Advertisements
Feeds:
Posts
Comments

Archive for the ‘Cancer Screening’ Category


Live Conference Coverage @Medcitynews Converge 2018 Philadelphia:Liquid Biopsy and Gene Testing vs Reimbursement Hurdles

9:25- 10:15 Liquid Biopsy and Gene Testing vs. Reimbursement Hurdles

Genetic testing, whether broad-scale or single gene-testing, is being ordered by an increasing number of oncologists, but in many cases, patients are left to pay for these expensive tests themselves. How can this dynamic be shifted? What can be learned from the success stories?

Moderator: Shoshannah Roth, Assistant Director of Health Technology Assessment and Information Services , ECRI Institute @Ecri_Institute
Speakers:
Rob Dumanois, Manager – reimbursement strategy, Thermo Fisher Scientific
Eugean Jiwanmall, Senior Research Analyst for Medical Policy & Technology Evaluation , Independence Blue Cross @IBX
Michael Nall, President and Chief Executive Officer, Biocept

 

Michael: Wide range of liquid biopsy services out there.  There are screening companies however they are young and need lots of data to develop pan diagnostic test.  Most of liquid biopsy is more for predictive analysis… especially therapeutic monitoring.  Sometimes solid biopsies are impossible , limited, or not always reliable due to metastasis or tough to biopsy tissues like lung.

Eugean:  Circulating tumor cells and ctDNA is the only FDA approved liquid biopsies.  However you choose then to evaluate the liquid biopsy, PCR NGS, FISH etc, helps determines what the reimbursement options are available.

Rob:  Adoption of reimbursement for liquid biopsy is moving faster in Europe than the US.  It is possible in US that there may be changes to the payment in one to two years though.

Michael:  China is adopting liquid biopsy rapidly.  Patients are demanding this in China.

Reimbursement

Eugean:  For IBX to make better decisions we need more clinical trials to correlate with treatment outcome.  Most of the major cancer networks, like NCCN, ASCO, CAP, just have recommendations and not approved guidelines at this point.  From his perspective with lung cancer NCCN just makes a suggestion with EGFR mutations however only the companion diagnostic is approved by FDA.

Michael:  Fine needle biopsies are usually needed by the pathologist anyway before they go to liquid biopsy as need to know the underlying mutations in the original tumor, it just is how it is done in most cancer centers.

Eugean:  Whatever the established way of doing things, you have to outperform the clinical results of the old method for adoption of a newer method.

Reimbursement issues have driven a need for more research into clinical validity and utility of predictive and therapeutic markers with regard to liquid biopsies.  However although many academic centers try to partner with Biocept Biocept has a limit of funds and must concentrate only on a few trials.  The different payers use different evidence based methods to evaluate liquid biopsy markers.  ECRI also has a database for LB markers using an evidence based criteria.  IBX does sees consistency among payers as far as decision and policy.

NGS in liquid biopsy

Rob: There is a path to coverage, especially through the FDA.  If you have a FDA cleared NGS test, it will be covered.  These are long and difficult paths to reimbursement for NGS but it is feasible. Medicare line of IBX covers this testing, however on the commercial side they can’t cover this.  @IBX: for colon only kras or nras has clinical utility and only a handful of other cancer related genes for other cancers.  For a companion diagnostic built into that Dx do the other markers in the panel cost too much?

Please follow on Twitter using the following #hash tags and @pharma_BI

#MCConverge

#cancertreatment

#healthIT

#innovation

#precisionmedicine

#healthcaremodels

#personalizedmedicine

#healthcaredata

And at the following handles:

@pharma_BI

@medcitynews

Advertisements

Read Full Post »


5:00 – 5:45 PM Early Diagnosis Through Predictive Biomarkers, NonInvasive Testing

Reporter: Stephen J. Williams, Ph.D.

 

Diagnosing cancer early is often the difference between survival and death. Hear from experts regarding the new and emerging technologies that form the next generation of cancer diagnostics.

Moderator: Heather Rose, Director of Licensing, Thomas Jefferson University
Speakers:
Bonnie Anderson, Chairman and CEO, Veracyte @BonnieAndDx
Kevin Hrusovsky, Founder and Chairman, Powering Precision Health @KevinHrusovsky

Bonnie Anderson and Veracyte produces genomic tests for thyroid and other cancer diagnosis.  Kevin Hrusovksy and Precision Health uses peer reviewed evidence based medicine to affect precision medicine decision.

Bonnie: aim to get a truth of diagnosis.  Getting tumor tissue is paramount as well as properly preserved tissue.  They use deep RNA sequencing  and machine learning  in their clinically approved tests.

Kevin: Serial biospace entrepreneur.  Two diseases, cancer and neurologic, have been diseases which have been hardest to get reproducible and validated biomarkers of early disease.  He concentrates on protein biomarkers.

Heather:  FDA has recently approved drugs for early disease intervention.  However the use of biomarkers can go beyond patient stratification in clinical trials.

Kevin: 15 approved drugs for MS but the markers are scans looking for brain atrophy which is too late of an endpoint.  So we need biomarkers of early disease progression.  We can use those early biomarkers of disease progression so pharma can target those early biomarkers and or use those early biomarkers of disease progression  for endpoint

Bonnie: exciting time in the early diagnostics field. She prefers transcriptomics to DNA based methods such as WES or WGS (whole exome or whole genome sequencing).  It was critical to show data on the cost savings imparted by their transcriptomic based thryoid cancer diagnostic test for payers to consider this test eligible for reimbursement.

Kevin: There has been 20 million  CAT scans for  cancer but it is estimated 90% of these scans led to misdiagnosis. Biomarker  development  has revolutionized diagnostics in this disease area.  They have developed a breakthrough panel of ten protein biomarkers in serum which he estimates may replace 5 million mammograms.

All panelists agreed on the importance of regulatory compliance and the focus of new research should be on early detection.  In addition they believe that Dr. Gotlieb’s appointment to the FDA is a positive for the biomarker development field, as Dr. Gotlieb understands the potential and importance of early detection and prevention of disease.  Kevin also felt Dr. Gotlieb understands the importance of incorporating biomarkers as endpoints in clinical trials.  Over 750 phase 1,2, and 3 clinical trials use biomarker endpoints but the pharma companies still need to prove the biomarkers clinical relevance to the FDA.They also agreed it would be helpful to involve advocacy groups in putting more pressure on the healthcare providers and policy makers on this importance of diagnostics as a preventative measure.

In addition, the discovery and use of biomarkers as disease endpoints has led to a resurgence of Alzheimer’s disease drug development by companies which have previously given up on these type of neurodegenerative diseases.

Kevin feels proteomics offers great advantages over DNA-based diagnostics, especially in cancer such as ovarian cancer, where a high degree of specificity for a diagnostic test is required to ascertain if a woman should undergo prophylactic oophorectomy.  He suggests that a new blood-based protein biomarker panel is being developed for early detection of some forms of ovarian cancer.

Please follow on Twitter using the following #hash tags and @pharma_BI

#MCConverge

#cancertreatment

#healthIT

#innovation

#precisionmedicine

#healthcaremodels

#personalizedmedicine

#healthcaredata

And at the following handles:

@pharma_BI

@medcitynews

 

Please see related articles on Live Coverage of Previous Meetings on this Open Access Journal

LIVE – Real Time – 16th Annual Cancer Research Symposium, Koch Institute, Friday, June 16, 9AM – 5PM, Kresge Auditorium, MIT

Real Time Coverage and eProceedings of Presentations on 11/16 – 11/17, 2016, The 12th Annual Personalized Medicine Conference, HARVARD MEDICAL SCHOOL, Joseph B. Martin Conference Center, 77 Avenue Louis Pasteur, Boston

Tweets Impression Analytics, Re-Tweets, Tweets and Likes by @AVIVA1950 and @pharma_BI for 2018 BioIT, Boston, 5/15 – 5/17, 2018

BIO 2018! June 4-7, 2018 at Boston Convention & Exhibition Center

https://pharmaceuticalintelligence.com/press-coverage/

Read Full Post »


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

The CRISPR-Cas9 system has proven to be a powerful tool for genome editing allowing for the precise modification of specific DNA sequences within a cell. Many efforts are currently underway to use the CRISPR-Cas9 system for the therapeutic correction of human genetic diseases. CRISPR/Cas9 has revolutionized our ability to engineer genomes and conduct genome-wide screens in human cells.

 

CRISPR–Cas9 induces a p53-mediated DNA damage response and cell cycle arrest in immortalized human retinal pigment epithelial cells, leading to a selection against cells with a functional p53 pathway. Inhibition of p53 prevents the damage response and increases the rate of homologous recombination from a donor template. These results suggest that p53 inhibition may improve the efficiency of genome editing of untransformed cells and that p53 function should be monitored when developing cell-based therapies utilizing CRISPR–Cas9.

 

Whereas some cell types are amenable to genome engineering, genomes of human pluripotent stem cells (hPSCs) have been difficult to engineer, with reduced efficiencies relative to tumour cell lines or mouse embryonic stem cells. Using hPSC lines with stable integration of Cas9 or transient delivery of Cas9-ribonucleoproteins (RNPs), an average insertion or deletion (indel) efficiency greater than 80% was achieved. This high efficiency of insertion or deletion generation revealed that double-strand breaks (DSBs) induced by Cas9 are toxic and kill most hPSCs.

 

The toxic response to DSBs was P53/TP53-dependent, such that the efficiency of precise genome engineering in hPSCs with a wild-type P53 gene was severely reduced. These results indicate that Cas9 toxicity creates an obstacle to the high-throughput use of CRISPR/Cas9 for genome engineering and screening in hPSCs. As hPSCs can acquire P53 mutations, cell replacement therapies using CRISPR/Cas9-enginereed hPSCs should proceed with caution, and such engineered hPSCs should be monitored for P53 function.

 

CRISPR-based editing of T cells to treat cancer, as scientists at the University of Pennsylvania are studying in a clinical trial, should also not have a p53 problem. Nor should any therapy developed with CRISPR base editing, which does not make the double-stranded breaks that trigger p53. But, there are pre-existing humoral and cell-mediated adaptive immune responses to Cas9 in humans, a factor which must be taken into account as the CRISPR-Cas9 system moves forward into clinical trials.

 

References:

 

https://techonomy.com/2018/06/new-cancer-concerns-shake-crispr-prognosis/

 

https://www.statnews.com/2018/06/11/crispr-hurdle-edited-cells-might-cause-cancer/

 

https://www.biorxiv.org/content/early/2017/07/26/168443

 

https://www.nature.com/articles/s41591-018-0049-z.epdf?referrer_access_token=s92jDP_yPBmDmi-USafzK9RgN0jAjWel9jnR3ZoTv0MRjuB3dEnTctGtoy16n3DDbmISsvbln9SCISHVDd73tdQRNS7LB8qBlX1vpbLE0nK_CwKThDGcf344KR6RAm9k3wZiwyu-Kb1f2Dl7pArs5yYSiSLSdgeH7gst7lOBEh9qIc6kDpsytWLHqX_tyggu&tracking_referrer=www.statnews.com

 

https://www.nature.com/articles/s41591-018-0050-6.epdf?referrer_access_token=2KJ0L-tmvjtQdzqlkVXWVNRgN0jAjWel9jnR3ZoTv0Phq6GCpDlJx7lIwhCzBRjHJv0mv4zO0wzJJCeuxJjzoUWLeemH8T4I3i61ftUBkYkETi6qnweELRYMj4v0kLk7naHF-ujuz4WUf75mXsIRJ3HH0kQGq1TNYg7tk3kamoelcgGp4M7UTiTmG8j0oog_&tracking_referrer=www.statnews.com

 

https://www.biorxiv.org/content/early/2018/01/05/243345

 

https://www.nature.com/articles/nmeth.4293.epdf

 

Read Full Post »


Centers for Medicare & Medicaid Services announced that the federal healthcare program will cover the costs of cancer gene tests that have been approved by the Food and Drug Administration

 

Reporter: Aviva Lev-Ari, PhD, RN

genetic testing just became routine care for patients with advanced cancers. And that means precision medicine has finally broken into the mainstream.

Any tests that gain FDA clearance in the future will automatically receive full coverage.

In 3/2018 there are three FDA approved Genetic Tests for Cancer:

UNDER development and not included in the agreement , above, includes:

  • Olivier Elemento, Director of the Caryl and Israel Englander Institute for Precision Medicine at Cornell, the team at Cornell, for example, has developed a whole exome test that compares mutations in tumors against healthy cells across 22,000 genes. To date, it’s been used to help match more than 1,000 patients in New York state with the best available treatment options.

Under the final decision, doctors are still free to order non-FDA approved tests, but coverage isn’t guaranteed; each case will be evaluated by local Medicare administrative contractors. Which means Elemento’s test could still be covered. “To me this is a vote of confidence that next generation sequencing is useful for cancer patients,” says Elemento.

So far, CMS is only covering these tests for stage three and stage four metastatic cancer sufferers. Most of them aren’t going to be cured. They might get a few more good months, maybe a year, tops.

Cancerous Genes

SOURCE

WITH MEDICARE SUPPORT, GENETIC CANCER TESTING GOES MAINSTREAM

https://www.wired.com/story/with-medicare-support-genetic-cancer-testing-goes-mainstream/?mbid=social_twitter_onsiteshare

Read Full Post »


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

A mutated gene called RAS gives rise to a signalling protein Ral which is involved in tumour growth in the bladder. Many researchers tried and failed to target and stop this wayward gene. Signalling proteins such as Ral usually shift between active and inactive states.

 

So, researchers next tried to stop Ral to get into active state. In inacvtive state Ral exposes a pocket which gets closed when active. After five years, the researchers found a small molecule dubbed BQU57 that can wedge itself into the pocket to prevent Ral from closing and becoming active. Now, BQU57 has been licensed for further development.

 

Researchers have a growing genetic data on bladder cancer, some of which threaten to overturn the supposed causes of bladder cancer. Genetics has also allowed bladder cancer to be reclassified from two categories into five distinct subtypes, each with different characteristics and weak spots. All these advances bode well for drug development and for improved diagnosis and prognosis.

 

Among the groups studying the genetics of bladder cancer are two large international teams: Uromol (named for urology and molecular biology), which is based at Aarhus University Hospital in Denmark, and The Cancer Genome Atlas (TCGA), based at institutions in Texas and Boston. Each team tackled a different type of cancer, based on the traditional classification of whether or not a tumour has grown into the muscle wall of the bladder. Uromol worked on the more common, earlier form, non-muscle-invasive bladder cancer, whereas TCGA is looking at muscle-invasive bladder cancer, which has a lower survival rate.

 

The Uromol team sought to identify people whose non-invasive tumours might return after treatment, becoming invasive or even metastatic. Bladder cancer has a high risk of recurrence, so people whose non-invasive cancer has been treated need to be monitored for many years, undergoing cystoscopy every few months. They looked for predictive genetic footprints in the transcriptome of the cancer, which contains all of a cell’s RNA and can tell researchers which genes are turned on or off.

 

They found three subgroups with distinct basal and luminal features, as proposed by other groups, each with different clinical outcomes in early-stage bladder cancer. These features sort bladder cancer into genetic categories that can help predict whether the cancer will return. The researchers also identified mutations that are linked to tumour progression. Mutations in the so-called APOBEC genes, which code for enzymes that modify RNA or DNA molecules. This effect could lead to cancer and cause it to be aggressive.

 

The second major research group, TCGA, led by the National Cancer Institute and the National Human Genome Research Institute, that involves thousands of researchers across USA. The project has already mapped genomic changes in 33 cancer types, including breast, skin and lung cancers. The TCGA researchers, who study muscle-invasive bladder cancer, have looked at tumours that were already identified as fast-growing and invasive.

 

The work by Uromol, TCGA and other labs has provided a clearer view of the genetic landscape of early- and late-stage bladder cancer. There are five subtypes for the muscle-invasive form: luminal, luminal–papillary, luminal–infiltrated, basal–squamous, and neuronal, each of which is genetically distinct and might require different therapeutic approaches.

 

Bladder cancer has the third-highest mutation rate of any cancer, behind only lung cancer and melanoma. The TCGA team has confirmed Uromol research showing that most bladder-cancer mutations occur in the APOBEC genes. It is not yet clear why APOBEC mutations are so common in bladder cancer, but studies of the mutations have yielded one startling implication. The APOBEC enzyme causes mutations early during the development of bladder cancer, and independent of cigarette smoke or other known exposures.

 

The TCGA researchers found a subset of bladder-cancer patients, those with the greatest number of APOBEC mutations, had an extremely high five-year survival rate of about 75%. Other patients with fewer APOBEC mutations fared less well which is pretty surprising.

 

This detailed knowledge of bladder-cancer genetics may help to pinpoint the specific vulnerabilities of cancer cells in different people. Over the past decade, Broad Institute researchers have identified more than 760 genes that cancer needs to grow and survive. Their genetic map might take another ten years to finish, but it will list every genetic vulnerability that can be exploited. The goal of cancer precision medicine is to take the patient’s tumour and decode the genetics, so the clinician can make a decision based on that information.

 

References:

 

https://www.ncbi.nlm.nih.gov/pubmed/29117162

 

https://www.ncbi.nlm.nih.gov/pubmed/27321955

 

https://www.ncbi.nlm.nih.gov/pubmed/28583312

 

https://www.ncbi.nlm.nih.gov/pubmed/24476821

 

https://www.ncbi.nlm.nih.gov/pubmed/28988769

 

https://www.ncbi.nlm.nih.gov/pubmed/28753430

 

Read Full Post »


Reporter and Curator: Irina Robu, PhD

Monitoring cancer patients and evaluating their response to treatment can sometimes involve invasive procedures, including surgery.

The liquid biopsies have become something of a Holy Grail in cancer treatment among physicians, researchers and companies gambling big on the technology. Liquid biopsies, unlike traditional biopsies involving invasive surgery — rely on an ordinary blood draw. Developments in sequencing the human genome, permitting researchers to detect genetic mutations of cancers, have made the tests conceivable. Some 38 companies in the US alone are working on liquid biopsies by trying to analyze blood for fragments of DNA shed by dying tumor cells.

Premature research on the liquid biopsy has concentrated profoundly on patients with later-stage cancers who have suffered treatments, including chemotherapy, radiation, surgery, immunotherapy or drugs that target molecules involved in the growth, progression and spread of cancer. For cancer patients undergoing treatment, liquid biopsies could spare them some of the painful, expensive and risky tissue tumor biopsies and reduce reliance on CT scans. The tests can rapidly evaluate the efficacy of surgery or other treatment, while old-style biopsies and CT scans can still remain inconclusive as a result of scar tissue near the tumor site.

As recently as a few years ago, the liquid biopsies were hardly used except in research. At the moment, thousands of the tests are being used in clinical practices in the United States and abroad, including at the M.D. Anderson Cancer Center in Houston; the University of California, San Diego; the University of California, San Francisco; the Duke Cancer Institute and several other cancer centers.

With patients for whom physicians cannot get a tissue biopsy, the liquid biopsy could prove a safe and effective alternative that could help determine whether treatment is helping eradicate the cancer. A startup, Miroculus developed a cheap, open source device that can test blood for several types of cancer at once. The platform, called Miriam finds cancer by extracting RNA from blood and spreading it across plates that look at specific type of mRNA. The technology is then hooked up at a smartphone which sends the information to an online database and compares the microRNA found in the patient’s blood to known patterns indicating different type of cancers in the early stage and can reduce unnecessary cancer screenings.

Nevertheless, experts warn that more studies are essential to regulate the accuracy of the test, exactly which cancers it can detect, at what stages and whether it improves care or survival rates.

SOURCE

https://www.fastcompany.com/3037117/a-new-device-can-detect-multiple-types-of-cancer-with-a-single-blood-test

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4356857/

Other related articles published in this Open Access Online Scientific Publishing Journal include the following:

Liquid Biopsy Chip detects an array of metastatic cancer cell markers in blood – R&D @Worcester Polytechnic Institute, Micro and Nanotechnology Lab

Reporters: Tilda Barliya, PhD and Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/12/28/liquid-biopsy-chip-detects-an-array-of-metastatic-cancer-cell-markers-in-blood-rd-worcester-polytechnic-institute-micro-and-nanotechnology-lab/

Liquid Biopsy Assay May Predict Drug Resistance

Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2015/11/06/liquid-biopsy-assay-may-predict-drug-resistance/

One blood sample can be tested for a comprehensive array of cancer cell biomarkers: R&D at WPI

Curator: Marzan Khan, B.Sc

https://pharmaceuticalintelligence.com/2017/01/05/one-blood-sample-can-be-tested-for-a-comprehensive-array-of-cancer-cell-biomarkers-rd-wpi

 

 

Read Full Post »


One blood sample can be tested for a comprehensive array of cancer cell biomarkers: R&D at WPI

Curator: Marzan Khan, B.Sc

 

A team of mechanical engineers at Worcester Polytechnic Institute (WPI) have developed a fascinating technology – a liquid biopsy chip that captures and detects metastatic cancer cells, just from a small blood sample of cancer patients(1). This device is a recent development in the scientific field and holds tremendous potential that will allow doctors to spot signs of metastasis for a variety of cancers at an early stage and initiate an appropriate course of treatment(1).

Metastasis occurs when cancer cells break away from their site of origin and spread to other parts of the body via the lymph or the bloodstream, where they give rise to secondary tumors(2). By this time, the cancer is at an advanced stage and it becomes increasingly difficult to fight the disease. The cells that are shed by primary and metastatic cancers are called circulating tumor cells (CTCs) and their numbers lie in the range of 1–77,200/m(3). The basis of the liquid biopsy chip test is to capture these circulating tumor cells in the patient’s blood and identify the cell type through specific interaction with antibodies(4).

The chip is comprised of individual test units or small elements, about 3 millimeters wide(4). Each small element contains a network of carbon nanotube sensors in a well which are functionalized with antibodies(4). These antibodies will bind cell-surface antigens or protein markers unique for each type of cancer cell. Specific interaction between a cell surface protein and its corresponding antibody is a thermodynamic event that causes a change in free energy which is transduced into electricity(3). This electrical signature is picked up by the semi-conducting carbon nanotubes and can be seen as electrical spikes(4). Specific interactions create an increase in electrical signal, whereas non-specific interactions cause a decrease in signal or no change at all(4). Capture efficiency of cancer cells with the chip has been reported to range between 62-100%(4).

The liquid biopsy chip is also more advanced than microfluidics for several reasons. Firstly, the nanotube-chip arrays can capture as well as detect cancer cells, while microfluidics can only capture(4). Samples do not need to be processed for labeling or fixation, so the cell structures are preserved(4). Unlike microfluidics, these nanotubes will also capture tiny structures called exosomes spanning the nanometer range that are produced from cancer cells and carry the same biomarkers(4).

Pancreatic cancer is the fourth leading cause of cancer-associated deaths in the United states, with a survival window of 5 years in only 6% of the cases with treatment(5). In most patients, the disease has already metastasized at the time of diagnosis due to the lack of early-diagnostic markers, affecting some of the major organs such as liver, lungs and the peritoneum(5,6). Despite surgical resection of the primary tumor, the recurrence of local and metastatic tumors is rampant(5). Metastasis is the major cause of mortality in cancers(5). The liquid biopsy chip, that identifies CTCs can thus become an effective diagnostic tool in early detection of cancer as well as provide information into the efficacy of treatment(3). At present, ongoing experiments with this device involve testing for breast cancers but Dr. Balaji Panchapakesan and his team of engineers at WPI are optimistic about incorporating pancreatic and lung cancers into their research.

REFERENCES

1.Nanophenotype. Researchers build liquid biopsy chip that detects metastatic cancer cells in blood: One blood sample can be tested for a comprehensive array of cancer cell biomarkers. 27 Dec 2016. Genesis Nanotechnology,Inc

https://genesisnanotech.wordpress.com/2016/12/27/researchers-build-liquid-biopsy-chip-that-detects-metastatic-cancer-cells-in-blood-one-blood-sample-can-be-tested-for-a-comprehensive-array-of-cancer-cell-markers/

2.Martin TA, Ye L, Sanders AJ, et al. Cancer Invasion and Metastasis: Molecular and Cellular Perspective. In: Madame Curie Bioscience Database [Internet]. Austin (TX): Landes Bioscience; 2000-2013.

https://www.ncbi.nlm.nih.gov/books/NBK164700/

3.F Khosravi, B King, S Rai, G Kloecker, E Wickstrom, B Panchapakesan. Nanotube devices for digital profiling of cancer biomarkers and circulating tumor cells. 23 Dec 2013. IEEE Nanotechnology Magazine 7 (4), 20-26

Nanotube devices for digital profiling of cancer biomarkers and circulating tumor cells

4.Farhad Khosravi, Patrick J Trainor, Christopher Lambert, Goetz Kloecker, Eric Wickstrom, Shesh N Rai and Balaji Panchapakesan. Static micro-array isolation, dynamic time series classification, capture and enumeration of spiked breast cancer cells in blood: the nanotube–CTC chip. 29 Sept 2016. Nanotechnology. Vol 27, No.44. IOP Publishing Ltd

http://iopscience.iop.org/article/10.1088/0957-4484/27/44/44LT03/meta

5.Seyfried, T. N., & Huysentruyt, L. C. (2013). On the Origin of Cancer Metastasis. Critical Reviews in Oncogenesis18(1-2), 43–73.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597235/

6.Deeb, A., Haque, S.-U., & Olowoure, O. (2015). Pulmonary metastases in pancreatic cancer, is there a survival influence? Journal of Gastrointestinal Oncology6(3), E48–E51. http://doi.org/10.3978/j.issn.2078-6891.2014.114

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4397254/

Other related articles published in this Open Access Online Scientific Journal include the following:

 

Liquid Biopsy Chip detects an array of metastatic cancer cell markers in blood – R&D @Worcester Polytechnic Institute, Micro and Nanotechnology Lab

Reporters: Tilda Barliya, PhD and Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/12/28/liquid-biopsy-chip-detects-an-array-of-metastatic-cancer-cell-markers-in-blood-rd-worcester-polytechnic-institute-micro-and-nanotechnology-lab/

 

Trovagene’s ctDNA Liquid Biopsy urine and blood tests to be used in Monitoring and Early Detection of Pancreatic Cancer

Reporters: David Orchard-Webb, PhD and Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/07/06/trovagenes-ctdna-liquide-biopsy-urine-and-blood-tests-to-be-used-in-monitoring-and-early-detection-of-pancreatic-cancer/

 

Liquid Biopsy Assay May Predict Drug Resistance

Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2015/11/06/liquid-biopsy-assay-may-predict-drug-resistance/


New insights in cancer, cancer immunogenesis and circulating cancer cells

Larry H. Bernstein, MD, FCAP, Curator

https://pharmaceuticalintelligence.com/2016/04/15/new-insights-in-cancer-cancer-immunogenesis-and-circulating-cancer-cells/

 

Prognostic biomarker for NSCLC and Cancer Metastasis

Larry H. Bernstein, MD, FCAP, Curato

https://pharmaceuticalintelligence.com/2016/03/24/prognostic-biomarker-for-nsclc-and-cancer-metastasis/

 

Monitoring AML with “cell specific” blood test

Larry H. Bernstein, MD, FCAP, Curator

https://pharmaceuticalintelligence.com/2016/01/23/monitoring-aml-with-cell-specific-blood-test/

 

Diagnostic Revelations

Larry H. Bernstein, MD, FCAP, Curator

https://pharmaceuticalintelligence.com/2015/11/02/diagnostic-revelations/

 

Circulating Biomarkers World Congress, March 23-24, 2015, Boston: Exosomes, Microvesicles, Circulating DNA, Circulating RNA, Circulating Tumor Cells, Sample Preparation

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2015/03/03/circulating-biomarkers-world-congress-march-23-24-2015-boston-exosomes-microvesicles-circulating-dna-circulating-rna-circulating-tumor-cells-sample-preparation/

 

 

 

Read Full Post »

Older Posts »