3D “Squeeze” Helps Adult Cells Become Stem Cells
Reported by: Irina Robu, PhD
Scientists based at Ecole Polytechnique Fédérale de Lausanne led by Matthias Lutolf have been engineering 3D extracellular matrices—gels. These scientists report that they have developed a gel that boosts the ability of normal cells to revert into stem cells by simply “squeezing” them.
The detail of the scientists’ work appeared in Nature Materials, January 11, 2015 in an article entitled, “Defined three-dimensional microenvironments boost induction of pluripotency.” According to the authors they find that the physical cell confinement imposed by the 3D microenvironment boosts reprogramming through an accelerated mesenchymal-to-epithelial transition and increased epigenetic remodeling. They concluded that 3D microenvironmental signals act synergistically with reprogramming transcription factors to increase somatic plasticity.
The researchers discovered that they could reprogram the cells faster and more efficiently by simply adjusting the composition, hence the stiffness and density of the surrounding gel. As a result, the gel exerts different forces on the cells, “squeezing” them.
The scientists propose that the 3D environment is key to this process, generating mechanical signals that work together with genetic factors to make the cell easier to transform into a stem cell. The technique can be applied to a large number of cells to produce stem cells on an industrial scale.
Source
This is very insightful. There is no doubt that there is the bias you refer to. 42 years ago, when I was postdocing in biochemistry/enzymology before completing my residency in pathology, I knew that there were very influential mambers of the faculty, who also had large programs, and attracted exceptional students. My mentor, it was said (although he was a great writer), could draft a project on toilet paper and call the NIH. It can’t be true, but it was a time in our history preceding a great explosion. It is bizarre for me to read now about eNOS and iNOS, and about CaMKII-á, â, ã, ä – isoenzymes. They were overlooked during the search for the genome, so intermediary metabolism took a back seat. But the work on protein conformation, and on the mechanism of action of enzymes and ligand and coenzyme was just out there, and became more important with the research on signaling pathways. The work on the mechanism of pyridine nucleotide isoenzymes preceded the work by Burton Sobel on the MB isoenzyme in heart. The Vietnam War cut into the funding, and it has actually declined linearly since.
A few years later, I was an Associate Professor at a new Medical School and I submitted a proposal that was reviewed by the Chairman of Pharmacology, who was a former Director of NSF. He thought it was good enough. I was a pathologist and it went to a Biochemistry Review Committee. It was approved, but not funded. The verdict was that I would not be able to carry out the studies needed, and they would have approached it differently. A thousand young investigators are out there now with similar letters. I was told that the Department Chairmen have to build up their faculty. It’s harder now than then. So I filed for and received 3 patents based on my work at the suggestion of my brother-in-law. When I took it to Boehringer-Mannheim, they were actually clueless.