Advertisements
Feeds:
Posts
Comments

Archive for the ‘Cancer Screening’ Category


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

A mutated gene called RAS gives rise to a signalling protein Ral which is involved in tumour growth in the bladder. Many researchers tried and failed to target and stop this wayward gene. Signalling proteins such as Ral usually shift between active and inactive states.

 

So, researchers next tried to stop Ral to get into active state. In inacvtive state Ral exposes a pocket which gets closed when active. After five years, the researchers found a small molecule dubbed BQU57 that can wedge itself into the pocket to prevent Ral from closing and becoming active. Now, BQU57 has been licensed for further development.

 

Researchers have a growing genetic data on bladder cancer, some of which threaten to overturn the supposed causes of bladder cancer. Genetics has also allowed bladder cancer to be reclassified from two categories into five distinct subtypes, each with different characteristics and weak spots. All these advances bode well for drug development and for improved diagnosis and prognosis.

 

Among the groups studying the genetics of bladder cancer are two large international teams: Uromol (named for urology and molecular biology), which is based at Aarhus University Hospital in Denmark, and The Cancer Genome Atlas (TCGA), based at institutions in Texas and Boston. Each team tackled a different type of cancer, based on the traditional classification of whether or not a tumour has grown into the muscle wall of the bladder. Uromol worked on the more common, earlier form, non-muscle-invasive bladder cancer, whereas TCGA is looking at muscle-invasive bladder cancer, which has a lower survival rate.

 

The Uromol team sought to identify people whose non-invasive tumours might return after treatment, becoming invasive or even metastatic. Bladder cancer has a high risk of recurrence, so people whose non-invasive cancer has been treated need to be monitored for many years, undergoing cystoscopy every few months. They looked for predictive genetic footprints in the transcriptome of the cancer, which contains all of a cell’s RNA and can tell researchers which genes are turned on or off.

 

They found three subgroups with distinct basal and luminal features, as proposed by other groups, each with different clinical outcomes in early-stage bladder cancer. These features sort bladder cancer into genetic categories that can help predict whether the cancer will return. The researchers also identified mutations that are linked to tumour progression. Mutations in the so-called APOBEC genes, which code for enzymes that modify RNA or DNA molecules. This effect could lead to cancer and cause it to be aggressive.

 

The second major research group, TCGA, led by the National Cancer Institute and the National Human Genome Research Institute, that involves thousands of researchers across USA. The project has already mapped genomic changes in 33 cancer types, including breast, skin and lung cancers. The TCGA researchers, who study muscle-invasive bladder cancer, have looked at tumours that were already identified as fast-growing and invasive.

 

The work by Uromol, TCGA and other labs has provided a clearer view of the genetic landscape of early- and late-stage bladder cancer. There are five subtypes for the muscle-invasive form: luminal, luminal–papillary, luminal–infiltrated, basal–squamous, and neuronal, each of which is genetically distinct and might require different therapeutic approaches.

 

Bladder cancer has the third-highest mutation rate of any cancer, behind only lung cancer and melanoma. The TCGA team has confirmed Uromol research showing that most bladder-cancer mutations occur in the APOBEC genes. It is not yet clear why APOBEC mutations are so common in bladder cancer, but studies of the mutations have yielded one startling implication. The APOBEC enzyme causes mutations early during the development of bladder cancer, and independent of cigarette smoke or other known exposures.

 

The TCGA researchers found a subset of bladder-cancer patients, those with the greatest number of APOBEC mutations, had an extremely high five-year survival rate of about 75%. Other patients with fewer APOBEC mutations fared less well which is pretty surprising.

 

This detailed knowledge of bladder-cancer genetics may help to pinpoint the specific vulnerabilities of cancer cells in different people. Over the past decade, Broad Institute researchers have identified more than 760 genes that cancer needs to grow and survive. Their genetic map might take another ten years to finish, but it will list every genetic vulnerability that can be exploited. The goal of cancer precision medicine is to take the patient’s tumour and decode the genetics, so the clinician can make a decision based on that information.

 

References:

 

https://www.ncbi.nlm.nih.gov/pubmed/29117162

 

https://www.ncbi.nlm.nih.gov/pubmed/27321955

 

https://www.ncbi.nlm.nih.gov/pubmed/28583312

 

https://www.ncbi.nlm.nih.gov/pubmed/24476821

 

https://www.ncbi.nlm.nih.gov/pubmed/28988769

 

https://www.ncbi.nlm.nih.gov/pubmed/28753430

 

Advertisements

Read Full Post »


Reporter and Curator: Irina Robu, PhD

Monitoring cancer patients and evaluating their response to treatment can sometimes involve invasive procedures, including surgery.

The liquid biopsies have become something of a Holy Grail in cancer treatment among physicians, researchers and companies gambling big on the technology. Liquid biopsies, unlike traditional biopsies involving invasive surgery — rely on an ordinary blood draw. Developments in sequencing the human genome, permitting researchers to detect genetic mutations of cancers, have made the tests conceivable. Some 38 companies in the US alone are working on liquid biopsies by trying to analyze blood for fragments of DNA shed by dying tumor cells.

Premature research on the liquid biopsy has concentrated profoundly on patients with later-stage cancers who have suffered treatments, including chemotherapy, radiation, surgery, immunotherapy or drugs that target molecules involved in the growth, progression and spread of cancer. For cancer patients undergoing treatment, liquid biopsies could spare them some of the painful, expensive and risky tissue tumor biopsies and reduce reliance on CT scans. The tests can rapidly evaluate the efficacy of surgery or other treatment, while old-style biopsies and CT scans can still remain inconclusive as a result of scar tissue near the tumor site.

As recently as a few years ago, the liquid biopsies were hardly used except in research. At the moment, thousands of the tests are being used in clinical practices in the United States and abroad, including at the M.D. Anderson Cancer Center in Houston; the University of California, San Diego; the University of California, San Francisco; the Duke Cancer Institute and several other cancer centers.

With patients for whom physicians cannot get a tissue biopsy, the liquid biopsy could prove a safe and effective alternative that could help determine whether treatment is helping eradicate the cancer. A startup, Miroculus developed a cheap, open source device that can test blood for several types of cancer at once. The platform, called Miriam finds cancer by extracting RNA from blood and spreading it across plates that look at specific type of mRNA. The technology is then hooked up at a smartphone which sends the information to an online database and compares the microRNA found in the patient’s blood to known patterns indicating different type of cancers in the early stage and can reduce unnecessary cancer screenings.

Nevertheless, experts warn that more studies are essential to regulate the accuracy of the test, exactly which cancers it can detect, at what stages and whether it improves care or survival rates.

SOURCE

https://www.fastcompany.com/3037117/a-new-device-can-detect-multiple-types-of-cancer-with-a-single-blood-test

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4356857/

Other related articles published in this Open Access Online Scientific Publishing Journal include the following:

Liquid Biopsy Chip detects an array of metastatic cancer cell markers in blood – R&D @Worcester Polytechnic Institute, Micro and Nanotechnology Lab

Reporters: Tilda Barliya, PhD and Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/12/28/liquid-biopsy-chip-detects-an-array-of-metastatic-cancer-cell-markers-in-blood-rd-worcester-polytechnic-institute-micro-and-nanotechnology-lab/

Liquid Biopsy Assay May Predict Drug Resistance

Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2015/11/06/liquid-biopsy-assay-may-predict-drug-resistance/

One blood sample can be tested for a comprehensive array of cancer cell biomarkers: R&D at WPI

Curator: Marzan Khan, B.Sc

https://pharmaceuticalintelligence.com/2017/01/05/one-blood-sample-can-be-tested-for-a-comprehensive-array-of-cancer-cell-biomarkers-rd-wpi

 

 

Read Full Post »


One blood sample can be tested for a comprehensive array of cancer cell biomarkers: R&D at WPI

Curator: Marzan Khan, B.Sc

 

A team of mechanical engineers at Worcester Polytechnic Institute (WPI) have developed a fascinating technology – a liquid biopsy chip that captures and detects metastatic cancer cells, just from a small blood sample of cancer patients(1). This device is a recent development in the scientific field and holds tremendous potential that will allow doctors to spot signs of metastasis for a variety of cancers at an early stage and initiate an appropriate course of treatment(1).

Metastasis occurs when cancer cells break away from their site of origin and spread to other parts of the body via the lymph or the bloodstream, where they give rise to secondary tumors(2). By this time, the cancer is at an advanced stage and it becomes increasingly difficult to fight the disease. The cells that are shed by primary and metastatic cancers are called circulating tumor cells (CTCs) and their numbers lie in the range of 1–77,200/m(3). The basis of the liquid biopsy chip test is to capture these circulating tumor cells in the patient’s blood and identify the cell type through specific interaction with antibodies(4).

The chip is comprised of individual test units or small elements, about 3 millimeters wide(4). Each small element contains a network of carbon nanotube sensors in a well which are functionalized with antibodies(4). These antibodies will bind cell-surface antigens or protein markers unique for each type of cancer cell. Specific interaction between a cell surface protein and its corresponding antibody is a thermodynamic event that causes a change in free energy which is transduced into electricity(3). This electrical signature is picked up by the semi-conducting carbon nanotubes and can be seen as electrical spikes(4). Specific interactions create an increase in electrical signal, whereas non-specific interactions cause a decrease in signal or no change at all(4). Capture efficiency of cancer cells with the chip has been reported to range between 62-100%(4).

The liquid biopsy chip is also more advanced than microfluidics for several reasons. Firstly, the nanotube-chip arrays can capture as well as detect cancer cells, while microfluidics can only capture(4). Samples do not need to be processed for labeling or fixation, so the cell structures are preserved(4). Unlike microfluidics, these nanotubes will also capture tiny structures called exosomes spanning the nanometer range that are produced from cancer cells and carry the same biomarkers(4).

Pancreatic cancer is the fourth leading cause of cancer-associated deaths in the United states, with a survival window of 5 years in only 6% of the cases with treatment(5). In most patients, the disease has already metastasized at the time of diagnosis due to the lack of early-diagnostic markers, affecting some of the major organs such as liver, lungs and the peritoneum(5,6). Despite surgical resection of the primary tumor, the recurrence of local and metastatic tumors is rampant(5). Metastasis is the major cause of mortality in cancers(5). The liquid biopsy chip, that identifies CTCs can thus become an effective diagnostic tool in early detection of cancer as well as provide information into the efficacy of treatment(3). At present, ongoing experiments with this device involve testing for breast cancers but Dr. Balaji Panchapakesan and his team of engineers at WPI are optimistic about incorporating pancreatic and lung cancers into their research.

REFERENCES

1.Nanophenotype. Researchers build liquid biopsy chip that detects metastatic cancer cells in blood: One blood sample can be tested for a comprehensive array of cancer cell biomarkers. 27 Dec 2016. Genesis Nanotechnology,Inc

https://genesisnanotech.wordpress.com/2016/12/27/researchers-build-liquid-biopsy-chip-that-detects-metastatic-cancer-cells-in-blood-one-blood-sample-can-be-tested-for-a-comprehensive-array-of-cancer-cell-markers/

2.Martin TA, Ye L, Sanders AJ, et al. Cancer Invasion and Metastasis: Molecular and Cellular Perspective. In: Madame Curie Bioscience Database [Internet]. Austin (TX): Landes Bioscience; 2000-2013.

https://www.ncbi.nlm.nih.gov/books/NBK164700/

3.F Khosravi, B King, S Rai, G Kloecker, E Wickstrom, B Panchapakesan. Nanotube devices for digital profiling of cancer biomarkers and circulating tumor cells. 23 Dec 2013. IEEE Nanotechnology Magazine 7 (4), 20-26

Nanotube devices for digital profiling of cancer biomarkers and circulating tumor cells

4.Farhad Khosravi, Patrick J Trainor, Christopher Lambert, Goetz Kloecker, Eric Wickstrom, Shesh N Rai and Balaji Panchapakesan. Static micro-array isolation, dynamic time series classification, capture and enumeration of spiked breast cancer cells in blood: the nanotube–CTC chip. 29 Sept 2016. Nanotechnology. Vol 27, No.44. IOP Publishing Ltd

http://iopscience.iop.org/article/10.1088/0957-4484/27/44/44LT03/meta

5.Seyfried, T. N., & Huysentruyt, L. C. (2013). On the Origin of Cancer Metastasis. Critical Reviews in Oncogenesis18(1-2), 43–73.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597235/

6.Deeb, A., Haque, S.-U., & Olowoure, O. (2015). Pulmonary metastases in pancreatic cancer, is there a survival influence? Journal of Gastrointestinal Oncology6(3), E48–E51. http://doi.org/10.3978/j.issn.2078-6891.2014.114

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4397254/

Other related articles published in this Open Access Online Scientific Journal include the following:

 

Liquid Biopsy Chip detects an array of metastatic cancer cell markers in blood – R&D @Worcester Polytechnic Institute, Micro and Nanotechnology Lab

Reporters: Tilda Barliya, PhD and Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/12/28/liquid-biopsy-chip-detects-an-array-of-metastatic-cancer-cell-markers-in-blood-rd-worcester-polytechnic-institute-micro-and-nanotechnology-lab/

 

Trovagene’s ctDNA Liquid Biopsy urine and blood tests to be used in Monitoring and Early Detection of Pancreatic Cancer

Reporters: David Orchard-Webb, PhD and Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/07/06/trovagenes-ctdna-liquide-biopsy-urine-and-blood-tests-to-be-used-in-monitoring-and-early-detection-of-pancreatic-cancer/

 

Liquid Biopsy Assay May Predict Drug Resistance

Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2015/11/06/liquid-biopsy-assay-may-predict-drug-resistance/


New insights in cancer, cancer immunogenesis and circulating cancer cells

Larry H. Bernstein, MD, FCAP, Curator

https://pharmaceuticalintelligence.com/2016/04/15/new-insights-in-cancer-cancer-immunogenesis-and-circulating-cancer-cells/

 

Prognostic biomarker for NSCLC and Cancer Metastasis

Larry H. Bernstein, MD, FCAP, Curato

https://pharmaceuticalintelligence.com/2016/03/24/prognostic-biomarker-for-nsclc-and-cancer-metastasis/

 

Monitoring AML with “cell specific” blood test

Larry H. Bernstein, MD, FCAP, Curator

https://pharmaceuticalintelligence.com/2016/01/23/monitoring-aml-with-cell-specific-blood-test/

 

Diagnostic Revelations

Larry H. Bernstein, MD, FCAP, Curator

https://pharmaceuticalintelligence.com/2015/11/02/diagnostic-revelations/

 

Circulating Biomarkers World Congress, March 23-24, 2015, Boston: Exosomes, Microvesicles, Circulating DNA, Circulating RNA, Circulating Tumor Cells, Sample Preparation

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2015/03/03/circulating-biomarkers-world-congress-march-23-24-2015-boston-exosomes-microvesicles-circulating-dna-circulating-rna-circulating-tumor-cells-sample-preparation/

 

 

 

Read Full Post »


A novel 5-gene pancreatic adenocarcinoma classifier: Meta-analysis of transcriptome data – Clinical Genomics Research @BIDMC

Curator: Tilda Barliya, PhD

Analysis of  Bhasin et al paper and Literature search

Table 1: 5-genes classifiers as biomarkers for PDAC:

Gene symbol Gene name Subcellular localization
ECT2 Epithelial cell transforming sequence 2 oncogene Nucleus, cytoplasm
AHNAK2 AHNAKE nucleoprotein 2 Plasma membrane, cytoplasm
POSTN Periostin, osteoblast specific factor Extracellular space
TMPRSS4 Transmembrane protease, serine 4 Plasma membrane

 

SERPINB5 Serpin peptidase inhibitor, clade B (ovalbumin) member 5 Extracellular space


Introduction
:

  • Bhasin et al, conducted a beautiful study using a powerful meta-analysis from different sources to identify the “important/classifier” genes associated with Pancreatic Cancer (PDAC).
  • The authors identified 5 genes that were considered as good classifiers (table 1).
  • It is important to note that the meta-analysis was performed on tissue and microdissection samples.
  • In their summary, the authors aim to validate these genes in blood/urine samples.
  • While these genes might be over expressed in tissue samples it may not be true to their existence in blood and careful examination and validation is required.
  • Liquid biopsies are emerging as the go-to use tools for disease detection, mostly aimed for early diagnosis.
  • Liquid biopsies are non-invasive biopsies of blood, urine (potentially saliva) and their “exotic” components, i.e miRNA, exosomes etc.
  • Since Liquid biopsies are non-invasive, they are painless and patients are more complied.
  • It is important to note that there is a gap between the expression of a gene or a protein in tissue section and their expression in the blood and may not necessarily correlate.
  • It will be very interesting to follow their research and future outcomes.

Additional References:

  • TMPRSS4: an emerging potential therapeutic target in cancer.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4453593/

  • The tumour trail left in blood

http://www.nature.com/nature/journal/v532/n7598/full/532269a.html

Aashir Awan, PhD, wrote on 12/28/2016

I was wondering if these same 5 genes were upregulated in the pancreatic ductal adenocarcinoma cell lines that are available out there.  In doing cell biology work, there is always a dilemma whether cancer cell lines correctly re-capitulate in vivo tumors or not.  Personally, I prefer primary cell lines to do analysis but this finding can be used to test primary vs cell line.  In addition, I’ve attached the gene network for Ect2.  If you look carefully, the two big proteins that jump out are RACGAP1 and KIF23.  I think in designing therapies, combinatorial targets can yield the best outcomes.  Drugs directed towards two or more targets would seem ideal in my opinion.

ect2

Gene Network for Ect2

Original Research
Oncotarget. 2016 Apr 26;7(17):23263-81. doi: 10.18632/oncotarget.8139.

Meta-analysis of transcriptome data identifies a novel 5-gene pancreatic adenocarcinoma classifier.

Abstract

PURPOSE:

Pancreatic ductal adenocarcinoma (PDAC) is largely incurable due to late diagnosis. Superior early detection biomarkers are critical to improving PDAC survival and risk stratification.

EXPERIMENTAL DESIGN:

Optimized meta-analysis of PDAC transcriptome datasets identified and validated key PDAC biomarkers. PDAC-specific expression of a 5-gene biomarker panel was measured by qRT-PCR in microdissected patient-derived FFPE tissues. Cell-based assays assessed impact of two of these biomarkers, TMPRSS4 and ECT2, on PDAC cells.

RESULTS:

A 5-gene PDAC classifier (TMPRSS4, AHNAK2, POSTN, ECT2, SERPINB5) achieved on average 95% sensitivity and 89% specificity in discriminating PDAC from non-tumor samples in four training sets and similar performance (sensitivity = 94%, specificity = 89.6%) in five independent validation datasets. This classifier accurately discriminated PDAC from chronic pancreatitis (AUC = 0.83), other cancers (AUC = 0.89), and non-tumor from PDAC precursors (AUC = 0.92) in three independent datasets. Importantly, the classifier distinguished PanIN from healthy pancreas in the PDX1-Cre;LSL-KrasG12D PDAC mouse model. Discriminatory expression of the PDAC classifier genes was confirmed in microdissected FFPE samples of PDAC and matched surrounding non-tumor pancreas or pancreatitis. Notably, knock-down of TMPRSS4 and ECT2 reduced PDAC soft agar growth and cell viability and TMPRSS4 knockdown also blocked PDAC migration and invasion.

CONCLUSIONS:

This study identified and validated a highly accurate 5-gene PDAC classifier for discriminating PDAC and early precursor lesions from non-malignant tissue that may facilitate early diagnosis and risk stratification upon validation in prospective clinical trials. Cell-based experiments of two overexpressed proteins encoded by the panel, TMPRSS4 and ECT2, suggest a causal link to PDAC development and progression, confirming them as potential therapeutic targets.

KEYWORDS:

bioinformatics; biomarkers; meta-analysis; pancreatic cancer; transcriptome

PMID:
26993610
PMCID:
PMC5029625
DOI:
10.18632/oncotarget.8139

SOURCE

Oncotarget, Vol. 7, No. 17 – Referred as PDF, above

 

BIDMC Researchers Discover Early Indicators of Pancreatic Cancer

LibermannBhasin_PancreasCancerStudy

Markers may help doctors detect pancreatic cancer before it becomes deadly

In photo: First author Manoj Bhasin, PhD, and co-senior author Towia Libermann, PhD, Co-Director and Director of BIDMC’s Genomics, Proteomics, Bioinformatics and Systems Biology Center.

SOURCE

http://www.bidmc.org/News/PRLandingPage/2016/March/Libermann-Pancreatic-Cancer-Research-2016.aspx

BOSTON – Pancreatic cancer, the fourth leading cause of cancer death in the United States, is often diagnosed at a late stage, when curative treatment is no longer possible. A team led by investigators at Beth Israel Deaconess Medical Center (BIDMC) has now identified and validated an accurate 5-gene classifier for discriminating early pancreatic cancer from non-malignant tissue. Described online in the journal Oncotarget, the finding is a promising advance in the fight against this typically fatal disease.

“Pancreatic cancer is a devastating disease with a death rate close to the incidence rate,” said co-senior author Towia Libermann, PhD, Director of the Genomics, Proteomics, Bioinformatics and Systems Biology Center at BIDMC and Associate Professor of Medicine at Harvard Medical School (HMS). “Because more than 90 percent of pancreatic cancer cases are diagnosed at the metastatic stage, when there are only limited therapeutic options, earlier diagnosis is anticipated to have a major impact on extending life expectancy for patients. There has been a lack of reliable markers, early indicators and risk factors associated with pancreatic cancer, but this new way of differentiating between healthy and malignant tissue offers hope for earlier diagnosis and treatment.”

The investigators used a number of publicly available gene expression datasets for pancreatic cancer and developed a strategy to reanalyze these datasets together, applying rigorous statistical criteria to compare different datasets from different laboratories and different platforms with each other. The team then selected a subset of data for developing a panel for differentiating between pancreatic cancer and healthy pancreas tissue and thereafter applied this “Pancreatic Cancer Predictor” to the remaining datasets for independent validation to confirm the accuracy of the markers.

After demonstrating and independently validating that a 5-gene pancreatic cancer predictor discriminated between cancerous and healthy tissue, the researchers applied the predictor to datasets that also included benign lesions of the pancreas, including pancreatitis and early stage cancer. The predictor accurately differentiated pancreatic cancer, benign pancreatic lesions, early stage pancreatic cancer and healthy tissue. The predictor achieved on average 95 percent sensitivity and 89 percent specificity in discriminating pancreatic cancer from non-tumor samples in four training sets and similar performance (94 percent sensitivity, 90 percent specificity) in five independent validation datasets.

“Using innovative data normalization and gene selection approaches, we combined the statistical power of multiple genomic studies and masked their variability and batch effects to identify robust early diagnostic biomarkers of pancreatic cancer,” said first author Manoj Bhasin, PhD, Co-Director of BIDMC’s Genomics, Proteomics, Bioinformatics and Systems Biology Center and Assistant Professor of Medicine at HMS.

“The identification and initial validation of a highly accurate 5-gene pancreatic cancer biomarker panel that can discriminate late and early stages of pancreatic cancer from normal pancreas and benign pancreatic lesions could facilitate early diagnosis of pancreatic cancer,” said co-senior author Roya Khosravi-Far, PhD, Associate Professor of Pathology at BIDMC. “Our findings may open a window of opportunity for earlier diagnosis and, consequently, earlier intervention and more effective treatment of this deadly cancer, leading to higher survival rates.”

The first diagnostic application of the panel may be for analyses of fine needle biopsies routinely used for diagnosing pancreatic cancer and for determining the malignant potential of mostly benign pancreatic cysts that can sometimes be precursors of pancreatic cancer. In addition to providing a new tool for diagnoses, the research may also lead to new insights into how pancreatic cancer arises.

“Because these five genes are ‘turned on’ so early in the development of pancreatic cancer, they may play roles as drivers of this disease and may be exciting targets for therapies,” said Libermann. Most of the five genes—named TMPRSS4, AHNAK2, POSTN, ECT2 and SERPINB5—have been linked to migration, invasion, adhesion, and metastasis of pancreatic or other cancers.

The scientists next plan to evaluate the precise roles of the five genes and to validate the accuracy of their diagnostic assay in a prospective clinical study. “Moving forward, we will explore the potential to convert this tissue-based diagnostic into a noninvasive blood or urine test,” Libermann said.

“To further enhance the diagnostic power of this biomarker, we plan to expand it by including non-coding RNAs, proteins, metabolites and mutations associated with pancreatic cancer. This will result in development of the first of its kind biomarker that gauges pancreatic cancer alterations from multiple genomic angles for making highly accurate diagnoses,” added Bhasin. Such an inexpensive and simple test could help transform the landscape of pancreatic cancer and help prevent many of the estimated 330,000 deaths that it causes worldwide each year.

Study coauthors include BIDMC investigators Kenneth Ndebele, Octavian Bucur, Eric Yee, Jessica Plati, Andrea Bullock, Xuesong Gu, Eduardo Castan, Peng Zhang, Robert Najarian, Maria Muraru and Rebecca Miksad, and the University of Nebraska-Lincoln’s Hasan H. Otu. The work was supported by the National Institutes of Health, National Cancer Institute and Ben and Rose Cole Charitable Pria Foundation.

SOURCE

http://www.bidmc.org/News/PRLandingPage/2016/March/Libermann-Pancreatic-Cancer-Research-2016.aspx

Read Full Post »


Li -Fraumeni Syndrome and Pancreatic Cancer

Curator: Marzan Khan, B.Sc.

Li-Fraumeni syndrome (LFS) is a condition that makes individuals prone to developing a wide variety of cancers that occur early on in life, the most common types being- soft tissue sarcoma, osteosarcoma, breast cancer, brain tumors, adrenocortical carcinoma (ACC), and leukemia. (1) Pancreatic cancer is minimally associated with the condition. (2) A survey found the presence of pancreatic cancer in only 1% of 475 tumor samples collected from 91 families who were carriers of p53 mutations, with half of them having LFS. The incidence of breast cancer amongst them was the highest -24%. (2) Pancreatic carcinoma in LFS patients usually occurs in the later stages of life. (3)

The underlying cause of LFS is germline mutations in TP53 gene on chromosome 17p, that encodes the transcription factor p53, crucial in cell cycle regulation and the repair of damaged and/or abnormal cells. (4) In the majority of cases, this mutation is obtained by inheritance. (5) De-novo germline mutations in p53 occur in 7%-20% of the cases. (5)

A person showing symptoms of any type of cancer at an early age or having first or second-degree relatives with cancer are at risk of developing LFS. (5) That is why tracing family history is an important part of diagnosis in LFS patients. Genetic testing can confirm mutations present in the gene, however, there are controversial ethical issues regarding their use, particularly in children and fetuses.

In patients with LFS, it is important to control the manifestations of the disease. They should be monitored closely so that any new cancers that arise are diagnosed and treated during the early stages. (6) Patients are also at risk of developing radiation-induced second and third primary tumors. (6) Therefore, radiation and alkylating agents should be used minimally (6) People at risk can be cautioned to avoid exposure to carcinogens such as sunlight, cigarette smoke, and alcohol consumption. (5) Therapeutic approaches that are aimed at restoring wild-type p53 by gene therapy as well as reactivating non-functional p53 by the use of small-molecule drugs are currently being investigated in many cancers. (7) Unlike radiation therapy, these small-molecule drugs are non-toxic to healthy cells, thus eliminating the risk of forming new tumors.

So far, PRIMA-1 has proven to be quite effective at correcting non-functional p53. (8) PRIMA-1 is changed to its methylated form, PRIMA-1MET   that forms covalent adducts to thiol groups in the mutated protein and modifies them. (8) As a result, p53 regains its ability to destroy malignant cells. (8) A research study also found that PRIMA-1 induces apoptosis and increases the sensitivity of pancreatic cancer cells to various chemotherapeutic agents. (9)

  1. Magali Olivier, David E. Goldgar, Nayanta Sodha, Hiroko Ohgaki, Paul Kleihues, Pierre Hainaut and Rosalind A. Eeles. Li-Fraumeni and Related Syndromes. Cancer Res October 15 2003 63 (20) 6643-6650 http://cancerres.aacrjournals.org/content/63/20/6643.abstract
  2. Kleihues P, Schauble B, zur Hausen H, et al. Tumors associated with p53 germline mutations: a synopsis of 91 families. Am J Pathol 1997; 150:1-13 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1858532/
  3. John P. Neoptolemos, Raul Urrutia, James L. Abbruzzese, Markus W. Buchler. Pancreatic Cancer. 2010.1st ed, pp-6, 2010, Springer, Verlag, New York
  4. Mishra B and Patel RR. Gene Therapy for Treatment of Pancreatic Cancer. Austin Therapeutics. 2014;1(1): 10. https://books.google.ca/books?id=NmBB5ZoKkk4C&pg=PA6&lpg=PA6&dq=connection+between+li+fraumeni+and+Pancreatic+cancer&source=bl&ots=H0iCeaPP0N&sig=pqJT1tPMR6C-NIig3S_NkFKFsD0&hl=en&sa=X&ved=0ahUKEwi4nLrgzuPQAhUUIWMKHS3wBoc4ChDoAQhNMAg#v=onepage&q=connection%20between%20li%20fraumeni%20and%20Pancreatic%20cancer&f=false
  5. Schneider K, Zelley K, Nichols KE, et al. Li-Fraumeni Syndrome. 1999 Jan 19 [Updated 2013 Apr 11]. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2016. https://www.ncbi.nlm.nih.gov/pubmed/20301488
  6. Elisa Becze BA, ELS, 2011 Mar 1. An introduction to Li-Fraumeni Syndrome, Five-Minute-In-Service. http://connect.ons.org/columns/five-minute-in-service/an-introduction-to-li-fraumeni-syndrome
  7. Sorrell, A. D., Espenschied, C. R., Culver, J. O., & Weitzel, J. N. (2013).TP53Testing and Li-Fraumeni Syndrome: Current Status of Clinical Applications and Future Directions. Molecular Diagnosis & Therapy17(1), 31–47. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3627545/
  8. Emily J. Lewis. PRIMA-1 as a cancer therapy restoring mutant p53: a reviewBioscience Horizons (2015) 8: hzv006 http://biohorizons.oxfordjournals.org/content/8/hzv006.full
  9. Izetti, Patricia, Agnes Hautefeuille, Ana Lucia Abujamra, Caroline Brunetto de Farias, Juliana Giacomazzi, Bárbara Alemar, Guido Lenz, et al. ‘PRIMA-1, a Mutant p53 Reactivator, Induces Apoptosis and Enhances Chemotherapeutic Cytotoxicity in Pancreatic Cancer Cell Lines’. Investigational New Drugs 32, no. 5 (October 2014): 783–94. https://www.ncbi.nlm.nih.gov/pubmed/24838627

Izetti, Patricia, Agnes Hautefeuille, Ana Lucia Abujamra, Caroline Brunetto de Farias, Juliana Giacomazzi, Bárbara Alemar, Guido Lenz, et al. ‘PRIMA-1, a Mutant p53 Reactivator, Induces Apoptosis and Enhances Chemotherapeutic Cytotoxicity in Pancreatic Cancer Cell Lines’. Investigational New Drugs 32, no. 5 (October 2014): 783–94

Other related articles published in this Online Scientific Journal include the following:

p53 mutation – Li-Fraumeni Syndrome – Likelihood of Genetic or Hereditary conditions playing a role in Intergenerational incidence of Cancer

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/12/01/p53-mutation-li-fraumeni-syndrome-likelihood-of-genetic-or-hereditary-conditions-playing-a-role-in-intergenerational-incidence-of-cancer/

Pancreatic Cancer: Articles of Note @PharmaceuticalIntelligence.com

Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/05/26/pancreatic-cancer-articles-of-note-pharmaceuticalintelligence-com/

Read Full Post »


p53 mutation – Li-Fraumeni Syndrome – Likelihood of Genetic or Hereditary conditions playing a role in Intergenerational incidence of Cancer

 

Reporter: Aviva Lev-Ari, PhD, RN

 

THIS ARTICLE IS RECOMMENDED READING TO ALL OUR e-Readers

because it is a REAL story of a high school student fighting Brain Cancer, glioblastoma multiforme (GBM)

it presents the FRONTIER OF GENOMICS, PRECISION MEDICINE, Interventional Radiology and Interventional ONCOLOGY at

Stanford University, Canary Center at Stanford for Early Cancer Detection, Stanford Medical Center and Lucile Packard Children’s Hospital

I was exposed to Li-Fraumeni Syndrome in the following article:

‘And yet, you try’ – A father’s quest to save his son

http://stanmed.stanford.edu/2016fall/milan-gambhirs-li-fraumeni-syndrome.html

 

Li-Fraumeni syndrome

Other Names for This Condition

  • LFS
  • Sarcoma family syndrome of Li and Fraumeni
  • Sarcoma, breast, leukemia, and adrenal gland (SBLA) syndrome
  • SBLA syndrome

LFS is a rare disorder that greatly increases the risk of developing several types of cancer, particularly in children and young adults.

The cancers most often associated with Li-Fraumeni syndrome include breast cancer, a form of bone cancer called osteosarcoma, and cancers of soft tissues (such as muscle) called

Soft tissue sarcoma forms in soft tissues of the body, including muscle, tendons, fat, blood vessels, lymph vessels, nerves, and tissue around joints.


(small hormone-producing glands on top of each kidney). Several other types of cancer also occur more frequently in people with Li-Fraumeni syndrome.

A very similar condition called Li-Fraumeni-like syndrome shares many of the features of classic Li-Fraumeni syndrome. Both conditions significantly increase the chances of developing multiple cancers beginning in childhood; however, the pattern of specific cancers seen in affected family members is different.

Genetic Changes

The CHEK2 and TP53 genes are associated with Li-Fraumeni syndrome.

More than half of all families with Li-Fraumeni syndrome have inherited mutations in the gene. TP53 is a tumor suppressor gene, which means that it normally helps control the growth and division of cells. Mutations in this gene can allow cells to divide in an uncontrolled way and form tumors. Other genetic and environmental factors are also likely to affect the risk of cancer in people with TP53 mutations.

A few families with cancers characteristic of Li-Fraumeni syndrome and Li-Fraumeni-like syndrome do not have TP53 mutations, but have mutations in the CHEK2 gene. Like the TP53 gene, CHEK2 is a tumor suppressor gene. Researchers are uncertain whether CHEK2 mutations actually cause these conditions or are merely associated with an increased risk of certain cancers (including breast cancer).

Inheritance Pattern

Li-Fraumeni syndrome is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to increase the risk of developing cancer. In most cases, an affected person has a parent and other family members with cancers characteristic of the condition.

Diagnosis and Management

These resources address the diagnosis or management of Li-Fraumeni syndrome:

References on LFS

SOURCE

https://ghr.nlm.nih.gov/condition/li-fraumeni-syndrome

Read Full Post »


Immuno-Therapy Strategies on BioMarker’s cutoff value for defining PD-L1 positive/negative patients: First-line and Second-line setting – FDA stand on BMS’s “Test-free Prescribing” in Opdivo (nivolumab) vs Merck’s “Companion Diagnostic” in Keytruda (pembrolizumab) vs Genetech’s “Complementary Diagnostics” and”Companion Diagnostic”?? in Tecentriq (atezolizumab)

Reporter: Aviva Lev-Ari, PhD, RN

 

UPDATED on 11/21/2017

Roche Cancer Drug Rises To Challenge Merck, Bristol-Myers

Roche’s study had three arms. All patients received carboplatin and paclitaxel, the cancer drug once sold as Taxol. The control group also received Avastin, one of Roche’s best-selling cancer drugs. Then two groups got Tecentriq, one with Avastin and one without. What Roche has announced today is that the Avastin-Tecentriq-chemotherapy combination did better than Avastin and chemotherapy alone, and that the survival results so far are “encouraging.” That leaves a big question: how are the patients who got Tecentriq, but not Avastin, doing?

SOURCE

https://www.forbes.com/sites/matthewherper/2017/11/20/roche-cancer-drug-rises-to-challenge-merck-bristol-myers/#1a08271b52a8

 

UPDATED on 7/25/2017

Close to a year after Merck $MRK won an accelerated FDA OK to use its PD-1 checkpoint star Keytruda for treating second-line cases head and neck squamous cell carcinoma in combination with platinum-containing chemo, the pharma giant announced that its big Phase III study for that indication failed.

The pivotal KEYNOTE-040 trial failed to meet the primary endpoint on overall survival in comparing the blockbuster checkpoint against standard therapies, the pharma giant reported. But the current approval stands nevertheless, Merck said in a statement.

“The company noted that the FDA remains comfortable with the drug’s current accelerated approval in this indication despite the trial results,” observed Leerink’s Seamus Fernandez. “Importantly, Keytruda appears to have another shot on goal for full approval in H&N cancer, as the Keynote-048 study in first-line patients could, if positive, serve as the confirmatory trial.”

SOURCE

https://endpts.com/merck-hit-with-another-late-stage-setback-on-checkpoint-star-keytruda/?utm_medium=email&utm_campaign=Tuesday%20%20July%2025%202017&utm_content=Tuesday%20%20July%2025%202017+CID_15fd9125b2763ceaf79f421345542d44&utm_source=ENDPOINTS%20emails&utm_term=Merck%20hit%20with%20another%20late-stage%20setback%20on%20checkpoint%20star%20Keytruda

UPDATED on 5/11/2017

Merck increases grip on its lead in lung cancer, winning approval for Keytruda/chemo combo as first-line therapy

UPDATED on 5/10/2017

Roche’s shocking Tecentriq fail raises red flag for bladder cancer rivals

Roche’s Tecentriq wasn’t supposed to fail its phase 3 trial in second-line bladder cancer. But that’s what it just did—and the data shortfall not only endangers the drug’s conditional FDA approval, but could augur trouble ahead for other checkpoint inhibitors that followed Tecentriq into the field.

Tecentriq, approved last year on the basis of phase 2 data showing a durable response to the drug, failed to prove it could actually prolong patients’ lives, the company said Wednesday. The bladder cancer indication, Tecentriq’s first, accounts for about 70% of the med’s current sales, analysts say, and the FDA could well decide to strike that approval off the drug’s label.

“[W]e assume that this will put this indication at risk of being removed from the label,” Leerink analyst Seamus Fernandez wrote Wednesday morning, noting that the results were unexpected. “This comes as a surprise to us, considering Merck’s Keytruda showed an overall survival benefit.”

SOURCE

http://www.fiercepharma.com/pharma/roche-s-shocking-tecentriq-fail-raises-red-flag-for-bladder-cancer-rivals?utm_medium=nl&utm_source=internal&mrkid=993697&mkt_tok=eyJpIjoiTVRCbFltUXpZMk0wTURRMCIsInQiOiIydnRsZ0xzT3prd3EzYVNoV0xyT1ZCWnFCaDFScVdwd1dyMmpMZjQycU9zOEVJSTVZalY5dHNyQ1E0XC96eXhadkpRSE5JRGoydHNzNFA2WUVaRzRVbUxmNmhicVZ4YkE3c1NmNkhoSUxBK0VmU2dUM3FBWEhrOFp2UHoySXhrUUEifQ%3D%3D

UPDATED on 4/13/2017

World’s Top Ten Cancer Drugs by 2020  (million USD)

https://pharmaceuticalintelligence.com/2017/04/13/worlds-top-ten-cancer-drugs-by-2020-million-usd/

Opdivo Setback May Yield Lessons for Pharma Advancing Immunotherapies With PD-L1 Testing

https://www.genomeweb.com/molecular-diagnostics/opdivo-setback-may-yield-lessons-pharma-advancing-immunotherapies-pd-l1

UPDATED on 10/9/2016

Opdivo (nivolumab) Shows Durable Response in Longest Follow-up for a PD-1 Inhibitor in Previously Treated Advanced Non-Small Cell Lung Cancer

BMY

Opdivo (nivolumab) Shows Durable Response in Longest Follow-up for a PD-1 Inhibitor in Previously Treated Advanced Non-Small Cell Lung Cancer

Updated data from CheckMate -057 and -017 show Opdivo-treated patients had tripled the duration of response compared to those treated with docetaxel, with a minimum follow-up of two years

In CheckMate -057, durable responses and complete responses were observed with Opdivo in both PD-L1 expressors and non-expressors

Patient-reported outcomes from CheckMate -057 show favorable overall health status with Opdivo versus docetaxel in previously treated advanced non-small cell lung cancer patients

Bristol-Myers Squibb Company (NYSE: BMY) announced today updated results from two pivotal Phase 3 studies, CheckMate -057 and CheckMate -017, which showed more than one-third of previously treated metastatic non-small cell lung cancer (NSCLC) patients in both trials experienced ongoing responses with Opdivo, compared to no ongoing responses in the docetaxel arm. The median duration of response (DOR) with Opdivo versus docetaxel in CheckMate -057 was 17.2 months (95% CI: 8.4, NE) and 5.6 months (95% CI: 4.4, 6.9), respectively, and in CheckMate -017 it was 25.2 months (95% CI: 9.8, 30.4) and 8.4 months (95% CI: 8.4, NE), respectively. In CheckMate -057, patients with PD-L1 ≥1% had a median DOR of 17.2 months (95% CI: 8.4, NE) and in patients with PD-L1 <1%, it was 18.3 months (95% CI: 5.5, NE). In both studies, durability of response was observed in both PD-L1 expressors and non-expressors, and in CheckMate -057, one out of the four complete responses occurred in a patient with <1% PD-L1 expression.

There were no new safety signals identified for Opdivo in the pooled safety analysis from both studies. No new treatment-related deaths occurred between one and two years’ minimum follow-up despite the longer treatment exposure, and new events were observed in 11/418 patients with an additional one year of follow up.

These findings were presented today, October 9, during a poster discussion session at the 2016 European Society for Medical Oncology Congress from 3:46-4:06 p.m. CEST (Abstract #1215PD).

“Further evaluation of Opdivo in previously treated non-small cell lung cancer showed continued superior survival and the potential for durable responses compared to docetaxel across histologies in this patient population,” said Martin Reck, M.D., Ph.D., head of thoracic oncology at the Hospital Grosshansdorf. “Notably, the median duration of response with Opdivo was more than three times that observed with docetaxel.”

Read more at

http://www.stockhouse.com/news/press-releases/2016/10/09/opdivo-nivolumab-shows-durable-response-in-longest-follow-up-for-a-pd-1#QVs566rlK9JKSMC8.99

UPDATED on 9/25/2016

Genentech dives into mRNA, betting $310M on BioNTech’s personalized cancer vaccine tech

For a review of all the complexities involved in the emerging market for BioMarkers in Immuno-Therapy, see

Opdivo Setback May Yield Lessons for Pharma Advancing Immunotherapies With PD-L1 Testing

https://www.genomeweb.com/molecular-diagnostics/opdivo-setback-may-yield-lessons-pharma-advancing-immunotherapies-pd-l1

PD-L1 testing as part of the tumor profiling workup for patients. Diaceutics’ surveys show a sharp uptick in the number of labs offering PD-L1 testing over the past year-and-a-half and 52 labs in the US offer at least one PD-L1 test. The company also reviewed biomarkers being studied in 95 Phase II/III NSCLC, and found that approximately half are incorporating patients’ PD-L1 status either alone or in combination with other markers, such as EGFR and ALK mutations.

At Cancer Genetics over the past year, there has also been a notable ramp up in orders for PD-L1 testing for lung cancer patients, but also for melanoma and head and neck cancer patients.

Labs are also challenged by having to decide whether to invest in validating and offering all four FDA-approved PD-L1 tests. “If you look from a laboratory perspective, in the ideal world, you need one test, and clear instructions about the algorithm and cutoff values to assign patients to treatment,” Braendle said. “Four different tests creates quite a confusing situation for the labs and the physicians.”

SOURCES

Diaceutics Group Report Reveals Significant Real-Time PD-L1 Testing Gaps in the US

http://www.diaceutics.com/diaceutics-group-report-reveals-significant-real-time-pd-l1-testing-gaps-in-the-us-3/

 

Opdivo Setback May Yield Lessons for Pharma Advancing Immunotherapies With PD-L1 Testing

https://www.genomeweb.com/molecular-diagnostics/opdivo-setback-may-yield-lessons-pharma-advancing-immunotherapies-pd-l1

 

Read Full Post »

Older Posts »