Advertisements
Feeds:
Posts
Comments

Archive for the ‘Artificial Intelligence in CANCER’ Category


Showcase: How Deep Learning could help radiologists spend their time more efficiently

Reporter and Curator: Dror Nir, PhD

 

The debate on the function AI could or should realize in modern radiology is buoyant presenting wide spectrum of positive expectations and also fears.

The article: A Deep Learning Model to Triage Screening Mammograms: A Simulation Study that was published this month shows the best, and very much feasible, utility for AI in radiology at the present time. It would be of great benefit for radiologists and patients if such applications will be incorporated (with all safety precautions taken) into routine practice as soon as possible.

In a simulation study, a deep learning model to triage mammograms as cancer free improves workflow efficiency and significantly improves specificity while maintaining a noninferior sensitivity.

Background

Recent deep learning (DL) approaches have shown promise in improving sensitivity but have not addressed limitations in radiologist specificity or efficiency.

Purpose

To develop a DL model to triage a portion of mammograms as cancer free, improving performance and workflow efficiency.

Materials and Methods

In this retrospective study, 223 109 consecutive screening mammograms performed in 66 661 women from January 2009 to December 2016 were collected with cancer outcomes obtained through linkage to a regional tumor registry. This cohort was split by patient into 212 272, 25 999, and 26 540 mammograms from 56 831, 7021, and 7176 patients for training, validation, and testing, respectively. A DL model was developed to triage mammograms as cancer free and evaluated on the test set. A DL-triage workflow was simulated in which radiologists skipped mammograms triaged as cancer free (interpreting them as negative for cancer) and read mammograms not triaged as cancer free by using the original interpreting radiologists’ assessments. Sensitivities, specificities, and percentage of mammograms read were calculated, with and without the DL-triage–simulated workflow. Statistics were computed across 5000 bootstrap samples to assess confidence intervals (CIs). Specificities were compared by using a two-tailed t test (P < .05) and sensitivities were compared by using a one-sided t test with a noninferiority margin of 5% (P < .05).

Results

The test set included 7176 women (mean age, 57.8 years ± 10.9 [standard deviation]). When reading all mammograms, radiologists obtained a sensitivity and specificity of 90.6% (173 of 191; 95% CI: 86.6%, 94.7%) and 93.5% (24 625 of 26 349; 95% CI: 93.3%, 93.9%). In the DL-simulated workflow, the radiologists obtained a sensitivity and specificity of 90.1% (172 of 191; 95% CI: 86.0%, 94.3%) and 94.2% (24 814 of 26 349; 95% CI: 94.0%, 94.6%) while reading 80.7% (21 420 of 26 540) of the mammograms. The simulated workflow improved specificity (P = .002) and obtained a noninferior sensitivity with a margin of 5% (P < .001).

Conclusion

This deep learning model has the potential to reduce radiologist workload and significantly improve specificity without harming sensitivity.

Advertisements

Read Full Post »


Single-cell RNA-seq helps in finding intra-tumoral heterogeneity in pancreatic cancer

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Pancreatic cancer is a significant cause of cancer mortality; therefore, the development of early diagnostic strategies and effective treatment is essential. Improvements in imaging technology, as well as use of biomarkers are changing the way that pancreas cancer is diagnosed and staged. Although progress in treatment for pancreas cancer has been incremental, development of combination therapies involving both chemotherapeutic and biologic agents is ongoing.

 

Cancer is an evolutionary disease, containing the hallmarks of an asexually reproducing unicellular organism subject to evolutionary paradigms. Pancreatic ductal adenocarcinoma (PDAC) is a particularly robust example of this phenomenon. Genomic features indicate that pancreatic cancer cells are selected for fitness advantages when encountering the geographic and resource-depleted constraints of the microenvironment. Phenotypic adaptations to these pressures help disseminated cells to survive in secondary sites, a major clinical problem for patients with this disease.

 

The immune system varies in cell types, states, and locations. The complex networks, interactions, and responses of immune cells produce diverse cellular ecosystems composed of multiple cell types, accompanied by genetic diversity in antigen receptors. Within this ecosystem, innate and adaptive immune cells maintain and protect tissue function, integrity, and homeostasis upon changes in functional demands and diverse insults. Characterizing this inherent complexity requires studies at single-cell resolution. Recent advances such as massively parallel single-cell RNA sequencing and sophisticated computational methods are catalyzing a revolution in our understanding of immunology.

 

PDAC is the most common type of pancreatic cancer featured with high intra-tumoral heterogeneity and poor prognosis. In the present study to comprehensively delineate the PDAC intra-tumoral heterogeneity and the underlying mechanism for PDAC progression, single-cell RNA-seq (scRNA-seq) was employed to acquire the transcriptomic atlas of 57,530 individual pancreatic cells from primary PDAC tumors and control pancreases. The diverse malignant and stromal cell types, including two ductal subtypes with abnormal and malignant gene expression profiles respectively, were identified in PDAC.

 

The researchers found that the heterogenous malignant subtype was composed of several subpopulations with differential proliferative and migratory potentials. Cell trajectory analysis revealed that components of multiple tumor-related pathways and transcription factors (TFs) were differentially expressed along PDAC progression. Furthermore, it was found a subset of ductal cells with unique proliferative features were associated with an inactivation state in tumor-infiltrating T cells, providing novel markers for the prediction of antitumor immune response. Together, the findings provided a valuable resource for deciphering the intra-tumoral heterogeneity in PDAC and uncover a connection between tumor intrinsic transcriptional state and T cell activation, suggesting potential biomarkers for anticancer treatment such as targeted therapy and immunotherapy.

 

References:

 

https://www.ncbi.nlm.nih.gov/pubmed/31273297

 

https://www.ncbi.nlm.nih.gov/pubmed/21491194

 

https://www.ncbi.nlm.nih.gov/pubmed/27444064

 

https://www.ncbi.nlm.nih.gov/pubmed/28983043

 

https://www.ncbi.nlm.nih.gov/pubmed/24976721

 

https://www.ncbi.nlm.nih.gov/pubmed/27693023

 

Read Full Post »


Tweets, Pictures and Retweets at 18th Annual Cancer Research Symposium – Machine Learning and Cancer, June 14, 2019, MIT by @pharma_BI and @AVIVA1950 for #KIsymposium PharmaceuticalIntelligence.com and Social Media

 

Pictures taken in Real Time

 

Notification from Twitter.com on June 14, 2019 and in the 24 hours following the symposium

 

     liked your Tweet

    3 hours ago

  1.  Retweeted your Tweet

    5 hours ago

    1 other Retweet

  2.  liked your Tweets

    11 hours ago

    2 other likes

     and  liked a Tweet you were mentioned in

    11 hours ago

     liked your reply

    12 hours ago

  3. Replying to 

    It was an incredibly touching and “metzamrer” surprise to meet you at MIT

  4.  liked your Tweets

    13 hours ago

    3 other likes

     liked your reply

    15 hours ago

    Amazing event @avivregev @reginabarzilay 2pharma_BI Breakthrough in

     and  liked a Tweet you were mentioned in

    17 hours ago

  5. ‘s machine learning tool characterizes proteins, which are biomarkers of disease development and progression. Scientists can know more about their relationship to specific diseases and can interview earlier and precisely. ,

  6. learning and are undergoing dramatic changes and hold great promise for cancer research, diagnostics, and therapeutics. @KIinstitute by

     liked your Tweet

    Jun 16

     Retweeted your Retweet

    Jun 16

     liked your Retweet

    Jun 15

     Retweeted your Tweet

    Jun 15

     Retweeted your Tweet

    Jun 15

     Retweeted your Retweet

    Jun 15

     and 3 others liked your reply

    Jun 15

     and  Retweeted your Tweet

    Jun 14

     and  liked your Tweet

    Jun 14

     and  Retweeted your Tweet

    Jun 14

     liked your Tweet

    Jun 14

  7.  liked your Tweets

    Jun 14

    2 other likes

     liked your Tweet

    Jun 14

     Retweeted your Retweet

    Jun 14

     liked your Tweet

    Jun 14

     and  Retweeted your Tweet

    Jun 14

     liked your Tweet

    Jun 14

     liked your Tweet

    Jun 14

  8. identification in the will depend on highly

  9.  liked your Tweets

    Jun 14

    2 other likes

     Retweeted your Tweet

    Jun 14

     liked your Tweet

    Jun 14

     and 3 others liked your reply

    Jun 14

     liked your Retweet

    Jun 14

  10. this needed to be done a long time ago

     Retweeted your Tweet

    Jun 14

     and  Retweeted your reply

    Jun 14

     liked your Tweet

    Jun 14

     liked your reply

    Jun 14

     Retweeted your reply

    Jun 14

 

Tweets by @pharma_BI and by @AVIVA1950

&

Retweets and replies by @pharma_BI and @AVIVA1950

eProceedings 18th Symposium 2019 covered in Amazing event, Keynote best talks @avivregev ’er @reginabarzelay

  1. Top lectures by @reginabarzilay @avivaregev

  2. eProceeding 2019 Koch Institute Symposium – 18th Annual Cancer Research Symposium – Machine Learning and Cancer, June 14, 2019, 8:00 AM-5:00 PMET MIT Kresge Auditorium, 48 Massachusetts Ave, Cambridge, MA via

  1.   Retweeted

    eProceedings 18th Symposium 2019 covered in Amazing event, Keynote best talks @avivregev ’er @reginabarzelay

  2. Top lectures by @reginabarzilay @avivaregev

  3. eProceeding 2019 Koch Institute Symposium – 18th Annual Cancer Research Symposium – Machine Learning and Cancer, June 14, 2019, 8:00 AM-5:00 PMET MIT Kresge Auditorium, 48 Massachusetts Ave, Cambridge, MA via

  4. eProceedings & eProceeding 2019 Koch Institute Symposium – 18th Annual Cancer Research Symposium – Machine Learning and Cancer, June 14, 2019, 8:00 AM-5:00 PMET MIT Kresge Auditorium, 48 Massachusetts Ave, Cambridge, MA via

  5.   Retweeted
  6.   Retweeted

    Einstein, Curie, Bohr, Planck, Heisenberg, Schrödinger… was this the greatest meeting of minds, ever? Some of the world’s most notable physicists participated in the 1927 Solvay Conference. In fact, 17 of the 29 scientists attending were or became Laureates.

  7.   Retweeted

    identification in the will depend on highly

  8. eProceeding 2019 Koch Institute Symposium – 18th Annual Cancer Research Symposium – Machine Learning and Cancer, June 14, 2019, 8:00 AM-5:00 PMET MIT Kresge Auditorium, Cambridge, MA via

 

Read Full Post »