Advertisements
Feeds:
Posts
Comments

Archive for the ‘FDA’ Category


Innovators in Therapeutics: John Maraganore, the CEO of Alnylam, and Sara Nochur, Alnylam’s Senior VP Regulatory Affairs, November 15, 2018, 4:30 PM – 6:30 PM, HMS

Reporter: Aviva Lev-Ari, PhD, RN

 

 

Innovators in Therapeutics, a Student Speaker Series

by Harvard-MIT Center for Regulatory Science

Free

Actions and Detail Panel

Innovators in Therapeutics, a Student Speaker Series

Thu, November 15, 2018, 4:30 PM – 6:30 PM EST

LOCATION

Cannon Room, Building C, Harvard Medical School

240 Longwood Ave

Boston, MA 02115

View Map

 

Free

 

REGISTER

Event Information

DESCRIPTION

Please join us for the Innovators in Therapeutics student speaker series organized by the Harvard-MIT Center for Regulatory Science and the Harvard Program in Therapeutic Science. The first installment of this series will feature John Maraganore, the CEO of Alnylam, and Sara Nochur, Alnylam’s Senior Vice President for Regulatory Affairs. Dr. Maraganore and Dr. Nochur will describe Alnylam’s path through development and FDA approval of the first RNAi therapeutic, ONPATTRO™ (patisiran), for the treatment of polyneuropathy of hereditary transthyretin-mediated amyloidosis. Dr. Maraganore and Dr. Nochur will focus on the regulatory science aspects of gaining approval for this innovative therapeutic.

Prior to the seminar, please join us for a networking session that brings together faculty, students and trainees who are interested in translational research, pharmacology, biotechnology, and regulatory science. Following the speaking program, there will be a small group discussion for students and trainees to engage directly with the expert about the topic at hand. Participation in the small group discussion is limited to students who register and are confirmed prior to the event.

This event is free and open to the Boston research community. Please help us to plan by RSVPing here!

 

AGENDA

4:30 – 5:00pm: Pre-event reception (outside Cannon Room)

5:00 – 5:45pm: Innovators in Therapeutics with Alnylam’s John Maraganore & Sara Nochur (Cannon Room)

5:45 – 6:15pm: [Limited Space] Student and Trainee Q&A with John Maraganore & Sara Nochur (Folin Wu Room)

SOURCE

https://www.eventbrite.com/e/innovators-in-therapeutics-a-student-speaker-series-tickets-50806305026

Advertisements

Read Full Post »


Live Conference Coverage @Medcitynews Converge 2018 Philadelphia:Liquid Biopsy and Gene Testing vs Reimbursement Hurdles

9:25- 10:15 Liquid Biopsy and Gene Testing vs. Reimbursement Hurdles

Genetic testing, whether broad-scale or single gene-testing, is being ordered by an increasing number of oncologists, but in many cases, patients are left to pay for these expensive tests themselves. How can this dynamic be shifted? What can be learned from the success stories?

Moderator: Shoshannah Roth, Assistant Director of Health Technology Assessment and Information Services , ECRI Institute @Ecri_Institute
Speakers:
Rob Dumanois, Manager – reimbursement strategy, Thermo Fisher Scientific
Eugean Jiwanmall, Senior Research Analyst for Medical Policy & Technology Evaluation , Independence Blue Cross @IBX
Michael Nall, President and Chief Executive Officer, Biocept

 

Michael: Wide range of liquid biopsy services out there.  There are screening companies however they are young and need lots of data to develop pan diagnostic test.  Most of liquid biopsy is more for predictive analysis… especially therapeutic monitoring.  Sometimes solid biopsies are impossible , limited, or not always reliable due to metastasis or tough to biopsy tissues like lung.

Eugean:  Circulating tumor cells and ctDNA is the only FDA approved liquid biopsies.  However you choose then to evaluate the liquid biopsy, PCR NGS, FISH etc, helps determines what the reimbursement options are available.

Rob:  Adoption of reimbursement for liquid biopsy is moving faster in Europe than the US.  It is possible in US that there may be changes to the payment in one to two years though.

Michael:  China is adopting liquid biopsy rapidly.  Patients are demanding this in China.

Reimbursement

Eugean:  For IBX to make better decisions we need more clinical trials to correlate with treatment outcome.  Most of the major cancer networks, like NCCN, ASCO, CAP, just have recommendations and not approved guidelines at this point.  From his perspective with lung cancer NCCN just makes a suggestion with EGFR mutations however only the companion diagnostic is approved by FDA.

Michael:  Fine needle biopsies are usually needed by the pathologist anyway before they go to liquid biopsy as need to know the underlying mutations in the original tumor, it just is how it is done in most cancer centers.

Eugean:  Whatever the established way of doing things, you have to outperform the clinical results of the old method for adoption of a newer method.

Reimbursement issues have driven a need for more research into clinical validity and utility of predictive and therapeutic markers with regard to liquid biopsies.  However although many academic centers try to partner with Biocept Biocept has a limit of funds and must concentrate only on a few trials.  The different payers use different evidence based methods to evaluate liquid biopsy markers.  ECRI also has a database for LB markers using an evidence based criteria.  IBX does sees consistency among payers as far as decision and policy.

NGS in liquid biopsy

Rob: There is a path to coverage, especially through the FDA.  If you have a FDA cleared NGS test, it will be covered.  These are long and difficult paths to reimbursement for NGS but it is feasible. Medicare line of IBX covers this testing, however on the commercial side they can’t cover this.  @IBX: for colon only kras or nras has clinical utility and only a handful of other cancer related genes for other cancers.  For a companion diagnostic built into that Dx do the other markers in the panel cost too much?

Please follow on Twitter using the following #hash tags and @pharma_BI

#MCConverge

#cancertreatment

#healthIT

#innovation

#precisionmedicine

#healthcaremodels

#personalizedmedicine

#healthcaredata

And at the following handles:

@pharma_BI

@medcitynews

Read Full Post »


Skin Regeneration Therapy One of First Tissue Engineering Products Evaluated by FDA

Reporter: Irina Robu, PhD

Under the provisions of 21st Century Cures Act the U.S. Food and Drug Administration approved StrataGraft regenerative skin tissue as the first product designated as a Regenerative Medicine Advanced Therapy (RMAT) produced by Mallinckrodt Pharmaceuticals. StrataGraft is shaped using unmodified NIKS cells grown under standard operating procedures since the continuous NIKS skin cell line has been thoroughly characterized. StrataGraft products are virus-free, non-tumorigenic, and offer batch-to-batch genetic consistency.

Passed in 2016, the 21st Century act allows FDA to grant accelerated review approval to products which meet an RMAT designation. The RMAT designation includes debates of whether priority review and/or accelerated approval would be suitable based on intermediate endpoints that would be reasonably likely to predict long-term clinical benefit.

The designation includes products

  • defined as a cell therapy, therapeutic tissue engineering product, human cell and tissue product, or any combination product using such therapies or products;
  • intended to treat, modify, reverse, or cure a serious or life-threatening disease or condition; and
  • preliminary clinical evidence indicates the drug has the potential to address unmet medical needs for such disease or condition.

According to Steven Romano, M.D., Chief Scientific Officer and Executive Vice President, Mallinckrodt “We are very pleased the FDA has determined StrataGraft meets the criteria for RMAT designation, as this offers the possibility of priority review and/or accelerated approval. The company tissue-based therapy is under evaluation in a Phase 3 trial to assess its efficacy and safety in the advancement of autologous skin regeneration of complex skin defects due to thermal burns that contain intact dermal elements.

SOURCE

https://www.rdmag.com/news/2017/07/skin-regeneration-therapy-one-first-be-evaluated-fda

Read Full Post »


Real Time Coverage and eProceedings of Presentations on 9/19-9/21 @CHI’s 14th Discovery On Target, 9/19 – 9/22/2016, Westin Boston Waterfront, Boston

Curator: Aviva Lev-Ari, PhD, RN

 

LIVE 9/19 8AM – 10AM USING CRISPR/Cas9 FOR FUNCTIONAL SCREENING at CHI’s 2nd Annual Symposium CRISPR: Mechanisms and Applications @CHI’s 14th Discovery On Target, 9/19 – 9/22/2016, Westin Boston Waterfront, Boston

https://pharmaceuticalintelligence.com/2016/09/19/live-919-8am-10am-using-crisprcas9-for-functional-screening-at-chis-2nd-annual-symposium-crispr-mechanisms-and-applications-chis-14th-discovery-on-target-919-9222/

 

LIVE 9/19 9:40 – noon CRISPR Engineering Lymphoma Lines & Will Interference from CRISPR Silence RNAi? CHI’s 2nd Annual Symposium CRISPR: Mechanisms and Applications @ CHI’s 14th Discovery On Target, 9/19 – 9/22/2016, Westin Boston Waterfront, Boston

https://pharmaceuticalintelligence.com/2016/09/19/live-919-940-noon-crispr-engineering-lymphoma-lines-will-interference-from-crispr-silence-rnai-chis-2nd-annual-symposium-crispr-mechanisms-and-applications-chis-14th/

 

LIVE 9/19 1:40 – 3:20 EMERGING APPLICATIONS OF CRISPR/CAS9 at CHI’s 2nd Annual Symposium CRISPR: Mechanisms and Applications @ CHI’s 14th Discovery On Target, 9/19 – 9/22/2016, Westin Boston Waterfront, Boston

https://pharmaceuticalintelligence.com/2016/09/19/live-919-140-320-emerging-applications-of-crisprcas9-at-chis-2nd-annual-symposium-crispr-mechanisms-and-applications-chis-14th-discovery-on-target-919-9222016/

 

LIVE 9/19 4PM – 5:30PM NK CELL-BASED CANCER IMMUNOTHERAPY @CHI’s 14th Discovery On Target, 9/19 – 9/22/2016, Westin Boston Waterfront, Boston

https://pharmaceuticalintelligence.com/2016/09/19/live-919-4pm-530pm-nk-cell-based-cancer-immunotherapy-chis-14th-discovery-on-target-919-9222016-westin-boston-waterfront-boston/

 

LIVE 9/20 8AM to noon GENE THERAPIES BREAKTHROUGHS at CHI’s 14th Discovery On Target, 9/19 – 9/22/2016, Westin Boston Waterfront, Boston

https://pharmaceuticalintelligence.com/2016/09/20/live-920-8am-to-noon-gene-therapies-breakthroughs-at-chis-14th-discovery-on-target-919-9222016-westin-boston-waterfront-boston/

 

LIVE 9/20 2PM to 5:30PM New Viruses for Therapeutic Gene Delivery at CHI’s 14th Discovery On Target, 9/19 – 9/22/2016, Westin Boston Waterfront, Boston

https://pharmaceuticalintelligence.com/2016/09/20/live-920-2pm-to-530pm-new-viruses-for-therapeutic-gene-delivery-at-chis-14th-discovery-on-target-919-9222016-westin-boston-waterfront-boston/

 

LIVE 9/21 8AM to 10:55 AM Expoloring the Versatility of CRISPR/Cas9 at CHI’s 14th Discovery On Target, 9/19 – 9/22/2016, Westin Boston Waterfront, Boston

https://pharmaceuticalintelligence.com/2016/09/21/live-921-8am-to-1055-am-expoloring-the-versatility-of-crisprcas9-at-chis-14th-discovery-on-target-919-9222016-westin-boston-waterfront-boston/

 

LIVE 9/21 8AM to 2:40PM Targeting Cardio-Metabolic Diseases: A focus on Liver Fibrosis and NASH Targets at CHI’s 14th Discovery On Target, 9/19 – 9/22/2016, Westin Boston Waterfront, Boston

https://pharmaceuticalintelligence.com/2016/09/21/live-921-8am-to-240pm-targeting-cardio-metabolic-diseases-a-focus-on-liver-fibrosis-and-nash-targets-at-chis-14th-discovery-on-target-919-9222016-westin-boston-waterfront-b/

 

LIVE 9/21 12:50 pm Plenary Keynote Program at CHI’s 14th Discovery On Target, 9/19 – 9/22/2016, Westin Boston Waterfront, Boston

https://pharmaceuticalintelligence.com/2016/09/21/live-921-1250-pm-plenary-keynote-program-at-chis-14th-discovery-on-target-919-9222016-westin-boston-waterfront-boston/

 

LIVE 9/21 3:20PM to 6:40PM KINASE INHIBITORS FOR CANCER IMMUNOTHERAPY COMBINATIONS & KINASE INHIBITORS FOR AUTOIMMUNE AND INFLAMMATORY DISEASES at CHI’s 14th Discovery On Target, 9/19 – 9/22/2016, Westin Boston Waterfront, Boston

https://pharmaceuticalintelligence.com/2016/09/21/live-921-320pm-to-640pm-kinase-inhibitors-for-cancer-immunotherapy-combinations-kinase-inhibitors-for-autoimmune-and-inflammatory-diseases-at-chis-14th-discovery-on-target-919/

 

Read Full Post »


Postmarketing Safety or Effectiveness Data Needed: The 2013 paper was funded by the firm Sarepta Therapeutics, sellers of eteplirsen, a surge in its shares seen after the approval. Eteplirsen will cost patients around $300,000 a year.

 

Curator: Aviva Lev-Ari, PhD, RN

 

On September 19, the FDA okayed eteplirsen to treat Duchenne muscular dystrophy (DMD), a rare genetic disorder that results in muscle degeneration and premature death. Several of its top officials disagreed with the drug’s approval, questioning how beneficial it will be for patients, as ForbesMedPage Today and others reported.

http://retractionwatch.com/2016/09/21/amid-controversial-sarepta-approval-decision-fda-head-calls-for-key-study-retraction/

Factors at play for FDA Approval of eteplirsen

  1. the help of the families of young boys with Duchenne muscular dystrophy, emotional scenes from these families who have campaigned for so long
  2. an executive team from Sarepta who wouldn’t give up,

Ed Kaye, Sarepta, CEO – EK: It’s all about resilience. One of the things we’ve had is a group of people of like minds and anytime one of us gets down, somebody else is there to pick you up. One of the things we’ve always done is: Every time we’ve felt sorry for ourselves, we just need to think about those patients and what they go through. Our struggles in comparison very quickly become meaningless. You end up saying to yourself: What am I complaining about? Quit whining; get up and do your job.

and

3. an emerging new philosophy from some within the FDA, eteplirsen, now Exondys 51, was approved in patients with a confirmed mutation of the dystrophin gene amenable to exon 51 skipping.

http://www.fiercebiotech.com/biotech/sarepta-ceo-ed-kaye-fda-courage-nice-and-resilience?utm_medium=nl&utm_source=internal&mrkid=993697&mkt_tok=eyJpIjoiTXpBeU56aGpNREV3T1RZMiIsInQiOiJIM2poTkVOQ0N6YmxaenVHZDM1RlVvbTFmRkdwZGdxQ0pmYXNVOG5PKzRyenFXTkRMV0dcL3l0bVBPNkJ2NFV3Rnc3bWVFVnUwMCs3YVhWeVhvRkkrUU5FMFJ1RndSQTlHWFRnQmFTbUo3ODg9In0%3D

9/19/2016

FDA grants accelerated approval to first drug for Duchenne muscular dystrophy

The accelerated approval of Exondys 51 is based on the surrogate endpoint of dystrophin increase in skeletal muscle observed in some Exondys 51-treated patients. The FDA has concluded that the data submitted by the applicant demonstrated an increase in dystrophin production that is reasonably likely to predict clinical benefit in some patients with DMD who have a confirmed mutation of the dystrophin gene amenable to exon 51 skipping. A clinical benefit of Exondys 51, including improved motor function, has not been established. In making this decision, the FDA considered the potential risks associated with the drug, the life-threatening and debilitating nature of the disease for these children and the lack of available therapy.

The FDA granted Exondys 51 fast track designation, which is a designation to facilitate the development and expedite the review of drugs that are intended to treat serious conditions and that demonstrate the potential to address an unmet medical need. It was also granted priority review and orphan drug designationPriority review status is granted to applications for drugs that, if approved, would be a significant improvement in safety or effectiveness in the treatment of a serious condition. Orphan drug designation provides incentives such as clinical trial tax credits, user fee waiver and eligibility for orphan drug exclusivity to assist and encourage the development of drugs for rare diseases.

SOURCE

http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm521263.htm

The viability of this drug approval depends  on “to be gathered” Postmarketing safety or effectiveness data, aka follow-up confirmatory trials.

Sarepta CEO Ed Kaye on FDA courage, NICE and resilience

BA: When it comes to flexibility, however, the FDA will likely not be flexible if your drug doesn’t prove the desired efficacy in your longer term postmarketing studies. If at the end of this period your drug doesn’t come through, how easy will it be for you to take this off the market? I don’t think anyone, including the FDA, wants a repeat of what happened in 2011 when Roche saw its breast cancer license for Avastin, which had been approved under an accelerated review, pulled after not being safe or effective enough in the follow-up confirmatory trials. But you face this as a possible scenario.

EK: That’s true, but one of the things we’re trying to do to mitigate that is to obviously, with our ongoing studies, prove the efficacy that the FDA wants to see. And you know, if there is a problem with one study then we’d hope to have other data that are supportive. The other thing we’re doing of course is developing that next-generation chemistry in DMD that could prove more effective, so we could certainly consider using that next-gen chemistry to take our work forward and try and make it better.

We have a lot of shots on goal to make sure we can continue to supply a product for these boys, but there is always a risk. If we can’t show efficacy in the way the FDA wants, then yes they have the option to take it off the market.

http://www.fiercebiotech.com/biotech/sarepta-ceo-ed-kaye-fda-courage-nice-and-resilience?utm_medium=nl&utm_source=internal&mrkid=993697&mkt_tok=eyJpIjoiTXpBeU56aGpNREV3T1RZMiIsInQiOiJIM2poTkVOQ0N6YmxaenVHZDM1RlVvbTFmRkdwZGdxQ0pmYXNVOG5PKzRyenFXTkRMV0dcL3l0bVBPNkJ2NFV3Rnc3bWVFVnUwMCs3YVhWeVhvRkkrUU5FMFJ1RndSQTlHWFRnQmFTbUo3ODg9In0%3D

Need for follow-up confirmatory trials remains outstanding

FDA’s Postmarketing Surveillance Programs

http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/ucm090385.htm

FDA’s Regulations and Policies and Procedures for Postmarketing Surveillance Programs

http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/ucm090394.htm

 

Positions on Sarepta’s eteplirsen Scientific Approach

Gene Editing for Exon 51: Why CRISPR Snipping might be better than Exon Skipping for DMD

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/01/23/gene-editing-for-exon-51-why-crispr-snipping-might-be-better-than-exon-skipping-for-dmd/

 

QUOTE START

Retraction Watch

Tracking retractions as a window into the scientific process

Amid controversial Sarepta approval decision, FDA head calls for key study retraction

with one comment

FDAThe head of the U.S. Food and Drug Administration (FDA) has called for the retraction of a study about a drug that the agency itself approved earlier this week, despite senior staff opposing the approval.

On September 19, the FDA okayed eteplirsen to treat Duchenne muscular dystrophy (DMD), a rare genetic disorder that results in muscle degeneration and premature death. Several of its top officials disagreed with the drug’s approval, questioning how beneficial it will be for patients, as ForbesMedPage Today and others reported.

In a lengthy report Commissioner Robert Califf sent to senior FDA officials on September 16 — that was made public on September 19 — he called for the retraction of a 2013 study published in Annals of Neurologyfunded by the seller of eteplirsen, which showed beneficial effects of the drug in DMD patients. Califf writes inthe report:

The publication, now known to be misleading, should probably be retracted by its authors.

In a footnote in the report, Califf adds:

In view of the scientific deficiencies identified in this analysis, I believe it would be appropriate to initiate a dialogue that would lead to a formal correction or retraction (as appropriate) of the published report.

The study was not the key factor in the agency’s decision to approve the drug, according to Steve Usdin, Washington editor of the publication BioCentury; still, Usdin told Retraction Watch he is “really surprised” at the call for retraction from top FDA staff, the first he has come across in the last two decades.

The 2013 paper was funded by the firm Sarepta Therapeutics, sellers of eteplirsen, which has seen a surge in its shares after the approval. Eteplirsen will cost patients around $300,000 a year.

DMD affects around 1 in 3,600 boys due to a mutation in the gene that codes for the protein dystrophin, which is important for structural stability of muscles. Eteplirsen is the first drug to treat DMD, and was initially given a green light by Janet Woodcock, director of Center for Drug Evaluation and Research, after a split vote from the FDA’s advisory committee. Despite Califf’s issues with the literature supporting the drug’s use in DMD, he did not overturn Woodcock’s decision, and the agency approved the drug this week.

In 2014, an inspection team visited the Nationwide Children’s Hospital in Columbus, Ohio, where the research was conducted, according to the report. In the report, Ellis Unger, director of the Office of Drug Evaluation I in FDA’s Center for Drug Evaluation, notes:

We found the analytical procedures to be typical of an academic research center, seemingly appropriate for what was simply an exploratory phase 1/2 study, but not suitable for an adequate and well controlled study aimed to serve as the basis for a regulatory action. The procedures and controls that one would expect to see in support of a phase 3 registrational trial were not in evidence.

Specifically, Unger describes concerns about blinding during the experiments, and notes:

The immunohistochemistry images were only faintly stained, and had been read by a single technician using an older liquid crystal display (LCD) computer monitor in a windowed room where lighting was not controlled. (The technician had to suspend reading around mid-day, when brighter light began to fill the room and reading became impossible.)

Unger adds:

Having uncovered numerous technical and operational shortcomings in Columbus, our team worked collaboratively with the applicant to develop improved methods for a reassessment of the stored images…This re-analysis, along with the study published in 2013, provides an instructive example of an investigation with extraordinary results that could not be verified.

Luciana Borio, acting chief scientist at the FDA, is cited in the report saying:

I would be remiss if I did not note that the sponsor has exhibited serious irresponsibility by playing a role in publishing and promoting selective data during the development of this product. Not only was there a misleading published article with respect to the results of Study–which has never been retracted—but Sarepta also issued a press release relying on the misleading article and its findings…As determined by the review team, and as acknowledged by Dr. Woodcock, the article’s scientific findings—with respect to the demonstrated effect of eteplirsen on both surrogate and clinical endpoints—do not withstand proper and objective analyses of the data. Sarepta’s misleading communications led to unrealistic expectations and hope for DMD patients and their families.

Here’s how Sarepta describes the study’s findings in the press release Borio refers to:

Published study results showed that once-weekly treatment with eteplirsen resulted in a statistically significant increase from baseline in novel dystrophin, the protein that is lacking in patients with DMD. In addition, eteplirsen-treated patients evaluable on the 6-minute walk test (6MWT) demonstrated stabilization in walking ability compared to a placebo/delayed-treatment cohort. Eteplirsen was well tolerated in the study with no clinically significant treatment-related adverse events. These data will form the basis of a New Drug Application (NDA) to the U.S. Food and Drug Administration (FDA) for eteplirsen planned for the first half of 2014.

However, Usdin noted that the drug’s approval and the study are two independent events, adding that the 2013 study just “got the ball rolling” for eteplirsen, and the FDA conducted many of its own experiments analyses, as detailed in the newly released report.

Jerry Mendell, the corresponding author of the study (which has so far been cited 118 times, according to Thomson Reuters Web of Science) from Ohio State University in Columbus, told us the allegations were “unfounded” and said the data are “valid.” Therefore, he added, he will not be approaching the journal for a retraction, noting that the FDA asked him hundreds of questions about the paper and audited the trials.

Clifford Saper, the editor-in-chief of Annals of Neurology from the Beth Israel Deaconess Medical Center (which is part of Harvard Medical School), said in an email:

It takes more than a call by a politician for retraction of a paper. It takes actual evidence.

He added:

If the FDA commissioner has, or knows of someone who has, evidence for an error in a paper published in Annals of Neurology, I encourage him to send that evidence to me and a copy to the authors of the article, for their reply. At that point we will engage in a scientific review of the evidence and make appropriate responses.

Linda Lowes, sixth author of the present study, is the last author of a 2016 study in Physical Therapy that was retracted months after publication. Its notice reads:

This article has been retracted by the author due to unintentional deviations in the use of the described modified technique to assess plagiocephaly in the study participants, such that the use of the modified technique cannot be defended for the stated purpose in this population at this time.

Califf was a cardiologist at Duke University during the high-profile scandal of researcher Anil Potti at Duke, which led to more than 10 retractions, settled lawsuits, and medical board reprimands. In 2015, he told TheTriangle Business Journal:

I wish I had gotten myself more involved earlier…There were systems that were not adequate, as we stated. … That was a tough one, I think, for the whole institution.

We’ve contacted the FDA for comment, and will update the post with anything else we learn.

END QUOTE

Correction 9/21/16 10:44 p.m. eastern: When originally published, this post incorrectly reported that Califf was part of an inspection team that visited the Nationwide Children’s Hospital in Ohio, and attributed quotes from Ellis Unger to Califf. We have made appropriate corrections, and apologize for the error.

Like Retraction Watch? Consider making a tax-deductible contribution to support our growth. You can also follow us on Twitter, like us on Facebook, add us to your RSS reader, sign up on our homepage for an email every time there’s a new post, or subscribe to our daily digest. Click here to review our Comments Policy. For a sneak peek at what we’re working on, click here.

SOURCE

http://retractionwatch.com/2016/09/21/amid-controversial-sarepta-approval-decision-fda-head-calls-for-key-study-retraction/

Related Resources on FDA’s Policies on Drugs:

Read Full Post »


genomicsinpersonalizedmedicinecovervolumeone

Content Consultant: Larry H Bernstein, MD, FCAP

Genomics Orientations for Personalized Medicine

Volume One

http://www.amazon.com/dp/B018DHBUO6

electronic Table of Contents

Chapter 1

1.1 Advances in the Understanding of the Human Genome The Initiation and Growth of Molecular Biology and Genomics – Part I

1.2 CRACKING THE CODE OF HUMAN LIFE: Milestones along the Way – Part IIA

1.3 DNA – The Next-Generation Storage Media for Digital Information

1.4 CRACKING THE CODE OF HUMAN LIFE: Recent Advances in Genomic Analysis and Disease – Part IIC

1.5 Advances in Separations Technology for the “OMICs” and Clarification of Therapeutic Targets

1.6 Genomic Analysis: FLUIDIGM Technology in the Life Science and Agricultural Biotechnology

Chapter 2

2.1 2013 Genomics: The Era Beyond the Sequencing of the Human Genome: Francis Collins, Craig Venter, Eric Lander, et al.

2.2 DNA structure and Oligonucleotides

2.3 Genome-Wide Detection of Single-Nucleotide and Copy-Number Variation of a Single Human Cell 

2.4 Genomics and Evolution

2.5 Protein-folding Simulation: Stanford’s Framework for Testing and Predicting Evolutionary Outcomes in Living Organisms – Work by Marcus Feldman

2.6 The Binding of Oligonucleotides in DNA and 3-D Lattice Structures

2.7 Finding the Genetic Links in Common Disease: Caveats of Whole Genome Sequencing Studies

Chapter 3

3.1 Big Data in Genomic Medicine

3.2 CRACKING THE CODE OF HUMAN LIFE: The Birth of Bioinformatics & Computational Genomics – Part IIB 

3.3 Expanding the Genetic Alphabet and linking the Genome to the Metabolome

3.4 Metabolite Identification Combining Genetic and Metabolic Information: Genetic Association Links Unknown Metabolites to Functionally Related Genes

3.5 MIT Scientists on Proteomics: All the Proteins in the Mitochondrial Matrix identified

3.6 Identification of Biomarkers that are Related to the Actin Cytoskeleton

3.7 Genetic basis of Complex Human Diseases: Dan Koboldt’s Advice to Next-Generation Sequencing Neophytes

3.8 MIT Team Researches Regulatory Motifs and Gene Expression of Erythroleukemia (K562) and Liver Carcinoma (HepG2) Cell Lines

Chapter 4

4.1 ENCODE Findings as Consortium

4.2 ENCODE: The Key to Unlocking the Secrets of Complex Genetic Diseases

4.3 Reveals from ENCODE Project will Invite High Synergistic Collaborations to Discover Specific Targets  

4.4 Human Variome Project: encyclopedic catalog of sequence variants indexed to the human genome sequence

4.5 Human Genome Project – 10th Anniversary: Interview with Kevin Davies, PhD – The $1000 Genome

4.6 Quantum Biology And Computational Medicine

4.7 The Underappreciated EpiGenome

4.8 Unraveling Retrograde Signaling Pathways

4.9  “The SILENCE of the Lambs” Introducing The Power of Uncoded RNA

4.10  DNA: One man’s trash is another man’s treasure, but there is no JUNK after all

Chapter 5

5.1 Paradigm Shift in Human Genomics – Predictive Biomarkers and Personalized Medicine – Part 1 

5.2 Computational Genomics Center: New Unification of Computational Technologies at Stanford

5.3 Personalized Medicine: An Institute Profile – Coriell Institute for Medical Research: Part 3

5.4 Cancer Genomics – Leading the Way by Cancer Genomics Program at UC Santa Cruz

5.5 Genome and Genetics: Resources @Stanford, @MIT, @NIH’s NCBCS

5.6 NGS Market: Trends and Development for Genotype-Phenotype Associations Research

5.7 Speeding Up Genome Analysis: MIT Algorithms for Direct Computation on Compressed Genomic Datasets

5.8  Modeling Targeted Therapy

5.9 Transphosphorylation of E-coli Proteins and Kinase Specificity

5.10 Genomics of Bacterial and Archaeal Viruses

Chapter 6

6.1  Directions for Genomics in Personalized Medicine

6.2 Ubiquinin-Proteosome pathway, Autophagy, the Mitochondrion, Proteolysis and Cell Apoptosis: Part III

6.3 Mitochondrial Damage and Repair under Oxidative Stress

6.4 Mitochondria: More than just the “Powerhouse of the Cell”

6.5 Mechanism of Variegation in Immutans

6.6 Impact of Evolutionary Selection on Functional Regions: The imprint of Evolutionary Selection on ENCODE Regulatory Elements is Manifested between Species and within Human Populations

6.7 Cardiac Ca2+ Signaling: Transcriptional Control

6.8 Unraveling Retrograde Signaling Pathways

6.9 Reprogramming Cell Fate

6.10 How Genes Function

6.11 TALENs and ZFNs

6.12 Zebrafish—Susceptible to Cancer

6.13 RNA Virus Genome as Bacterial Chromosome

6.14 Cloning the Vaccinia Virus Genome as a Bacterial Artificial Chromosome 

6.15 Telling NO to Cardiac Risk- DDAH Says NO to ADMA(1); The DDAH/ADMA/NOS Pathway(2)

6.16  Transphosphorylation of E-coli proteins and kinase specificity

6.17 Genomics of Bacterial and Archaeal Viruses

6.18  Diagnosing Diseases & Gene Therapy: Precision Genome Editing and Cost-effective microRNA Profiling

Chapter 7

7.1 Harnessing Personalized Medicine for Cancer Management, Prospects of Prevention and Cure: Opinions of Cancer Scientific Leaders @ http://pharmaceuticalintelligence.com

7.2 Consumer Market for Personal DNA Sequencing: Part 4

7.3 GSK for Personalized Medicine using Cancer Drugs Needs Alacris Systems Biology Model to Determine the In Silico Effect of the Inhibitor in its “Virtual Clinical Trial”

7.4 Drugging the Epigenome

7.5 Nation’s Biobanks: Academic institutions, Research institutes and Hospitals – vary by Collections Size, Types of Specimens and Applications: Regulations are Needed

7.6 Personalized Medicine: Clinical Aspiration of Microarrays

Chapter 8

8.1 Personalized Medicine as Key Area for Future Pharmaceutical Growth

8.2 Inaugural Genomics in Medicine – The Conference Program, 2/11-12/2013, San Francisco, CA

8.3 The Way With Personalized Medicine: Reporters’ Voice at the 8th Annual Personalized Medicine Conference, 11/28-29, 2012, Harvard Medical School, Boston, MA

8.4 Nanotechnology, Personalized Medicine and DNA Sequencing

8.5 Targeted Nucleases

8.6 Transcript Dynamics of Proinflammatory Genes

8.7 Helping Physicians identify Gene-Drug Interactions for Treatment Decisions: New ‘CLIPMERGE’ program – Personalized Medicine @ The Mount Sinai Medical Center

8.8 Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing[1]

8.9 Diagnosing Diseases & Gene Therapy: Precision Genome Editing and Cost-effective microRNA Profiling

Chapter 9

9.1 Personal Tale of JL’s Whole Genome Sequencing

9.2 Inspiration From Dr. Maureen Cronin’s Achievements in Applying Genomic Sequencing to Cancer Diagnostics

9.3 Inform Genomics Developing SNP Test to Predict Side Effects, Help MDs Choose among Chemo Regimens

9.4 SNAP: Predict Effect of Non-synonymous Polymorphisms: How Well Genome Interpretation Tools could Translate to the Clinic

9.5  LEADERS in Genome Sequencing of Genetic Mutations for Therapeutic Drug Selection in Cancer Personalized Treatment: Part 2

9.6 The Initiation and Growth of Molecular Biology and Genomics – Part I

9.7 Personalized Medicine-based Cure for Cancer Might Not Be Far Away

9.8 Personalized Medicine: Cancer Cell Biology and Minimally Invasive Surgery (MIS)

 Chapter 10

10.1 Pfizer’s Kidney Cancer Drug Sutent Effectively caused REMISSION to Adult Acute Lymphoblastic Leukemia (ALL)

10.2 Imatinib (Gleevec) May Help Treat Aggressive Lymphoma: Chronic Lymphocytic Leukemia (CLL)

10.3 Winning Over Cancer Progression: New Oncology Drugs to Suppress Passengers Mutations vs. Driver Mutations

10.4 Treatment for Metastatic HER2 Breast Cancer

10.5 Personalized Medicine in NSCLC

10.6 Gene Sequencing – to the Bedside

10.7 DNA Sequencing Technology

10.8 Nobel Laureate Jack Szostak Previews his Plenary Keynote for Drug Discovery Chemistry

Chapter 11

11.1 mRNA Interference with Cancer Expression

11.2 Angiogenic Disease Research Utilizing microRNA Technology: UCSD and Regulus Therapeutics

11.3 Sunitinib brings Adult acute lymphoblastic leukemia (ALL) to Remission – RNA Sequencing – FLT3 Receptor Blockade

11.4 A microRNA Prognostic Marker Identified in Acute Leukemia 

11.5 MIT Team: Microfluidic-based approach – A Vectorless delivery of Functional siRNAs into Cells.

11.6 Targeted Tumor-Penetrating siRNA Nanocomplexes for Credentialing the Ovarian Cancer Oncogene ID4

11.7 When Clinical Application of miRNAs?

11.8 How mobile elements in “Junk” DNA promote cancer. Part 1: Transposon-mediated tumorigenesis,

11.9 Potential Drug Target: Glycolysis Regulation – Oxidative Stress-responsive microRNA-320

11.10  MicroRNA Molecule May Serve as Biomarker

11.11 What about Circular RNAs?

Chapter 12

12.1 The “Cancer Establishments” Examined by James Watson, Co-discoverer of DNA w/Crick, 4/1953

12.2 Otto Warburg, A Giant of Modern Cellular Biology

12.3 Is the Warburg Effect the Cause or the Effect of Cancer: A 21st Century View?

12.4 Hypothesis – Following on James Watson

12.5 AMPK Is a Negative Regulator of the Warburg Effect and Suppresses Tumor Growth In Vivo

12.6 AKT signaling variable effects

12.7 Rewriting the Mathematics of Tumor Growth; Teams Use Math Models to Sort Drivers from Passengers

12.8 Phosphatidyl-5-Inositol signaling by Pin1

Chapter 13

13.1 Nanotech Therapy for Breast Cancer

13.2 BRCA1 a tumour suppressor in breast and ovarian cancer – functions in transcription, ubiquitination and DNA repair

13.3 Exome sequencing of serous endometrial tumors shows recurrent somatic mutations in chromatin-remodeling and ubiquitin ligase complex genes

13.4 Recurrent somatic mutations in chromatin-remodeling and ubiquitin ligase complex genes in serous endometrial tumors

13.5 Prostate Cancer: Androgen-driven “Pathomechanism” in Early onset Forms of the Disease

13.6 In focus: Melanoma Genetics

13.7 Head and Neck Cancer Studies Suggest Alternative Markers More Prognostically Useful than HPV DNA Testing

13.8 Breast Cancer and Mitochondrial Mutations

13.9  Long noncoding RNA network regulates PTEN transcription

Chapter 14

14.1 HBV and HCV-associated Liver Cancer: Important Insights from the Genome

14.2 Nanotechnology and HIV/AIDS treatment

14.3 IRF-1 Deficiency Skews the Differentiation of Dendritic Cells

14.4 Sepsis, Multi-organ Dysfunction Syndrome, and Septic Shock: A Conundrum of Signaling Pathways Cascading Out of Control

14.5  Five Malaria Genomes Sequenced

14.6 Rheumatoid Arthritis Risk

14.7 Approach to Controlling Pathogenic Inflammation in Arthritis

14.8 RNA Virus Genome as Bacterial Chromosome

14.9 Cloning the Vaccinia Virus Genome as a Bacterial Artificial Chromosome

Chapter 15

15.1 Personalized Cardiovascular Genetic Medicine at Partners HealthCare and Harvard Medical School

15.2 Congestive Heart Failure & Personalized Medicine: Two-gene Test predicts response to Beta Blocker Bucindolol

15.3 DDAH Says NO to ADMA(1); The DDAH/ADMA/NOS Pathway(2)

15.4 Peroxisome Proliferator-Activated Receptor (PPAR-gamma) Receptors Activation: PPARγ Transrepression for Angiogenesis in Cardiovascular Disease and PPARγ Transactivation for Treatment of Diabetes

15.5 BARI 2D Trial Outcomes

15.6 Gene Therapy Into Healthy Heart Muscle: Reprogramming Scar Tissue In Damaged Hearts

15.7 Obstructive coronary artery disease diagnosed by RNA levels of 23 genes – CardioDx, a Pioneer in the Field of Cardiovascular Genomic  Diagnostics

15.8 Ca2+ signaling: transcriptional control

15.9 Lp(a) Gene Variant Association

15.9.1 Two Mutations, in the PCSK9 Gene: Eliminates a Protein involved in Controlling LDL Cholesterol

15.9.2. Genomics & Genetics of Cardiovascular Disease Diagnoses: A Literature Survey of AHA’s Circulation Cardiovascular Genetics, 3/2010 – 3/2013

15.9.3 Synthetic Biology: On Advanced Genome Interpretation for Gene Variants and Pathways: What is the Genetic Base of Atherosclerosis and Loss of Arterial Elasticity with Aging

15.9.4 The Implications of a Newly Discovered CYP2J2 Gene Polymorphism Associated with Coronary Vascular Disease in the Uygur Chinese Population

15.9.5  Gene, Meis1, Regulates the Heart’s Ability to Regenerate after Injuries.

15.10 Genetics of Conduction Disease: Atrioventricular (AV) Conduction Disease (block): Gene Mutations – Transcription, Excitability, and Energy Homeostasis

15.11 How Might Sleep Apnea Lead to Serious Health Concerns like Cardiac and Cancers?

Chapter 16

16.1 Can Resolvins Suppress Acute Lung Injury?

16.2 Lipoxin A4 Regulates Natural Killer Cell in Asthma

16.3 Biological Therapeutics for Asthma

16.4 Genomics of Bronchial Epithelial Dysplasia

16.5 Progression in Bronchial Dysplasia

Chapter 17

17.1 Breakthrough Digestive Disorders Research: Conditions Affecting the Gastrointestinal Tract.

17.2 Liver Endoplasmic Reticulum Stress and Hepatosteatosis

17.3 Biomarkers-identified-for-recurrence-in-hbv-related-hcc-patients-post-surgery

17.4  Usp9x: Promising Therapeutic Target for Pancreatic Cancer

17.5 Battle of Steve Jobs and Ralph Steinman with Pancreatic cancer: How We Lost

Chapter 18

18.1 Ubiquitin Pathway Involved in Neurodegenerative Disease

18.2 Genomic Promise for Neurodegenerative Diseases, Dementias, Autism Spectrum, Schizophrenia, and Serious Depression

18.3 Neuroprotective Therapies: Pharmacogenomics vs Psychotropic Drugs and Cholinesterase Inhibitors

18.4 Ustekinumab New Drug Therapy for Cognitive Decline Resulting from Neuroinflammatory Cytokine Signaling and Alzheimer’s Disease

18.5 Cell Transplantation in Brain Repair

18.6 Alzheimer’s Disease Conundrum – Are We Near the End of the Puzzle?

Chapter 19

19.1 Genetics and Male Endocrinology

19.2 Genomic Endocrinology and its Future

19.3 Commentary on Dr. Baker’s post “Junk DNA Codes for Valuable miRNAs: Non-coding DNA Controls Diabetes”

19.4 Therapeutic Targets for Diabetes and Related Metabolic Disorders

19.5 Secondary Hypertension caused by Aldosterone-producing Adenomas caused by Somatic Mutations in ATP1A1 and ATP2B3 (adrenal cortical; medullary or Organ of Zuckerkandl is pheochromocytoma)

19.6 Personal Recombination Map from Individual’s Sperm Cell and its Importance

19.7 Gene Trap Mutagenesis in Reproductive Research

19.8 Pregnancy with a Leptin-Receptor Mutation

19.9 Whole-genome Sequencing in Probing the Meiotic Recombination and Aneuploidy of Single Sperm Cells

19.10 Reproductive Genetic Testing

Chapter 20

20.1 Genomics & Ethics: DNA Fragments are Products of Nature or Patentable Genes?

20.2 Understanding the Role of Personalized Medicine

20.3 Attitudes of Patients about Personalized Medicine

20.4  Genome Sequencing of the Healthy

20.5   Genomics in Medicine – Tomorrow’s Promise

20.6  The Promise of Personalized Medicine

20.7 Ethical Concerns in Personalized Medicine: BRCA1/2 Testing in Minors and Communication of Breast Cancer Risk

 20.8 Genomic Liberty of Ownership, Genome Medicine and Patenting the Human Genome

Chapter 21

Recent Advances in Gene Editing Technology Adds New Therapeutic Potential for the Genomic Era:  Medical Interpretation of the Genomics Frontier – CRISPR – Cas9

Introduction

21.1 Introducing CRISPR/Cas9 Gene Editing Technology – Works by Jennifer A. Doudna

21.1.1 Ribozymes and RNA Machines – Work of Jennifer A. Doudna

21.1.2 Evaluate your Cas9 gene editing vectors: CRISPR/Cas Mediated Genome Engineering – Is your CRISPR gRNA optimized for your cell lines?

21.1.3 2:15 – 2:45, 6/13/2014, Jennifer Doudna “The biology of CRISPRs: from genome defense to genetic engineering”

21.1.4  Prediction of the Winner RNA Technology, the FRONTIER of SCIENCE on RNA Biology, Cancer and Therapeutics  & The Start Up Landscape in BostonGene Editing – New Technology The Missing link for Gene Therapy?

21.2 CRISPR in Other Labs

21.2.1 CRISPR @MIT – Genome Surgery

21.2.2 The CRISPR-Cas9 System: A Powerful Tool for Genome Engineering and Regulation

Yongmin Yan and Department of Gastroenterology, Hepatology & Nutrition, University of Texas M.D. Anderson Cancer, Houston, USADaoyan Wei*

21.2.3 New Frontiers in Gene Editing: Transitioning From the Lab to the Clinic, February 19-20, 2015 | The InterContinental San Francisco | San Francisco, CA

21.2.4 Gene Therapy and the Genetic Study of Disease: @Berkeley and @UCSF – New DNA-editing technology spawns bold UC initiative as Crispr Goes Global

21.2.5 CRISPR & MAGE @ George Church’s Lab @ Harvard

21.3 Patents Awarded and Pending for CRISPR

21.3.1 Litigation on the Way: Broad Institute Gets Patent on Revolutionary Gene-Editing Method

21.3.2 The Patents for CRISPR, the DNA editing technology as the Biggest Biotech Discovery of the Century

2.4 CRISPR/Cas9 Applications

21.4.1  Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells using a bacterial CRISPR/Cas 

21.4.2 CRISPR: Applications for Autoimmune Diseases @UCSF

21.4.3 In vivo validated mRNAs

21.4.6 Level of Comfort with Making Changes to the DNA of an Organism

21.4.7 Who will be the the First to IPO: Novartis bought in to Intellia (UC, Berkeley) as well as Caribou (UC, Berkeley) vs Editas (MIT)??

21.4.8 CRISPR/Cas9 Finds Its Way As an Important Tool For Drug Discovery & Development

Summary

Read Full Post »


Roche provides update on phase III study of Gazyva/Gazyvaro in people with previously untreated diffuse large B-cell lymphoma

 

Reporter: Aviva Lev-Ari, PhD, RN

 

Basel, 18 July 2016

Roche provides update on phase III study of Gazyva/Gazyvaro in people with previously untreated diffuse large B-cell lymphoma

  • GOYA study did not meet its primary endpoint of improvement in progression-free survival with Gazyva/Gazyvaro plus CHOP chemotherapy versus MabThera/Rituxan plus CHOP chemotherapy

Roche (SIX: RO, ROG; OTCQX: RHHBY) today announced that the phase III GOYA study evaluating Gazyva®/Gazyvaro® (obinutuzumab) plus CHOP chemotherapy (G-CHOP) in people with previously untreated diffuse large B-cell lymphoma (DLBCL) did not meet its primary endpoint of significantly reducing the risk of disease worsening or death (progression-free survival; PFS) compared to MabThera/Rituxan (rituximab) plus CHOP chemotherapy (R-CHOP). Adverse events with Gazyva/Gazyvaro and MabThera/Rituxan were consistent with those seen in previous clinical trials when each was combined with various chemotherapies. Data from the GOYA study will be presented at an upcoming medical meeting.

“Two previous studies showed Gazyva/Gazyvaro helped people with previously untreated follicular lymphoma or chronic lymphocytic leukaemia live longer without their disease worsening compared to MabThera/Rituxan, when each was combined with chemotherapy. We were hopeful we could show a similar result for people with diffuse large B-cell lymphoma and once again improve on the standard of care,” said Sandra Horning, MD, Chief Medical Officer and Head of Global Product Development. “We will continue to analyse the GOYA data to better understand the results, and to study other investigational treatments in this disease with the goal of further helping these patients.”

About the GOYA study

GOYA (NCT01287741) is a global phase III open-label, multi-centre, randomised two-arm study examining the efficacy and safety of the combination of Gazyva/Gazyvaro plus CHOP chemotherapy (G-CHOP) compared to MabThera/Rituxan plus CHOP chemotherapy (R-CHOP). GOYA included 1,418 previously untreated patients with CD20-positive DLBCL. The primary endpoint of the study is investigator-assessed PFS, with secondary endpoints including PFS assessed by independent review committee (IRC), response rate (overall response, ORR; and complete response, CR), overall survival (OS), disease free survival (DFS) and safety profile. The GOYA study is being conducted in cooperation with the Fondazione Italiana Linfomi (FIL, Italy).

About Gazyva/Gazyvaro (obinutuzumab)

Gazyva/Gazyvaro is an engineered monoclonal antibody designed to attach to CD20, a protein expressed on certain B cells, but not on stem cells or plasma cells. Gazyva/Gazyvaro is designed to attack and destroy targeted B-cells both directly and together with the body’s immune system.

Gazyva/Gazyvaro is currently approved in more than 70 countries in combination with chlorambucil, for people with previously untreated chronic lymphocytic leukaemia. The approvals were based on the CLL11 study, showing significant improvements with Gazyva/Gazyvaro plus chlorambucil across multiple clinical endpoints, including PFS, overall response rate (ORR), complete response rate (CR), and minimal residual disease (MRD) when compared head-to-head with MabThera/Rituxan plus chlorambucil.

In February 2016, Gazyva was approved by the US Food and Drug Administration in combination with bendamustine followed by Gazyva alone for people with follicular lymphoma who did not respond to a Rituxan-containing regimen, or whose follicular lymphoma returned after such treatment. In June 2016, Gazyvaro was approved by the European Commission in combination with bendamustine followed by Gazyvaro maintenance in people with follicular lymphoma who did not respond or who progressed during or up to six months after treatment with MabThera or a MabThera-containing regimen. Both approvals were based on the phase III GADOLIN study, showing a significant improvement in progression-free survival with Gazyva/Gazyvaro-based therapy compared to bendamustine alone. Gazyva is marketed as Gazyvaro in the EU and Switzerland.

In May 2016, the phase III GALLIUM study in people with previously untreated follicular lymphoma met its primary endpoint early. GALLIUM compared the efficacy and safety of Gazyva/Gazyvaro plus chemotherapy (CHOP, CVP or bendamustine) followed by Gazyva/Gazyvaro alone, head-to-head with MabThera/Rituxan plus chemotherapy followed by MabThera/Rituxan alone. Results from a pre-planned interim analysis showed that Gazyva/Gazyvaro-based treatment resulted in superior progression-free survival compared to MabThera/Rituxan-based treatment. Adverse events with either Gazyva/Gazyvaro or MabThera/Rituxan were consistent with those seen in previous clinical trials when each was combined with various chemotherapies. Data from the GALLIUM study will be presented at an upcoming medical meeting and submitted to health authorities for approval consideration.

Additional combination studies investigating Gazyva/Gazyvaro with other approved or investigational medicines, including cancer immunotherapies and small molecule inhibitors, are underway across a range of blood cancers.

About DLBCL

Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma (NHL), accounting for about one in three cases of NHL1. DLBCL is an aggressive (fast-growing) type of NHL, which is generally responsive to treatment in the frontline2. However, as many as 40% of patients will relapse, at which time salvage therapy options are limited and survival is short2. Approximately 123,000 people worldwide are estimated to be diagnosed with DLBCL each year3.

About Roche in haematology

For more than 20 years, Roche has been developing medicines that redefine treatment in haematology. Today, we are investing more than ever in our effort to bring innovative treatment options to people with diseases of the blood. In addition to approved medicines MabThera/Rituxan (rituximab), Gazyva/Gazyvaro (obinutuzumab), and Venclexta™ (venetoclax) in collaboration with AbbVie, Roche’s pipeline of investigational haematology medicines includes Tecentriq (atezolizumab), an anti-CD79b antibody drug conjugate (polatuzumab vedotin/RG7596) and a small molecule antagonist of MDM2 (idasanutlin/RG7388). Roche’s dedication to developing novel molecules in haematology expands beyond oncology, with the development of the investigational haemophilia A treatment emicizumab (ACE910).

About Roche

Roche is a global pioneer in pharmaceuticals and diagnostics focused on advancing science to improve people’s lives.

Roche is the world’s largest biotech company, with truly differentiated medicines in oncology, immunology, infectious diseases, ophthalmology and diseases of the central nervous system. Roche is also the world leader in in vitro diagnostics and tissue-based cancer diagnostics, and a frontrunner in diabetes management. The combined strengths of pharmaceuticals and diagnostics under one roof have made Roche the leader in personalised healthcare – a strategy that aims to fit the right treatment to each patient in the best way possible.

Founded in 1896, Roche continues to search for better ways to prevent, diagnose and treat diseases and make a sustainable contribution to society. Twenty-nine medicines developed by Roche are included in the World Health Organization Model Lists of Essential Medicines, among them life-saving antibiotics, antimalarials and cancer medicines. Roche has been recognised as the Group Leader in sustainability within the Pharmaceuticals, Biotechnology & Life Sciences Industry seven years in a row by the Dow Jones Sustainability Indices.

The Roche Group, headquartered in Basel, Switzerland, is active in over 100 countries and in 2015 employed more than 91,700 people worldwide. In 2015, Roche invested CHF 9.3 billion in R&D and posted sales of CHF 48.1 billion. Genentech, in the United States, is a wholly owned member of the Roche Group. Roche is the majority shareholder in Chugai Pharmaceutical, Japan. For more information, please visit http://www.roche.com.

References
1 –  Lyon, France: IARC Press; 2008. World Health Organization Classification of Tumors of Haematopoietic and Lymphoid Tissues.
2 – Maurer, JM et al. (2014). Event-free survival at 24 months is a robust end point for disease-related outcome in diffuse large B-cell lymphoma treated with immunochemotherapy. J Clin Oncol 32: 1066-73.
3 – Numbers derived from GLOBOCAN 2012: Estimated cancer incidence, mortality and prevalence worldwide in 2012. http://globocan.iarc.fr. Accessed June 2016.

SOURCE

http://www.roche.com/media/store/releases/med-cor-2016-07-18.htm

Read Full Post »

Older Posts »