Feeds:
Posts
Comments

Archive for the ‘Drug Development Process’ Category


Thriving Vaccines and Research: Weizmann Institute Coronavirus Research Development

Reporter: Amandeep Kaur, B.Sc., M.Sc.

In early February, Prof. Eran Segal updated in one of his tweets and mentioned that “We say with caution, the magic has started.”

The article reported that this statement by Prof. Segal was due to decreasing cases of COVID-19, severe infection cases and hospitalization of patients by rapid vaccination process throughout Israel. Prof. Segal emphasizes in another tweet to remain cautious over the country and informed that there is a long way to cover and searching for scientific solutions.

A daylong webinar entitled “COVID-19: The epidemic that rattles the world” was a great initiative by Weizmann Institute to share their scientific knowledge about the infection among the Israeli institutions and scientists. Prof. Gideon Schreiber and Dr. Ron Diskin organized the event with the support of the Weizmann Coronavirus Response Fund and Israel Society for Biochemistry and Molecular Biology. The speakers were invited from the Hebrew University of Jerusalem, Tel-Aviv University, the Israel Institute for Biological Research (IIBR), and Kaplan Medical Center who addressed the molecular structure and infection biology of the virus, treatments and medications for COVID-19, and the positive and negative effect of the pandemic.

The article reported that with the emergence of pandemic, the scientists at Weizmann started more than 60 projects to explore the virus from different range of perspectives. With the help of funds raised by communities worldwide for the Weizmann Coronavirus Response Fund supported scientists and investigators to elucidate the chemistry, physics and biology behind SARS-CoV-2 infection.

Prof. Avi Levy, the coordinator of the Weizmann Institute’s coronavirus research efforts, mentioned “The vaccines are here, and they will drastically reduce infection rates. But the coronavirus can mutate, and there are many similar infectious diseases out there to be dealt with. All of this research is critical to understanding all sorts of viruses and to preempting any future pandemics.”

The following are few important projects with recent updates reported in the article.

Mapping a hijacker’s methods

Dr. Noam Stern-Ginossar studied the virus invading strategies into the healthy cells and hijack the cell’s systems to divide and reproduce. The article reported that viruses take over the genetic translation system and mainly the ribosomes to produce viral proteins. Dr. Noam used a novel approach known as ‘ribosome profiling’ as her research objective and create a map to locate the translational events taking place inside the viral genome, which further maps the full repertoire of viral proteins produced inside the host.

She and her team members grouped together with the Weizmann’s de Botton Institute and researchers at IIBR for Protein Profiling and understanding the hijacking instructions of coronavirus and developing tools for treatment and therapies. Scientists generated a high-resolution map of the coding regions in the SARS-CoV-2 genome using ribosome-profiling techniques, which allowed researchers to quantify the expression of vital zones along the virus genome that regulates the translation of viral proteins. The study published in Nature in January, explains the hijacking process and reported that virus produces more instruction in the form of viral mRNA than the host and thus dominates the translation process of the host cell. Researchers also clarified that it is the misconception that virus forced the host cell to translate its viral mRNA more efficiently than the host’s own translation, rather high level of viral translation instructions causes hijacking. This study provides valuable insights for the development of effective vaccines and drugs against the COVID-19 infection.

Like chutzpah, some things don’t translate

Prof. Igor Ulitsky and his team worked on untranslated region of viral genome. The article reported that “Not all the parts of viral transcript is translated into protein- rather play some important role in protein production and infection which is unknown.” This region may affect the molecular environment of the translated zones. The Ulitsky group researched to characterize that how the genetic sequence of regions that do not translate into proteins directly or indirectly affect the stability and efficiency of the translating sequences.

Initially, scientists created the library of about 6,000 regions of untranslated sequences to further study their functions. In collaboration with Dr. Noam Stern-Ginossar’s lab, the researchers of Ulitsky’s team worked on Nsp1 protein and focused on the mechanism that how such regions affect the Nsp1 protein production which in turn enhances the virulence. The researchers generated a new alternative and more authentic protocol after solving some technical difficulties which included infecting cells with variants from initial library. Within few months, the researchers are expecting to obtain a more detailed map of how the stability of Nsp1 protein production is getting affected by specific sequences of the untranslated regions.

The landscape of elimination

The article reported that the body’s immune system consists of two main factors- HLA (Human Leukocyte antigen) molecules and T cells for identifying and fighting infections. HLA molecules are protein molecules present on the cell surface and bring fragments of peptide to the surface from inside the infected cell. These peptide fragments are recognized and destroyed by the T cells of the immune system. Samuels’ group tried to find out the answer to the question that how does the body’s surveillance system recognizes the appropriate peptide derived from virus and destroy it. They isolated and analyzed the ‘HLA peptidome’- the complete set of peptides bound to the HLA proteins from inside the SARS-CoV-2 infected cells.

After the analysis of infected cells, they found 26 class-I and 36 class-II HLA peptides, which are present in 99% of the population around the world. Two peptides from HLA class-I were commonly present on the cell surface and two other peptides were derived from coronavirus rare proteins- which mean that these specific coronavirus peptides were marked for easy detection. Among the identified peptides, two peptides were novel discoveries and seven others were shown to induce an immune response earlier. These results from the study will help to develop new vaccines against new coronavirus mutation variants.

Gearing up ‘chain terminators’ to battle the coronavirus

Prof. Rotem Sorek and his lab discovered a family of enzymes within bacteria that produce novel antiviral molecules. These small molecules manufactured by bacteria act as ‘chain terminators’ to fight against the virus invading the bacteria. The study published in Nature in January which reported that these molecules cause a chemical reaction that halts the virus’s replication ability. These new molecules are modified derivates of nucleotide which integrates at the molecular level in the virus and obstruct the works.

Prof. Sorek and his group hypothesize that these new particles could serve as a potential antiviral drug based on the mechanism of chain termination utilized in antiviral drugs used recently in the clinical treatments. Yeda Research and Development has certified these small novel molecules to a company for testing its antiviral mechanism against SARS-CoV-2 infection. Such novel discoveries provide evidences that bacterial immune system is a potential repository of many natural antiviral particles.

Resolving borderline diagnoses

Currently, Real-time Polymerase chain reaction (RT-PCR) is the only choice and extensively used for diagnosis of COVID-19 patients around the globe. Beside its benefits, there are problems associated with RT-PCR, false negative and false positive results and its limitation in detecting new mutations in the virus and emerging variants in the population worldwide. Prof. Eran Elinavs’ lab and Prof. Ido Amits’ lab are working collaboratively to develop a massively parallel, next-generation sequencing technique that tests more effectively and precisely as compared to RT-PCR. This technique can characterize the emerging mutations in SARS-CoV-2, co-occurring viral, bacterial and fungal infections and response patterns in human.

The scientists identified viral variants and distinctive host signatures that help to differentiate infected individuals from non-infected individuals and patients with mild symptoms and severe symptoms.

In Hadassah-Hebrew University Medical Center, Profs. Elinav and Amit are performing trails of the pipeline to test the accuracy in borderline cases, where RT-PCR shows ambiguous or incorrect results. For proper diagnosis and patient stratification, researchers calibrated their severity-prediction matrix. Collectively, scientists are putting efforts to develop a reliable system that resolves borderline cases of RT-PCR and identify new virus variants with known and new mutations, and uses data from human host to classify patients who are needed of close observation and extensive treatment from those who have mild complications and can be managed conservatively.

Moon shot consortium refining drug options

The ‘Moon shot’ consortium was launched almost a year ago with an initiative to develop a novel antiviral drug against SARS-CoV-2 and was led by Dr. Nir London of the Department of Chemical and Structural Biology at Weizmann, Prof. Frank von Delft of Oxford University and the UK’s Diamond Light Source synchroton facility.

To advance the series of novel molecules from conception to evidence of antiviral activity, the scientists have gathered support, guidance, expertise and resources from researchers around the world within a year. The article reported that researchers have built an alternative template for drug-discovery, full transparency process, which avoids the hindrance of intellectual property and red tape.

The new molecules discovered by scientists inhibit a protease, a SARS-CoV-2 protein playing important role in virus replication. The team collaborated with the Israel Institute of Biological Research and other several labs across the globe to demonstrate the efficacy of molecules not only in-vitro as well as in analysis against live virus.

Further research is performed including assaying of safety and efficacy of these potential drugs in living models. The first trial on mice has been started in March. Beside this, additional drugs are optimized and nominated for preclinical testing as candidate drug.

Source: https://www.weizmann.ac.il/WeizmannCompass/sections/features/the-vaccines-are-here-and-research-abounds

Other related articles were published in this Open Access Online Scientific Journal, including the following:

Identification of Novel genes in human that fight COVID-19 infection

Reporter: Amandeep Kaur, B.Sc., M.Sc. (ept. 5/2021)

https://pharmaceuticalintelligence.com/2021/04/19/identification-of-novel-genes-in-human-that-fight-covid-19-infection/

Fighting Chaos with Care, community trust, engagement must be cornerstones of pandemic response

Reporter: Amandeep Kaur, B.Sc., M.Sc. (ept. 5/2021)

https://pharmaceuticalintelligence.com/2021/04/13/fighting-chaos-with-care/

T cells recognize recent SARS-CoV-2 variants

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2021/03/30/t-cells-recognize-recent-sars-cov-2-variants/

Need for Global Response to SARS-CoV-2 Viral Variants

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2021/02/12/need-for-global-response-to-sars-cov-2-viral-variants/

Mechanistic link between SARS-CoV-2 infection and increased risk of stroke using 3D printed models and human endothelial cells

Reporter: Adina Hazan, PhD

https://pharmaceuticalintelligence.com/2020/12/28/mechanistic-link-between-sars-cov-2-infection-and-increased-risk-of-stroke-using-3d-printed-models-and-human-endothelial-cells/

Read Full Post »


Cryo-EM disclosed how the D614G mutation changes SARS-CoV-2 spike protein structure.

Reporter: Dr. Premalata Pati, Ph.D., Postdoc

SARS-CoV-2, the virus that causes COVID-19, has had a major impact on human health globally; infecting a massive quantity of people around 136,046,262 (John Hopkins University); causing severe disease and associated long-term health sequelae; resulting in death and excess mortality, especially among older and prone populations; altering routine healthcare services; disruptions to travel, trade, education, and many other societal functions; and more broadly having a negative impact on peoples physical and mental health.

It’s need of the hour to answer the questions like what allows the variants of SARS-CoV-2 first detected in the UK, South Africa, and Brazil to spread so quickly? How can current COVID-19 vaccines better protect against them?

Scientists from the Harvard Medical School and the Boston Children’s Hospital help answer these urgent questions. The team reports its findings in the journal “Science a paper entitled Structural impact on SARS-CoV-2 spike protein by D614G substitution. The mutation rate of the SARS-CoV-2 virus has rapidly evolved over the past few months, especially at the Spike (S) protein region of the virus, where the maximum number of mutations have been observed by the virologists.

Bing Chen, HMS professor of pediatrics at Boston Children’s, and colleagues analyzed the changes in the structure of the spike proteins with the genetic change by D614G mutation by all three variants. Hence they assessed the structure of the coronavirus spike protein down to the atomic level and revealed the reason for the quick spreading of these variants.


This model shows the structure of the spike protein in its closed configuration, in its original D614 form (left) and its mutant form (G614). In the mutant spike protein, the 630 loop (in red) stabilizes the spike, preventing it from flipping open prematurely and rendering SARS-CoV-2 more infectious.

Fig. 1. Cryo-EM structures of the full-length SARS-CoV-2 S protein carrying G614.

(A) Three structures of the G614 S trimer, representing a closed, three RBD-down conformation, an RBD-intermediate conformation and a one RBD-up conformation, were modeled based on corresponding cryo-EM density maps at 3.1-3.5Å resolution. Three protomers (a, b, c) are colored in red, blue and green, respectively. RBD locations are indicated. (B) Top views of superposition of three structures of the G614 S in (A) in ribbon representation with the structure of the prefusion trimer of the D614 S (PDB ID: 6XR8), shown in yellow. NTD and RBD of each protomer are indicated. Side views of the superposition are shown in fig. S8.

IMAGE SOURCE: Bing Chen, Ph.D., Boston Children’s Hospital, https://science.sciencemag.org/content/early/2021/03/16/science.abf2303

The work

The mutant spikes were imaged by Cryo-Electron microscopy (cryo-EM), which has resolution down to the atomic level. They found that the D614G mutation (substitution of in a single amino acid “letter” in the genetic code for the spike protein) makes the spike more stable as compared with the original SARS-CoV-2 virus. As a result, more functional spikes are available to bind to our cells’ ACE2 receptors, making the virus more contagious.


Fig. 2. Cryo-EM revealed how the D614G mutation changes SARS-CoV-2 spike protein structure.

IMAGE SOURCE:  Zhang J, et al., Science

Say the original virus has 100 spikes,” Chen explained. “Because of the shape instability, you may have just 50 percent of them functional. In the G614 variants, you may have 90 percent that is functional. So even though they don’t bind as well, the chances are greater and you will have an infection

Forthcoming directions by Bing Chen and Team

The findings suggest the current approved COVID-19 vaccines and any vaccines in the works should include the genetic code for this mutation. Chen has quoted:

Since most of the vaccines so far—including the Moderna, Pfizer–BioNTech, Johnson & Johnson, and AstraZeneca vaccines are based on the original spike protein, adding the D614G mutation could make the vaccines better able to elicit protective neutralizing antibodies against the viral variants

Chen proposes that redesigned vaccines incorporate the code for this mutant spike protein. He believes the more stable spike shape should make any vaccine based on the spike more likely to elicit protective antibodies. Chen also has his sights set on therapeutics. He and his colleagues are further applying structural biology to better understand how SARS-CoV-2 binds to the ACE2 receptor. That could point the way to drugs that would block the virus from gaining entry to our cells.

In January, the team showed that a structurally engineered “decoy” ACE2 protein binds to SARS-CoV-2 200 times more strongly than the body’s own ACE2. The decoy potently inhibited the virus in cell culture, suggesting it could be an anti-COVID-19 treatment. Chen is now working to advance this research into animal models.

Main Source:

Abstract

Substitution for aspartic acid by glycine at position 614 in the spike (S) protein of severe acute respiratory syndrome coronavirus 2 appears to facilitate rapid viral spread. The G614 strain and its recent variants are now the dominant circulating forms. We report here cryo-EM structures of a full-length G614 S trimer, which adopts three distinct prefusion conformations differing primarily by the position of one receptor-binding domain. A loop disordered in the D614 S trimer wedges between domains within a protomer in the G614 spike. This added interaction appears to prevent premature dissociation of the G614 trimer, effectively increasing the number of functional spikes and enhancing infectivity, and to modulate structural rearrangements for membrane fusion. These findings extend our understanding of viral entry and suggest an improved immunogen for vaccine development.

https://science.sciencemag.org/content/early/2021/03/16/science.abf2303?rss=1

Other Related Articles published in this Open Access Online Scientific Journal include the following:

COVID-19-vaccine rollout risks and challenges

Reporter : Irina Robu, PhD

https://pharmaceuticalintelligence.com/2021/02/17/covid-19-vaccine-rollout-risks-and-challenges/

COVID-19 Sequel: Neurological Impact of Social isolation been linked to poorer physical and mental health

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2021/03/30/covid-19-sequel-neurological-impact-of-social-isolation-been-linked-to-poorer-physical-and-mental-health/

Comparing COVID-19 Vaccine Schedule Combinations, or “Com-COV” – First-of-its-Kind Study will explore the Impact of using eight different Combinations of Doses and Dosing Intervals for Different COVID-19 Vaccines

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2021/02/08/comparing-covid-19-vaccine-schedule-combinations-or-com-cov-first-of-its-kind-study-will-explore-the-impact-of-using-eight-different-combinations-of-doses-and-dosing-intervals-for-diffe/

COVID-19 T-cell immune response map, immunoSEQ T-MAP COVID for research of T-cell response to SARS-CoV-2 infection

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2020/11/20/covid-19-t-cell-immune-response-map-immunoseq-t-map-covid-for-research-of-t-cell-response-to-sars-cov-2-infection/

Tiny biologic drug to fight COVID-19 show promise in animal models

Reporter : Irina Robu, PhD

https://pharmaceuticalintelligence.com/2020/10/11/tiny-biologic-drug-to-fight-covid-19-show-promise-in-animal-models/

Miniproteins against the COVID-19 Spike protein may be therapeutic

Reporter: Stephen J. Williams, PhD

https://pharmaceuticalintelligence.com/2020/09/30/miniproteins-against-the-covid-19-spike-protein-may-be-therapeutic/

Read Full Post »


A Platform called VirtualFlow: Discovery of Pan-coronavirus Drugs help prepare the US for the Next Coronavirus Pandemic

Reporter: Aviva Lev-Ari, PhD, RN

 

ARTICLE|ONLINE NOW, 102021

A multi-pronged approach targeting SARS-CoV-2 proteins using ultra-large virtual screening

Open AccessPublished:January 04, 2021DOI:https://doi.org/10.1016/j.isci.2020.102021

 

The work was made possible in large part by about $1 million in cloud computing hours awarded by Google through a COVID-19 research grant program.

The work reported, below was sponsored by

  • a Google Cloud COVID-19 research grant. Funding was also provided by the
  • Fondation Aclon,
  • National Institutes of Health (GM136859),
  • Claudia Adams Barr Program for Innovative Basic Cancer Research,
  • Math+ Berlin Mathematics Research Center,
  • Templeton Religion Trust (TRT 0159),
  • U.S. Army Research Office (W911NF1910302), and
  • Chleck Family Foundation

 

Harvard University, AbbVie form research alliance to address emergent viral diseases

This article is part of Harvard Medical School’s continuing coverage of medicine, biomedical research, medical education and policy related to the SARS-CoV-2 pandemic and the disease COVID-19.

Harvard University and AbbVie today announced a $30 million collaborative research alliance, launching a multi-pronged effort at Harvard Medical School to study and develop therapies against emergent viral infections, with a focus on those caused by coronaviruses and by viruses that lead to hemorrhagic fever.

The collaboration aims to rapidly integrate fundamental biology into the preclinical and clinical development of new therapies for viral diseases that address a variety of therapeutic modalities. HMS has led several large-scale, coordinated research efforts launched at the beginning of the COVID-19 pandemic.

“A key element of having a strong R&D organization is collaboration with top academic institutions, like Harvard Medical School, to develop therapies for patients who need them most,” said Michael Severino, vice chairman and president of AbbVie. “There is much to learn about viral diseases and the best way to treat them. By harnessing the power of collaboration, we can develop new therapeutics sooner to ensure the world is better prepared for future potential outbreaks.”

“The cataclysmic nature of the COVID-19 pandemic reminds us how vital it is to be prepared for the next public health crisis and how critical collaboration is on every level—across disciplines, across institutions and across national boundaries,” said George Q. Daley, dean of Harvard Medical School. “Harvard Medical School, as the nucleus of an ecosystem of fundamental discovery and therapeutic translation, is uniquely positioned to propel this transformative research alongside allies like AbbVie.”

AbbVie will provide $30 million over three years and additional in-kind support leveraging AbbVie’s scientists, expertise and facilities to advance collaborative research and early-stage development efforts across five program areas that address a variety of therapeutic modalities:

  • Immunity and immunopathology—Study of the fundamental processes that impact the body’s critical immune responses to viruses and identification of opportunities for therapeutic intervention.

Led by Ulirich Von Andrian, the Edward Mallinckrodt Jr. Professor of Immunopathology in the Blavatnik Institute at HMS and program leader of basic immunology at the Ragon Institute of MGH, MIT and Harvard, and Jochen Salfeld, vice president of immunology and virology discovery at AbbVie.

  • Host targeting for antiviral therapies—Development of approaches that modulate host proteins in an effort to disrupt the life cycle of emergent viral pathogens.

Led by Pamela Silver, the Elliot T. and Onie H. Adams Professor of Biochemistry and Systems Biology in the Blavatnik Institute at HMS, and Steve Elmore, vice president of drug discovery science and technology at AbbVie.

  • Antibody therapeutics—Rapid development of therapeutic antibodies or biologics against emergent pathogens, including SARS-CoV-2, to a preclinical or early clinical stage.

Led by Jonathan Abraham, assistant professor of microbiology in the Blavatnik Institute at HMS, and by Jochen Salfeld, vice president of immunology and virology discovery at AbbVie.

  • Small molecules—Discovery and early-stage development of small-molecule drugs that would act to prevent replication of known coronaviruses and emergent pathogens.

Led by Mark Namchuk, executive director of therapeutics translation at HMS and senior lecturer on biological chemistry and molecular pharmacology in the Blavatnik Institute at HMS, and Steve Elmore, vice president of drug discovery science and technology at AbbVie.

  • Translational development—Preclinical validation, pharmacological testing, and optimization of leading approaches, in collaboration with Harvard-affiliated hospitals, with program leads to be determined.

SOURCE

https://hms.harvard.edu/news/joining-forces

 

 

A Screen Door Opens

Virtual screen finds compounds that could combat SARS-CoV-2

This article is part of Harvard Medical School’s continuing coverage of medicine, biomedical research, medical education, and policy related to the SARS-CoV-2 pandemic and the disease COVID-19.

Less than a year ago, Harvard Medical School researchers and international colleagues unveiled a platform called VirtualFlow that could swiftly sift through more than 1 billion chemical compounds and identify those with the greatest promise to become disease-specific treatments, providing researchers with invaluable guidance before they embark on expensive and time-consuming lab experiments and clinical trials.

Propelled by the urgent needs of the pandemic, the team has now pushed VirtualFlow even further, conducting 45 screens of more than 1 billion compounds each and ranking the compounds with the greatest potential for fighting COVID-19—including some that are already approved by the FDA for other diseases.

“This was the largest virtual screening effort ever done,” said VirtualFlow co-developer Christoph Gorgulla, research fellow in biological chemistry and molecular pharmacology in the labs of Haribabu Arthanari and Gerhard Wagner in the Blavatnik Institute at HMS.

The results were published in January in the open-access journal iScience.

The team searched for compounds that bind to any of 15 proteins on SARS-CoV-2 or two human proteins, ACE2 and TMPRSS2, known to interact with the virus and enable infection.

Researchers can now explore on an interactive website the 1,000 most promising compounds from each screen and start testing in the lab any ones they choose.

The urgency of the pandemic and the sheer number of candidate compounds inspired the team to release the early results to the scientific community.

“No one group can validate all the compounds as quickly as the pandemic demands,” said Gorgulla, who is also an associate of the Department of Physics at Harvard University. “We hope that our colleagues can collectively use our results to identify potent inhibitors of SARS-CoV-2.

In most cases, it will take years to find out whether a compound is safe and effective in humans. For some of the compounds, however, researchers have a head start.

Hundreds of the most promising compounds that VirtualFlow flagged are already FDA approved or being studied in clinical or preclinical trials for other diseases. If researchers find that one of those compounds proves effective against SARS-CoV-2 in lab experiments, the data their colleagues have already collected could save time establishing safety in humans.

Other compounds among VirtualFlow’s top hits are currently being assessed in clinical trials for COVID-19, including several drugs in the steroid family. In those cases, researchers could build on the software findings to investigate how those drug candidates work at the molecular level—something that’s not always clear even when a drug works well.

It shows what we’re capable of computationally during a pandemic.

Hari Arthanari

SOURCE

https://hms.harvard.edu/news/screen-door-opens?utm_source=Silverpop&utm_medium=email&utm_term=field_news_item_1&utm_content=HMNews02012021

Read Full Post »


Danny Bar-Zohar, MD –  New R&D Leader for new pipelines at Merck KGaA as Luciano Rossetti steps out

Reporter: Aviva Lev-Ari, PhD, RN

 

Danny Bar-Zohar, MD – A Pharmaceutical Executive Profile in R&D: Ex-Novastis, Ex-Teva

Experience

Education

SOURCE

https://www.linkedin.com/in/danny-bar-zohar-513904a/

 

Novartis vet Danny Bar-Zohar leaps back into R&D, taking over the development team at Merck KGaA as Luciano Rossetti steps out

John Carroll
Editor & Founder

After a brief stint as a biotech investor at Syncona, Novartis vet Danny Bar-Zohar is back in R&D, and he’s taking the lead position at Merck KGaA’s drug division.

Bar-Zohar had led late-stage clinical development across a variety of areas — neuroscience, immunology, oncology and ophthalmology, among others — before joining the migration of talent out of the Basel-based multinational. He had been at Novartis for 7 years, which followed an earlier chapter in research at Teva.

Luciano Rossetti
The scientist is taking the lead on development at Merck KGaA, in place of Luciano Rossetti, who had a mixed record in R&D that nevertheless marked a big improvement over the dismal run the company had endured earlier. Joern-Peter Halle will continue on as global head of research. Rossetti is retiring after 6 years of running the research group, which has extensive operations in Germany as well as Massachusetts.

Their PD-L1 Bavencio — allied with Pfizer — has had a few successes, and a whole slate of failures. Sprifermin was touted as a big potential advance in osteoarthritis, but Merck KGaA is now auctioning off that part of the portfolio. One of the few late-stage bright spots has been their MET inhibitor tepotinib, which won breakthrough status and now is under priority review. That drug faces a rival at Novartis — capmatinib — that won an accelerated OK at the FDA in May.

advertisement

advertisement
There’s also a BTK inhibitor, evobrutinib, that’s being developed for MS. But that’s a very crowded field, and Sanofi has been bullish about its prospects in the same research niche after buying out Principia.

Moving back into mid-stage development, there’s a major program underway for bintrafusp alfa, a bifunctional fusion protein targeting TGF-β and PD-L1, which Merck KGaA has high hopes for.

That all marks some bright, though limited, prospects for Merck KGaA, highlighting the need to find something new to beef up the pipeline. Bar-Zohar will get a say in that.

AUTHOR
John Carroll

SOURCE

https://endpts.com/novartis-vet-danny-bar-zohar-leaps-back-into-rd-taking-over-the-team-at-merck-kgaa-as-luciano-rossetti-steps-out/

Read Full Post »


National Public Radio interview with Dr. Anthony Fauci on his optimism on a COVID-19 vaccine by early 2021

Reporter: Stephen J. Williams, PhD

Below I am giving a link to an important interview by NPR’s Judy Woodruff with Dr. Anthony Fauci on his thoughts regarding the recent spikes in cases, the potential for a COVID-19 vaccine by next year, and promising therapeutics in the pipeline.  The interview link is given below however I will summarize a few of the highlights of the interview.

 

Some notes on the interview

Judy Woodruff began her report with some up to date news regarding the recent spike and that Miami Florida has just ordered the additional use of facemasks.  She asked Dr. Anthony Fauci, head of the National Institute of Allergy and Infectious Diseases (NIAD), about if the measures currently in use are enough to bring this spike down.  Dr. Fauci said that we need to reboot our efforts, mainly because people are not doing three things which could have prevented this spike mainly

  1. universal wearing of masks
  2. distancing properly from each other
  3. close the bars and pubs (see Wisconsin bars packed after ruling)

It hasn’t been a uniform personal effort

Dr. Fauci on testing

We have to use the tests we have out there efficiently and effectively And we have to get them out to the right people who can do the proper identification, isolation, and do proper contract tracing and need to test more widely in a surveillance way to get a feel of the extent and penetrance of this community spread.  there needs to be support and money for these testing labs

We have a problem and we need to admit and own it but we need to do the things we know are effective to turn this thing around.

On Vaccines

“May be later this year”

His response to Merck’s CEO Ken Frazer who said officials are giving false hop if they say ‘end of year’ but Dr. Fauci disagrees.  He says a year end goal is not outlandish.

What we have been doing is putting certain things in line with each other in an unprecedented way.

Dr. Fauci went on to say that, in the past yes, it took a long time, even years to develop a vaccine but now they have been able to go from sequence of virus to a vaccine development program in days, which is unheard of.  Sixty two days later we have gone into phase 1 trials. the speed at which this is occurring is so much faster.  He says that generally it would take a couple of years to get a neutralizing antibody but we are already there.  Another candidate will be undergoing phase 3 trials by end of this month (July 2020).

He is “cautiously optimistic” that we will have one or more vaccines to give to patients by end of year because given the amount of cases it will be able to get a handle on safety and efficacy by late fall.

Now he says the game changer is that the government is working with companies to ramp up the production of doses of the candidate vaccines so when we find which one works we will have ample doses on hand.  He is worried about the anti vaccine movement derailing vaccine testing and vaccinations but says if we keep on informing the public we can combat this.

Going back to school

Dr. Fauci is concerned for the safety of the vulnerable in schools, including students and staff.  He wants the US to get down to a reasonable baseline of cases but in the US that baseline after the first wave was still significantly higher than in most countries, where the baseline was more like tens of cases not hundreds of cases.

For more information on COVID-19 Please go to our Coronavirus Portal at

https://pharmaceuticalintelligence.com/coronavirus-portal/

 

Read Full Post »


From Cell Press:  New Insights on the D614G Strain of COVID: Will a New Mutated Strain Delay Vaccine Development?

Reporter: Stephen J. Williams, PhD

Two recent articles in Cell Press, both peer reviewed, discuss the emergence and potential dominance of a new mutated strain of COVID-19, in which the spike protein harbors a D614G mutation.

In the first article “Making Sense of Mutation: What D614G means for the COVID-19 pandemic Remains Unclear”[1] , authors Drs. Nathan Grubaugh, William Hanage, and Angela Rasmussen discuss the recent findings by Korber et al. 2020 [2] which describe the potential increases in infectivity and mortality of this new mutant compared to the parent strain of SARS-CoV2.  For completeness sake I will post this article as to not defer from their interpretations of this important paper by Korber and to offer some counter opinion to some articles which have surfaced this morning in the news.

Making sense of mutation: what D614G means for the COVID-19 pandemic remains unclear

 

Nathan D. Grubaugh1 *, William P. Hanage2 *, Angela L. Rasmussen3 * 1Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA 2Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA 3Center for Infection and Immunity, Columbia Mailman School of Public Health, New York, NY 10032, USA Correspondence: grubaughlab@gmail.com

 

Abstract: Korber et al. (2020) found that a SARS-CoV-2 variant in the spike protein, D614G, rapidly became dominant around the world. While clinical and in vitro data suggest that D614G changes the virus phenotype, the impact of the mutation on transmission, disease, and vaccine and therapeutic development are largely unknown.

Introduction: Following the emergence of SARS-CoV-2 in China in late 2019, and the rapid expansion of the COVID19 pandemic in 2020, questions about viral evolution have come tumbling after. Did SARS-CoV-2 evolve to become better adapted to humans? More infectious or transmissible? More deadly? Virus mutations can rise in frequency due to natural selection, random genetic drift, or features of recent epidemiology. As these forces can work in tandem, it’s often hard to differentiate when a virus mutation becomes common through fitness or by chance. It is even harder to determine if a single mutation will change the outcome of an infection, or a pandemic. The new study by Korber et al. (2020) sits at the heart of this debate. They present compelling data that an amino acid change in the virus’ spike protein, D614G, emerged early during the pandemic, and viruses containing G614 are now dominant in many places around the world. The crucial questions are whether this is the result of natural selection, and what it means for the COVID-19 pandemic. For viruses like SARS-CoV-2 transmission really is everything – if they don’t get into another host their lineage ends. Korber et al. (2020) hypothesized that the rapid spread of G614 was because it is more infectious than D614. In support of their hypothesis, the authors provided evidence that clinical samples from G614 infections have a higher levels of viral RNA, and produced higher titers in pseudoviruses from in vitro experiments; results that now seem to be corroborated by others [e.g. (Hu et al., 2020; Wagner et al., 2020)]. Still, these data do not prove that G614 is more infectious or transmissible than viruses containing D614. And because of that, many questions remain on the potential impacts, if any, that D614G has on the COVID-19 pandemic.

The authors note that this new G614 variant has become the predominant form over the whole world however in China the predominant form is still the D614 form.  As they state

“over the period that G614 became the global majority variant, the number of introductions from China where D614 was still dominant were declining, while those from Europe climbed. This alone might explain the apparent success of G614.”

Grubaugh et al. feel there is not enough evidence that infection with this new variant will lead to higher mortality.  Both Korber et al. and the Seattle study (Wagner et al) did not find that the higher viral load of this variant led to a difference in hospitalizations so apparently each variant might be equally as morbid.

In addition, Grubaugh et al. believe this variant would not have much affect on vaccine development as, even though the mutation lies within the spike protein, D614G is not in the receptor binding domain of the spike protein.  Korber suggest that there may be changes in glycosylation however these experiments will need to be performed.  In addition, antibodies from either D614 or G614 variant infected patients could cross neutralize.

 

Conclusions: While there has already been much breathless commentary on what this mutation means for the COVID19 pandemic, the global expansion of G614 whether through natural selection or chance means that this variant now is the pandemic. As a result its properties matter. It is clear from the in vitro and clinical data that G614 has a distinct phenotype, but whether this is the result of bonafide adaptation to human ACE2, whether it increases transmissibility, or will have a notable effect, is not clear. The work by Korber et al. (2020) provides an early base for more extensive epidemiological, in vivo experimental, and diverse clinical investigations to fill in the many critical gaps in how D614G impacts the pandemic.

The link to the Korber Cell paper is here: https://www.cell.com/cell/fulltext/S0092-8674(20)30820-5

Tracking changes in SARS-CoV-2 Spike: evidence that D614G increases infectivity of the COVID-19 virus

DOI: https://doi.org/10.1016/j.cell.2020.06.043

Keypoints

  • The consistent increase of G614 at regional levels may indicate a fitness advantage

 

  • G614 is associated with lower RT PCR Ct’s, suggestive of higher viral loads in patients

 

  • The G614 variant grows to higher titers as pseudotyped virions

Summary

A SARS-CoV-2 variant carrying the Spike protein amino acid change D614G has become the most prevalent form in the global pandemic. Dynamic tracking of variant frequencies revealed a recurrent pattern of G614 increase at multiple geographic levels: national, regional and municipal. The shift occurred even in local epidemics where the original D614 form was well established prior to the introduction of the G614 variant. The consistency of this pattern was highly statistically significant, suggesting that the G614 variant may have a fitness advantage. We found that the G614 variant grows to higher titer as pseudotyped virions. In infected individuals G614 is associated with lower RT-PCR cycle thresholds, suggestive of higher upper respiratory tract viral loads, although not with increased disease severity. These findings illuminate changes important for a mechanistic understanding of the virus, and support continuing surveillance of Spike mutations to aid in the development of immunological interventions.

 

References

  1. Grubaugh, N.D., Hanage, W.P., Rasmussen, A.L., Making sense of mutation: what D614G means for the COVID-19 pandemic remains unclear, Cell (2020), doi: https:// doi.org/10.1016/j.cell.2020.06.040.
  2. Korber, B., Fischer, W.M., Gnanakaran, S., Yoon, H., Theiler, J., Abfalterer, W., Hengartner, N., Giorgi, E.E., Bhattacharya, T., Foley, B., et al. (2020). Tracking changes in SARS-CoV-2 Spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell 182.
  3. Endo, A., Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working Group, Abbott, S., Kucharski, A.J., and Funk, S. (2020). Estimating the overdispersion in COVID-19 transmission using outbreak sizes outside China. Wellcome Open Res 5, 67.
  4. Hu, J., He, C.-L., Gao, Q.-Z., Zhang, G.-J., Cao, X.-X., Long, Q.-X., Deng, H.-J., Huang, L.-Y., Chen, J., Wang, K., et al. (2020). The D614G mutation of SARS-CoV-2 spike protein enhances viral infectivity and decreases neutralization sensitivity to individual convalescent sera. bioRxiv 2020.06.20.161323.
  5. Wagner, C., Roychoudhury, P., Hadfield, J., Hodcroft, E.B., Lee, J., Moncla, L.H., Müller, N.F., Behrens, C., Huang, M.-L., Mathias, P., et al. (2020). Comparing viral load and clinical outcomes in Washington State across D614G mutation in spike protein of SARS-CoV-2. Https://github.com/blab/ncov-D614G.

Read Full Post »


“Repurposing” Off-patent Drugs offers big hopes of New Treatments

Reporter: Irina Robu, PhD

Given the substantial costs and the slow pace of drug discovery and development, repurposing old drugs has become a practice, partly because it involves the use of already developed compounds. Yet, there is lack of clinical interest in repurposing off patent drugs.

However, the scale of the opportunity for drug repurposing is huge. Initially approved for one disease, these drugs went off-patent and now show potential in other diseases. Even so, many non-profit groups see promise in supporting trials into drug repurposing. There is a huge untapped medicine chest of generic drugs with unexploited uses. These generic drugs are often cheap, already approved, off-patent and relatively quick to develop, whereas new drugs can cost millions of dollars to develop, test and 45% of the drugs fail in clinical trials.

However, numerous non-profit groups see potential in supporting trials into drug repurposing. Epidemiological data can offer enticing leads. Yet, clinical trials for these drugs are costly, but the benefits can be huge. The Drugs for Neglected Diseases Initiative, a Swiss non-profit research group, supported research into fexinidazole, which was abandoned by a pharma at an early stage. The drug showed to have antiparasitic qualities. However, after years of work in January 2020, it was approved for sleeping sickness in the Democratic Republic of Congo. It is the first oral medicine for the disease, and works for all stages of it.

Up till now, when it comes to cancer the most promising generic pills are known. Cancer Research, a UK based charity is testing aspirin to see if can stop cancer from recurring; metformin in a large prostate-cancer trial; and an anti-fungal medication to treat bowel cancer. At the same time, the Anticancer Fund in Brussels hopes that propranolol in treating cancers of the inner lining of blood vessels and pancreatic cancer. Propranolol is a generic 1960s beta-blocker used for a wide range of ailments such as hypertension, anxiety and migraine. If approved for cancer, its cost would be negligible in comparison the tens of thousands of dollars a month usually charged for cancer medicines.

Money seems the crucial constraint with these drugs, in addition to the clinical trials needed to have these drugs updated and relabeled. Only the makers or original developers of a drug are permitted to adjust its label. Sanofi, based in Paris, was the firm that requested regulatory review of fexinidazole for sleeping sickness, while the research was a charitable effort. But drug firms are not forced to support non-commercial efforts to repurpose drugs. And outside the industry it is tough to find the legal expertise to be able to do the  necessary paperwork.

As non-profits make progress in repurposing, corporate interest may be rising. In terms of achieving new treatment options, this is good news. But it will not bring cheaper medicines in areas traditionally neglected by the drug industry. Firms will focus on finding ways to patent the new uses and charge high prices for the finished product.

If governments need cheaper drugs, non-profits will need financial incentives and a cooperative regulatory framework. They include making regulators give free advice and waive approval fees, and a public fund to support repurposing. Yet, when drugs are approved, investors are paid back by the public health service, which makes savings by using the newly approved generic drugs.

SOURCE

https://www.economist.com/international/2019/02/28/repurposing-off-patent-drugs-offers-big-hopes-of-new-treatments?fsrc=scn/tw/te/bl/ed/crosspurposesrepurposingoffpatentdrugsoffersbighopesofnewtreatmentsinternational

 

Other related articles published in this Online Scientific Open Access Journal include:

 

The Castleman Disease Research Network publishes Phase 1 Results of Drug Repurposing Database for COVID-19

Reporter: Stephen J. Williams, PhD

https://pharmaceuticalintelligence.com/2020/06/27/the-castleman-disease-research-network-publishes-phase-1-results-of-drug-repurposing-database-for-covid-19/

Read Full Post »


The Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV) Partnership on May 18, 2020: Leadership of AbbVie, Amgen, AstraZeneca, Bristol Myers Squibb, Eisai, Eli Lilly, Evotec, Gilead, GlaxoSmithKline, Johnson & Johnson, KSQ Therapeutics, Merck, Novartis, Pfizer, Roche, Sanofi, Takeda, and Vir. We also thank multiple NIH institutes (especially NIAID), the FDA, BARDA, CDC, the European Medicines Agency, the Department of Defense, the VA, and the Foundation for NIH

Reporter: Aviva Lev-Ari, PhD, RN

May 18, 2020

Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV) An Unprecedented Partnership for Unprecedented Times

JAMA. Published online May 18, 2020. doi:10.1001/jama.2020.8920

First reported in Wuhan, China, in December 2019, COVID-19 is caused by a highly transmissible novel coronavirus, SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2). By March 2020, as COVID-19 moved rapidly throughout Europe and the US, most researchers and regulators from around the world agreed that it would be necessary to go beyond “business as usual” to contain this formidable infectious agent. The biomedical research enterprise was more than willing to respond to the challenge of COVID-19, but it soon became apparent that much-needed coordination among important constituencies was lacking.

Clinical trials of investigational vaccines began as early as January, but with the earliest possible distribution predicted to be 12 to 18 months away. Clinical trials of experimental therapies had also been initiated, but most, except for a trial testing the antiviral drug remdesivir,2 were small and not randomized. In the US, there was no true overarching national process in either the public or private sector to prioritize candidate therapeutic agents or vaccines, and no efforts were underway to develop a clear inventory of clinical trial capacity that could be brought to bear on this public health emergency. Many key factors had to change if COVID-19 was to be addressed effectively in a relatively short time frame.

On April 3, leaders of the National Institutes of Health (NIH), with coordination by the Foundation for the National Institutes of Health (FNIH), met with multiple leaders of research and development from biopharmaceutical firms, along with leaders of the US Food and Drug Administration (FDA), the Biomedical Advanced Research and Development Authority (BARDA), the European Medicines Agency (EMA), and academic experts. Participants sought urgently to identify research gaps and to discuss opportunities to collaborate in an accelerated fashion to address the complex challenges of COVID-19.

These critical discussions culminated in a decision to form a public-private partnership to focus on speeding the development and deployment of therapeutics and vaccines for COVID-19. The group assembled 4 working groups to focus on preclinical therapeutics, clinical therapeutics, clinical trial capacity, and vaccines (Figure). In addition to the founding members, the working groups’ membership consisted of senior scientists from each company or agency, the Centers for Disease Control and Prevention (CDC), the Department of Veterans Affairs (VA), and the Department of Defense.

Figure.

Accelerating COVID-19 Therapeutic Interventions and Vaccines

ACTIV’s 4 working groups, each with one cochair from NIH and one from industry, have made rapid progress in establishing goals, setting timetables, and forming subgroups focused on specific issues (Figure). The goals of the working group, along with a few examples of their accomplishments to date, include the following.

 

The Preclinical Working Group was charged to standardize and share preclinical evaluation resources and methods and accelerate testing of candidate therapies and vaccines to support entry into clinical trials. The aim is to increase access to validated animal models and to enhance comparison of approaches to identify informative assays. For example, through the ACTIV partnership, this group aims to extend preclinical researchers’ access to high-throughput screening systems, especially those located in the Biosafety Level 3 (BSL3) facilities currently required for many SARS-CoV-2 studies. This group also is defining a prioritization approach for animal use, assay selection and staging of testing, as well as completing an inventory of animal models, assays, and BSL 3/4 facilities.

 

The Therapeutics Clinical Working Group has been charged to prioritize and accelerate clinical evaluation of a long list of therapeutic candidates for COVID-19 with near-term potential. The goals have been to prioritize and test potential therapeutic agents for COVID-19 that have already been in human clinical trials. These may include agents with either direct-acting or host-directed antiviral activity, including immunomodulators, severe symptom modulators, neutralizing antibodies, or vaccines. To help achieve these goals, the group has established a steering committee with relevant expertise and objectivity to set criteria for evaluating and ranking potential candidate therapies submitted by industry partners. Following a rigorous scientific review, the prioritization subgroup has developed a complete inventory of approximately 170 already identified therapeutic candidates that have acceptable safety profiles and different mechanisms of action. On May 6, the group presented its first list of repurposed agents recommended for inclusion in ACTIV’s master protocol for adaptive clinical trials. Of the 39 agents that underwent final prioritization review, the group identified 6 agents—including immunomodulators and supportive therapies—that it proposes to move forward into the master protocol clinical trial(s) expected to begin later in May.

 

The Clinical Trial Capacity Working Group is charged with assembling and coordinating existing networks of clinical trials to increase efficiency and build capacity. This will include developing an inventory of clinical trial networks supported by NIH and other funders in the public and private sectors, including contract research organizations. For each network, the working group seeks to identify their specialization in different populations and disease stages to leverage infrastructure and expertise from across multiple networks, and establish a coordination mechanism across networks to expedite trials, track incidence across sites, and project future capacity. The clinical trials inventory subgroup has already identified 44 networks, with access to adult populations and within domestic reach, for potential inclusion in COVID-19 trials. Meanwhile, the survey subgroup has developed 2 survey instruments to assess the capabilities and capacities of those networks, and its innovation subgroup has developed a matrix to guide deployment of innovative solutions throughout the trial life cycle.

 

The Vaccines Working Group has been charged to accelerate evaluation of vaccine candidates to enable rapid authorization or approval.4 This includes development of a harmonized master protocol for adaptive trials of multiple vaccines, as well as development of a trial network that could enroll as many as 100 000 volunteers in areas where COVID-19 is actively circulating. The group also aims to identify biomarkers to speed authorization or approval and to provide evidence to address cross-cutting safety concerns, such as immune enhancement. Multiple vaccine candidates will be evaluated, and the most promising will move to a phase 2/3 adaptive trial platform utilizing large geographic networks in the US and globally.5 Because time is of the essence, ACTIV will aim to have the next vaccine candidates ready to enter clinical trials by July 1, 2020.

References

1.

Desai  A .  Twentieth-century lessons for a modern coronavirus pandemic.   JAMA. Published online April 27, 2020. doi:10.1001/jama.2020.4165
ArticlePubMedGoogle Scholar

2.

NIH clinical trial shows remdesivir accelerates recovery from advanced COVID-19. National Institutes of Health. Published April 29, 2020. Accessed May 7, 2020. https://www.nih.gov/news-events/news-releases/nih-clinical-trial-shows-remdesivir-accelerates-recovery-advanced-covid-19

3.

NIH to launch public-private partnership to speed COVID-19 vaccine and treatment options. National Institutes of Health. Published April 17, 2020. Accessed May 7, 2020. https://www.nih.gov/news-events/news-releases/nih-launch-public-private-partnership-speed-covid-19-vaccine-treatment-options

4.

Corey  L , Mascola  JR , Fauci  AS , Collins  FS .  A strategic approach to COVID-19 vaccine R&D.   Science. Published online May 11, 2020. doi:10.1126/science.abc5312PubMedGoogle Scholar

5.

Angus  DC .  Optimizing the trade-off between learning and doing in a pandemic.   JAMA. Published online March 30, 2020. doi:10.1001/jama.2020.4984
ArticlePubMedGoogle Scholar

6.

Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV) portal. National Institutes of Health. Accessed May 15, 2020. https://www.nih.gov/ACTIV

7.

Accelerating Medicines Partnership (AMP). National Institutes of Health. Published February 4, 2014. Accessed May 7, 2020. https://www.nih.gov/research-training/accelerating-medicines-partnership-amp
SOURCE

Read Full Post »


Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Symposium: New Drugs on the Horizon Part 3 12:30-1:25 PM

Reporter: Stephen J. Williams, PhD

New Drugs on the Horizon: Part 3
Introduction

Andrew J. Phillips, C4 Therapeutics

  • symposium brought by AACR CICR and had about 30 proposals for talks and chose three talks
  • unfortunately the networking event is not possible but hope to see you soon in good health

ABBV-184: A novel survivin specific T cell receptor/CD3 bispecific therapeutic that targets both solid tumor and hematological malignancies

Edward B Reilly
AbbVie Inc. @abbvie

  • T-cell receptors (TCR) can recognize the intracellular targets whereas antibodies only recognize the 25% of potential extracellular targets
  • survivin is expressed in multiple cancers and correlates with poor survival and prognosis
  • CD3 bispecific TCR to survivn (Ab to CD3 on T- cells and TCR to survivin on cancer cells presented in MHC Class A3)
  • ABBV184  effective in vivo in lung cancer models as single agent;
  • in humanized mouse tumor models CD3/survivin bispecific can recruit T cells into solid tumors; multiple immune cells CD4 and CD8 positive T cells were found to infiltrate into tumor
  • therapeutic window as measured by cytokine release assays in tumor vs. normal cells very wide (>25 fold)
  • ABBV184 does not bind platelets and has good in vivo safety profile
  • First- in human dose determination trial: used in vitro cancer cell assays to determine 1st human dose
  • looking at AML and lung cancer indications
  • phase 1 trial is underway for safety and efficacy and determine phase 2 dose
  • survivin has very few mutations so they are not worried about a changing epitope of their target TCR peptide of choice

The discovery of TNO155: A first in class SHP2 inhibitor

Matthew J. LaMarche
Novartis @Novartis

  • SHP2 is an intracellular phosphatase that is upstream of MEK ERK pathway; has an SH2 domain and PTP domain
  • knockdown of SHP2 inhibits tumor growth and colony formation in soft agar
  • 55 TKIs there are very little phosphatase inhibitors; difficult to target the active catalytic site; inhibitors can be oxidized at the active site; so they tried to target the two domains and developed an allosteric inhibitor at binding site where three domains come together and stabilize it
  • they produced a number of chemical scaffolds that would bind and stabilize this allosteric site
  • block the redox reaction by blocking the cysteine in the binding site
  • lead compound had phototoxicity; used SAR analysis to improve affinity and reduce phototox effects
  • was very difficult to balance efficacy, binding properties, and tox by adjusting stuctures
  • TNO155 is their lead into trials
  • SHP2 expressed in T cells and they find good combo with I/O with uptick of CD8 cells
  • TNO155 is very selective no SHP1 inhibition; SHP2 can autoinhibit itself when three domains come together and stabilize; no cross reactivity with other phosphatases
  • they screened 1.5 million compounds and got low hit rate so that is why they needed to chemically engineer and improve on the classes they found as near hits

Closing Remarks

 

Xiaojing Wang
Genentech, Inc. @genentech

Follow on Twitter at:

@pharma_BI

@AACR

@CureCancerNow

@pharmanews

@BiotechWorld

@HopkinsMedicine

#AACR20

Read Full Post »


Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 27, 2020 Opening Remarks and Clinical Session 11:45am-1:15pm Advances in Cancer Drug Discovery

SESSION VMS.CH01.01 – Advances in Cancer Drug Design and Discovery

April 27, 2020, 11:45 AM – 1:15 PM
Virtual Meeting: All Session Times Are U.S. EDT
DESCRIPTIONAll session times are U.S. Eastern Daylight Time (EDT).

Session Type
Virtual Minisymposium
Track(s)
Cancer Chemistry
14 Presentations
11:45 AM – 11:45 AM
– ChairpersonZoran Rankovic. St. Jude Children’s Research Hospital, Memphis, TN

11:45 AM – 11:45 AM
– ChairpersonChristopher G. Nasveschuk. C4 Therapeutics, Watertown, MA

11:45 AM – 11:50 AM
– IntroductionZoran Rankovic. St. Jude Children’s Research Hospital, Memphis, TN

11:50 AM – 12:00 PM
1036 – Discovery of a highly potent, efficacious and orally active small-molecule inhibitor of embryonic ectoderm development (EED)Changwei Wang, Rohan Kalyan Rej, Jianfeng Lu, Mi Wang, Kaitlin P. Harvey, Chao-Yie Yang, Ester Fernandez-Salas, Jeanne Stuckey, Elyse Petrunak, Caroline Foster, Yunlong Zhou, Rubin Zhou, Guozhi Tang, Jianyong Chen, Shaomeng Wang. Rogel Cancer Center and Departments of Internal Medicine, Pharmacology, and Medicinal Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, MI, Ascentage Pharma Group, Taizhou, Jiangsu, China

12:00 PM – 12:05 PM
– Discussion

12:05 PM – 12:15 PM
1037 – Orally available small molecule CD73 inhibitor reverses immunosuppression through blocking of adenosine productionXiaohui Du, Brian Blank, Brenda Chan, Xi Chen, Yuping Chen, Frank Duong, Lori Friedman, Tom Huang, Melissa R. Junttila, Wayne Kong, Todd Metzger, Jared Moore, Daqing Sun, Jessica Sun, Dena Sutimantanapi, Natalie Yuen, Tatiana Zavorotinskaya. ORIC Pharmaceuticals, South San Francisco, CA, ORIC Pharmaceuticals, South San Francisco, CA, ORIC Pharmaceuticals, South San Francisco, CA, ORIC Pharmaceuticals, South San Francisco, CA

12:15 PM – 12:20 PM
– Discussion

12:20 PM – 12:30 PM
1038 – A potent and selective PARP14 inhibitor decreases pro-tumor macrophage function and elicits inflammatory responses in tumor explantsLaurie Schenkel, Jennifer Molina, Kerren Swinger, Ryan Abo, Danielle Blackwell, Anne Cheung, William Church, Kristy Kuplast-Barr, Alvin Lu, Elena Minissale, Mario Niepel, Melissa Vasbinder, Tim Wigle, Victoria Richon, Heike Keilhack, Kevin Kuntz. Ribon Therapeutics, Cambridge, MA

12:30 PM – 12:35 PM
– Discussion

12:35 PM – 12:45 PM
1039 – Fragment-based drug discovery to identify small molecule allosteric inhibitors of SHP2. Philip J. Day, Valerio Berdini, Juan Castro, Gianni Chessari, Thomas G. Davies, James E. H. Day, Satoshi Fukaya, Chris Hamlett, Keisha Hearn, Steve Hiscock, Rhian Holvey, Satoru Ito, Yasuo Kodama, Kenichi Matsuo, Yoko Nakatsuru, Nick Palmer, Amanda Price, Tadashi Shimamura, Jeffrey D. St. Denis, Nicola G. Wallis, Glyn Williams, Christopher N. Johnson. Astex Pharmaceuticals, Inc., Cambridge, United Kingdom, Taiho Pharmaceutical Co., Ltd, Tsukuba, Japan

Abstract: The ubiquitously expressed protein tyrosine phosphatase SHP2 is required for signalling downstream of receptor tyrosine kinases (RTKs) and plays a role in regulating many cellular processes. Recent advances have shown that genetic knockdown and pharmacological inhibition of SHP2 suppresses RAS/MAPK signalling and inhibits proliferation of RTK-driven cancer cell lines. SHP2 is now understood to act upstream of RAS and plays a role in KRAS-driven cancers, an area of research which is rapidly growing. Considering that RTK deregulation often leads to a wide range of cancers and the newly appreciated role of SHP2 in KRAS-driven cancers, SHP2 inhibitors are therefore a promising therapeutic approach.
SHP2 contains two N-terminal tandem SH2 domains (N-SH2, C-SH2), a catalytic phosphatase domain and a C-terminal tail. SHP2 switches between “open” active and “closed” inactive forms due to autoinhibitory interactions between the N-SH2 domain and the phosphatase domain. Historically, phosphatases were deemed undruggable as there had been no advancements with active site inhibitors. We hypothesised that fragment screening would be highly applicable and amenable to this target to enable alternative means of inhibition through identification of allosteric binding sites. Here we describe the first reported fragment screen against SHP2.
Using our fragment-based PyramidTM approach, screening was carried out on two constructs of SHP2; a closed autoinhibited C-terminal truncated form (phosphatase and both SH2 domains), as well as the phosphatase-only domain. A combination of screening methods such as X-ray crystallography and NMR were employed to identify fragment hits at multiple sites on SHP2, including the tunnel-like allosteric site reported by Chen et al, 2016. Initial fragment hits had affinities for SHP2 in the range of 1mM as measured by ITC. Binding of these hits was improved using structure-guided design to generate compounds which inhibit SHP2 phosphatase activity and are promising starting points for further optimization.

  • anti estrogen receptor therapy: ER degraders is one class
  • AZ9833 enhances degradation of ER alpha
  • worked in preclinical mouse model (however very specific)
  • PK parameters were good for orally available in rodents;  also in vitro and in vivo correlation correlated in rats but not in dogs so they were not sure if good to go in humans
  • they were below Km in rats but already at saturated in dogs, dogs were high clearance
  • predicted human bioavailability at 40%

 

12:45 PM – 12:50 PM
– Discussion

12:50 PM – 1:00 PM
1042 – Preclinical pharmacokinetic and metabolic characterization of the next generation oral SERD AZD9833Eric T. Gangl, Roshini Markandu, Pradeep Sharma, Andy Sykes, Petar Pop-Damkov, Pablo Morentin Gutierrez, James S. Scott, Dermot F. McGinnity, Adrian J. Fretland, Teresa Klinowska. AstraZeneca, Waltham, MA

1:00 PM – 1:05 PM
– Discussion

1:05 PM – 1:15 PM
– Closing RemarksChristopher G. Nasveschuk. MA

Follow on Twitter at:

@pharma_BI

@AACR

@GenomeInstitute

@CureCancerNow

@UCLAJCCC

#AACR20

#AACR2020

#curecancernow

#pharmanews

Read Full Post »

Older Posts »