Advertisements
Feeds:
Posts
Comments

Archive for the ‘Cancer Screening’ Category


One blood sample can be tested for a comprehensive array of cancer cell biomarkers: R&D at WPI

Curator: Marzan Khan, B.Sc

 

A team of mechanical engineers at Worcester Polytechnic Institute (WPI) have developed a fascinating technology – a liquid biopsy chip that captures and detects metastatic cancer cells, just from a small blood sample of cancer patients(1). This device is a recent development in the scientific field and holds tremendous potential that will allow doctors to spot signs of metastasis for a variety of cancers at an early stage and initiate an appropriate course of treatment(1).

Metastasis occurs when cancer cells break away from their site of origin and spread to other parts of the body via the lymph or the bloodstream, where they give rise to secondary tumors(2). By this time, the cancer is at an advanced stage and it becomes increasingly difficult to fight the disease. The cells that are shed by primary and metastatic cancers are called circulating tumor cells (CTCs) and their numbers lie in the range of 1–77,200/m(3). The basis of the liquid biopsy chip test is to capture these circulating tumor cells in the patient’s blood and identify the cell type through specific interaction with antibodies(4).

The chip is comprised of individual test units or small elements, about 3 millimeters wide(4). Each small element contains a network of carbon nanotube sensors in a well which are functionalized with antibodies(4). These antibodies will bind cell-surface antigens or protein markers unique for each type of cancer cell. Specific interaction between a cell surface protein and its corresponding antibody is a thermodynamic event that causes a change in free energy which is transduced into electricity(3). This electrical signature is picked up by the semi-conducting carbon nanotubes and can be seen as electrical spikes(4). Specific interactions create an increase in electrical signal, whereas non-specific interactions cause a decrease in signal or no change at all(4). Capture efficiency of cancer cells with the chip has been reported to range between 62-100%(4).

The liquid biopsy chip is also more advanced than microfluidics for several reasons. Firstly, the nanotube-chip arrays can capture as well as detect cancer cells, while microfluidics can only capture(4). Samples do not need to be processed for labeling or fixation, so the cell structures are preserved(4). Unlike microfluidics, these nanotubes will also capture tiny structures called exosomes spanning the nanometer range that are produced from cancer cells and carry the same biomarkers(4).

Pancreatic cancer is the fourth leading cause of cancer-associated deaths in the United states, with a survival window of 5 years in only 6% of the cases with treatment(5). In most patients, the disease has already metastasized at the time of diagnosis due to the lack of early-diagnostic markers, affecting some of the major organs such as liver, lungs and the peritoneum(5,6). Despite surgical resection of the primary tumor, the recurrence of local and metastatic tumors is rampant(5). Metastasis is the major cause of mortality in cancers(5). The liquid biopsy chip, that identifies CTCs can thus become an effective diagnostic tool in early detection of cancer as well as provide information into the efficacy of treatment(3). At present, ongoing experiments with this device involve testing for breast cancers but Dr. Balaji Panchapakesan and his team of engineers at WPI are optimistic about incorporating pancreatic and lung cancers into their research.

REFERENCES

1.Nanophenotype. Researchers build liquid biopsy chip that detects metastatic cancer cells in blood: One blood sample can be tested for a comprehensive array of cancer cell biomarkers. 27 Dec 2016. Genesis Nanotechnology,Inc

https://genesisnanotech.wordpress.com/2016/12/27/researchers-build-liquid-biopsy-chip-that-detects-metastatic-cancer-cells-in-blood-one-blood-sample-can-be-tested-for-a-comprehensive-array-of-cancer-cell-markers/

2.Martin TA, Ye L, Sanders AJ, et al. Cancer Invasion and Metastasis: Molecular and Cellular Perspective. In: Madame Curie Bioscience Database [Internet]. Austin (TX): Landes Bioscience; 2000-2013.

https://www.ncbi.nlm.nih.gov/books/NBK164700/

3.F Khosravi, B King, S Rai, G Kloecker, E Wickstrom, B Panchapakesan. Nanotube devices for digital profiling of cancer biomarkers and circulating tumor cells. 23 Dec 2013. IEEE Nanotechnology Magazine 7 (4), 20-26

Nanotube devices for digital profiling of cancer biomarkers and circulating tumor cells

4.Farhad Khosravi, Patrick J Trainor, Christopher Lambert, Goetz Kloecker, Eric Wickstrom, Shesh N Rai and Balaji Panchapakesan. Static micro-array isolation, dynamic time series classification, capture and enumeration of spiked breast cancer cells in blood: the nanotube–CTC chip. 29 Sept 2016. Nanotechnology. Vol 27, No.44. IOP Publishing Ltd

http://iopscience.iop.org/article/10.1088/0957-4484/27/44/44LT03/meta

5.Seyfried, T. N., & Huysentruyt, L. C. (2013). On the Origin of Cancer Metastasis. Critical Reviews in Oncogenesis18(1-2), 43–73.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597235/

6.Deeb, A., Haque, S.-U., & Olowoure, O. (2015). Pulmonary metastases in pancreatic cancer, is there a survival influence? Journal of Gastrointestinal Oncology6(3), E48–E51. http://doi.org/10.3978/j.issn.2078-6891.2014.114

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4397254/

Other related articles published in this Open Access Online Scientific Journal include the following:

 

Liquid Biopsy Chip detects an array of metastatic cancer cell markers in blood – R&D @Worcester Polytechnic Institute, Micro and Nanotechnology Lab

Reporters: Tilda Barliya, PhD and Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/12/28/liquid-biopsy-chip-detects-an-array-of-metastatic-cancer-cell-markers-in-blood-rd-worcester-polytechnic-institute-micro-and-nanotechnology-lab/

 

Trovagene’s ctDNA Liquid Biopsy urine and blood tests to be used in Monitoring and Early Detection of Pancreatic Cancer

Reporters: David Orchard-Webb, PhD and Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/07/06/trovagenes-ctdna-liquide-biopsy-urine-and-blood-tests-to-be-used-in-monitoring-and-early-detection-of-pancreatic-cancer/

 

Liquid Biopsy Assay May Predict Drug Resistance

Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2015/11/06/liquid-biopsy-assay-may-predict-drug-resistance/


New insights in cancer, cancer immunogenesis and circulating cancer cells

Larry H. Bernstein, MD, FCAP, Curator

https://pharmaceuticalintelligence.com/2016/04/15/new-insights-in-cancer-cancer-immunogenesis-and-circulating-cancer-cells/

 

Prognostic biomarker for NSCLC and Cancer Metastasis

Larry H. Bernstein, MD, FCAP, Curato

https://pharmaceuticalintelligence.com/2016/03/24/prognostic-biomarker-for-nsclc-and-cancer-metastasis/

 

Monitoring AML with “cell specific” blood test

Larry H. Bernstein, MD, FCAP, Curator

https://pharmaceuticalintelligence.com/2016/01/23/monitoring-aml-with-cell-specific-blood-test/

 

Diagnostic Revelations

Larry H. Bernstein, MD, FCAP, Curator

https://pharmaceuticalintelligence.com/2015/11/02/diagnostic-revelations/

 

Circulating Biomarkers World Congress, March 23-24, 2015, Boston: Exosomes, Microvesicles, Circulating DNA, Circulating RNA, Circulating Tumor Cells, Sample Preparation

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2015/03/03/circulating-biomarkers-world-congress-march-23-24-2015-boston-exosomes-microvesicles-circulating-dna-circulating-rna-circulating-tumor-cells-sample-preparation/

 

 

 

Advertisements

Read Full Post »


A novel 5-gene pancreatic adenocarcinoma classifier: Meta-analysis of transcriptome data – Clinical Genomics Research @BIDMC

Curator: Tilda Barliya, PhD

Analysis of  Bhasin et al paper and Literature search

Table 1: 5-genes classifiers as biomarkers for PDAC:

Gene symbol Gene name Subcellular localization
ECT2 Epithelial cell transforming sequence 2 oncogene Nucleus, cytoplasm
AHNAK2 AHNAKE nucleoprotein 2 Plasma membrane, cytoplasm
POSTN Periostin, osteoblast specific factor Extracellular space
TMPRSS4 Transmembrane protease, serine 4 Plasma membrane

 

SERPINB5 Serpin peptidase inhibitor, clade B (ovalbumin) member 5 Extracellular space


Introduction
:

  • Bhasin et al, conducted a beautiful study using a powerful meta-analysis from different sources to identify the “important/classifier” genes associated with Pancreatic Cancer (PDAC).
  • The authors identified 5 genes that were considered as good classifiers (table 1).
  • It is important to note that the meta-analysis was performed on tissue and microdissection samples.
  • In their summary, the authors aim to validate these genes in blood/urine samples.
  • While these genes might be over expressed in tissue samples it may not be true to their existence in blood and careful examination and validation is required.
  • Liquid biopsies are emerging as the go-to use tools for disease detection, mostly aimed for early diagnosis.
  • Liquid biopsies are non-invasive biopsies of blood, urine (potentially saliva) and their “exotic” components, i.e miRNA, exosomes etc.
  • Since Liquid biopsies are non-invasive, they are painless and patients are more complied.
  • It is important to note that there is a gap between the expression of a gene or a protein in tissue section and their expression in the blood and may not necessarily correlate.
  • It will be very interesting to follow their research and future outcomes.

Additional References:

  • TMPRSS4: an emerging potential therapeutic target in cancer.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4453593/

  • The tumour trail left in blood

http://www.nature.com/nature/journal/v532/n7598/full/532269a.html

Aashir Awan, PhD, wrote on 12/28/2016

I was wondering if these same 5 genes were upregulated in the pancreatic ductal adenocarcinoma cell lines that are available out there.  In doing cell biology work, there is always a dilemma whether cancer cell lines correctly re-capitulate in vivo tumors or not.  Personally, I prefer primary cell lines to do analysis but this finding can be used to test primary vs cell line.  In addition, I’ve attached the gene network for Ect2.  If you look carefully, the two big proteins that jump out are RACGAP1 and KIF23.  I think in designing therapies, combinatorial targets can yield the best outcomes.  Drugs directed towards two or more targets would seem ideal in my opinion.

ect2

Gene Network for Ect2

Original Research
Oncotarget. 2016 Apr 26;7(17):23263-81. doi: 10.18632/oncotarget.8139.

Meta-analysis of transcriptome data identifies a novel 5-gene pancreatic adenocarcinoma classifier.

Abstract

PURPOSE:

Pancreatic ductal adenocarcinoma (PDAC) is largely incurable due to late diagnosis. Superior early detection biomarkers are critical to improving PDAC survival and risk stratification.

EXPERIMENTAL DESIGN:

Optimized meta-analysis of PDAC transcriptome datasets identified and validated key PDAC biomarkers. PDAC-specific expression of a 5-gene biomarker panel was measured by qRT-PCR in microdissected patient-derived FFPE tissues. Cell-based assays assessed impact of two of these biomarkers, TMPRSS4 and ECT2, on PDAC cells.

RESULTS:

A 5-gene PDAC classifier (TMPRSS4, AHNAK2, POSTN, ECT2, SERPINB5) achieved on average 95% sensitivity and 89% specificity in discriminating PDAC from non-tumor samples in four training sets and similar performance (sensitivity = 94%, specificity = 89.6%) in five independent validation datasets. This classifier accurately discriminated PDAC from chronic pancreatitis (AUC = 0.83), other cancers (AUC = 0.89), and non-tumor from PDAC precursors (AUC = 0.92) in three independent datasets. Importantly, the classifier distinguished PanIN from healthy pancreas in the PDX1-Cre;LSL-KrasG12D PDAC mouse model. Discriminatory expression of the PDAC classifier genes was confirmed in microdissected FFPE samples of PDAC and matched surrounding non-tumor pancreas or pancreatitis. Notably, knock-down of TMPRSS4 and ECT2 reduced PDAC soft agar growth and cell viability and TMPRSS4 knockdown also blocked PDAC migration and invasion.

CONCLUSIONS:

This study identified and validated a highly accurate 5-gene PDAC classifier for discriminating PDAC and early precursor lesions from non-malignant tissue that may facilitate early diagnosis and risk stratification upon validation in prospective clinical trials. Cell-based experiments of two overexpressed proteins encoded by the panel, TMPRSS4 and ECT2, suggest a causal link to PDAC development and progression, confirming them as potential therapeutic targets.

KEYWORDS:

bioinformatics; biomarkers; meta-analysis; pancreatic cancer; transcriptome

PMID:
26993610
PMCID:
PMC5029625
DOI:
10.18632/oncotarget.8139

SOURCE

Oncotarget, Vol. 7, No. 17 – Referred as PDF, above

 

BIDMC Researchers Discover Early Indicators of Pancreatic Cancer

LibermannBhasin_PancreasCancerStudy

Markers may help doctors detect pancreatic cancer before it becomes deadly

In photo: First author Manoj Bhasin, PhD, and co-senior author Towia Libermann, PhD, Co-Director and Director of BIDMC’s Genomics, Proteomics, Bioinformatics and Systems Biology Center.

SOURCE

http://www.bidmc.org/News/PRLandingPage/2016/March/Libermann-Pancreatic-Cancer-Research-2016.aspx

BOSTON – Pancreatic cancer, the fourth leading cause of cancer death in the United States, is often diagnosed at a late stage, when curative treatment is no longer possible. A team led by investigators at Beth Israel Deaconess Medical Center (BIDMC) has now identified and validated an accurate 5-gene classifier for discriminating early pancreatic cancer from non-malignant tissue. Described online in the journal Oncotarget, the finding is a promising advance in the fight against this typically fatal disease.

“Pancreatic cancer is a devastating disease with a death rate close to the incidence rate,” said co-senior author Towia Libermann, PhD, Director of the Genomics, Proteomics, Bioinformatics and Systems Biology Center at BIDMC and Associate Professor of Medicine at Harvard Medical School (HMS). “Because more than 90 percent of pancreatic cancer cases are diagnosed at the metastatic stage, when there are only limited therapeutic options, earlier diagnosis is anticipated to have a major impact on extending life expectancy for patients. There has been a lack of reliable markers, early indicators and risk factors associated with pancreatic cancer, but this new way of differentiating between healthy and malignant tissue offers hope for earlier diagnosis and treatment.”

The investigators used a number of publicly available gene expression datasets for pancreatic cancer and developed a strategy to reanalyze these datasets together, applying rigorous statistical criteria to compare different datasets from different laboratories and different platforms with each other. The team then selected a subset of data for developing a panel for differentiating between pancreatic cancer and healthy pancreas tissue and thereafter applied this “Pancreatic Cancer Predictor” to the remaining datasets for independent validation to confirm the accuracy of the markers.

After demonstrating and independently validating that a 5-gene pancreatic cancer predictor discriminated between cancerous and healthy tissue, the researchers applied the predictor to datasets that also included benign lesions of the pancreas, including pancreatitis and early stage cancer. The predictor accurately differentiated pancreatic cancer, benign pancreatic lesions, early stage pancreatic cancer and healthy tissue. The predictor achieved on average 95 percent sensitivity and 89 percent specificity in discriminating pancreatic cancer from non-tumor samples in four training sets and similar performance (94 percent sensitivity, 90 percent specificity) in five independent validation datasets.

“Using innovative data normalization and gene selection approaches, we combined the statistical power of multiple genomic studies and masked their variability and batch effects to identify robust early diagnostic biomarkers of pancreatic cancer,” said first author Manoj Bhasin, PhD, Co-Director of BIDMC’s Genomics, Proteomics, Bioinformatics and Systems Biology Center and Assistant Professor of Medicine at HMS.

“The identification and initial validation of a highly accurate 5-gene pancreatic cancer biomarker panel that can discriminate late and early stages of pancreatic cancer from normal pancreas and benign pancreatic lesions could facilitate early diagnosis of pancreatic cancer,” said co-senior author Roya Khosravi-Far, PhD, Associate Professor of Pathology at BIDMC. “Our findings may open a window of opportunity for earlier diagnosis and, consequently, earlier intervention and more effective treatment of this deadly cancer, leading to higher survival rates.”

The first diagnostic application of the panel may be for analyses of fine needle biopsies routinely used for diagnosing pancreatic cancer and for determining the malignant potential of mostly benign pancreatic cysts that can sometimes be precursors of pancreatic cancer. In addition to providing a new tool for diagnoses, the research may also lead to new insights into how pancreatic cancer arises.

“Because these five genes are ‘turned on’ so early in the development of pancreatic cancer, they may play roles as drivers of this disease and may be exciting targets for therapies,” said Libermann. Most of the five genes—named TMPRSS4, AHNAK2, POSTN, ECT2 and SERPINB5—have been linked to migration, invasion, adhesion, and metastasis of pancreatic or other cancers.

The scientists next plan to evaluate the precise roles of the five genes and to validate the accuracy of their diagnostic assay in a prospective clinical study. “Moving forward, we will explore the potential to convert this tissue-based diagnostic into a noninvasive blood or urine test,” Libermann said.

“To further enhance the diagnostic power of this biomarker, we plan to expand it by including non-coding RNAs, proteins, metabolites and mutations associated with pancreatic cancer. This will result in development of the first of its kind biomarker that gauges pancreatic cancer alterations from multiple genomic angles for making highly accurate diagnoses,” added Bhasin. Such an inexpensive and simple test could help transform the landscape of pancreatic cancer and help prevent many of the estimated 330,000 deaths that it causes worldwide each year.

Study coauthors include BIDMC investigators Kenneth Ndebele, Octavian Bucur, Eric Yee, Jessica Plati, Andrea Bullock, Xuesong Gu, Eduardo Castan, Peng Zhang, Robert Najarian, Maria Muraru and Rebecca Miksad, and the University of Nebraska-Lincoln’s Hasan H. Otu. The work was supported by the National Institutes of Health, National Cancer Institute and Ben and Rose Cole Charitable Pria Foundation.

SOURCE

http://www.bidmc.org/News/PRLandingPage/2016/March/Libermann-Pancreatic-Cancer-Research-2016.aspx

Read Full Post »


Li -Fraumeni Syndrome and Pancreatic Cancer

Curator: Marzan Khan, B.Sc.

Li-Fraumeni syndrome (LFS) is a condition that makes individuals prone to developing a wide variety of cancers that occur early on in life, the most common types being- soft tissue sarcoma, osteosarcoma, breast cancer, brain tumors, adrenocortical carcinoma (ACC), and leukemia. (1) Pancreatic cancer is minimally associated with the condition. (2) A survey found the presence of pancreatic cancer in only 1% of 475 tumor samples collected from 91 families who were carriers of p53 mutations, with half of them having LFS. The incidence of breast cancer amongst them was the highest -24%. (2) Pancreatic carcinoma in LFS patients usually occurs in the later stages of life. (3)

The underlying cause of LFS is germline mutations in TP53 gene on chromosome 17p, that encodes the transcription factor p53, crucial in cell cycle regulation and the repair of damaged and/or abnormal cells. (4) In the majority of cases, this mutation is obtained by inheritance. (5) De-novo germline mutations in p53 occur in 7%-20% of the cases. (5)

A person showing symptoms of any type of cancer at an early age or having first or second-degree relatives with cancer are at risk of developing LFS. (5) That is why tracing family history is an important part of diagnosis in LFS patients. Genetic testing can confirm mutations present in the gene, however, there are controversial ethical issues regarding their use, particularly in children and fetuses.

In patients with LFS, it is important to control the manifestations of the disease. They should be monitored closely so that any new cancers that arise are diagnosed and treated during the early stages. (6) Patients are also at risk of developing radiation-induced second and third primary tumors. (6) Therefore, radiation and alkylating agents should be used minimally (6) People at risk can be cautioned to avoid exposure to carcinogens such as sunlight, cigarette smoke, and alcohol consumption. (5) Therapeutic approaches that are aimed at restoring wild-type p53 by gene therapy as well as reactivating non-functional p53 by the use of small-molecule drugs are currently being investigated in many cancers. (7) Unlike radiation therapy, these small-molecule drugs are non-toxic to healthy cells, thus eliminating the risk of forming new tumors.

So far, PRIMA-1 has proven to be quite effective at correcting non-functional p53. (8) PRIMA-1 is changed to its methylated form, PRIMA-1MET   that forms covalent adducts to thiol groups in the mutated protein and modifies them. (8) As a result, p53 regains its ability to destroy malignant cells. (8) A research study also found that PRIMA-1 induces apoptosis and increases the sensitivity of pancreatic cancer cells to various chemotherapeutic agents. (9)

  1. Magali Olivier, David E. Goldgar, Nayanta Sodha, Hiroko Ohgaki, Paul Kleihues, Pierre Hainaut and Rosalind A. Eeles. Li-Fraumeni and Related Syndromes. Cancer Res October 15 2003 63 (20) 6643-6650 http://cancerres.aacrjournals.org/content/63/20/6643.abstract
  2. Kleihues P, Schauble B, zur Hausen H, et al. Tumors associated with p53 germline mutations: a synopsis of 91 families. Am J Pathol 1997; 150:1-13 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1858532/
  3. John P. Neoptolemos, Raul Urrutia, James L. Abbruzzese, Markus W. Buchler. Pancreatic Cancer. 2010.1st ed, pp-6, 2010, Springer, Verlag, New York
  4. Mishra B and Patel RR. Gene Therapy for Treatment of Pancreatic Cancer. Austin Therapeutics. 2014;1(1): 10. https://books.google.ca/books?id=NmBB5ZoKkk4C&pg=PA6&lpg=PA6&dq=connection+between+li+fraumeni+and+Pancreatic+cancer&source=bl&ots=H0iCeaPP0N&sig=pqJT1tPMR6C-NIig3S_NkFKFsD0&hl=en&sa=X&ved=0ahUKEwi4nLrgzuPQAhUUIWMKHS3wBoc4ChDoAQhNMAg#v=onepage&q=connection%20between%20li%20fraumeni%20and%20Pancreatic%20cancer&f=false
  5. Schneider K, Zelley K, Nichols KE, et al. Li-Fraumeni Syndrome. 1999 Jan 19 [Updated 2013 Apr 11]. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2016. https://www.ncbi.nlm.nih.gov/pubmed/20301488
  6. Elisa Becze BA, ELS, 2011 Mar 1. An introduction to Li-Fraumeni Syndrome, Five-Minute-In-Service. http://connect.ons.org/columns/five-minute-in-service/an-introduction-to-li-fraumeni-syndrome
  7. Sorrell, A. D., Espenschied, C. R., Culver, J. O., & Weitzel, J. N. (2013).TP53Testing and Li-Fraumeni Syndrome: Current Status of Clinical Applications and Future Directions. Molecular Diagnosis & Therapy17(1), 31–47. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3627545/
  8. Emily J. Lewis. PRIMA-1 as a cancer therapy restoring mutant p53: a reviewBioscience Horizons (2015) 8: hzv006 http://biohorizons.oxfordjournals.org/content/8/hzv006.full
  9. Izetti, Patricia, Agnes Hautefeuille, Ana Lucia Abujamra, Caroline Brunetto de Farias, Juliana Giacomazzi, Bárbara Alemar, Guido Lenz, et al. ‘PRIMA-1, a Mutant p53 Reactivator, Induces Apoptosis and Enhances Chemotherapeutic Cytotoxicity in Pancreatic Cancer Cell Lines’. Investigational New Drugs 32, no. 5 (October 2014): 783–94. https://www.ncbi.nlm.nih.gov/pubmed/24838627

Izetti, Patricia, Agnes Hautefeuille, Ana Lucia Abujamra, Caroline Brunetto de Farias, Juliana Giacomazzi, Bárbara Alemar, Guido Lenz, et al. ‘PRIMA-1, a Mutant p53 Reactivator, Induces Apoptosis and Enhances Chemotherapeutic Cytotoxicity in Pancreatic Cancer Cell Lines’. Investigational New Drugs 32, no. 5 (October 2014): 783–94

Other related articles published in this Online Scientific Journal include the following:

p53 mutation – Li-Fraumeni Syndrome – Likelihood of Genetic or Hereditary conditions playing a role in Intergenerational incidence of Cancer

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/12/01/p53-mutation-li-fraumeni-syndrome-likelihood-of-genetic-or-hereditary-conditions-playing-a-role-in-intergenerational-incidence-of-cancer/

Pancreatic Cancer: Articles of Note @PharmaceuticalIntelligence.com

Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/05/26/pancreatic-cancer-articles-of-note-pharmaceuticalintelligence-com/

Read Full Post »


p53 mutation – Li-Fraumeni Syndrome – Likelihood of Genetic or Hereditary conditions playing a role in Intergenerational incidence of Cancer

 

Reporter: Aviva Lev-Ari, PhD, RN

 

THIS ARTICLE IS RECOMMENDED READING TO ALL OUR e-Readers

because it is a REAL story of a high school student fighting Brain Cancer, glioblastoma multiforme (GBM)

it presents the FRONTIER OF GENOMICS, PRECISION MEDICINE, Interventional Radiology and Interventional ONCOLOGY at

Stanford University, Canary Center at Stanford for Early Cancer Detection, Stanford Medical Center and Lucile Packard Children’s Hospital

I was exposed to Li-Fraumeni Syndrome in the following article:

‘And yet, you try’ – A father’s quest to save his son

http://stanmed.stanford.edu/2016fall/milan-gambhirs-li-fraumeni-syndrome.html

 

Li-Fraumeni syndrome

Other Names for This Condition

  • LFS
  • Sarcoma family syndrome of Li and Fraumeni
  • Sarcoma, breast, leukemia, and adrenal gland (SBLA) syndrome
  • SBLA syndrome

LFS is a rare disorder that greatly increases the risk of developing several types of cancer, particularly in children and young adults.

The cancers most often associated with Li-Fraumeni syndrome include breast cancer, a form of bone cancer called osteosarcoma, and cancers of soft tissues (such as muscle) called

Soft tissue sarcoma forms in soft tissues of the body, including muscle, tendons, fat, blood vessels, lymph vessels, nerves, and tissue around joints.


(small hormone-producing glands on top of each kidney). Several other types of cancer also occur more frequently in people with Li-Fraumeni syndrome.

A very similar condition called Li-Fraumeni-like syndrome shares many of the features of classic Li-Fraumeni syndrome. Both conditions significantly increase the chances of developing multiple cancers beginning in childhood; however, the pattern of specific cancers seen in affected family members is different.

Genetic Changes

The CHEK2 and TP53 genes are associated with Li-Fraumeni syndrome.

More than half of all families with Li-Fraumeni syndrome have inherited mutations in the gene. TP53 is a tumor suppressor gene, which means that it normally helps control the growth and division of cells. Mutations in this gene can allow cells to divide in an uncontrolled way and form tumors. Other genetic and environmental factors are also likely to affect the risk of cancer in people with TP53 mutations.

A few families with cancers characteristic of Li-Fraumeni syndrome and Li-Fraumeni-like syndrome do not have TP53 mutations, but have mutations in the CHEK2 gene. Like the TP53 gene, CHEK2 is a tumor suppressor gene. Researchers are uncertain whether CHEK2 mutations actually cause these conditions or are merely associated with an increased risk of certain cancers (including breast cancer).

Inheritance Pattern

Li-Fraumeni syndrome is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to increase the risk of developing cancer. In most cases, an affected person has a parent and other family members with cancers characteristic of the condition.

Diagnosis and Management

These resources address the diagnosis or management of Li-Fraumeni syndrome:

References on LFS

SOURCE

https://ghr.nlm.nih.gov/condition/li-fraumeni-syndrome

Read Full Post »


Immuno-Therapy Strategies on BioMarker’s cutoff value for defining PD-L1 positive/negative patients: First-line and Second-line setting – FDA stand on BMS’s “Test-free Prescribing” in Opdivo (nivolumab) vs Merck’s “Companion Diagnostic” in Keytruda (pembrolizumab) vs Genetech’s “Complementary Diagnostics” and”Companion Diagnostic”?? in Tecentriq (atezolizumab)

Reporter: Aviva Lev-Ari, PhD, RN

UPDATED on 5/11/2017

Merck increases grip on its lead in lung cancer, winning approval for Keytruda/chemo combo as first-line therapy

UPDATED on 5/10/2017

Roche’s shocking Tecentriq fail raises red flag for bladder cancer rivals

Roche’s Tecentriq wasn’t supposed to fail its phase 3 trial in second-line bladder cancer. But that’s what it just did—and the data shortfall not only endangers the drug’s conditional FDA approval, but could augur trouble ahead for other checkpoint inhibitors that followed Tecentriq into the field.

Tecentriq, approved last year on the basis of phase 2 data showing a durable response to the drug, failed to prove it could actually prolong patients’ lives, the company said Wednesday. The bladder cancer indication, Tecentriq’s first, accounts for about 70% of the med’s current sales, analysts say, and the FDA could well decide to strike that approval off the drug’s label.

“[W]e assume that this will put this indication at risk of being removed from the label,” Leerink analyst Seamus Fernandez wrote Wednesday morning, noting that the results were unexpected. “This comes as a surprise to us, considering Merck’s Keytruda showed an overall survival benefit.”

SOURCE

http://www.fiercepharma.com/pharma/roche-s-shocking-tecentriq-fail-raises-red-flag-for-bladder-cancer-rivals?utm_medium=nl&utm_source=internal&mrkid=993697&mkt_tok=eyJpIjoiTVRCbFltUXpZMk0wTURRMCIsInQiOiIydnRsZ0xzT3prd3EzYVNoV0xyT1ZCWnFCaDFScVdwd1dyMmpMZjQycU9zOEVJSTVZalY5dHNyQ1E0XC96eXhadkpRSE5JRGoydHNzNFA2WUVaRzRVbUxmNmhicVZ4YkE3c1NmNkhoSUxBK0VmU2dUM3FBWEhrOFp2UHoySXhrUUEifQ%3D%3D

UPDATED on 4/13/2017

World’s Top Ten Cancer Drugs by 2020  (million USD)

https://pharmaceuticalintelligence.com/2017/04/13/worlds-top-ten-cancer-drugs-by-2020-million-usd/

Opdivo Setback May Yield Lessons for Pharma Advancing Immunotherapies With PD-L1 Testing

https://www.genomeweb.com/molecular-diagnostics/opdivo-setback-may-yield-lessons-pharma-advancing-immunotherapies-pd-l1

UPDATED on 10/9/2016

Opdivo (nivolumab) Shows Durable Response in Longest Follow-up for a PD-1 Inhibitor in Previously Treated Advanced Non-Small Cell Lung Cancer

BMY

Opdivo (nivolumab) Shows Durable Response in Longest Follow-up for a PD-1 Inhibitor in Previously Treated Advanced Non-Small Cell Lung Cancer

Updated data from CheckMate -057 and -017 show Opdivo-treated patients had tripled the duration of response compared to those treated with docetaxel, with a minimum follow-up of two years

In CheckMate -057, durable responses and complete responses were observed with Opdivo in both PD-L1 expressors and non-expressors

Patient-reported outcomes from CheckMate -057 show favorable overall health status with Opdivo versus docetaxel in previously treated advanced non-small cell lung cancer patients

Bristol-Myers Squibb Company (NYSE: BMY) announced today updated results from two pivotal Phase 3 studies, CheckMate -057 and CheckMate -017, which showed more than one-third of previously treated metastatic non-small cell lung cancer (NSCLC) patients in both trials experienced ongoing responses with Opdivo, compared to no ongoing responses in the docetaxel arm. The median duration of response (DOR) with Opdivo versus docetaxel in CheckMate -057 was 17.2 months (95% CI: 8.4, NE) and 5.6 months (95% CI: 4.4, 6.9), respectively, and in CheckMate -017 it was 25.2 months (95% CI: 9.8, 30.4) and 8.4 months (95% CI: 8.4, NE), respectively. In CheckMate -057, patients with PD-L1 ≥1% had a median DOR of 17.2 months (95% CI: 8.4, NE) and in patients with PD-L1 <1%, it was 18.3 months (95% CI: 5.5, NE). In both studies, durability of response was observed in both PD-L1 expressors and non-expressors, and in CheckMate -057, one out of the four complete responses occurred in a patient with <1% PD-L1 expression.

There were no new safety signals identified for Opdivo in the pooled safety analysis from both studies. No new treatment-related deaths occurred between one and two years’ minimum follow-up despite the longer treatment exposure, and new events were observed in 11/418 patients with an additional one year of follow up.

These findings were presented today, October 9, during a poster discussion session at the 2016 European Society for Medical Oncology Congress from 3:46-4:06 p.m. CEST (Abstract #1215PD).

“Further evaluation of Opdivo in previously treated non-small cell lung cancer showed continued superior survival and the potential for durable responses compared to docetaxel across histologies in this patient population,” said Martin Reck, M.D., Ph.D., head of thoracic oncology at the Hospital Grosshansdorf. “Notably, the median duration of response with Opdivo was more than three times that observed with docetaxel.”

Read more at

http://www.stockhouse.com/news/press-releases/2016/10/09/opdivo-nivolumab-shows-durable-response-in-longest-follow-up-for-a-pd-1#QVs566rlK9JKSMC8.99

UPDATED on 9/25/2016

Genentech dives into mRNA, betting $310M on BioNTech’s personalized cancer vaccine tech

For a review of all the complexities involved in the emerging market for BioMarkers in Immuno-Therapy, see

Opdivo Setback May Yield Lessons for Pharma Advancing Immunotherapies With PD-L1 Testing

https://www.genomeweb.com/molecular-diagnostics/opdivo-setback-may-yield-lessons-pharma-advancing-immunotherapies-pd-l1

PD-L1 testing as part of the tumor profiling workup for patients. Diaceutics’ surveys show a sharp uptick in the number of labs offering PD-L1 testing over the past year-and-a-half and 52 labs in the US offer at least one PD-L1 test. The company also reviewed biomarkers being studied in 95 Phase II/III NSCLC, and found that approximately half are incorporating patients’ PD-L1 status either alone or in combination with other markers, such as EGFR and ALK mutations.

At Cancer Genetics over the past year, there has also been a notable ramp up in orders for PD-L1 testing for lung cancer patients, but also for melanoma and head and neck cancer patients.

Labs are also challenged by having to decide whether to invest in validating and offering all four FDA-approved PD-L1 tests. “If you look from a laboratory perspective, in the ideal world, you need one test, and clear instructions about the algorithm and cutoff values to assign patients to treatment,” Braendle said. “Four different tests creates quite a confusing situation for the labs and the physicians.”

SOURCES

Diaceutics Group Report Reveals Significant Real-Time PD-L1 Testing Gaps in the US

http://www.diaceutics.com/diaceutics-group-report-reveals-significant-real-time-pd-l1-testing-gaps-in-the-us-3/

 

Opdivo Setback May Yield Lessons for Pharma Advancing Immunotherapies With PD-L1 Testing

https://www.genomeweb.com/molecular-diagnostics/opdivo-setback-may-yield-lessons-pharma-advancing-immunotherapies-pd-l1

 

Read Full Post »


cancerandoncologyseriesccover

Series C: e-Books on Cancer & Oncology

Series C Content Consultant: Larry H. Bernstein, MD, FCAP

 

VOLUME ONE 

Cancer Biology and Genomics

for

Disease Diagnosis

2015

http://www.amazon.com/dp/B013RVYR2K

Stephen J. Williams, PhD, Senior Editor

sjwilliamspa@comcast.net

Tilda Barliya, PhD, Editor

tildabarliya@gmail.com

Ritu Saxena, PhD, Editor

ritu.uab@gmail.com

Leaders in Pharmaceutical Business Intelligence 

Part I

Historical Perspective of Cancer Demographics, Etiology, and Progress in Research

Chapter 1:  The Occurrence of Cancer in World Populations

1.1   Understanding Cancer

Prabodh Kandala, PhD

1.2  Cancer Metastasis

Tilda Barliya, PhD

1.3      2013 Perspective on “War on Cancer” on December 23, 1971

Aviva Lev-Ari, PhD, RN

1.4   Global Burden of Cancer Treatment & Women Health: Market Access & Cost Concerns

Aviva Lev-Ari, PhD, RN

1.5    The Importance of Cancer Prevention Programs: New Perspectives for Fighting Cancer

Ziv Raviv, PhD

1.6      The “Cancer establishments” examined by James Watson, co-discoverer of DNA w/Crick, 4/1953,  

Larry H Bernstein, MD, FCAP

1.7      New Ecosystem of Cancer Research: Cross Institutional Team Science

Aviva Lev-Ari, PhD, RN

1.8       Cancer Innovations from across the Web

Larry H Bernstein, MD, FCAP

1.9         Exploring the role of vitamin C in Cancer therapy

Ritu Saxena PhD

1.10        Relation of Diet and Cancer

Sudipta Saha, PhD

1.11      Association between Non-melanoma Skin Cancer and subsequent Primary Cancers in White Population 

Aviva Lev-Ari, PhD, RN

1.12       Men With Prostate Cancer More Likely to Die from Other Causes

Prabodh Kandala, PhD

1.13      Battle of Steve Jobs and Ralph Steinman with Pancreatic Cancer: How we Lost

Ritu Saxena, PhD

Chapter 2.  Rapid Scientific Advances Changes Our View on How Cancer Forms

2.1     All Cancer Cells Are Not Created Equal: Some Cell Types Control Continued Tumor Growth, Others Prepare the Way for Metastasis 

Prabodh Kandala, PhD

2.2      Hold on. Mutations in Cancer do Good

Prabodh Kandala, PhD

2.3       Is the Warburg Effect the Cause or the Effect of Cancer: A 21st Century View?

Larry H Bernstein, MD, FCAP

2.4          Naked Mole Rats Cancer-Free

Larry H Bernstein, MD, FCAP

2.5           Zebrafish—Susceptible to Cancer

Larry H Bernstein, MD, FCAP

2.6         Demythologizing Sharks, Cancer, and Shark Fins,

Larry H Bernstein, MD, FCAP

2.7       Tumor Cells’ Inner Workings Predict Cancer Progression

Prabodh Kandala, PhD

2.8      In Focus: Identity of Cancer Stem Cells

Ritu Saxena, PhD

2.9      In Focus: Circulating Tumor Cells

Ritu Saxena, PhD

2.10     Rewriting the Mathematics of Tumor Growth; Teams Use Math Models to Sort Drivers from Passengers 

Stephen J. Williams, PhD

2.11     Role of Primary Cilia in Ovarian Cancer

Aashir Awan, PhD

Chapter 3:  A Genetic Basis and Genetic Complexity of Cancer Emerges

3.1       The Binding of Oligonucleotides in DNA and 3-D Lattice Structures

Larry H Bernstein, MD, FCAP

3.2      How Mobile Elements in “Junk” DNA Promote Cancer. Part 1: Transposon-mediated Tumorigenesis. 

Stephen J. Williams, PhD

3.3      DNA: One Man’s Trash is another Man’s Treasure, but there is no JUNK after all

Demet Sag, PhD

3.4 Issues of Tumor Heterogeneity

3.4.1    Issues in Personalized Medicine in Cancer: Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing

Stephen J. Williams, PhD

3.4.2       Issues in Personalized Medicine: Discussions of Intratumor Heterogeneity from the Oncology Pharma forum on LinkedIn

Stephen J. Williams, PhD

3.5        arrayMap: Genomic Feature Mining of Cancer Entities of Copy Number Abnormalities (CNAs) Data

Aviva Lev-Ari, PhD, RN

3.6        HBV and HCV-associated Liver Cancer: Important Insights from the Genome

Ritu Saxena, PhD

3.7      Salivary Gland Cancer – Adenoid Cystic Carcinoma: Mutation Patterns: Exome- and Genome-Sequencing @ Memorial Sloan-Kettering Cancer Center

Aviva Lev-Ari, PhD, RN

3.8         Gastric Cancer: Whole-genome Reconstruction and Mutational Signatures

Aviva Lev-Ari, PhD, RN

3.9        Missing Gene may Drive more than a quarter of Breast Cancers

Aviva Lev-Ari, PhD, RN

3.10     Critical Gene in Calcium Reabsorption: Variants in the KCNJ and SLC12A1 genes – Calcium Intake and Cancer Protection

Aviva Lev-Ari,PhD, RN

Chapter 4: How Epigenetic and Metabolic Factors Affect Tumor Growth

4.1    Epigenetics

4.1.1     The Magic of the Pandora’s Box : Epigenetics and Stemness with Long non-coding RNAs (lincRNA)

Demet Sag, PhD, CRA, GCP

4.1.2     Stomach Cancer Subtypes Methylation-based identified by Singapore-Led Team

Aviva Lev-Ari, PhD, RN

4.1.3     The Underappreciated EpiGenome

Demet Sag, Ph.D., CRA, GCP

4.1.4     Differentiation Therapy – Epigenetics Tackles Solid Tumors

Stephen J. Williams, PhD

4.1.5      “The SILENCE of the Lambs” Introducing The Power of Uncoded RNA

Demet Sag, Ph.D., CRA, GCP

4.1.6      DNA Methyltransferases – Implications to Epigenetic Regulation and Cancer Therapy Targeting: James Shen, PhD

Aviva Lev-Ari, PhD, RN

4.2   Metabolism

4.2.1      Mitochondria and Cancer: An overview of mechanisms

Ritu Saxena, PhD

4.2.2     Bioenergetic Mechanism: The Inverse Association of Cancer and Alzheimer’s

Aviva Lev-Ari, PhD, RN

4.2.3      Crucial role of Nitric Oxide in Cancer

Ritu Saxena, PhD

4.2.4      Nitric Oxide Mitigates Sensitivity of Melanoma Cells to Cisplatin

Stephen J. Williams, PhD

4.2.5      Increased risks of obesity and cancer, Decreased risk of type 2 diabetes: The role of Tumor-suppressor phosphatase and tensin homologue (PTEN)

Aviva Lev-Ari, PhD, RN

4.2.6      Lipid Profile, Saturated Fats, Raman Spectrosopy, Cancer Cytology

Larry H Bernstein, MD, FCAP

4.3     Other Factors Affecting Tumor Growth

4.3.1      Squeezing Ovarian Cancer Cells to Predict Metastatic Potential: Cell Stiffness as Possible Biomarker

Prabodh Kandala, PhD

4.3.2      Prostate Cancer: Androgen-driven “Pathomechanism” in Early-onset Forms of the Disease

Aviva Lev-Ari, PhD, RN

Chapter 5: Advances in Breast and Gastrointestinal Cancer Research Supports Hope for Cure

5.1 Breast Cancer

5.1.1      Cell Movement Provides Clues to Aggressive Breast Cancer

Prabodh Kandala, PhD

5.1.2    Identifying Aggressive Breast Cancers by Interpreting the Mathematical Patterns in the Cancer Genome

Prabodh Kandala, PhD

5.1.3  Mechanism involved in Breast Cancer Cell Growth: Function in Early Detection & Treatment

Aviva Lev-Ari, PhD, RN

5.1.4       BRCA1 a tumour suppressor in breast and ovarian cancer – functions in transcription, ubiquitination and DNA repair

Sudipta Saha, PhD

5.1.5      Breast Cancer and Mitochondrial Mutations

Larry H Bernstein, MD, FCAP

5.1.6      MIT Scientists Identified Gene that Controls Aggressiveness in Breast Cancer Cells

Aviva Lev-Ari PhD RN

5.1.7       “The Molecular pathology of Breast Cancer Progression”

Tilda Barliya, PhD

5.1.8       In focus: Triple Negative Breast Cancer

Ritu Saxena, PhD

5.1.9       Automated Breast Ultrasound System (‘ABUS’) for full breast scanning: The beginning of structuring a solution for an acute need!

Dror Nir, PhD

5.1.10       State of the art in oncologic imaging of breast.

Dror Nir, PhD

 

5.2 Gastrointestinal Cancer

5.2.1         Colon Cancer

Tilda Barliya, PhD

5.2.2      PIK3CA mutation in Colorectal Cancer may serve as a Predictive Molecular Biomarker for adjuvant Aspirin therapy

Aviva Lev-Ari, PhD, RN

5.2.3     State of the art in oncologic imaging of colorectal cancers.

Dror Nir, PhD

5.2.4     Pancreatic Cancer: Genetics, Genomics and Immunotherapy

Tilda Barliya, PhD

5.2.5     Pancreatic cancer genomes: Axon guidance pathway genes – aberrations revealed

Aviva Lev-Ari, PhD, RN

Part II

Advent of Translational Medicine, “omics”, and Personalized Medicine Ushers in New Paradigms in Cancer Treatment and Advances in Drug Development

Chapter 6:  Treatment Strategies

6.1 Marketed and Novel Drugs

Breast Cancer                                   

6.1.1     Treatment for Metastatic HER2 Breast Cancer

Larry H Bernstein MD, FCAP

6.1.2          Aspirin a Day Tied to Lower Cancer Mortality

Aviva Lev-Ari, PhD, RN

6.1.3       New Anti-Cancer Drug Developed

Prabodh Kandala, Ph.D.

6.1.4         Pfizer’s Kidney Cancer Drug Sutent Effectively caused REMISSION to Adult Acute Lymphoblastic Leukemia (ALL)

Aviva Lev-Ari ,PhD, RN

6.1.5     “To Die or Not To Die” – Time and Order of Combination drugs for Triple Negative Breast Cancer cells: A Systems Level Analysis

Anamika Sarkar, PhD. and Ritu Saxena, PhD

Melanoma

6.1.6    “Thymosin alpha1 and melanoma”

Tilda Barliya, PhD

Leukemia

6.1.7    Acute Lymphoblastic Leukemia and Bone Marrow Transplantation

Tilda Barliya PhD

6.2 Natural agents

Prostate Cancer                 

6.2.1      Scientists use natural agents for prostate cancer bone metastasis treatment

Ritu Saxena, PhD

Breast Cancer

6.2.2        Marijuana Compound Shows Promise In Fighting Breast Cancer

Prabodh Kandala, PhD

Ovarian Cancer                  

6.2.3        Dimming ovarian cancer growth

Prabodh Kandala, PhD

6.3 Potential Therapeutic Agents

Gastric Cancer                 

6.3.1       β Integrin emerges as an important player in mitochondrial dysfunction associated Gastric Cancer

Ritu Saxena, PhD

6.3.2      Arthritis, Cancer: New Screening Technique Yields Elusive Compounds to Block Immune-Regulating Enzyme

Prabodh Kandala, PhD

Pancreatic Cancer                                   

6.3.3    Usp9x: Promising therapeutic target for pancreatic cancer

Ritu Saxena, PhD

Breast Cancer                 

6.3.4       Breast Cancer, drug resistance, and biopharmaceutical targets

Larry H Bernstein, MD, FCAP

Prostate Cancer

6.3.5        Prostate Cancer Cells: Histone Deacetylase Inhibitors Induce Epithelial-to-Mesenchymal Transition

Stephen J. Williams, PhD

Glioblastoma

6.3.6      Gamma Linolenic Acid (GLA) as a Therapeutic tool in the Management of Glioblastoma

Raphael Nir, PhD, MSM, MSc

6.3.7   Akt inhibition for cancer treatment, where do we stand today?

Ziv Raviv, PhD

Chapter 7:  Personalized Medicine and Targeted Therapy

7.1.1        Harnessing Personalized Medicine for Cancer Management, Prospects of Prevention and Cure: Opinions of Cancer Scientific Leaders

Aviva Lev-Ari, PhD, RN

7.1.2      Personalized medicine-based cure for cancer might not be far away

Ritu Saxena, PhD

7.1.3      Personalized medicine gearing up to tackle cancer

Ritu Saxena, PhD

7.1.4       Cancer Screening at Sourasky Medical Center Cancer Prevention Center in Tel-Aviv

Ziv Raviv, PhD

7.1.5       Inspiration From Dr. Maureen Cronin’s Achievements in Applying Genomic Sequencing to Cancer Diagnostics

Aviva Lev-Ari, PhD, RN

7.1.6       Personalized Medicine: Cancer Cell Biology and Minimally Invasive Surgery (MIS)

Aviva Lev-Ari, PhD, RN

7.2 Personalized Medicine and Genomics

7.2.1       Cancer Genomics – Leading the Way by Cancer Genomics Program at UC Santa Cruz

Aviva Lev-Ari, PhD, RN

7.2.2       Whole exome somatic mutations analysis of malignant melanoma contributes to the development of personalized cancer therapy for this disease

Ziv Raviv, PhD

7.2.3       Genotype-based Analysis for Cancer Therapy using Large-scale Data Modeling: Nayoung Kim, PhD(c)

Aviva Lev-Ari, PhD, RN

7.2.4         Cancer Genomic Precision Therapy: Digitized Tumor’s Genome (WGSA) Compared with Genome-native Germ Line: Flash-frozen specimen and Formalin-fixed paraffin-embedded Specimen Needed

Aviva Lev-Ari, PhD, RN

7.2.5         LEADERS in Genome Sequencing of Genetic Mutations for Therapeutic Drug Selection in Cancer Personalized Treatment: Part 2

Aviva Lev-Ari, PhD, RN

7.2.6       Ethical Concerns in Personalized Medicine: BRCA1/2 Testing in Minors and Communication of Breast Cancer Risk

Stephen J. Williams, PhD

7.3  Personalized Medicine and Targeted Therapy

7.3.1     The Development of siRNA-Based Therapies for Cancer

Ziv Raviv, PhD

7.3.2       mRNA interference with cancer expression

Larry H Bernstein, MD, FCAP

7.3.3       CD47: Target Therapy for Cancer

Tilda Barliya, PhD

7.3.4      Targeting Mitochondrial-bound Hexokinase for Cancer Therapy

Ziv Raviv, PhD

7.3.5       GSK for Personalized Medicine using Cancer Drugs needs Alacris systems biology model to determine the in silico effect of the inhibitor in its “virtual clinical trial”

Aviva Lev-Ari, PhD, RN

7.3.6         Personalized Pancreatic Cancer Treatment Option

Aviva Lev-Ari, PhD, RN

7.3.7        New scheme to routinely test patients for inherited cancer genes

Stephen J. Williams, PhD

7.3.8        Targeting Untargetable Proto-Oncogenes

Larry H. Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

7.3.9        The Future of Translational Medicine with Smart Diagnostics and Therapies: PharmacoGenomics 

Demet Sag, PhD

7.4 Personalized Medicine in Specific Cancers

7.4.1      Personalized medicine and Colon cancer

Tilda Barliya, PhD

7.4.2      Comprehensive Genomic Characterization of Squamous Cell Lung Cancers

Aviva Lev-Ari, PhD, RN

7.4.3        Targeted Tumor-Penetrating siRNA Nanocomplexes for Credentialing the Ovarian Cancer Oncogene ID4

Sudipta Saha, PhD

7.4.4        Cancer and Bone: low magnitude vibrations help mitigate bone loss

Ritu Saxena, PhD

7.4.5         New Prostate Cancer Screening Guidelines Face a Tough Sell, Study Suggests

Prabodh Kandala, PhD

Part III

Translational Medicine, Genomics, and New Technologies Converge to Improve Early Detection

Diagnosis, Detection And Biomarkers

Chapter 8:  Diagnosis Diagnosis: Prostate Cancer

8.1        Prostate Cancer Molecular Diagnostic Market – the Players are: SRI Int’l, Genomic Health w/Cleveland Clinic, Myriad Genetics w/UCSF, GenomeDx and BioTheranostics

Aviva Lev-Ari PhD RN

8.2         Today’s fundamental challenge in Prostate cancer screening

Dror Nir, PhD

Diagnosis & Guidance: Prostate Cancer

8.3      Prostate Cancers Plunged After USPSTF Guidance, Will It Happen Again?

Aviva Lev-Ari, PhD, RN

Diagnosis, Guidance and Market Aspects: Prostate Cancer

8.4       New Prostate Cancer Screening Guidelines Face a Tough Sell, Study Suggests

Prabodh Kandala, PhD

Diagnossis: Lung Cancer

8.5      Diagnosing lung cancer in exhaled breath using gold nanoparticles

Tilda Barliya PhD

Chapter 9:  Detection

Detection: Prostate Cancer

9.1     Early Detection of Prostate Cancer: American Urological Association (AUA) Guideline

Dror Nir, PhD

Detection: Breast & Ovarian Cancer

9.2       Testing for Multiple Genetic Mutations via NGS for Patients: Very Strong Family History of Breast & Ovarian Cancer, Diagnosed at Young Ages, & Negative on BRCA Test

Aviva Lev-Ari, PhD, RN

Detection: Aggressive Prostate Cancer

9.3     A Blood Test to Identify Aggressive Prostate Cancer: a Discovery @ SRI International, Menlo Park, CA

Aviva Lev-Ari, PhD, RN

Diagnostic Markers & Screening as Diagnosis Method

9.4      Combining Nanotube Technology and Genetically Engineered Antibodies to Detect Prostate Cancer Biomarkers

Stephen J. Williams, PhD

Detection: Ovarian Cancer

9.5      Warning signs may lead to better early detection of ovarian cancer

Prabodh Kandala, PhD

9.6       Knowing the tumor’s size and location, could we target treatment to THE ROI by applying imaging-guided intervention?

Dror Nir, PhD

Chapter 10:  Biomarkers

                                                Biomarkers: Pancreatic Cancer

10.1        Mesothelin: An early detection biomarker for cancer (By Jack Andraka)

Tilda Barliya, PhD

Biomarkers: All Types of Cancer, Genomics and Histology

10.2                  Stanniocalcin: A Cancer Biomarker

Aashir Awan, PhD

10.3         Breast Cancer: Genomic Profiling to Predict Survival: Combination of Histopathology and Gene Expression Analysis

Aviva Lev-Ari, PhD, RN

Biomarkers: Pancreatic Cancer

10.4         Biomarker tool development for Early Diagnosis of Pancreatic Cancer: Van Andel Institute and Emory University

Aviva Lev-Ari, PhD, RN

10.5     Early Biomarker for Pancreatic Cancer Identified

Prabodh Kandala, PhD

Biomarkers: Head and Neck Cancer

10.6        Head and Neck Cancer Studies Suggest Alternative Markers More Prognostically Useful than HPV DNA Testing

Aviva Lev-Ari, PhD, RN

10.7      Opens Exome Service for Rare Diseases & Advanced Cancer @Mayo Clinic’s OncoSpire

Aviva Lev-Ari, PhD, RN

Diagnostic Markers and Screening as Diagnosis Methods

10.8         In Search of Clarity on Prostate Cancer Screening, Post-Surgical Followup, and Prediction of Long Term Remission

Larry H Bernstein, MD, FCAP

Chapter 11  Imaging In Cancer

11.1  Introduction by Dror Nir, PhD

11.2  Ultrasound

11.2.1        2013 – YEAR OF THE ULTRASOUND

Dror Nir, PhD

11.2.2      Imaging: seeing or imagining? (Part 1)

Dror Nir, PhD

11.2.3        Early Detection of Prostate Cancer: American Urological Association (AUA) Guideline

Dror Nir, PhD

11.2.4        Today’s fundamental challenge in Prostate cancer screening

Dror Nir, PhD

11.2.5       State of the art in oncologic imaging of Prostate

Dror Nir, PhD

11.2.6        From AUA 2013: “HistoScanning”- aided template biopsies for patients with previous negative TRUS biopsies

Dror Nir, PhD

11.2.7     On the road to improve prostate biopsy

Dror Nir, PhD

11.2.8       Ultrasound imaging as an instrument for measuring tissue elasticity: “Shear-wave Elastography” VS. “Strain-Imaging”

Dror Nir, PhD

11.2.9       What could transform an underdog into a winner?

Dror Nir, PhD

11.2.10        Ultrasound-based Screening for Ovarian Cancer

Dror Nir, PhD

11.2.11        Imaging Guided Cancer-Therapy – a Discipline in Need of Guidance

Dror Nir, PhD

11.3   MRI & PET/MRI

11.3.1     Introducing smart-imaging into radiologists’ daily practice

Dror Nir, PhD

11.3.2     Imaging: seeing or imagining? (Part 2)

[Part 1 is included in the ultrasound section above]

Dror Nir, PhD

11.3.3    Imaging-guided biopsies: Is there a preferred strategy to choose?

Dror Nir, PhD

11.3.4     New clinical results support Imaging-guidance for targeted prostate biopsy

Dror Nir, PhD

11.3.5      Whole-body imaging as cancer screening tool; answering an unmet clinical need?

Dror Nir, PhD

11.3.6        State of the art in oncologic imaging of Lymphoma

Dror Nir, PhD

11.3.7      A corner in the medical imaging’s ECO system

Dror Nir, PhD

11.4  CT, Mammography & PET/CT 

11.4.1      Causes and imaging features of false positives and false negatives on 18F-PET/CT in oncologic imaging

Dror Nir, PhD

11.4.2     Minimally invasive image-guided therapy for inoperable hepatocellular carcinoma

Dror Nir, PhD

11.4.3        Improving Mammography-based imaging for better treatment planning

Dror Nir, PhD

11.4.4       Closing the Mammography gap

Dror Nir, PhD

11.4.5       State of the art in oncologic imaging of lungs

Dror Nir, PhD

11.4.6       Ovarian Cancer and fluorescence-guided surgery: A report

Tilda Barliya, PhD

11.5  Optical Coherent Tomography (OCT)

11.5.1       Optical Coherent Tomography – emerging technology in cancer patient management

Dror Nir, PhD

11.5.2     New Imaging device bears a promise for better quality control of breast-cancer lumpectomies – considering the cost impact

Dror Nir, PhD

11.5.3        Virtual Biopsy – is it possible?

Dror Nir, PhD

11.5.4      New development in measuring mechanical properties of tissue

Dror Nir, PhD

Chapter 12. Nanotechnology Imparts New Advances in Cancer Treatment,  Detection, and Imaging  

12.1     DNA Nanotechnology

Tilda Barliya, PhD

12.2     Nanotechnology, personalized medicine and DNA sequencing

Tilda Barliya, PhD       

12.3     Nanotech Therapy for Breast Cancer

Tilda Barliya, PhD

12.4     Prostate Cancer and Nanotecnology

Tilda Barliya, PhD

12.5     Nanotechnology: Detecting and Treating metastatic cancer in the lymph node

Tilda Barliya, PhD

12.6     Nanotechnology Tackles Brain Cancer

Tilda Barliya, PhD

12.7     Lung Cancer (NSCLC), drug administration and nanotechnology

Tilda Barliya, PhD

Volume Epilogue by Larry H. Bernstein, MD, FACP

Epilogue: Envisioning New Insights in Cancer Translational Biology

Larry H. Berstein, MD, FACP

Read Full Post »


A New Potential Target for Pancreatic Cancer Treatment: Rapid Screening Technique finds Gene Defending Tumors from DNA Damage @M. D. Anderson Cancer Center

Reporter: Aviva Lev-Ari, PhD, RN

Novel gene-hunting method implicates new culprit in pancreatic cancer

Researchers develop rapid screening technique; find gene defends tumors from DNA damage

Date:
June 23, 2016
Source:
University of Texas M. D. Anderson Cancer Center
Summary:
Using an innovative approach to identify a cancer’s genetic vulnerabilities by more swiftly analyzing human tumors transplanted into mice, researchers have identified a new potential target for pancreatic cancer treatment.

WDR5 emerges as robust “hit”

WD repeat-containing protein 5 (WDR5), a core part of the COMPASS complex regulating chromatin function, was implicated in multiple screens. Recent research by others had shown WDR5 to be upregulated in prostate and bladder cancers and critical for cancer cell proliferation.

The team confirmed WDR5 was highly expressed in pancreatic cancer compared to normal pancreas tissue and then conducted a series of experiments which showed knocking down the gene impaired cell proliferation and tumor growth and greatly increased survival in mice.

Subsequent experiments showed WDR5 works in concert with Myc to protect pancreatic cancer from DNA damage. There is no known method for targeting either WDR5 or Myc separately, Carugo said, but the team thinks there might be ways to block their interaction.

While the team targeted epigenetic regulators, Carugo noted the technique can be used with other shRNA libraries aimed at different classes of genes.

This technology is being widely adopted by MD Anderson’s moon shot teams to identify genetic vulnerabilities and cancer targets specific to various disease subtypes.


Story Source:

The above post is reprinted from materials provided by University of Texas M. D. Anderson Cancer Center. Note: Materials may be edited for content and length.

SOURCE

University of Texas M. D. Anderson Cancer Center. “Novel gene-hunting method implicates new culprit in pancreatic cancer: Researchers develop rapid screening technique; find gene defends tumors from DNA damage.” ScienceDaily. ScienceDaily, 23 June 2016. www.sciencedaily.com/releases/2016/06/160623115741.htm.

Alessandro Carugo et al. In Vivo Functional Platform Targeting Patient-Derived Xenografts Identifies WDR5-Myc Association as a Critical Determinant of Pancreatic Cancer. Cell Reports, June 2016 DOI:10.1016/j.celrep.2016.05.063

Cell Rep. 2016 Jun 28;16(1):133-47. doi: 10.1016/j.celrep.2016.05.063. Epub 2016 Jun 16.

In Vivo Functional Platform Targeting Patient-Derived Xenografts Identifies WDR5-Myc Association as a Critical Determinant of Pancreatic Cancer.

Author information

  • 1Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Molecular and Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy. Electronic address: acarugo@mdanderson.org.
  • 2Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Molecular and Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA.
  • 3Institute for Applied Cancer Science, UT MD Anderson Cancer Center, Houston, TX 77030, USA.
  • 4Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy.
  • 5Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA.
  • 6Sheikh Ahmed Bin Zayed Al Nahyan Center for Pancreatic Cancer Research, UT MD Anderson Cancer Center, Houston, TX 77030, USA.
  • 7Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Cancer Center, Houston, TX 77030, USA.
  • 8Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy; Department of Oncology and Hemato-oncology, University of Milan, Milan 20139, Italy.
  • 9Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan 20139, Italy.
  • 10Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Institute for Applied Cancer Science, UT MD Anderson Cancer Center, Houston, TX 77030, USA.
  • 11Department of Surgical Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA.
  • 12Department of Pathology, UT MD Anderson Cancer Center, Houston, TX 77030, USA.
  • 13Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA.
  • 14Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy. Electronic address: luisa.lanfrancone@ieo.eu.
  • 15C-4 Therapeutics, Cambridge, MA 02142, USA. Electronic address: theffernan@c4therapeutics.com.
  • 16Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Institute for Applied Cancer Science, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Molecular and Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA. Electronic address: gdraetta@mdanderson.org.

Abstract

Current treatment regimens for pancreatic ductal adenocarcinoma (PDAC) yield poor 5-year survival, emphasizing the critical need to identify druggable targets essential for PDAC maintenance. We developed an unbiased and in vivo target discovery approach to identify molecular vulnerabilities in low-passage and patient-derived PDAC xenografts or genetically engineered mouse model-derived allografts. Focusing on epigenetic regulators, we identified WDR5, a core member of the COMPASS histone H3 Lys4 (H3K4) MLL (1-4) methyltransferase complex, as a top tumor maintenance hit required across multiple human and mouse tumors. Mechanistically, WDR5 functions to sustain proper execution of DNA replication in PDAC cells, as previously suggested by replication stress studies involving MLL1, and c-Myc, also found to interact with WDR5. We indeed demonstrate that interaction with c-Myc is critical for this function. By showing that ATR inhibition mimicked the effects of WDR5 suppression, these data provide rationale to test ATR and WDR5 inhibitors for activity in this disease.

Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

Read Full Post »

Older Posts »