Feeds:
Posts
Comments

Archive for the ‘Artificial Intelligence in CANCER’ Category


Deep Learning extracts Histopathological Patterns and accurately discriminates 28 Cancer and 14 Normal Tissue Types: Pan-cancer Computational Histopathology Analysis

Reporter: Aviva Lev-Ari, PhD, RN

Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis

Yu Fu1, Alexander W Jung1, Ramon Viñas Torne1, Santiago Gonzalez1,2, Harald Vöhringer1, Mercedes Jimenez-Linan3, Luiza Moore3,4, and Moritz Gerstung#1,5 # to whom correspondence should be addressed 1) European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK. 2) Current affiliation: Institute for Research in Biomedicine (IRB Barcelona), Parc Científic de Barcelona, Barcelona, Spain. 3) Department of Pathology, Addenbrooke’s Hospital, Cambridge, UK. 4) Wellcome Sanger Institute, Hinxton, UK 5) European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany.

Correspondence:

Dr Moritz Gerstung European Molecular Biology Laboratory European Bioinformatics Institute (EMBL-EBI) Hinxton, CB10 1SA UK. Tel: +44 (0) 1223 494636 E-mail: moritz.gerstung@ebi.ac.uk

Abstract

Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis

Here we use deep transfer learning to quantify histopathological patterns across 17,396 H&E stained histopathology image slides from 28 cancer types and correlate these with underlying genomic and transcriptomic data. Pan-cancer computational histopathology (PC-CHiP) classifies the tissue origin across organ sites and provides highly accurate, spatially resolved tumor and normal distinction within a given slide. The learned computational histopathological features correlate with a large range of recurrent genetic aberrations, including whole genome duplications (WGDs), arm-level copy number gains and losses, focal amplifications and deletions as well as driver gene mutations within a range of cancer types. WGDs can be predicted in 25/27 cancer types (mean AUC=0.79) including those that were not part of model training. Similarly, we observe associations with 25% of mRNA transcript levels, which enables to learn and localise histopathological patterns of molecularly defined cell types on each slide. Lastly, we find that computational histopathology provides prognostic information augmenting histopathological subtyping and grading in the majority of cancers assessed, which pinpoints prognostically relevant areas such as necrosis or infiltrating lymphocytes on each tumour section. Taken together, these findings highlight the large potential of PC-CHiP to discover new molecular and prognostic associations, which can augment diagnostic workflows and lay out a rationale for integrating molecular and histopathological data.

SOURCE

https://www.biorxiv.org/content/10.1101/813543v1

Key points

● Pan-cancer computational histopathology analysis with deep learning extracts histopathological patterns and accurately discriminates 28 cancer and 14 normal tissue types

● Computational histopathology predicts whole genome duplications, focal amplifications and deletions, as well as driver gene mutations

● Wide-spread correlations with gene expression indicative of immune infiltration and proliferation

● Prognostic information augments conventional grading and histopathology subtyping in the majority of cancers

 

Discussion

Here we presented PC-CHiP, a pan-cancer transfer learning approach to extract computational histopathological features across 42 cancer and normal tissue types and their genomic, molecular and prognostic associations. Histopathological features, originally derived to classify different tissues, contained rich histologic and morphological signals predictive of a range of genomic and transcriptomic changes as well as survival. This shows that computer vision not only has the capacity to highly accurately reproduce predefined tissue labels, but also that this quantifies diverse histological patterns, which are predictive of a broad range of genomic and molecular traits, which were not part of the original training task. As the predictions are exclusively based on standard H&E-stained tissue sections, our analysis highlights the high potential of computational histopathology to digitally augment existing histopathological workflows. The strongest genomic associations were found for whole genome duplications, which can in part be explained by nuclear enlargement and increased nuclear intensities, but seemingly also stems from tumour grade and other histomorphological patterns contained in the high-dimensional computational histopathological features. Further, we observed associations with a range of chromosomal gains and losses, focal deletions and amplifications as well as driver gene mutations across a number of cancer types. These data demonstrate that genomic alterations change the morphology of cancer cells, as in the case of WGD, but possibly also that certain aberrations preferentially occur in distinct cell types, reflected by the tumor histology. Whatever is the cause or consequence in this equation, these associations lay out a route towards genomically defined histopathology subtypes, which will enhance and refine conventional assessment. Further, a broad range of transcriptomic correlations was observed reflecting both immune cell infiltration and cell proliferation that leads to higher tumor densities. These examples illustrated the remarkable property that machine learning does not only establish novel molecular associations from pre-computed histopathological feature sets but also allows the localisation of these traits within a larger image. While this exemplifies the power of a large scale data analysis to detect and localise recurrent patterns, it is probably not superior to spatially annotated training data. Yet such data can, by definition, only be generated for associations which are known beforehand. This appears straightforward, albeit laborious, for existing histopathology classifications, but more challenging for molecular readouts. Yet novel spatial transcriptomic44,45 and sequencing technologies46 bring within reach spatially matched molecular and histopathological data, which would serve as a gold standard in combining imaging and molecular patterns. Across cancer types, computational histopathological features showed a good level of prognostic relevance, substantially improving prognostic accuracy over conventional grading and histopathological subtyping in the majority of cancers. It is this very remarkable that such predictive It is made available under a CC-BY-NC 4.0 International license. (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. bioRxiv preprint first posted online Oct. 25, 2019; doi: http://dx.doi.org/10.1101/813543. The copyright holder for this preprint signals can be learned in a fully automated fashion. Still, at least at the current resolution, the improvement over a full molecular and clinical workup was relatively small. This might be a consequence of the far-ranging relations between histopathology and molecular phenotypes described here, implying that histopathology is a reflection of the underlying molecular alterations rather than an independent trait. Yet it probably also highlights the challenges of unambiguously quantifying histopathological signals in – and combining signals from – individual areas, which requires very large training datasets for each tumour entity. From a methodological point of view, the prediction of molecular traits can clearly be improved. In this analysis, we adopted – for the reason of simplicity and to avoid overfitting – a transfer learning approach in which an existing deep convolutional neural network, developed for classification of everyday objects, was fine tuned to predict cancer and normal tissue types. The implicit imaging feature representation was then used to predict molecular traits and outcomes. Instead of employing this two-step procedure, which risks missing patterns irrelevant for the initial classification task, one might directly employ either training on the molecular trait of interest, or ideally multi-objective learning. Further improvement may also be related to the choice of the CNN architecture. Everyday images have no defined scale due to a variable z-dimension; therefore, the algorithms need to be able to detect the same object at different sizes. This clearly is not the case for histopathology slides, in which one pixel corresponds to a defined physical size at a given magnification. Therefore, possibly less complex CNN architectures may be sufficient for quantitative histopathology analyses, and also show better generalisation. Here, in our proof-of-concept analysis, we observed a considerable dependence of the feature representation on known and possibly unknown properties of our training data, including the image compression algorithm and its parameters. Some of these issues could be overcome by amending and retraining the network to isolate the effect of confounding factors and additional data augmentation. Still, given the flexibility of deep learning algorithms and the associated risk of overfitting, one should generally be cautious about the generalisation properties and critically assess whether a new image is appropriately represented. Looking forward, our analyses revealed the enormous potential of using computer vision alongside molecular profiling. While the eye of a trained human may still constitute the gold standard for recognising clinically relevant histopathological patterns, computers have the capacity to augment this process by sifting through millions of images to retrieve similar patterns and establish associations with known and novel traits. As our analysis showed this helps to detect histopathology patterns associated with a range of genomic alterations, transcriptional signatures and prognosis – and highlight areas indicative of these traits on each given slide. It is therefore not too difficult to foresee how this may be utilised in a computationally augmented histopathology workflow enabling more precise and faster diagnosis and prognosis. Further, the ability to quantify a rich set of histopathology patterns lays out a path to define integrated histopathology and molecular cancer subtypes, as recently demonstrated for colorectal cancers47 .

Lastly, our analyses provide It is made available under a CC-BY-NC 4.0 International license. (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

bioRxiv preprint first posted online Oct. 25, 2019; doi: http://dx.doi.org/10.1101/813543.

The copyright holder for this preprint proof-of-concept for these principles and we expect them to be greatly refined in the future based on larger training corpora and further algorithmic refinements.

SOURCE

https://www.biorxiv.org/content/biorxiv/early/2019/10/25/813543.full.pdf

 

Other related articles published in this Open Access Online Scientific Journal include the following: 

 

CancerBase.org – The Global HUB for Diagnoses, Genomes, Pathology Images: A Real-time Diagnosis and Therapy Mapping Service for Cancer Patients – Anonymized Medical Records accessible to anyone on Earth

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/07/28/cancerbase-org-the-global-hub-for-diagnoses-genomes-pathology-images-a-real-time-diagnosis-and-therapy-mapping-service-for-cancer-patients-anonymized-medical-records-accessible-to/

 

631 articles had in their Title the keyword “Pathology”

https://pharmaceuticalintelligence.com/?s=Pathology

 

Read Full Post »


Showcase: How Deep Learning could help radiologists spend their time more efficiently

Reporter and Curator: Dror Nir, PhD

 

The debate on the function AI could or should realize in modern radiology is buoyant presenting wide spectrum of positive expectations and also fears.

The article: A Deep Learning Model to Triage Screening Mammograms: A Simulation Study that was published this month shows the best, and very much feasible, utility for AI in radiology at the present time. It would be of great benefit for radiologists and patients if such applications will be incorporated (with all safety precautions taken) into routine practice as soon as possible.

In a simulation study, a deep learning model to triage mammograms as cancer free improves workflow efficiency and significantly improves specificity while maintaining a noninferior sensitivity.

Background

Recent deep learning (DL) approaches have shown promise in improving sensitivity but have not addressed limitations in radiologist specificity or efficiency.

Purpose

To develop a DL model to triage a portion of mammograms as cancer free, improving performance and workflow efficiency.

Materials and Methods

In this retrospective study, 223 109 consecutive screening mammograms performed in 66 661 women from January 2009 to December 2016 were collected with cancer outcomes obtained through linkage to a regional tumor registry. This cohort was split by patient into 212 272, 25 999, and 26 540 mammograms from 56 831, 7021, and 7176 patients for training, validation, and testing, respectively. A DL model was developed to triage mammograms as cancer free and evaluated on the test set. A DL-triage workflow was simulated in which radiologists skipped mammograms triaged as cancer free (interpreting them as negative for cancer) and read mammograms not triaged as cancer free by using the original interpreting radiologists’ assessments. Sensitivities, specificities, and percentage of mammograms read were calculated, with and without the DL-triage–simulated workflow. Statistics were computed across 5000 bootstrap samples to assess confidence intervals (CIs). Specificities were compared by using a two-tailed t test (P < .05) and sensitivities were compared by using a one-sided t test with a noninferiority margin of 5% (P < .05).

Results

The test set included 7176 women (mean age, 57.8 years ± 10.9 [standard deviation]). When reading all mammograms, radiologists obtained a sensitivity and specificity of 90.6% (173 of 191; 95% CI: 86.6%, 94.7%) and 93.5% (24 625 of 26 349; 95% CI: 93.3%, 93.9%). In the DL-simulated workflow, the radiologists obtained a sensitivity and specificity of 90.1% (172 of 191; 95% CI: 86.0%, 94.3%) and 94.2% (24 814 of 26 349; 95% CI: 94.0%, 94.6%) while reading 80.7% (21 420 of 26 540) of the mammograms. The simulated workflow improved specificity (P = .002) and obtained a noninferior sensitivity with a margin of 5% (P < .001).

Conclusion

This deep learning model has the potential to reduce radiologist workload and significantly improve specificity without harming sensitivity.

Read Full Post »


Single-cell RNA-seq helps in finding intra-tumoral heterogeneity in pancreatic cancer

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Pancreatic cancer is a significant cause of cancer mortality; therefore, the development of early diagnostic strategies and effective treatment is essential. Improvements in imaging technology, as well as use of biomarkers are changing the way that pancreas cancer is diagnosed and staged. Although progress in treatment for pancreas cancer has been incremental, development of combination therapies involving both chemotherapeutic and biologic agents is ongoing.

 

Cancer is an evolutionary disease, containing the hallmarks of an asexually reproducing unicellular organism subject to evolutionary paradigms. Pancreatic ductal adenocarcinoma (PDAC) is a particularly robust example of this phenomenon. Genomic features indicate that pancreatic cancer cells are selected for fitness advantages when encountering the geographic and resource-depleted constraints of the microenvironment. Phenotypic adaptations to these pressures help disseminated cells to survive in secondary sites, a major clinical problem for patients with this disease.

 

The immune system varies in cell types, states, and locations. The complex networks, interactions, and responses of immune cells produce diverse cellular ecosystems composed of multiple cell types, accompanied by genetic diversity in antigen receptors. Within this ecosystem, innate and adaptive immune cells maintain and protect tissue function, integrity, and homeostasis upon changes in functional demands and diverse insults. Characterizing this inherent complexity requires studies at single-cell resolution. Recent advances such as massively parallel single-cell RNA sequencing and sophisticated computational methods are catalyzing a revolution in our understanding of immunology.

 

PDAC is the most common type of pancreatic cancer featured with high intra-tumoral heterogeneity and poor prognosis. In the present study to comprehensively delineate the PDAC intra-tumoral heterogeneity and the underlying mechanism for PDAC progression, single-cell RNA-seq (scRNA-seq) was employed to acquire the transcriptomic atlas of 57,530 individual pancreatic cells from primary PDAC tumors and control pancreases. The diverse malignant and stromal cell types, including two ductal subtypes with abnormal and malignant gene expression profiles respectively, were identified in PDAC.

 

The researchers found that the heterogenous malignant subtype was composed of several subpopulations with differential proliferative and migratory potentials. Cell trajectory analysis revealed that components of multiple tumor-related pathways and transcription factors (TFs) were differentially expressed along PDAC progression. Furthermore, it was found a subset of ductal cells with unique proliferative features were associated with an inactivation state in tumor-infiltrating T cells, providing novel markers for the prediction of antitumor immune response. Together, the findings provided a valuable resource for deciphering the intra-tumoral heterogeneity in PDAC and uncover a connection between tumor intrinsic transcriptional state and T cell activation, suggesting potential biomarkers for anticancer treatment such as targeted therapy and immunotherapy.

 

References:

 

https://www.ncbi.nlm.nih.gov/pubmed/31273297

 

https://www.ncbi.nlm.nih.gov/pubmed/21491194

 

https://www.ncbi.nlm.nih.gov/pubmed/27444064

 

https://www.ncbi.nlm.nih.gov/pubmed/28983043

 

https://www.ncbi.nlm.nih.gov/pubmed/24976721

 

https://www.ncbi.nlm.nih.gov/pubmed/27693023

 

Read Full Post »


Tweets, Pictures and Retweets at 18th Annual Cancer Research Symposium – Machine Learning and Cancer, June 14, 2019, MIT by @pharma_BI and @AVIVA1950 for #KIsymposium PharmaceuticalIntelligence.com and Social Media

 

Pictures taken in Real Time

 

Notification from Twitter.com on June 14, 2019 and in the 24 hours following the symposium

 

     liked your Tweet

    3 hours ago

  1.  Retweeted your Tweet

    5 hours ago

    1 other Retweet

  2.  liked your Tweets

    11 hours ago

    2 other likes

     and  liked a Tweet you were mentioned in

    11 hours ago

     liked your reply

    12 hours ago

  3. Replying to 

    It was an incredibly touching and “metzamrer” surprise to meet you at MIT

  4.  liked your Tweets

    13 hours ago

    3 other likes

     liked your reply

    15 hours ago

    Amazing event @avivregev @reginabarzilay 2pharma_BI Breakthrough in

     and  liked a Tweet you were mentioned in

    17 hours ago

  5. ‘s machine learning tool characterizes proteins, which are biomarkers of disease development and progression. Scientists can know more about their relationship to specific diseases and can interview earlier and precisely. ,

  6. learning and are undergoing dramatic changes and hold great promise for cancer research, diagnostics, and therapeutics. @KIinstitute by

     liked your Tweet

    Jun 16

     Retweeted your Retweet

    Jun 16

     liked your Retweet

    Jun 15

     Retweeted your Tweet

    Jun 15

     Retweeted your Tweet

    Jun 15

     Retweeted your Retweet

    Jun 15

     and 3 others liked your reply

    Jun 15

     and  Retweeted your Tweet

    Jun 14

     and  liked your Tweet

    Jun 14

     and  Retweeted your Tweet

    Jun 14

     liked your Tweet

    Jun 14

  7.  liked your Tweets

    Jun 14

    2 other likes

     liked your Tweet

    Jun 14

     Retweeted your Retweet

    Jun 14

     liked your Tweet

    Jun 14

     and  Retweeted your Tweet

    Jun 14

     liked your Tweet

    Jun 14

     liked your Tweet

    Jun 14

  8. identification in the will depend on highly

  9.  liked your Tweets

    Jun 14

    2 other likes

     Retweeted your Tweet

    Jun 14

     liked your Tweet

    Jun 14

     and 3 others liked your reply

    Jun 14

     liked your Retweet

    Jun 14

  10. this needed to be done a long time ago

     Retweeted your Tweet

    Jun 14

     and  Retweeted your reply

    Jun 14

     liked your Tweet

    Jun 14

     liked your reply

    Jun 14

     Retweeted your reply

    Jun 14

 

Tweets by @pharma_BI and by @AVIVA1950

&

Retweets and replies by @pharma_BI and @AVIVA1950

eProceedings 18th Symposium 2019 covered in Amazing event, Keynote best talks @avivregev ’er @reginabarzelay

  1. Top lectures by @reginabarzilay @avivaregev

  2. eProceeding 2019 Koch Institute Symposium – 18th Annual Cancer Research Symposium – Machine Learning and Cancer, June 14, 2019, 8:00 AM-5:00 PMET MIT Kresge Auditorium, 48 Massachusetts Ave, Cambridge, MA via

  1.   Retweeted

    eProceedings 18th Symposium 2019 covered in Amazing event, Keynote best talks @avivregev ’er @reginabarzelay

  2. Top lectures by @reginabarzilay @avivaregev

  3. eProceeding 2019 Koch Institute Symposium – 18th Annual Cancer Research Symposium – Machine Learning and Cancer, June 14, 2019, 8:00 AM-5:00 PMET MIT Kresge Auditorium, 48 Massachusetts Ave, Cambridge, MA via

  4. eProceedings & eProceeding 2019 Koch Institute Symposium – 18th Annual Cancer Research Symposium – Machine Learning and Cancer, June 14, 2019, 8:00 AM-5:00 PMET MIT Kresge Auditorium, 48 Massachusetts Ave, Cambridge, MA via

  5.   Retweeted
  6.   Retweeted

    Einstein, Curie, Bohr, Planck, Heisenberg, Schrödinger… was this the greatest meeting of minds, ever? Some of the world’s most notable physicists participated in the 1927 Solvay Conference. In fact, 17 of the 29 scientists attending were or became Laureates.

  7.   Retweeted

    identification in the will depend on highly

  8. eProceeding 2019 Koch Institute Symposium – 18th Annual Cancer Research Symposium – Machine Learning and Cancer, June 14, 2019, 8:00 AM-5:00 PMET MIT Kresge Auditorium, Cambridge, MA via

 

Read Full Post »