett’s Esophagus In CLIA Lab
SOPs for Blood (Serum, Plasma), Urine, Stool Frequently used by biomarker research community
EDRN Pre/Validation Specimen Reference Sets (specimens from well characterized and matched cases and controls from specific disease spectra) Frequently used by biomarker research community

Since its inception in 1999 EDRN has achieved several key milestones, summarized below:

1998 through 2000: Inception and Inauguration of EDRN

2001 to 2003: Meeting the Challenges to Harness and Share Emerging Scientific Knowledge

  • EDRN Second Report, Translational Research to Identify Early Cancer and Cancer Risk, October 2002, http://edrn.nci.nih.gov/docs.) published.
  • EDRN joined the Gordon Research Conferences to co-host the New Frontiers in Cancer detection and Diagnosis in 2002.


  • Guidelines Set for Studies Measuring Biomarker Predictive Power Journal of National Cancer Institute (Vol. 93, No. 14, July 18, 2001).
  • EDRN Associate Membership Program Initiated: This novel approach to make EDRN inclusive has been extremely successful. EDRN has now more than 120 Associate Members who are significantly contributing to EDRN efforts in biomarker discovery, development and validation.

2003 to 2004: Network Surges Ahead in Real-time

  • Collaborative Discovery and Validation Projects:  More than 100 collaborative projects spanned the various organ sites. These projects are monitored through the EDRN’s electronic System Information System (eSIS).
  • EDRN Virtual Specimen Bank and Validation Management System Launched: The EDRN Virtual Specimen Bank, also known as ERNE knowledge system, was deployed to 10 institutions in early 2003, allowing a common web-based query to search for available specimens across the EDRN Clinical Epidemiology and Validation Centers https://ginger.fhcrc.org/edrn/imp/GateServlet?pwd. VSIMS was created to allow multiple studies to be administered efficiently by minimizing development time with standardization of information and data management across multiple activities and research sites. This system encompasses all the security features of Food and Drug Administration (FDA)-required auditing systems.
  • Partnership on the Plasma Proteome Project (PPP) Initiative of the Human Proteome Organization (HUPO): PPP project was initiated to evaluate multiple technology platforms, develop bioinformatic tools and standards for protein identification, and create a database of the plasma proteome. The entire study was published in the August issue of the journal Proteomics August 2005, Volume 4 (4), pp 1045-1450.

2005 to 2008: An Investment in Prevention

  • In late 2006, EDRN’s Program for Rapid, Independent Diagnostic Evaluation (PRIDE), was established (http://grants.nih.gov/grants/guide/notice-files/NOT-CA-07-003.html ) as an administrative means to assist extramural investigators in successfully conducting cross-laboratory validation of biomarkers. Ten applications have been reviewed and five are being supported.
  • EDRN underwent external reviews in 2007 and 2008.
  • The Canary Foundation, Palo Alto, CA signed a Memorandum of Understanding with EDRN, NCI on supporting prostate cancer surveillance network of investigators from seven institutions. The tissue and serum will be collected during a three-year period and will be made available to extramural scientists for discovery and validation research.
  • The Lustgarten Foundation, N.Y., funded 6 institutions to generate monoclonal antibodies and associated hybridoma cell lines for pancreatic cancer antigens (biomarkers) identified by EDRN and non-EDRN investigators. These resources will be stored at the NCI-Frederick Facility for distribution to extramural investigators.

2009 to 2011: Realizing Investment for Clinical Use

  • Two biomarker tests approved by FDA and two IVDs pending FDA review.
  • Six biomarker tests offered by CLIA labs.
  • One biomarker test approved for clinical use outside the USA

A Curation of Posts on Early Detection of Cancer and Other Early Detection Networks is Included Below


BRCA 1 and 2 and Early Detection of Cancer

Early Detection of Prostate Cancer: American Urological Association (AUA) Guideline

Mechanism involved in Breast Cancer Cell Growth: Function in Early Detection & Treatment

Warning signs may lead to better early detection of ovarian cancer

Cancer Detection

Biomarker tool development for Early Diagnosis of Pancreatic Cancer: Van Andel Institute and Emory University

China, India, and Russia account for 46% of all new cancer cases globally, as well as 52% of cancer-related mortality per 4/2014 Lancet Oncology article


Read Full Post »

New Generation of Platinated Compounds to Circumvent Resistance

Curator/Writer: Stephen J. Williams, Ph.D.

Resistance to chemotherapeutic drugs continues to be a major hurdle in the treatment of neoplastic disorders, irregardless if the drug is a member of the cytotoxic “older” drugs or the cytostatic “newer” personalized therapies like the tyrosine kinase inhibitors.  For the platinatum compounds such as cisplatin and carboplatin, which are mainstays in therapeutic regimens for ovarian and certain head and neck cancers, development of resistance is often regarded as the final blow, as new options for these diseases have been limited.

Although there are many mechanisms by which resistance to platinated compounds may develop the purpose of this posting is not to do an in-depth review of this area except to refer the reader to the book   Ovarian Cancer and just to summarize the well accepted mechanisms of cisplatin resistance including:

  • Decreased cellular cisplatin influx
  • Increased cellular cisplatin efflux
  • Increased cellular glutathione and subsequent conjugation, inactivation
  • Increased glutathione-S-transferase activity (GST) and subsequent inactivation, conjugation
  • Increased γ-GGT
  • Increased metallothionenes with subsequent conjugation, inactivation
  • Increased DNA repair: increased excision repair
  • DNA damage tolerance: loss of mismatch repair (MMR)
  • altered cell signaling activities and cell cycle protein expression

Williams, S.J., and Hamilton, T.C. Chemotherapeutic resistance in ovarian cancer. In: S.C. Rubin, and G.P. Sutton (eds.), Ovarian Cancer, pp.34-44. Lippincott, Wilkins, and Williams, New York, 2000.

Also for a great review on clinical platinum resistance by Drs. Maritn, Hamilton and Schilder please see the following Clinical Cancer Research link here.

This curation represents the scientific rationale for the development of a new class of platinated compounds which are meant to circumvent mechanisms of resistance, in this case the loss of mismatch repair (MMR) and increased tolerance to DNA damage.

An early step in the production of cytotoxicity by the important anticancer drug cisplatin and its analog carboplatin is the formation of intra- and inter-strand adducts with tumor cell DNA 1-3. This damage triggers a cascade of events, best characterized by activation of damage-sensing kinases (reviewed in 4), p53 stabilization, and induction of p53-related genes involved in apoptosis and cell cycle arrest, such as bax and the cyclin-dependent kinase inhibitor p21waf1/cip1/sdi1 (p21), respectively 5,6. DNA damage significantly induces p21 in various p53 wild-type tumor cell lines, including ovarian carcinoma cells, and this induction is responsible for the cell cycle arrest at G1/S and G2/M borders, allowing time for repair 7,8.  DNA lesions have the ability of  to result in an opening of chromatin structure, allowing for transcription factors to enter 56-58.  Therefore the anti-tumoral ability of cisplatin and other DNA damaging agents is correlated to their ability to bind to DNA and elicit responses, such as DNA breaks or DNA damage responses which ultimately lead to cell cycle arrest and apoptosis.  Therefore either repair of such lesions, the lack of recognition of such lesions, or the cellular tolerance of such lesions can lead to resistance of these agents.


Mechanisms of Cisplatin Sensitivity and Resistance. Red arrows show how a DNA lesion results in chemo-sensitivity while the beige arrow show common mechanisms of resistance including increased repair of the lesion, effects on expression patterns, and increased inactivation of the DNA damaging agent by conjugation reactions


















Increased DNA Repair Mechanisms of Platinated Lesion Lead to ChemoResistance



Description of Different Types of Cellular DNA Repair Pathways. Nucleotide Excision Repair is commonly up-regulated in highly cisplatin resistant cells












Loss of Mismatch Repair Can Lead to DNA Damage Tolerance

dnadamage tolerance









In the following Cancer Research paper Dr. Vaisman in the lab of Dr. Steve Chaney at North Carolina (and in collaboration with Dr. Tom Hamilton) describe how cisplatin resistance may arise from loss of mismatch repair and how oxaliplatin lesions are not recognized by the mismatch repair system.
Cancer Res. 1998 Aug 15;58(16):3579-85.

The role of hMLH1, hMSH3, and hMSH6 defects in cisplatin and oxaliplatin resistance: correlation with replicative bypass of platinum-DNA adducts.


Defects in mismatch repair are associated with cisplatin resistance, and several mechanisms have been proposed to explain this correlation. It is hypothesized that futile cycles of translesion synthesis past cisplatin-DNA adducts followed by removal of the newly synthesized DNA by an active mismatch repair system may lead to cell death. Thus, resistance to platinum-DNA adducts could arise through loss of the mismatch repair pathway. However, no direct link between mismatch repair status and replicative bypass ability has been reported. In this study, cytotoxicity and steady-state chain elongation assays indicate that hMLH1 or hMSH6 defects result in 1.5-4.8-fold increased cisplatin resistance and 2.5-6-fold increased replicative bypass of cisplatin adducts. Oxaliplatin adducts are not recognized by the mismatch repair complex, and no significant differences in bypass of oxaliplatin adducts in mismatch repair-proficient and -defective cells were found. Defects in hMSH3 did not alter sensitivity to, or replicative bypass of, either cisplatin or oxaliplatin adducts. These observations support the hypothesis that mismatch repair defects in hMutL alpha and hMutS alpha, but not in hMutS beta, contribute to increased net replicative bypass of cisplatin adducts and therefore to drug resistance by preventing futile cycles of translesion synthesis and mismatch correction.



The following are slides I had co-prepared with my mentor Dr. Thomas C. Hamilton, Ph.D. of Fox Chase Cancer Center on DNA Mismatch Repair, Oxaliplatin and Ovarina Cancer.








Multiple Platinum Analogs of Cisplatin (like Oxaliplatin )Had Been Designed to be Sensitive in MMR Deficient Tumors












































Please see below video on 2015 Nobel Laureates and their work to elucidate the celluar DNA repair mechanisms.

Clinical genetics expert Kenneth Offit gives an overview of Lynch syndrome, a genetic disorder that can cause colon (HNPCC) and other cancers by defects in the MSH2 DNA mismatch repair gene. (View Video)




  1. Johnson, S. W. et al. Relationship between platinum-DNA adduct formation, removal, and cytotoxicity in cisplatin sensitive and resistant human ovarian cancer cells. Cancer Res 54, 5911-5916 (1994).
  2. Eastman, A. The formation, isolation and characterization of DNA adducts produced by anticancer platinum complexes. Pharmacology and Therapeutics 34, 155-166 (1987).
  3. Zhen, W. et al. Increased gene-specific repair of cisplatin interstrand cross-links in cisplatin-resistant human ovarian cancer cell lines. Molecular and Cellular Biology 12, 3689-3698 (1992).
  4. Durocher, D. & Jackson, S. P. DNA-PK, ATM and ATR as sensors of DNA damage: variations on a theme? Curr Opin Cell Biol 13, 225-231 (2001).
  5. el-Deiry, W. S. p21/p53, cellular growth control and genomic integrity. Curr Top Microbiol Immunol 227, 121-37 (1998).
  6. Ewen, M. E. & Miller, S. J. p53 and translational control. Biochim Biophys Acta 1242, 181-4 (1996).
  7. Gartel, A. L., Serfas, M. S. & Tyner, A. L. p21–negative regulator of the cell cycle. Proc Soc Exp Biol Med 213, 138-49 (1996).
  8. Chang, B. D. et al. p21Waf1/Cip1/Sdi1-induced growth arrest is associated with depletion of mitosis-control proteins and leads to abnormal mitosis and endoreduplication in recovering cells. Oncogene 19, 2165-70 (2000).
  9. Davies, N. P., Hardman, L. C. & Murray, V. The effect of chromatin structure on cisplatin damage in intact human cells. Nucleic Acids Res 28, 2954-2958 (2000).
  10. Vichi, P. et al. Cisplatin- and UV-damaged DNA lure the basal transcription factor TFIID/TBP. Embo J 16, 7444-7456 (1997).
  11. Xiao, G. et al. A DNA damage signal is required for p53 to activate gadd45. Cancer Res 60, 1711-9 (2000).

Other articles in this Open Access Journal on ChemoResistance Include:

Cancer Stem Cells as a Mechanism of Resistance

An alternative approach to overcoming the apoptotic resistance of pancreatic cancer

Mutation D538G – a novel mechanism conferring acquired Endocrine Resistance causes a change in the Estrogen Receptor and Treatment of Breast Cancer with Tamoxifen

Can IntraTumoral Heterogeneity Be Thought of as a Mechanism of Resistance?

Nitric Oxide Mitigates Sensitivity of Melanoma Cells to Cisplatin

Heroes in Medical Research: Barnett Rosenberg and the Discovery of Cisplatin

Read Full Post »

Older Posts »