Advertisements
Feeds:
Posts
Comments

Posts Tagged ‘Mouse’


brown adipocyte protein CIDEA promotes lipid droplet fusion

Larry H. Bernstein, MD, FCAP, Curator

LPBI

 

 

 

The brown adipocyte protein CIDEA promotes lipid droplet fusion via a phosphatidic acid-binding

Parker, Nicholas T Ktistakis, Ann M Dixon, Judith Klein-Seetharaman, Susan Henry, Mark Christian Dirk Dormann, Gil-Soo Han, Stephen A Jesch, George M Carman, Valerian Kagan, et al.

eLife 2015;10.7554/eLife.07485     http://dx.doi.org/10.7554/eLife.07485

 

Maintenance of energy homeostasis depends on the highly regulated storage and release of triacylglycerol primarily in adipose tissue and excessive storage is a feature of common metabolic disorders. CIDEA is a lipid droplet (LD)-protein enriched in brown adipocytes promoting the enlargement of LDs which are dynamic, ubiquitous organelles specialized for storing neutral lipids. We demonstrate an essential role in this process for an amphipathic helix in CIDEA, which facilitates embedding in the LD phospholipid monolayer and binds phosphatidic acid (PA). LD pairs are docked by CIDEA trans-complexes through contributions of the N-terminal domain and a C-terminal dimerization region. These complexes, enriched at the LD-LD contact site, interact with the cone-shaped phospholipid PA and likely increase phospholipid barrier permeability, promoting LD fusion by transference of lipids. This physiological process is essential in adipocyte differentiation as well as serving to facilitate the tight coupling of lipolysis and lipogenesis in activated brown fat.

 

Evolutionary pressures for survival in fluctuating environments that expose organisms to times of both feast and famine have selected for the ability to efficiently store and release energy in the form of triacyclglycerol (TAG). However, excessive or defective lipid storage is a key feature of common diseases such as diabetes, atherosclerosis and the metabolic syndrome (1). The organelles that are essential for storing and mobilizing intracellular fat are lipid droplets (LDs) (2). They constitute a unique cellular structure where a core of neutral lipids is stabilized in the hydrophilic cytosol by a phospholipid monolayer embedding LD-proteins. While most mammalian 46 cells present small LDs (<1 Pm) (3), white (unilocular) adipocytes contain a single giant LD occupying most of their cell volume. In contrast, brown (multilocular) adipocytes hold multiple LDs of lesser size, increasing the LD surface/volume ratio which facilitates the rapid consumption of lipids for adaptive thermogenesis (4).

The exploration of new approaches for the treatment of metabolic disorders has been stimulated by the rediscovery of active brown adipose tissue (BAT) in adult humans (5, 6) and by the induction of multilocular brown-like cells in white adipose tissue (WAT) (7). The multilocular morphology of brown adipocytes is a defining characteristic of these cells along with expression of genes such as Ucp1. The acquisition of a unilocular or multilocular phenotype is likely to be controlled by the regulation of LD growth. Two related proteins, CIDEA and CIDEC promote LD enlargement in adipocytes (8-10), with CIDEA being specifically found in BAT. Together with CIDEB, they form the CIDE (cell death-inducing DFF45-like effector) family of LD-proteins, which have emerged as important metabolic regulators (11).

Different mechanisms have been proposed for LD enlargement, including in situ neutral lipid synthesis, lipid uptake and LD-LD coalescence (12-14). The study of CIDE 62 proteins has revealed a critical role in the LD fusion process in which a donor LD progressively transfers its content to an acceptor LD until it is completely absorbed (15). However, the underlying mechanism by which CIDEC and CIDEA facilitate the interchange of triacylglycerol (TAG) molecules between LDs is not understood. In the present study, we have obtained a detailed picture of the different steps driving this LD enlargement process, which involves the stabilization of LD pairs, phospholipid binding, and the permeabilization of the LD monolayer to allow the transference of lipids.

 

CIDEA expression mimics the LD dynamics observed during the differentiation of brown adipocytes

Phases of CIDEA activity: LD targeting, LD-LD docking and LD growth

A cationic amphipathic helix in C-term drives LD targeting

The amphipathic helix is essential for LD enlargement

LD-LD docking is induced by the formation of CIDEA complexes

CIDEC differs from CIDEA in its dependence on the N-term domain

CIDEA interacts with Phosphatidic Acid

PA is required for LD enlargement

 

The Cidea gene is highly expressed in BAT, induced in WAT following cold exposure (46), and is widely used by researchers as a defining marker to discriminate brown or brite adipocytes from white adipocytes (7, 28). As evidence indicated a key role in the LD biology (47) we have characterized the mechanism by which CIDEA promotes LD enlargement, which involves the targeting of LDs, the docking of LD pairs and the transference of lipids between them. The lipid transfer step requires the interaction of CIDEA and PA through a cationic amphipathic helix. Independently of PA-binding, this helix is also responsible for anchoring CIDEA in the LD membrane. Finally, we demonstrate that the docking of LD pairs is driven by the formation of CIDEA complexes involving the N-term domain and a C-term interaction site.

CIDE proteins appeared during vertebrate evolution by the combination of an ancestor N-term domain and a LD-binding C-term domain (35). In spite of this, the full process of LD enlargement can be induced in yeast by the sole exogenous expression of 395 CIDEA, indicating that in contrast to SNARE-triggered vesicle fusion, LD fusion by lipid transference does not require the coordination of multiple specific proteins (48). Whereas vesicle fusion implicates an intricate restructuring of the phospholipid bilayers, LD fusion is a spontaneous process that the cell has to prevent by tightly controlling their phospholipid composition (23). However, although phospholipid-modifying enzymes have been linked with the biogenesis of LDs (49, 50), the implication of phospholipids in physiologic LD fusion processes has not been previously described.

Complete LD fusion by lipid transfer can last several hours, during which the participating LDs remain in contact. Our results indicate that both the N-term domain and a C-term dimerization site (aa 126-155) independently participate in the docking of LD pairs by forming trans interactions (Fig. 7). Certain mutations in the dimerization sites that do not eliminate the interaction result in a decrease on the TAG transference efficiency, reflected on the presence of small LDs docked to enlarged LDs. This suggests that in addition to stabilizing the LD-LD interaction, the correct conformation of the 409 CIDEA complexes is necessary for optimal TAG transfer. Furthermore, the formation of stable LD pairs is not sufficient to trigger LD fusion by lipid transfer. In fact, although LDs can be tightly packed in cultured adipocytes, no TAG transference across neighbour LDs is observed in the absence of CIDE proteins (15), showing that the phospholipid monolayer acts as a barrier impermeable to TAG. Our CG-MD simulations indicate that certain TAG molecules can escape the neutral lipid core of the LD and be integrated within the aliphatic chains of the phospholipid monolayer. This could be a transition state 416 prior to the TAG transference and our data indicates that the docking of the amphipathic helix in the LD membrane could facilitate this process. However, the infiltrated TAGs in LD membranes in the presence of mutant helices, or even in the absence of docking, suggests that this is not enough to complete the TAG transference.

To be transferred to the adjacent LD, the TAGs integrated in the hydrophobic region of the LD membrane should cross the energy barrier defined by the phospholipid polar heads, and the interaction of CIDEA with PA could play a role in this process, as suggested by the disruption of LD enlargement by the mutations preventing PA-binding (K167E/R171E/R175E) and the inhibition of CIDEA after PA depletion. The minor effects observed with more conservative substitutions in the helix, suggests that the presence of positive charges is sufficient to induce TAG transference by attracting anionic phospholipids present in the LD membrane. PA, which requirement is indicated by our PA-depletion experiments, is a cone-shaped anionic phospholipid which could locally destabilize the LD monolayer by favoring a negative membrane curvature incompatible with the spherical LD morphology (51). Interestingly, while the zwitterion PC, the main component of the monolayer, stabilizes the LD structure (23), the negatively charged PA promote their coalescence (29). This is supported by our CD-MD results which resulted in a deformation of the LD shape by the addition of PA. We propose a model in which the C-term amphipathic helix positions itself in the LD monolayer and interacts with PA molecules in its vicinity, which might include trans interactions with PA in the adjacent LD. The interaction with PA disturbs the integrity of the phospholipid barrier at the LD-LD interface, allowing the LD to LD transference of TAG molecules integrated in the LD membrane (Fig. 7). Additional alterations in the LD composition could be facilitating TAG transference, as differentiating adipocytes experience a reduction in saturated fatty acids in the LD phospholipids (52), and in their PC/PE ratio (53) which could increase the permeability of the LD membranes, and we previously observed that a change in the molecular structures of TAG results in an altered migration pattern to the LD surface (32).

During LD fusion by lipid transfer, the pressure gradient experienced by LDs favors TAG flux from small to large LDs (15). However, the implication of PA, a minor component of the LD membrane, could represent a control mechanism, as it is plausible that the cell could actively influence the TAG flux direction by differently regulating the levels of PA in large and small LDs, which could be controlled by the activity of enzymes such as AGPAT3 and LIPIN-1J (13, 30). This is a remarkable possibility, as a switch in the favored TAG flux direction could promote the acquisition of a multilocular phenotype and facilitate the browning of WAT (24). Interestingly, Cidea mRNA is the LD protein- encoding transcript that experiences the greatest increase during the cold-induced process by which multilocular BAT-like cells appear in WAT (24). Furthermore, in BAT, cold exposure instigates a profound increase in CIDEA protein levels that is independent of transcriptional regulation (54). The profound increase in CIDEA is coincident with elevated lipolysis and de novo lipogenesis that occurs in both brown and white adipose tissues after E-adrenergic receptor activation (55). It is likely that CIDEA has a central role in coupling these processes to package newly synthesized TAG in LDs for subsequent lipolysis and fatty acid oxidation. Importantly, BAT displays high levels of glycerol kinase activity (56, 57) that facilitates glycerol recycling rather than release into the blood stream, following induction of lipolysis (58), which occurs in WAT. Hence, the reported elevated glycerol released from cells depleted of CIDEA (28) is likely to be a result of decoupling lipolysis from the ability to efficiently store the products of lipogenesis in LDs and therefore producing a net increase in detected extracellular glycerol. This important role of CIDEA is supported by the marked depletion of TAG in the BAT of Cidea null mice following overnight exposure to 4 °C (28) and our findings that CIDEA-dependent LD enlargement is maintained in a lipase negative yeast strain.

Cidea and the genes that are required to facilitate high rates of lipolysis and lipogenesis are associated with the “browning” of white fat either following cold exposure (46) or in genetic models such as RIP140 knockout WAT (59). The induction of a brown- like phenotype in WAT has potential benefits in the treatment and prevention of metabolic disorders (60). Differences in the activity and regulation of CIDEC and CIDEA could also be responsible for the adoption of unilocular or multilocular phenotypes. In addition to their differential interaction with PLIN1 and 5, we have observed that CIDEC is more resilient to the deletion of the N-term than CIDEA, indicating that it may be less sensitive to regulatory posttranslational modifications of this domain. This robustness of CIDEC activity together with its potentiation by PLIN1, could facilitate the continuity of the LD enlargement in white adipocytes until the unilocular phenotype is achieved. In contrast, in brown adipocytes expressing CIDEA the process would be stopped at the multilocular stage for example due to post-translational modifications that modulate the function or stability of the protein or alteration of the PA levels in LDs.

Advertisements

Read Full Post »


matrix metalloproteinases role in vision

Larry H. Bernstein, MD, FCAP, LPBI

 

Optimal level activity of matrix metalloproteinases is critical for adult visual plasticity in the healthy and stroke-affected brain

” data-author-inst=”UniversityMedicalCenterGermany”>Michal G Fortuna, 

Siegrid Löwel
Department of Systems Neuroscience, Bernstein Focus Neurotechnology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
No competing interests declared

” data-author-inst=”UniversityofGttingenGermany”>SiegridLöwe

eLife 2015;10.7554/eLife.11290     http://elifesciences.org/content/early/2015/11/26/eLife.11290     http://dx.doi.org/10.7554/eLife.11290

 

The ability of the adult brain to undergo plastic changes is of particular interest in medicine, especially regarding recovery from injuries or improving learning and cognition. Matrix metalloproteinases (MMPs) have been associated with juvenile experience-dependent primary visual cortex (V1) plasticity, yet little is known about their role in this process in the adult V1. Activation of MMPs is a crucial step facilitating structural changes in a healthy brain; however, upon brain injury, upregulated MMPs promote the spread of a lesion and impair recovery. To clarify these seemingly opposing outcomes of MMPs-activation, we examined the effects of MMPs-inhibition on experience-induced plasticity in healthy and stoke-affected adult mice. In healthy animals, 7-day application of MMPs-inhibitor prevented visual plasticity. Additionally, treatment with MMPs-inhibitor once but not twice following stroke rescued plasticity, normally lost under these conditions. Our data imply that a fine balance of MMPs-activity is crucial for adult visual plasticity to occur.

 

Neuroplasticity is the ability of the brain to adapt both structurally and functionally to changing patterns of activity induced by the environment or intrinsic factors. In the clinical setting, plasticity is important for tissue repair and neural network rewiring, necessary for recovery and optimal post-injury brain function. The primary visual cortex (V1) is a widely used model region for studying sensory plasticity in young vs. adult brains (Hofer et al., 2006; Espinosa and Stryker, 2012; Levelt and Hübener, 2012). In mammals, V1 consists of a monocular and a binocular zone; neurons in the binocular zone respond to stimulation of both eyes but are dominated by the contralateral eye in rodents (Dräger, 1975, 1978). This ocular dominance (OD) can be modified in an experience-dependent manner, by depriving one eye of pattern vision for several days (known as monocular deprivation or MD), as originally observed by Wiesel and Hubel more than 50 years ago (Wiesel and Hubel, 1965). OD-plasticity has become one of the major paradigms for studying cortical plasticity. In standard-cage raised mice, OD-plasticity in binocular V1 is most pronounced in 4- 30 week-old animals; reduced, yet present, in early adulthood; and absent in animals 31 older than 110 days of age (Lehmann and Löwel, 2008). In 4-week-old mice, 3-4 days of MD are sufficient to induce a significant OD-shift towards the open eye (juvenile OD-plasticity), while 7 days of MD are needed in 3-month-old animals (adult 34 OD-plasticity) (Gordon and Stryker, 1996; Sawtell et al., 2003; Frenkel and Bear, 2004; Mrsic-Flogel et al., 2007; Sato and Stryker, 2008). Although the experimental paradigm is rather similar, molecular mechanisms underlying “juvenile” and “adult” OD-plasticity are different: in juvenile mice, OD-shifts are mostly mediated by 38 reductions in deprived eye responses while adult plasticity is predominantly mediated by an increase in open eye responses in V1 (Hofer et al., 2006; Espinosa and Stryker, 2012; Levelt and Hübener, 2012).

Activity driven modifications in neuronal circuits can be facilitated by degradation of the extracellular matrix (ECM) (Pizzorusso et al., 2002; de Vivo et al., 2013), which 4 provides structural and biochemical support for the cells (Frischknecht and Gundelfinger, 2012). Structural and molecular composition of the ECM changes during development, becoming denser and more rigid in the mature brain (Frischknecht and Gundelfinger, 2012; de Vivo et al., 2013). This structural composition is partially regulated by a family of zinc dependent endopeptidases, the matrix metalloproteinases (MMPs), and their enzymatic activity is crucial for proper development, function and maintenance of neuronal networks (Milward et al., 2007; Huntley, 2012). A recent study in juvenile rats showed that pharmacological inhibition of MMPs with a broad spectrum inhibitor during the MD-period did not influence the reduction of the closed-eye responses induced by 3 days of MD, yet it prevented the potentiation of the nondeprived eye responses in V1 after 7 days of MD (Spolidoro et al., 2012). Whether MMPs are involved in adult OD-plasticity, for which mechanisms are believed to be different (Hofer et al., 2006; Sato and Stryker, 2008; Ranson et al., 2012), is not yet known, and clarifying this point was the first goal of this study.

In addition to MMPs involvement in healthy brain function, their excessive activity can also be detrimental (Agrawal et al., 2008; Huntley, 2012). Both human and animal studies found upregulated activity of MMPs following inflammation, infectious diseases or brain trauma (Agrawal et al., 2008; Rosell and Lo, 2008; Morancho et al., 2010; Vandenbroucke and Libert, 2014), and pharmacological inhibition of MMPs shortly after brain injuries reduced infarct sizes and prompted better recovery (Romanic et al., 1998; Lo et al., 2002; Gu et al., 2005; Wang and Tsirka, 2005; Yong, 2005; Morancho et al., 2010; Chang et al., 2014; Vandenbroucke and Libert, 2014). Stroke can influence synaptic activities within the area directly affected by it, and also in a broader area surrounding the lesion (Witte et al., 2000; Murphy and Corbett, 2009). Likewise, impairments in experience-dependent plasticity after a cortical stroke also have been observed in distant brain regions (Jablonka et al., 2007; Greifzu et al., 2011): in 3-month-old mice, a focal stroke in the primary somatosensory cortex (S1) prevented both V1-plasticity and improvements of the 5 spatial frequency and contrast thresholds of the optomotor reflex of the open eye (Greifzu et al., 2011). Interestingly, some MMPs were shown to be upregulated within the first 24 hours after focal stroke (Cybulska-Klosowicz et al., 2011; Liguz-Lecznar et al., 2012). Thus, the second goal of our study was to test whether balancing the upregulated MMPs resulting from a focal stroke in S1 would rescue visual plasticity.

Using a combination of in vivo optical imaging of intrinsic signals and behavioral vision tests in adult mice, we observed that application of the broad spectrum MMPs-inhibitor GM6001 during the 7-day MD-period prevented both OD-plasticity and enhancements of the optomotor response of the open eye. In addition, a single treatment after the S1-stroke rescued plasticity in both paradigms, whereas treatment with the inhibitor two times diminished plasticity-promoting effect. Together, these data reveal a crucial role of MMPs in adult visual plasticity and suggest that MMPs-activity has to be within a narrow window for experience-induced plasticity to occur.

Inhibition of MMPs prevents experience-induced adult visual cortex plasticity

Inhibition of MMPs prevented experience-enabled improvements in visual capabilities

Brief inhibition of MMPs rescued experience-induced visual cortex plasticity after stroke

Inhibition of MMPs after induction of a cortical lesion rescued experience-induced improvements in visual capabilities in adult mice

 

The objective of this study was to examine if MMPs are crucial for adult visual plasticity, and if inhibition of their upregulation following cortical stroke may be beneficial for rescuing lost plasticity. A combination of in vivo optical imaging and behavioral vision tests revealed that balanced MMPs activity is essential for adult visual plasticity to occur in the healthy and stroke-affected brain. In healthy adult mice, MMPs-inhibition with GM6001 prevented both ocular dominance plasticity and experience-driven improvements of the optomotor reflex of the open eye after MD, indicating that MMPs activation is required for normal adult plasticity. In addition, blockade of elevated MMPs-activity after a cortical stroke rescued compromised plasticity. Specifically, a single but not two-times treatment with GM6001 after a cortical PT-lesion in the neighboring S1 region fully rescued experience-dependent ocular dominance plasticity in adult V1, which is normally lost under these conditions.

These observations suggest that MMPs-activity has to be within a narrow window to allow visual plasticity: if MMPs-activity is downregulated (with inhibitors) or upregulated (after stroke) experience-induced plastic changes are compromised. In a healthy brain, the enzymatic activity of MMPs has plasticity promoting effects (Milward et al., 2007; Huntley, 2012). Consequently to increased neuronal activity, activated MMPs can lessen physical barriers (loosen up the ECM) or via the degradation of certain receptors influence signaling pathways. Such changes within neuronal cells and their synapses thereby alter the structure and activity of neuronal networks (Milward et al., 2007; Huntley, 2012). Involvement of MMPs in synaptic circuit remodeling has been mainly studied in the hippocampus, yet their abundant expression in the central nervous system (CNS) indicates a much broader function. For instance, MMP9-deficient mice showed modestly reduced experience-dependent plasticity in the barrel cortex (Kaliszewska et al., 2012) and MMP3-deficient mice displayed abnormal neuronal morphology in the visual cortex and impaired plasticity induced by long-term monocular enucleation (Aerts et al., 2014). Here, we used a different approach to probe the role of MMPs in experience-induced changes in the visual system: we performed the experiments in wild type mice and treated them with the broad-spectrum inhibitor GM6001 or vehicle during 7 days of MD. Consistent with previous findings (Gordon and Stryker, 1996; Sawtell et al., 2003; Sato and Stryker, 2008), the OD-shift of vehicle-treated mice was mediated by open-eye potentiation. In contrast, there was no change in the open nor in the closed eye responses and hence no OD-plasticity in V1 after MD in GM6001-treated adult mice. This is in line with recent observations from juvenile rats, in which chronic treatment with GM6001 also prevented open eye potentiation after 7 days of MD (Spolidoro et al., 2012). However, treatment in this study only partially prevented the OD-shift, as there was no effect on the reduction of deprived eye responses (Spolidoro et al., 2012). A reduction in deprived eye responses in V1 is mostly observed in juvenile rodents after 3-4 days of MD (Gordon and Stryker, 1996), unless different raising conditions are used such as enriched environment or running wheel (Greifzu et al., 2014; 323 Kalogeraki et al., 2014). In adult, standard-cage raised mice, 6-7 days of MD are necessary for significant OD-shifts and changes are mainly mediated by increases of open eye responses in V1 (Gordon and Stryker, 1996; Sawtell et al., 2003; Sato and 326 Stryker, 2008). MMP9 activity was suggested in the potentiation of the open eye responses in juvenile rats, as treatment with GM6001 significantly reduced MMP9-mRNA expression only in the hemisphere where structural changes took place (Spolidoro et al., 2012). Since we observed a full blockade of plasticity after GM6001- treatment, it would be of interest to determine whether MMP9 is crucial for open-eye potentiation also in the adult brain. MMP9 has been widely investigated in various plasticity paradigms (Milward et al., 2007; Frischknecht and Gundelfinger, 2012; Huntley, 2012; Tsilibary et al., 2014) and one of the molecules shown to stimulate MMP9 secretion and expression in vitro and in vivo is tumor necrosis factor alpha (TNFalpha) (Hanemaaijer et al., 1993; Candelario-Jalil et al., 2007). TNFalpha signaling was found to play an important role in the open eye potentiation in juvenile (Kaneko et al., 2008), but not in adult V1 plasticity (Ranson et al., 2012), and since our data reveal that MMPs are indispensable for adult V1 plasticity, MMPs-activation in the adult brain is most likely not dependent on TNF alpha signaling. Accordingly, this adds to the notion that juvenile and adult V1 plasticity depend on different molecular mechanisms (Hofer et al., 2006; Sato and Stryker, 2008; Ranson et al., 342 2012). Together, our new data demonstrate a vital role of MMPs for adult visual cortex plasticity, in particular for the increase of open eye responses in V1 after MD, and notably expand the previous studies from juvenile rats.

Under normal conditions, MMPs-activity supports healthy brain development and function; yet a different outcome of MMPs action has been described for diseased brain (Agrawal et al., 2008). Under pathophysiological conditions like inflammation, infection or stroke, uncontrolled MMPs driven proteolysis can lead to negative consequences (Rosenberg et al., 1996; Rosenberg, 2002; Agrawal et al., 2008). Excessive MMPs-activity after stroke caused blood brain barrier disruption, upregulation of inflammatory mediators, excitotoxicity and eventually cell death; (Romanic et al., 1998; Lo et al., 2002; Gu et al., 2005; Wang and Tsirka, 2005; Yong, 354 2005; Morancho et al., 2010; Chang et al., 2014; Vandenbroucke and Libert, 2014). Recent studies reported increased enzymatic MMP9 activity within 24 hours after a PT-stroke, and application of a broad spectrum MMPs-inhibitor (FN-439) applied at the time of stroke induction, partially rescued impaired barrel cortex plasticity (Cybulska-Klosowicz et al., 2011; Liguz-Lecznar et al., 2012). Here we tested whether inhibition of upregulated MMPs-activity (resulting from PT-stroke) may rescue cortical plasticity also when the treatment starts after lesion induction. Indeed, a single GM6001-treatment after PT in the neighboring S1 fully rescued plasticity in both of our experimental paradigms, OD- and interocular plasticity. Importantly, successful treatment did not have to start immediately after stroke induction (1h) because treatment 24h after stroke had the same beneficial effect, highlighting the therapeutic potential of brief MMPs-inhibition for stroke recovery. Beneficial treatment was, however, dependent on the number of injections: a single but not two-times injection of the MMPs-inhibitor rescued OD-plasticity. The reduced plasticity- promoting effect in V1 of mice treated twice with GM6001 is likely due to too excessive MMPs-downregulation, which in turn interfered with MMPs facilitation of MD-induced plasticity. Consistent with this interpretation, it was reported that a particular dosage, timing as well as duration of MMPs-inhibition mattered for reduciton of lesion sizes after intracerebral hemorrhage, blood brain barrier permability or neurovascular remodeling in post-stroke period (Wang and Tsirka, 2005; Zhao et al., 2006; Sood et al., 2008; Chang et al., 2014). Together with the results from healthy animals, our data suggest that the plasticity-promoting effects of MMPs are dependent on a well-balanced level of activation, and if that balance is disturbed, experience-induced plastic changes are compromised.

There are several plausible mechanisms by which MMPs inhibition rescues OD- plasticity after stroke in S1. Stroke influences brain function in numerous ways e.g., causing inflammation and apoptosis, or disrupting the tightly regulated balance of neuronal inhibition and excitation (Neumann-Haefelin et al., 1995; Schiene et al., 1996; Witte and Stoll, 1997; Que et al., 1999a; Que et al., 1999b; Witte et al., 2000) also in perilesional areas (Murphy and Corbett, 2009). One of the major consequences of ischemic damage is an elevated level of the neurotransmitter glutamate, leading to excitotoxicity and neuronal death (Lai et al., 2014). On the other hand, stroke can lead to increased tonic inhibition in the peri-infarct zone, and reducing this inhibition can promote functional recovery (Clarkson et al., 2010). In addition, focal ischemia can induce spreading depression within ipsilateral cortex (Schroeter et al., 1995) and a recent study showed that this phenomenon 391 upregulated MMPs, leading to a breakdown of the blood brain barrier, edema, and vascular leakage, which was suppressed by GM6001 treatment (Gursoy-Ozdemir et al., 2004). Thus, it is likely that treatment with GM6001 shortly after the stroke – as in the present study – downregulated MMPs, thus reduced spreading depression, improved disturbed excitation/inhibition balance and allowed plastic changes to 396 occur.

Although we observed clear functional rescue of OD-plasticity after GM6001- treatment, there was no apparent effect on the lesion size: the PT-lesions in GM6001-treated mice were not smaller compared to vehicle-injected mice. This is in line with a recent observation, that a different broad-spectrum MMPs-inhibitor (FN- 143) did not attenuate brain damage resulting from photothrombosis, but partially rescued barrel cortex plasticity (Cybulska-Klosowicz et al., 2011). The present results, together with the above mentioned study, are not easy to reconcile with findings where MMPs-inhibitors reduced the volume of a brain injury (Gu et al., 2005; Wang and Tsirka, 2005; Vandenbroucke and Libert, 2014). The difference might arise from the method used for stroke induction, dosage of inhibitors, timing and duration of the treatment and severity of the lesion.

Behavioral vision tests additionally revealed an involvement of MMPs for interocular 410 plasticity during MD. The optomotor reflex is known to be mediated by subcortical pathways (Giolli et al., 2005). While visual capabilities measured by optomotry mainly reflect the properties of the retinal ganglion cells that project to these subcortical structures (Douglas et al., 2005), daily testing in the optomotor setup after MD induces a cortex-dependent and experience-enabled enhancement of spatial vision through the open eye (Prusky et al., 2006). Although inflammation was shown to interfere with the experience-enabled optomotor changes (Greifzu et al., 2011), little is known about the cellular origins or signaling pathways responsible for this plasticity paradigm. Here, we found that daily application of the MMPs-inhibitor during MD prevented enhancements in both the spatial frequency and contrast sensitivity thresholds of the optomotor reflex of the open eye, while vehicle-treated control mice displayed the typical experience-enabled optomotor improvements. On the other hand, treatment of mice with the same inhibitor once or twice following cortical stroke rescued the impaired optomotor improvements. Thus, in contrast to the OD-plasticity results, rescue of optomotor improvements was present regardless of the duration of the treatment, adding to the idea that separate mechanisms and different neuronal circuits are responsible for OD- and interocular plasticity (Greifzu et al., 2011; Kang et al., 2013; Greifzu et al., 2014). Together our results establish a novel function of MMPs in experience-enabled enhancements of the optomotor reflex of the open eye after MD in adult mice.

 

In conclusion, our present data highlight a critical role of MMPs in adult visual plasticity. They further suggest that upregulation of MMPs-activity shortly after a cortical lesion compromises experience-induced visual plasticity, which in turn can be rescued by brief MMPs-inhibition. Precise regulation of MMPs-activity therefore seems to be essential for facilitating plasticity in the adult brain and offers new opportunities in treatment and recovery for stroke. It remains to be determined which particular MMPs account for the present results.

 

Read Full Post »