Advertisements
Feeds:
Posts
Comments

Archive for the ‘Frontiers in Cardiology and Cardiovascular Disorders’ Category


Top 100 of 415 articles published on PubMed in 2018 on TAVR

Reporter: Aviva Lev-Ari, PhD, RN

 

SOURCE

https://www.ncbi.nlm.nih.gov/pubmed  [2018 TAVR]

Select item 301029701.

Ninety-Day Readmissions of Bundled Valve Patients: Implications for Healthcare Policy.

Koeckert MS, Grossi EA, Vining PF, Abdallah R, Williams MR, Kalkut G, Loulmet DF, Zias EA, Querijero M, Galloway AC.

Semin Thorac Cardiovasc Surg2018 Aug 10. pii: S1043-0679(18)30168-0. doi: 10.1053/j.semtcvs.2018.07.017. [Epub ahead of print]

PMID:
30102970
Select item 300946422.

TAVR Vs. SAVR in Intermediate-Risk Patients: What Influences Our Choice of Therapy.

Still S, Szerlip M, Mack M.

Curr Cardiol Rep2018 Aug 9;20(10):82. doi: 10.1007/s11886-018-1026-3. Review.

PMID:
30094642
Select item 300945323.

Transcatheter aortic valve replacement in patients with severe aortic stenosis and heart failure.

Bavishi C, Kolte D, Gordon PC, Abbott JD.

Heart Fail Rev2018 Aug 9. doi: 10.1007/s10741-018-9726-8. [Epub ahead of print] Review.

PMID:
30094532
Select item 300930574.

Disarming the Ticking Time Bomb: Post-Procedure Electrocardiography Predictors of High-Degree Conduction Disturbances After Transcatheter Aortic Valve Replacement.

Nazif TM, Chen S, Kodali SK.

JACC Cardiovasc Interv2018 Aug 13;11(15):1527-1530. doi: 10.1016/j.jcin.2018.07.003. No abstract available.

PMID:
30093057
Select item 300930565.

Predictors of Advanced Conduction Disturbances Requiring a Late (≥48 H) Permanent Pacemaker Following Transcatheter Aortic Valve Replacement.

Mangieri A, Lanzillo G, Bertoldi L, Jabbour RJ, Regazzoli D, Ancona MB, Tanaka A, Mitomo S, Garducci S, Montalto C, Pagnesi M, Giannini F, Giglio M, Montorfano M, Chieffo A, Rodès-Cabau J, Monaco F, Paglino G, Della Bella P, Colombo A, Latib A.

JACC Cardiovasc Interv2018 Aug 13;11(15):1519-1526. doi: 10.1016/j.jcin.2018.06.014.

PMID:
30093056
Select item 300930556.

Immediate Post-Procedural 12-Lead Electrocardiography as Predictor of Late Conduction Defects After Transcatheter Aortic Valve Replacement.

Jørgensen TH, De Backer O, Gerds TA, Bieliauskas G, Svendsen JH, Søndergaard L.

JACC Cardiovasc Interv2018 Aug 13;11(15):1509-1518. doi: 10.1016/j.jcin.2018.04.011.

PMID:
30093055
Select item 300925577.

Von Willebrand factor and the aortic valve: Concepts that are important in the transcatheter aortic valve replacement era.

Ibrahim H, Rondina MT, Kleiman NS.

Thromb Res2018 Jul 30;170:20-27. doi: 10.1016/j.thromres.2018.07.028. [Epub ahead of print] Review.

PMID:
30092557
Select item 300893298.

Antiplatelet Treatment for Catheter-Based Interventions in High-Risk Patients: Current Guidelines and Expert Opinion.

Rath D, Gawaz M.

Hamostaseologie2018 Aug 8. doi: 10.1055/s-0038-1668165. [Epub ahead of print]

PMID:
30089329
Select item 300870259.

The Evolution of Echocardiographic Type and Anesthetic Technique for Transcatheter Aortic Valve Replacement at a High-Volume Transcatheter Aortic Valve Replacement Center.

Marino M, Lilie CJ, Culp WC Jr, Schepel SR, Tippett JC.

J Cardiothorac Vasc Anesth2018 Jun 30. pii: S1053-0770(18)30468-3. doi: 10.1053/j.jvca.2018.06.022. [Epub ahead of print]

PMID:
30087025
Select item 3007961110.

Propensity matched comparison of in-hospital outcomes of TAVR vs. SAVR in patients with previous history of CABG: Insights from the Nationwide inpatient sample.

Nalluri N, Atti V, Patel NJ, Kumar V, Arora S, Nalluri S, Nelluri BK, Maniatis GA, Kandov R, Kliger C.

Catheter Cardiovasc Interv2018 Aug 5. doi: 10.1002/ccd.27708. [Epub ahead of print]

PMID:
30079611
Select item 3007956111.

Permanent pacemaker implantation after transcatheter aortic valve replacement in bicuspid aortic valve patients.

Xiong TY, Liao YB, Li YJ, Zhao ZG, Wei X, Tsauo JY, Xu YN, Feng Y, Chen M.

J Interv Cardiol2018 Aug 5. doi: 10.1111/joic.12546. [Epub ahead of print]

PMID:
30079561
Select item 3007952212.

Effect of transcatheter aortic valve replacement on left atrial function.

Truong VT, Chung E, Nagueh S, Kereiakes D, Schaaf J, Volz B, Ngo TNM, Mazur W.

Echocardiography2018 Aug 5. doi: 10.1111/echo.14109. [Epub ahead of print]

PMID:
30079522
Select item 3007679413.

TAVR 2.0: Collaborating to Measure, Assure, and Advance Quality.

Shahian DM, Gleason TG, Shemin RJ, Carroll JD, Mack MJ.

Ann Thorac Surg2018 Aug 1. pii: S0003-4975(18)31034-8. doi: 10.1016/j.athoracsur.2018.07.004. [Epub ahead of print] No abstract available.

PMID:
30076794
Select item 3007608114.

Low Iodine Contrast Injection for CT Acquisition Prior to Transcatheter Aortic Valve Replacement: Aorta Assessment and Screening for Coronary Artery Disease.

Hachulla AL, Noble S, Ronot M, Guglielmi G, de Perrot T, Montet X, Vallée JP.

Acad Radiol2018 Aug 1. pii: S1076-6332(18)30330-1. doi: 10.1016/j.acra.2018.06.016. [Epub ahead of print]

PMID:
30076081
Select item 3007532615.

Variation in post-TAVR antiplatelet therapy utilization and associated outcomes: Insights from the STS/ACC TVT Registry.

Sherwood MW, Vemulapalli S, Harrison JK, Dai D, Vora AN, Mack MJ, Holmes DR, Rumsfeld JS, Cohen DJ, Thourani VH, Kirtane A, Peterson ED.

Am Heart J2018 Jul 9;204:9-16. doi: 10.1016/j.ahj.2018.06.006. [Epub ahead of print]

PMID:
30075326
Select item 3006878516.

State of Transcatheter Aortic Valve Implantation in Spain Versus Europe and Non-European Countries.

Biagioni C, Tirado-Conte G, Rodés-Cabau J, Ryan N, Cerrato E, Nazif TM, Eltchaninoff H, Sondergaard L, Ribeiro HB, Barbanti M, Nietlispach F, De Jaegere P, Agostoni P, Trillo R, Jiménez-Quevedo P, D’Ascenzo F, Wendler O, Maluenda G, Chen M, Tamburino C, Macaya C, Leon MB, Nombela-Franco L.

J Invasive Cardiol2018 Aug;30(8):301-309.

Select item 3006493717.

Accuracy of predicted orthogonal projection angles for valve deployment during transcatheter aortic valve replacement.

Steinvil A, Weissman G, Ertel AW, Weigold G, Rogers T, Koifman E, Buchanan KD, Shults C, Torguson R, Okubagzi PG, Satler LF, Ben-Dor I, Waksman R.

J Cardiovasc Comput Tomogr2018 May 26. pii: S1934-5925(18)30130-8. doi: 10.1016/j.jcct.2018.05.017. [Epub ahead of print]

PMID:
30064937
Select item 3006277818.

Absence of Electrocardiographic Left Ventricular Hypertrophy is Associated with Increased Mortality After Transcatheter Aortic Valve Replacement.

Kampaktsis PN, Ullal AV, Swaminathan RV, Minutello RM, Kim L, Bergman GS, Feldman DN, Singh H, Chiu Wong S, Okin PM.

Clin Cardiol2018 Jul 30. doi: 10.1002/clc.23034. [Epub ahead of print]

Select item 3005825919.

Early and midterm outcomes of transcatheter aortic valve replacement in patients with bicuspid aortic valves.

Aalaei-Andabili SH, Beaver TM, Petersen JW, Anderson RD, Karimi A, Thoburn E, Kabir A, Bavry AA, Arnaoutakis GJ.

J Card Surg2018 Jul 29. doi: 10.1111/jocs.13775. [Epub ahead of print]

PMID:
30058259
Select item 3005725220.

The Incidence of Dysphagia Among Patients Undergoing TAVR With Either General Anesthesia or Moderate Sedation.

Mukdad L, Kashani R, Mantha A, Sareh S, Mendelsohn A, Benharash P.

J Cardiothorac Vasc Anesth2018 May 26. pii: S1053-0770(18)30373-2. doi: 10.1053/j.jvca.2018.05.040. [Epub ahead of print]

PMID:
30057252
Select item 3005685121.

Sex-Specific Differences in Outcome of Transcatheter or Surgical Aortic Valve Replacement.

Kaier K, von Zur Mühlen C, Zirlik A, Schmoor C, Roth K, Bothe W, Hehn P, Reinöhl J, Zehender M, Bode C, Stachon P.

Can J Cardiol2018 Aug;34(8):992-998. doi: 10.1016/j.cjca.2018.04.009. Epub 2018Apr 12.

PMID:
30056851
Select item 3005602322.

Hemodynamic monitoring by pulse contour analysis during trans-catheter aortic valve replacement: A fast and easy method to optimize procedure results.

Ristalli F, Romano SM, Stolcova M, Meucci F, Squillantini G, Valente S, Di Mario C.

Cardiovasc Revasc Med2018 Jul 19. pii: S1553-8389(18)30314-2. doi: 10.1016/j.carrev.2018.07.015. [Epub ahead of print]

PMID:
30056023
Select item 3005418823.

TAVR Versus SAVR in the Era of NSQIP.

Vadlamudi R, Duggan M.

J Cardiothorac Vasc Anesth2018 May 26. pii: S1053-0770(18)30370-7. doi: 10.1053/j.jvca.2018.05.037. [Epub ahead of print] No abstract available.

PMID:
30054188
Select item 3005090924.

Expanding TAVI to Low and Intermediate Risk Patients.

Voigtländer L, Seiffert M.

Front Cardiovasc Med2018 Jul 12;5:92. doi: 10.3389/fcvm.2018.00092. eCollection 2018. Review.

Select item 3004863225.

Albumin Is Predictive of 1-Year Mortality After Transcatheter Aortic Valve Replacement.

Hebeler KR, Baumgarten H, Squiers JJ, Wooley J, Pollock BD, Mahoney C, Filardo G, Lima B, DiMaio JM.

Ann Thorac Surg2018 Jul 23. pii: S0003-4975(18)31022-1. doi: 10.1016/j.athoracsur.2018.06.024. [Epub ahead of print]

PMID:
30048632
Select item 3004178326.

Bioprosthetic structural valve deterioration: How do TAVR and SAVR prostheses compare?

Aldalati O, Kaura A, Khan H, Dworakowski R, Byrne J, Eskandari M, Deshpande R, Monaghan M, Wendler O, MacCarthy P.

Int J Cardiol2018 Oct 1;268:170-175. doi: 10.1016/j.ijcard.2018.04.091.

PMID:
30041783
Select item 3003771727.

Exposure to glucocorticoids prior to transcatheter aortic valve replacement is associated with reduced incidence of high-degree AV block and pacemaker.

Oestreich B, Gurevich S, Adabag S, Kelly R, Helmer G, Raveendran G, Yannopoulos D, Biring T, Garcia S.

Cardiovasc Revasc Med2018 Jul 18. pii: S1553-8389(18)30311-7. doi: 10.1016/j.carrev.2018.07.012. [Epub ahead of print]

PMID:
30037717
Select item 3003742428.

Comparison of Hospital Outcomes of Transcatheter Aortic Valve Implantation With Versus Without Hypothyroidism.

Subahi A, Yassin AS, Adegbala O, Akintoye E, Abubakar H, Elmoghrabi A, Ibrahim W, Ajam M, Pahuja M, Weinberger JJ, Levine D, Afonso L.

Am J Cardiol2018 Jun 5. pii: S0002-9149(18)31197-4. doi: 10.1016/j.amjcard.2018.05.025. [Epub ahead of print]

PMID:
30037424
Select item 3003171929.

Arrhythmic Burden as Determined by Ambulatory Continuous Cardiac Monitoring in Patients With New-Onset Persistent Left Bundle Branch Block Following Transcatheter Aortic Valve Replacement: The MARE Study.

Rodés-Cabau J, Urena M, Nombela-Franco L, Amat-Santos I, Kleiman N, Munoz-Garcia A, Atienza F, Serra V, Deyell MW, Veiga-Fernandez G, Masson JB, Canadas-Godoy V, Himbert D, Castrodeza J, Elizaga J, Francisco Pascual J, Webb JG, de la Torre JM, Asmarats L, Pelletier-Beaumont E, Philippon F.

JACC Cardiovasc Interv2018 Aug 13;11(15):1495-1505. doi: 10.1016/j.jcin.2018.04.016. Epub 2018 Jul 18.

PMID:
30031719
Select item 3003171830.

Arrhythmias and Conduction Disturbances Following Transcatheter Aortic Valve Replacement: Out of Sight, Out of Mind?

Pighi M, Piazza N.

JACC Cardiovasc Interv2018 Aug 13;11(15):1506-1508. doi: 10.1016/j.jcin.2018.05.038. Epub 2018 Jul 18. No abstract available.

PMID:
30031718
Select item 3002924731.

Numerical Parametric Study of Paravalvular Leak Following a Transcatheter Aortic Valve Deployment Into a Patient-Specific Aortic Root.

Mao W, Wang Q, Kodali S, Sun W.

J Biomech Eng2018 Oct 1;140(10). doi: 10.1115/1.4040457.

PMID:
30029247
Select item 3002920732.

Comparative Fluid-Structure Interaction Analysis of Polymeric Transcatheter and Surgical Aortic Valves’ Hemodynamics and Structural Mechanics.

Ghosh R, Marom G, Rotman O, Slepian MJ, Prabhakar S, Horner M, Bluestein D.

J Biomech Eng2018 Jun 25. doi: 10.1115/1.4040600. [Epub ahead of print]

PMID:
30029207
Select item 3002830433.

Extended benefits of TAVR in young patients with low-intermediate risk score: proceed with care.

Doshi R.

EuroIntervention2018 Jul 20;14(4):e485. doi: 10.4244/EIJ-D-18-00236L. No abstract available.

Select item 3002830034.

Valve-in-valve TAVR using the SAPIEN 3 transcatheter heart valve: still plagued by patient-prosthesis mismatch.

Saxon JT, Cohen DJ, Feldman T.

EuroIntervention2018 Jul 20;14(4):e377-e379. doi: 10.4244/EIJV14I4A66. No abstract available.

Select item 3002573135.

The SAVI-TF Registry: 1-Year Outcomes of the European Post-Market Registry Using the ACURATE neo Transcatheter Heart Valve Under Real-World Conditions in 1,000 Patients.

Kim WK, Hengstenberg C, Hilker M, Kerber S, Schäfer U, Rudolph T, Linke A, Franz N, Kuntze T, Nef H, Kappert U, Zembala MO, Toggweiler S, Walther T, Möllmann H.

JACC Cardiovasc Interv2018 Jul 23;11(14):1368-1374. doi: 10.1016/j.jcin.2018.03.023.

Select item 3002557236.

Transcatheter Aortic Valve Replacement of Failed Surgically Implanted Bioprostheses: The STS/ACC Registry.

Tuzcu EM, Kapadia SR, Vemulapalli S, Carroll JD, Holmes DR Jr, Mack MJ, Thourani VH, Grover FL, Brennan JM, Suri RM, Dai D, Svensson LG.

J Am Coll Cardiol2018 Jul 24;72(4):370-382. doi: 10.1016/j.jacc.2018.04.074.

PMID:
30025572
Select item 3002410237.

Transcatheter valve-in-valve versus redo surgical aortic valve replacement for the treatment of degenerated bioprosthetic aortic valve: A systematic review and meta-analysis.

Tam DY, Vo TX, Wijeysundera HC, Dvir D, Friedrich JO, Fremes SE.

Catheter Cardiovasc Interv2018 Jul 19. doi: 10.1002/ccd.27686. [Epub ahead of print]

PMID:
30024102
Select item 3001983938.

Predicted magnitude of alternate access in the contemporary transcatheter aortic valve replacement era.

Rogers T, Gai J, Torguson R, Okubagzi PG, Shults C, Ben-Dor I, Satler LF, Waksman R.

Catheter Cardiovasc Interv2018 Jul 18. doi: 10.1002/ccd.27668. [Epub ahead of print]

PMID:
30019839
Select item 3001982839.

Slope of left ventricular filling as an index of valvular and paravalvular regurgitation in native and prosthetic aortic valves.

Makki N, Ghao X, Whitson B, Shreenivas S, Crestanello J, Lilly S.

Catheter Cardiovasc Interv2018 Jul 18. doi: 10.1002/ccd.27684. [Epub ahead of print]

PMID:
30019828
Select item 3001982240.

Is two better than one? Re-evaluating the surgical approval process for TAVR.

Shreenivas S, Lilly S, Reardon M, Answini GA, Kereiakes DJ.

Catheter Cardiovasc Interv2018 Jul 18. doi: 10.1002/ccd.27666. [Epub ahead of print] No abstract available.

PMID:
30019822
Select item 3001816741.

Improving the Diagnostic Performance of 18F-FDG PET/CT in Prosthetic Heart Valve Endocarditis.

Swart LE, Gomes A, Scholtens AM, Sinha B, Tanis W, Lam MGEH, van der Vlugt MJ, Streukens SAF, Aarntzen EHJG, Bucerius J, van Assen S, Bleeker-Rovers CP, van Geel PP, Krestin GP, van Melle JP, Roos-Hesselink JW, Slart RHJA, Glaudemans AWJM, Budde RPJ.

Circulation2018 Jul 17. pii: CIRCULATIONAHA.118.035032. doi: 10.1161/CIRCULATIONAHA.118.035032. [Epub ahead of print]

PMID:
30018167
Select item 3001752042.

Software-automated multidetector computed tomography-based prosthesis-sizing in transcatheter aortic valve replacement: Inter-vendor comparison and relation to patient outcome.

Baeßler B, Mauri V, Bunck AC, Pinto Dos Santos D, Friedrichs K, Maintz D, Rudolph T.

Int J Cardiol2018 Jul 9. pii: S0167-5273(18)32256-3. doi: 10.1016/j.ijcard.2018.07.008. [Epub ahead of print] No abstract available.

PMID:
30017520
Select item 3001751843.

Inflammation in aortic stenosis: Shaping the biomarkers network.

Schiattarella GG, Perrino C.

Int J Cardiol2018 Jul 6. pii: S0167-5273(18)33669-6. doi: 10.1016/j.ijcard.2018.07.026. [Epub ahead of print] No abstract available.

PMID:
30017518
Select item 3001728244.

Inter- and intra-observer repeatability of aortic annulus measurements on screening CT for transcatheter aortic valve replacement (TAVR): Implications for appropriate device sizing.

Knobloch G, Sweetman S, Bartels C, Raval A, Gimelli G, Jacobson K, Lozonschi L, Kohmoto T, Osaki S, François C, Nagle S.

Eur J Radiol2018 Aug;105:209-215. doi: 10.1016/j.ejrad.2018.06.003. Epub 2018 Jun 15.

PMID:
30017282
Select item 3001614745.

Atherosclerosis on CT Angiogram Predicts Acute Kidney Injury After Transcatheter Aortic Valve Replacement.

Kandathil A, Abbara S, Hanna M, Minhajuddin A, Wehrmann L, Merchant AM, Mills R, Fox AA.

AJR Am J Roentgenol2018 Jul 17:1-7. doi: 10.2214/AJR.17.19340. [Epub ahead of print]

PMID:
30016147
Select item 3001289046.

Transfemoral Implantation of the Acurate neo for the Treatment of Aortic Regurgitation.

Toggweiler S, Cerillo AG, Kim WK, Biaggi P, Lloyd C, Hilker M, Almagor Y, Cuculi F, Brinkert M, Kobza R, Muller O, Rück A, Corti R.

J Invasive Cardiol2018 Jul 15. pii: JIC2018715-3. [Epub ahead of print]

Select item 3000980047.

Suprasternal and Left Axillary Transcatheter Aortic Valve Replacement in Morbidly Obese Patients.

Olds A, Eudailey K, Nazif T, Vahl T, Khalique O, Lewis C, Hahn R, Leon M, Bapat V, Ahmed M, Kodali S, George I.

Ann Thorac Surg2018 Jul 13. pii: S0003-4975(18)30978-0. doi: 10.1016/j.athoracsur.2018.05.095. [Epub ahead of print]

PMID:
30009800
Select item 3000336648.

Transcatheter valve-in-valve implantation (VinV-TAVR) for failed surgical aortic bioprosthetic valves.

Wernly B, Zappe AK, Unbehaun A, Sinning JM, Jung C, Kim WK, Fichtlscherer S, Lichtenauer M, Hoppe UC, Alushi B, Beckhoff F, Wewetzer C, Franz M, Kretzschmar D, Navarese E, Landmesser U, Falk V, Lauten A.

Clin Res Cardiol2018 Jul 12. doi: 10.1007/s00392-018-1326-z. [Epub ahead of print]

PMID:
30003366
Select item 3000209949.

Myocardial Scar and Mortality in Severe Aortic Stenosis: Data from the BSCMR Valve Consortium.

Musa TA, Treibel TA, Vassiliou VS, Captur G, Singh A, Chin C, Dobson LE, Pica S, Loudon M, Malley T, Rigolli M, Foley JRJ, Bijsterveld P, Law GR, Dweck MR, Myerson SG, McCann GP, Prasad SK, Moon JC, Greenwood JP.

Circulation2018 Jul 12. pii: CIRCULATIONAHA.117.032839. doi: 10.1161/CIRCULATIONAHA.117.032839. [Epub ahead of print]

PMID:
30002099
Select item 2999613850.

Aortic Angulation and TAVR.

Gandotra P.

Cardiology2018 Jul 11;140(3):141-142. doi: 10.1159/000490094. [Epub ahead of print] No abstract available.

Select item 2998906851.

Endovascular repair of severe aortic coarctation, transcatheter aortic valve replacement for severe aortic stenosis, and percutaneous coronary intervention in an elderly patient with long term follow-up.

Fallatah R, Elasfar A, Amoudi O, Ajaz M, AlHarbi I, Abuelatta R.

J Saudi Heart Assoc2018 Jul;30(3):271-275. doi: 10.1016/j.jsha.2018.01.003. Epub 2018 Feb 9.

Select item 2998711952.

Impact of Rapid Ventricular Pacing on Outcome After Transcatheter Aortic Valve Replacement.

Fefer P, Bogdan A, Grossman Y, Berkovitch A, Brodov Y, Kuperstein R, Segev A, Guetta V, Barbash IM.

J Am Heart Assoc2018 Jul 9;7(14). pii: e009038. doi: 10.1161/JAHA.118.009038.

Select item 2998314253.

Imaging Evaluation for the Detection of Leaflet Thrombosis After Transcatheter Aortic Valve Replacement.

Zhao ZG, Wang MY, Jilaihawi H.

Interv Cardiol Clin2018 Jul;7(3):293-299. doi: 10.1016/j.iccl.2018.03.007. Epub 2018Jun 29. Review.

PMID:
29983142
Select item 2998314154.

Imaging Evaluation and Interpretation for Vascular Access for Transcatheter Aortic Valve Replacement.

Foley TR, Stinis CT.

Interv Cardiol Clin2018 Jul;7(3):285-291. doi: 10.1016/j.iccl.2018.03.006. Epub 2018Jun 29. Review.

PMID:
29983141
Select item 2998121455.

Echocardiography in transcatheter aortic (Core)Valve implantation: Part 2-Transesophageal echocardiography.

Naqvi TZ.

Echocardiography2018 Jul;35(7):1020-1041. doi: 10.1111/echo.14034. Review.

PMID:
29981214
Select item 2998029956.

Impact of patient-specific morphologies on sinus flow stasis in transcatheter aortic valve replacement: An in vitro study.

Hatoum H, Dollery J, Lilly SM, Crestanello J, Dasi LP.

J Thorac Cardiovasc Surg2018 Jun 7. pii: S0022-5223(18)31521-6. doi: 10.1016/j.jtcvs.2018.05.086. [Epub ahead of print]

PMID:
29980299
Select item 2997656857.

Malnutrition and Mortality in Frail and Non-Frail Older Adults Undergoing Aortic Valve Replacement.

Goldfarb M, Lauck S, Webb JG, Asgar AW, Perrault LP, Piazza N, Martucci G, Lachapelle K, Noiseux N, Kim DH, Popma JJ, Lefèvre T, Labinaz M, Lamy A, Peterson MD, Arora RC, Morais JA, Morin JF, Rudski L, Afilalo J; FRAILTY-AVR Investigators .

Circulation2018 Jul 5. pii: CIRCULATIONAHA.118.033887. doi: 10.1161/CIRCULATIONAHA.118.033887. [Epub ahead of print]

PMID:
29976568
Select item 2997636358.

Debris Heterogeneity Across Different Valve Types Captured by a Cerebral Protection System During Transcatheter Aortic Valve Replacement.

Schmidt T, Leon MB, Mehran R, Kuck KH, Alu MC, Braumann RE, Kodali S, Kapadia SR, Linke A, Makkar R, Naber C, Romero ME, Virmani R, Frerker C.

JACC Cardiovasc Interv2018 Jul 9;11(13):1262-1273. doi: 10.1016/j.jcin.2018.03.001.

PMID:
29976363
Select item 2997426459.

A Review of Alternative Access for Transcatheter Aortic Valve Replacement.

Young MN, Singh V, Sakhuja R.

Curr Treat Options Cardiovasc Med2018 Jul 4;20(7):62. doi: 10.1007/s11936-018-0648-5. Review.

PMID:
29974264
Select item 2997123860.

Transcatheter Aortic Valve Replacement and Concomitant Mitral Regurgitation.

Stähli BE, Reinthaler M, Leistner DM, Landmesser U, Lauten A.

Front Cardiovasc Med2018 Jun 19;5:74. doi: 10.3389/fcvm.2018.00074. eCollection 2018. Review.

Select item 2996942761.

Propensity matched comparison of clinical outcomes after transaortic versus transfemoral aortic valve replacement.

Chollet T, Marcheix B, Boudou N, Elbaz M, Campelo-Parada F, Bataille V, Bouisset F, Lairez O, Porterie J, Galinier M, Carrie D, Lhermusier T.

EuroIntervention2018 Jul 3. pii: EIJ-D-18-00168. doi: 10.4244/EIJ-D-18-00168. [Epub ahead of print]

Select item 2996827362.

Alternative access for transcatheter aortic valve replacement in older adults: A collaborative study from France and United States.

Damluji AA, Murman M, Byun S, Moscucci M, Resar JR, Hasan RK, Alfonso CE, Carrillo RG, Williams DB, Kwon CC, Cho PW, Dijos M, Peltan J, Heldman AW, Cohen MG, Leroux L.

Catheter Cardiovasc Interv2018 Jul 3. doi: 10.1002/ccd.27690. [Epub ahead of print]

PMID:
29968273
Select item 2996613163.

Does Aortic Angulation Impact Outcomes in TAVR.

Czarny MJ, Resar JR.

Cardiology2018;140(2):103-105. doi: 10.1159/000489697. Epub 2018 Jul 2. No abstract available.

PMID:
29966131
Select item 2996339164.

Transcaval transcatheter aortic valve replacement: a visual case review.

Muhammad KI, Tokarchik GC.

J Vis Surg2018 May 14;4:102. doi: 10.21037/jovs.2018.04.02. eCollection 2018.

Select item 2996107265.

Aortic Angulation Does Not Impact Outcomes in Self-Expandable or Balloon-Expandable Transcatheter Aortic Valve Replacement.

Elmously A, Gray KD, Truong QA, Burshtein A, Wong SC, de Biasi AR, Worku B, Salemi A.

Cardiology2018;140(2):96-102. doi: 10.1159/000488933. Epub 2018 Jun 29.

PMID:
29961072
Select item 2996075666.

Transcatheter Aortic Valve Replacement in Extremely Large Annuli: (Over)expanding Bioprosthetic Technology to the Limits?

Mehilli J, Jochheim D.

JACC Cardiovasc Interv2018 Jul 23;11(14):1388-1389. doi: 10.1016/j.jcin.2018.05.007. Epub 2018 Jun 27. No abstract available.

PMID:
29960756
Select item 2996075567.

Impact of Aortic Root Anatomy and Geometry on Paravalvular Leak in Transcatheter Aortic Valve Replacement With Extremely Large Annuli Using the Edwards SAPIEN 3 Valve.

Tang GHL, Zaid S, George I, Khalique OK, Abramowitz Y, Maeno Y, Makkar RR, Jilaihawi H, Kamioka N, Thourani VH, Babaliaros V, Webb JG, Htun NM, Attinger-Toller A, Ahmad H, Kaple R, Sharma K, Kozina JA, Kaneko T, Shah P, Hirji SA, Desai ND, Anwaruddin S, Jagasia D, Herrmann HC, Basra SS, Szerlip MA, Mack MJ, Mathur M, Tan CW, Don CW, Sharma R, Gafoor S, Zhang M, Kapadia SR, Mick SL, Krishnaswamy A, Amoroso N, Salemi A, Wong SC, Kini AS, Rodés-Cabau J, Leon MB, Kodali SK.

JACC Cardiovasc Interv2018 Jul 23;11(14):1377-1387. doi: 10.1016/j.jcin.2018.03.034. Epub 2018 Jun 27.

PMID:
29960755
Select item 2995818268.
Select item 2995225269.

Stent fractures after common femoral artery bail-out stenting due to suture device failure in TAVR.

Veulemans V, Afzal S, Ledwig P, Heiss C, Busch L, Sansone R, Soetemann DB, Maier O, Kleinebrecht L, Kelm M, Zeus T, Hellhammer K.

Vasa2018 Jun 28:1-9. doi: 10.1024/0301-1526/a000712. [Epub ahead of print]

PMID:
29952252
Select item 2995183070.

Transcatheter Mitral Valve Replacement: Functional Requirements for Device Design, Bench-Top, and Pre-Clinical Evaluation.

Iyer R, Chalekian A, Lane R, Evans M, Yi S, Morris J.

Cardiovasc Eng Technol2018 Jun 27. doi: 10.1007/s13239-018-0364-z. [Epub ahead of print]

PMID:
29951830
Select item 2994327371.

Gender-dependent association of diabetes mellitus with mortality in patients undergoing transcatheter aortic valve replacement.

Linke A, Schlotter F, Haussig S, Woitek FJ, Stachel G, Adam J, Höllriegel R, Lindner A, Mohr FW, Schuler G, Kiefer P, Leontyev S, Thiele H, Borger MA, Holzhey D, Mangner N.

Clin Res Cardiol2018 Jun 25. doi: 10.1007/s00392-018-1309-0. [Epub ahead of print]

PMID:
29943273
Select item 2994311572.

Transcatheter aortic valve replacement with the 34 mm Medtronic Evolut valve : Early results of single institution experience.

D’Ancona G, Dißmann M, Heinze H, Zohlnhöfer-Momm D, Ince H, Kische S.

Neth Heart J2018 Aug;26(7-8):401-408. doi: 10.1007/s12471-018-1122-4.

Select item 2994136973.

Midterm Outcomes With the Self-Expanding ACURATE neo Aortic Bioprosthesis: The “Bumblebee Paradox” in Transcatheter Aortic Valve Replacement.

Barbanti M, Todaro D.

JACC Cardiovasc Interv2018 Jul 23;11(14):1375-1376. doi: 10.1016/j.jcin.2018.06.004. Epub 2018 Jun 22. No abstract available.

PMID:
29941369
Select item 2993663474.

Atrioventricular and intraventricular block after transcatheter aortic valve implantation.

Lee JJ, Goldschlager N, Mahadevan VS.

J Interv Card Electrophysiol2018 Jun 24. doi: 10.1007/s10840-018-0391-6. [Epub ahead of print]

PMID:
29936634
Select item 2993449375.

Recurrent Unilateral Transudative Pleural Effusion Due to Low Flow, Low Gradient Severe Aortic Stenosis.

Al-Khafaji JF, Taha M, Abdalla AO, Rowan C.

Am J Case Rep2018 Jun 23;19:739-743. doi: 10.12659/AJCR.909448.

Select item 2992964276.

Whose Urgency Is it, Anyway?

Brener SJ.

JACC Cardiovasc Interv2018 Jun 25;11(12):1186-1187. doi: 10.1016/j.jcin.2018.03.035. No abstract available.

PMID:
29929642
Select item 2992964177.

Outcomes Following Urgent/Emergent Transcatheter Aortic Valve Replacement: Insights From the STS/ACC TVT Registry.

Kolte D, Khera S, Vemulapalli S, Dai D, Heo S, Goldsweig AM, Aronow HD, Elmariah S, Inglessis I, Palacios IF, Thourani VH, Sharaf BL, Gordon PC, Abbott JD.

JACC Cardiovasc Interv2018 Jun 25;11(12):1175-1185. doi: 10.1016/j.jcin.2018.03.002. Epub 2018 Mar 11.

PMID:
29929641
Select item 2992963978.

Medium-Term Follow-Up of Early Leaflet Thrombosis After Transcatheter Aortic Valve Replacement.

Ruile P, Minners J, Breitbart P, Schoechlin S, Gick M, Pache G, Neumann FJ, Hein M.

JACC Cardiovasc Interv2018 Jun 25;11(12):1164-1171. doi: 10.1016/j.jcin.2018.04.006.

PMID:
29929639
Select item 2992775879.

Left Subclavian Transcatheter Aortic Valve Replacement Under Combined Interscalene and Pectoralis Nerve Blocks: A Case Series.

Block M, Pitchon DN, Schwenk ES, Ruggiero N, Entwistle J, Goldhammer JE.

A A Pract2018 Jun 18. doi: 10.1213/XAA.0000000000000819. [Epub ahead of print]

PMID:
29927758
Select item 2992620680.

Optimal pre-TAVR annulus sizing in patients with bicuspid aortic valve: area-derived perimeter by CT is the best-correlated measure with intraoperative sizing.

Wang Y, Wang M, Song G, Wang W, Lv B, Wang H, Wu Y.

Eur Radiol2018 Jun 20. doi: 10.1007/s00330-018-5592-y. [Epub ahead of print]

PMID:
29926206
Select item 2992437681.

Immediate improvement of left ventricular mechanics following transcatheter aortic valve replacement.

Lozano Granero VC, Fernández Santos S, Fernández-Golfín C, Plaza Martín M, de la Hera Galarza JM, Faletra FF, Swaans MJ, López-Fernández T, Mesa D, La Canna G, Echeverría García T, Habib G, Martíne Monzonís A, Zamorano Gómez JL.

Cardiol J2018 Jun 20. doi: 10.5603/CJ.a2018.0066. [Epub ahead of print]

Select item 2992312682.

Sex-Specific Considerations in Women with Aortic Stenosis and Outcomes After Transcatheter Aortic Valve Replacement.

Mihos CG, Klassen SL, Yucel E.

Curr Treat Options Cardiovasc Med2018 Jun 19;20(7):52. doi: 10.1007/s11936-018-0651-x. Review.

PMID:
29923126
Select item 2992253583.
Select item 2991587884.

Less pronounced reverse left ventricular remodeling in patients with bicuspid aortic stenosis treated with transcatheter aortic valve replacement compared to tricuspid aortic stenosis.

Xiong TY, Wang X, Li YJ, Liao YB, Zhao ZG, Wei X, Xu YN, Zheng MX, Zhou X, Peng Y, Wei JF, Feng Y, Chen M.

Int J Cardiovasc Imaging2018 Jun 18. doi: 10.1007/s10554-018-1401-6. [Epub ahead of print]

PMID:
29915878
Select item 2991274185.

Predictors of Persistent Tricuspid Regurgitation After Transcatheter Aortic Valve Replacement in Patients With Baseline Tricuspid Regurgitation.

Worku B, Valovska MT, Elmously A, Kampaktsis P, Castillo C, Wong SC, Salemi A.

Innovations (Phila)2018 May/Jun;13(3):190-199. doi: 10.1097/IMI.0000000000000504.

PMID:
29912741
Select item 2991243286.

Transcatheter aortic valve replacement in the setting of left atrial appendage thrombus.

Salemi A, De Micheli A, Aftab A, Elmously A, Chang R, Wong SC, Worku BM.

Interact Cardiovasc Thorac Surg2018 Jun 14. doi: 10.1093/icvts/ivy189. [Epub ahead of print]

PMID:
29912432
Select item 2991133687.

TAVR versus SAVR: Who determines the risk?

Lazar HL.

J Card Surg2018 Jun 17. doi: 10.1111/jocs.13744. [Epub ahead of print] No abstract available.

PMID:
29911336
Select item 2991130788.

Evolving trends in aortic valve replacement: A statewide experience.

Kim KM, Shannon F, Paone G, Lall S, Batra S, Boeve T, DeLucia A, Patel HJ, Theurer PF, He C, Clark MJ, Sultan I, Deeb GM, Prager RL.

J Card Surg2018 Jun 17. doi: 10.1111/jocs.13740. [Epub ahead of print]

PMID:
29911307
Select item 2990896989.

Transcatheter Aortic Valve Replacement on an Aortic Mechanical Valve.

Arzamendi D, Ruiz V, Ramallal R, Alcasena MS, Beunza MT, Larman M.

JACC Cardiovasc Interv2018 Jul 9;11(13):e107-e108. doi: 10.1016/j.jcin.2018.04.046. Epub 2018 Jun 13. No abstract available.

PMID:
29908969
Select item 2990351990.

Transcatheter or surgical treatment of severe aortic stenosis and coronary artery disease: A comparative analysis from the Italian OBSERVANT study.

Barbanti M, Buccheri S, Capodanno D, D’Errigo P, Ranucci M, Rosato S, Santoro G, Fusco D, Tamburino C, Biancari F, Seccareccia F; OBSERVANT Research Group.

Int J Cardiol2018 Jun 7. pii: S0167-5273(17)36915-2. doi: 10.1016/j.ijcard.2018.06.011. [Epub ahead of print]

PMID:
29903519
Select item 2989884891.

Oral anti-Xa anticoagulation after trans-aortic valve implantation for aortic stenosis: The randomized ATLANTIS trial.

Collet JP, Berti S, Cequier A, Van Belle E, Lefevre T, Leprince P, Neumann FJ, Vicaut E, Montalescot G.

Am Heart J2018 Jun;200:44-50. doi: 10.1016/j.ahj.2018.03.008. Epub 2018 Mar 10.

PMID:
29898848
Select item 2989883792.

Utility of an additive frailty tests index score for mortality risk assessment following transcatheter aortic valve replacement.

Steinvil A, Buchanan KD, Kiramijyan S, Bond E, Rogers T, Koifman E, Shults C, Xu L, Torguson R, Okubagzi PG, Pichard AD, Satler LF, Ben-Dor I, Waksman R.

Am Heart J2018 Jun;200:11-16. doi: 10.1016/j.ahj.2018.01.007. Epub 2018 Jan 31.

PMID:
29898837
Select item 2989684793.

Advanced chronic kidney disease: Relationship to outcomes post-TAVR, a meta-analysis.

Makki N, Lilly SM.

Clin Cardiol2018 Jun 12. doi: 10.1002/clc.22993. [Epub ahead of print] Review.

Select item 2989677794.

Comparing outcomes after transcatheter aortic valve replacement in patients with stenotic bicuspid and tricuspid aortic valve: A systematic review and meta-analysis.

Kanjanahattakij N, Horn B, Vutthikraivit W, Biso SM, Ziccardi MR, Lu MLR, Rattanawong P.

Clin Cardiol2018 Jun 12. doi: 10.1002/clc.22992. [Epub ahead of print]

Select item 2989560095.

Stroke and Cardiovascular Outcomes in Patients With Carotid Disease Undergoing Transcatheter Aortic Valve Replacement.

Kochar A, Li Z, Harrison JK, Hughes GC, Thourani VH, Mack MJ, Matsouaka RA, Cohen DJ, Peterson ED, Jones WS, Vemulapalli S.

Circ Cardiovasc Interv2018 Jun;11(6):e006322. doi: 10.1161/CIRCINTERVENTIONS.117.006322.

PMID:
29895600
Select item 2989459496.

Percutaneous access versus surgical cut down for TAVR: Where do we go from here?

Ates I, Cilingiroglu M.

Catheter Cardiovasc Interv2018 Jun;91(7):1363-1364. doi: 10.1002/ccd.27653.

PMID:
29894594
Select item 2989341797.

Inadvertent pacemaker lead dislodgement.

Eulert-Grehn JJ, Schmidt G, Kempfert J, Starck C.

Pacing Clin Electrophysiol2018 Jun 12. doi: 10.1111/pace.13412. [Epub ahead of print]

PMID:
29893417
Select item 2988800998.

Successful Coronary Protection during TAVI in Heavily Calcified Aortic Leaflets in Patient with Short and Low Left Coronary System.

Kabach M, Alrifai A, Lovitz L, Rothenberg M, Faber C, Nores M.

Case Rep Cardiol2018 May 14;2018:2758170. doi: 10.1155/2018/2758170. eCollection 2018.

Select item 2988746499.

Role of T2 mapping in left ventricular reverse remodeling after TAVR.

Gastl M, Behm P, Haberkorn S, Holzbach L, Veulemans V, Jacoby C, Schnackenburg B, Zeus T, Kelm M, Bönner F.

Int J Cardiol2018 Sep 1;266:262-268. doi: 10.1016/j.ijcard.2018.02.029.

PMID:
29887464
Select item 29885699100.

Early changes in N-terminal pro-B-type natriuretic peptide levels after transcatheter aortic valve replacement and its impact on long-term mortality.

Liebetrau C, Gaede L, Kim WK, Arsalan M, Blumenstein JM, Fischer-Rasokat U, Wolter JS, Kriechbaum S, Huber MT, van Linden A, Berkowitsch A, Dörr O, Nef H, Hamm CW, Walther T, Möllmann H.

Int J Cardiol2018 Aug 15;265:40-46. doi: 10.1016/j.ijcard.2018.02.037.

PMID:
29885699
Advertisements

Read Full Post »


Aortic Stenosis (AS): Managed Surgically by Transcatheter Aortic Valve Replacement (TAVR) – Search Results for “TAVR” on NIH.GOV website, Top 16 pages

Reporter: Aviva Lev-Ari, PhD, RN

 

The concept of transcatheter balloon expandable valves was first introduced in the 1980s by a Danish researcher by the name of H. R. Anderson who began testing this idea on pigs. In 2002, Dr. Alain Cribier performed the first successful percutaneous aortic valve replacement on an inoperable patient. The first approval of TAVR for the indication of severe AS in prohibitive risk patients came in 2011. In 2012, the FDA approved TAVR in patients at high surgical risk. In 2015 the indication was expanded to include “valve-in-valve” procedure for failed surgical bioprosthetic valves. Most recently, in 2016 the FDA approved the SAPIEN valve for use in patients with severe AS at intermediate risk.

SOURCE

https://www.ncbi.nlm.nih.gov/pubmed/28613729

 

Critical care management of patients following …

Transcatheter aortic valve replacement (TAVR) is rapidly gaining popularity as a technique to surgically manage aortic stenosis (AS) in high risk …

Imaging in Transcatheter Aortic Valve Replacement (TAVR …

Transcatheter aortic valve replacement (TAVR) is a novel technique developed in the last decade to treat severe aortic stenosis in patients who are …

TAVR and SAVR: Current Treatment of Aortic Stenosis

Transcatheter aortic valve replacement (TAVR) was approved in the United States in late 2011, providing a critically needed alternative therapy for …

Transcatheter Aortic Valve Replacement: Design, Clinical …

Transcatheter aortic valve replacement (TAVR) is a new technology that recently has been shown to improve survival and quality of life in patients …

Cost-Effectiveness Analysis of TAVR

Transcather aortic valve replacement (TAVR) has rapidly gained worldwide acceptance for treating very high-risk patients with symptomatic severe …

Clinical Studies Assessing Transcatheter Aortic Valve …

Extreme-Risk or Inoperable Patients for sAVR. Early clinical evaluation of TAVR included patients deemed unsuitable for sAVR. The logistic Euroscore …

Mitral Valve Surgery: Current Minimally Invasive and …

Minimally Invasive Mitral Valve Repair or Replacement. Most MV pathology can be treated with minimally invasive, … As we learned from the TAVR …

Transcatheter (TAVR) versus surgical (AVR) aortic valve …

The risk in the early phase was higher after TAVR than AVR, and in the TAVR arm in patients with a smaller aortic valve area index. In the late risk …

Procedure makes heart valve replacement safer for high-risk patients

4 months ago – Scientists developed a novel technique that prevents a rare but often fatal complication that can arise during a heart valve procedure called …

Sedation or general anesthesia for transcatheter aortic …

Transfemoral transcatheter aortic valve implantation (TAVI) is nowadays a routine therapy for elderly patients with severe aortic stenosis (AS) and …

Transcatheter aortic valve replacement: outcomes of …

Transcatheter aortic valve replacement: outcomes of patients with moderate or severe mitral regurgitation. Toggweiler S(1), … One year after TAVR …

Outcomes in Transcatheter Aortic Valve Replacement for …

BACKGROUND: Transcatheter aortic valve replacement (TAVR) is being increasingly performed in patients with bicuspid aortic valve stenosis (AS).

New method for performing aortic valve replacement proves …

Researchers at the National Institutes of Health have developed a new, less invasive way to perform transcatheter aortic valve replacement (TAVR), a …

Acquired Aorto-Right Ventricular Fistula following …

Transcatheter aortic valve replacement (TAVR) techniques are rapidly evolving, and results of published trials suggest that TAVR is emerging as the …

Post Transapical Aortic Valve Replacement (TAVR …

A 63-year-old female presented to the emergency department with complaints of her “heart beating out of my chest,” palpitations, and shortness of …

Surgical or Transcatheter Aortic-Valve Replacement in …

Surgical or Transcatheter Aortic-Valve Replacement in Intermediate-Risk Patients. … Although transcatheter aortic-valve replacement (TAVR) …

Transcatheter aortic valve replacement versus surgical …

Transcatheter aortic valve replacement versus surgical valve replacement in intermediate-risk patients: a propensity score analysis. Thourani VH(1) …

Transcatheter aortic valve replacement (TAVR): access …

Ramlawi B(1), Anaya-Ayala JE, Reardon MJ. Author information: (1)Methodist DeBakey Heart & Vascular Center, The Methodist Hospital, Houston, Texas …

Simulation of Transcatheter Aortic Valve Replacement in …

Simulation of Transcatheter Aortic Valve Replacement in patient-specific aortic roots: … Transcatheter aortic valve replacement (TAVR), …

Simulation of Transcatheter Aortic Valve Replacement in …

Simulation of Transcatheter Aortic Valve Replacement in patient-specific aortic roots: … Transcatheter aortic valve replacement (TAVR), …

Transcatheter Aortic Valve Replacement Versus Surgery in …

The objective of this study was to compare outcomes in women after surgical aortic valve replacement … transcatheter aortic valve replacement (TAVR) …

Lederman Lab – NHLBI Cardiovascular Intervention Program

ledermanlab.nhlbi.nih.gov/

Transcaval TAVR was developed at the NHLBI Cardiovascular Intervention Program and applied to patient care in collaboration with Dr. Adam Greenbaum at …

Functional status and quality of life after transcatheter …

Kim CA, Rasania SP, Afilalo J, Popma JJ, Lipsitz LA, Kim DH. BACKGROUND: The functional and quality-of-life benefits of transcatheter aortic valve …

One-Year Outcomes of Transcatheter Aortic Valve …

1. Ann Thorac Surg. 2017 May;103(5):1392-1398. doi: 10.1016/j.athoracsur.2016.11.061. Epub 2017 Feb 24. One-Year Outcomes of Transcatheter Aortic …

Local versus general anesthesia for transcatheter aortic …

Now randomized trials are needed for further evaluation of MAC in the setting of TAVR. PMCID: PMC4022332 PMID: 24612945 [PubMed – indexed for MEDLINE]

Predictors and clinical outcomes of permanent pacemaker …

CONCLUSIONS: PPM was required in 8.8% of patients without prior PPM who underwent TAVR with a balloon-expandable valve in the PARTNER trial and …

Transcatheter aortic valve replacement program development …

TAVR programs require data management strategies to facilitate and monitor program growth, support program evaluation, and meet the requirements for …

New technique makes heart valve replacement safer for some …

Lederman explained that during TAVR, the surgeon places a catheter inside the heart and uses a balloon to open a new valve inside the aortic valve.

Minimally invasive aortic valve replacement using the …

The term “sutureless aortic valve” (su-AV) describes a type of valve which facilitates anchoring of bioprostheses in the aortic position without use …

Use of extracorporeal membrane oxygenation in complicated …

1. Gen Thorac Cardiovasc Surg. 2017 Feb 24. doi: 10.1007/s11748-017-0757-1. [Epub ahead of print] Use of extracorporeal membrane oxygenation in …

Reoperative aortic valve replacement through upper …

Reoperative aortic valve replacement (AVR) has become increasingly common . … but who may not be considered eligible for TAVR procedure.

MRI evaluation prior to Transcatheter Aortic Valve …

MRI evaluation prior to Transcatheter Aortic Valve Implantation … Transcatheter Aortic Valve Implantation (TAVI) … imaging for TAVR assessment in …

Impact of New-Onset Left Bundle Branch Block and …

New-onset LBBB post-TAVR was associated with a higher risk of PPI (risk ratio [RR], 2.18; 95% confidence interval [CI], 1.28-3.70) and cardiac death …

Migration of the transcatheter valve into the left ventricle

Transcatheter valves can embolize into the aorta if the valve is malpositioned too high or, less commonly, migrate into the left ventricle when the …

Transcarotid Transcatheter Aortic Valve Replacement …

All patients were unsuitable for transfemoral TAVR due to severe peripheral vascular disease. An MIS was undertaken in 29.8% (n = 52) …

The transaortic approach for transcatheter aortic valve …

The transaortic approach for transcatheter aortic valve replacement: initial clinical experience in the United States. Lardizabal JA(1), O’Neill BP …

Transcatheter Aortic Valve Replacement: The New Standard …

Transcatheter Aortic Valve Replacement: The … The aim of this study was to assess how the introduction of transcatheter aortic valve replacement (TA …

Minimally invasive aortic valve surgery: state of the art …

Minimally invasive aortic valve replacement (MIAVR) is defined as an aortic valve replacement (AVR) procedure that involves a small chest wall …

Prognostic impact of pulmonary artery systolic pressure in …

Prognostic impact of pulmonary artery systolic pressure in patients undergoing transcatheter aortic valve … TAVR was associated with a decrease in …

Transcatheter Aortic Valve Replacement is Associated with …

This meta-analysis aims to assess the differential outcomes of TAVR and SAVR in patients enrolled in published randomised controlled trials (RCTs).

Aspirin Versus Aspirin Plus Clopidogrel as Antithrombotic …

There were no differences between groups in valve hemodynamic status post-TAVR. CONCLUSIONS: This small trial showed that SAPT (vs. DAPT) …

Upper gastrointestinal bleeding following transcatheter …

Upper gastrointestinal bleeding following transcatheter aortic valve replacement: A retrospective analysis. Stanger DE(1), … (TAVR). BACKGROUND: …

Computed tomography-based sizing recommendations for …

Consecutive patients (n = 120) underwent CT before TAVR with balloon-expandable valves sized by transesophageal echocardiography (TEE) …

European experience and perspectives on transcatheter …

European experience and perspectives on transcatheter aortic valve replacement. Davies WR(1), Thomas MR(2).

[PDF] Mandatory Reporting of Clinical Trial Identifier Numbers …

accrualnet.cancer.gov/sites/accrualnet.cancer.gov/files/Mandatory%20Reporting%20of%20Clinical%20Trial%20Identifier%20FAQs.pdf

Mandatory Reporting of Clinical Trial Identifier Numbers on Claims . Q: Do organizations bill Medicare for all services related to the clinical trial …

Transcatheter Aortic Valve Replacement: Imaging Techniques …

Transcatheter Aortic Valve Replacement: Imaging Techniques for Aortic Root Sizing. Wichmann JL(1), Varga-Szemes A, Suranyi P, Bayer RR 2nd, Litwin SE …

Transcatheter Aortic Valve Thrombosis: Incidence …

METHODS: Among 460 consecutive patients who underwent TAVR with the Edwards Sapien XT or Sapien 3 (Edwards Lifesciences, Irvine, California) THV, …

Sutureless aortic valve replacement – PubMed Central (PMC)

Given its recent developments, the majority of evidence regarding sutureless aortic valve replacement (SU-AVR) is limited to observational studies …

Comparison of balloon-expandable vs self-expandable valves …

Comparison of balloon-expandable vs self-expandable valves in patients undergoing transcatheter aortic valvereplacement: … (TAVR) is an effective …

Geometric changes in ventriculoaortic complex after …

Geometric changes in ventriculoaortic complex after transcatheter aortic valve replacement and its association … The post-TAVR AoA area/pre-TAVR AoA …

Acute and 30-Day Outcomes in Women After TAVR: Results …

Randomized assessment of TAVR versus surgical aortic valve replacement in intermediate risk women is warranted to determine the optimal strategy.

Should We Perform Carotid Doppler Screening Before …

Should We Perform Carotid Doppler Screening Before Surgical or Transcatheter Aortic Valve Replacement? … (TAVR) between January 2007 and August …

Transcatheter Versus Surgical Aortic Valve Replacement in …

BACKGROUND: Transcatheter aortic valve replacement (TAVR) is an option in certain high-risk surgical patients with severe aortic valve stenosis.

Risk stratification and clinical pathways to optimize …

Risk stratification and clinical pathways to optimize length of stay after … We evaluated standardized TAVRoutcomes and length of stay according to …

Use of imaging for procedural guidance during …

1. Curr Opin Cardiol. 2013 Sep;28(5):512-7. doi: 10.1097/HCO.0b013e3283632b5e. Use of imaging for procedural guidance during transcatheter aortic …

Serial Changes in Cognitive Function Following …

Serial Changes in Cognitive Function Following Transcatheter Aortic Valve Replacement. Auffret V(1), Campelo-Parada F(1), Regueiro A(1), …

Acute kidney injury after transcatheter aortic valve …

Acute kidney injury after transcatheter aortic valve replacement: a systematic review and meta-analysis. Thongprayoon C(1), Cheungpasitporn W, Srivali …

Aortic valve replacement – PubMed Health

Transcatheter aortic valve replacement (TAVR), sometimes called transcatheter aortic valve implantation (TAVI), was developed as an alternative for …

Costs of periprocedural complications in patients treated …

Costs of periprocedural complications in patients treated with transcatheter aortic valve replacement: … Renal failure and the need for repeat TAVR …

Trial design: Rivaroxaban for the prevention of major …

The direct factor Xa inhibitor rivaroxaban may potentially reduce TAVR-related thrombotic complications and premature valve failure. DESIGN: GALILEO …

Expandable sheath for transfemoral transcatheter aortic …

Expandable sheath for transfemoral transcatheter aortic valve replacement: procedural outcomes and complications. Borz B(1), Durand E, Tron C, …

Direct Aortic Access Transcatheter Aortic Valve …

Direct Aortic Access Transcatheter Aortic Valve Replacement: Three-Dimensional Computed Tomography Planning and Real … was selected for DA-TAVR …

The impact of frailty on outcomes after cardiac surgery: a …

1. J Thorac Cardiovasc Surg. 2014 Dec;148(6):3110-7. doi: 10.1016/j.jtcvs.2014.07.087. Epub 2014 Aug 7. The impact of frailty on outcomes after …

Establishment of a transcatheter aortic valve program and …

Establishment of a transcatheter aortic valve program and heart valve team at a Veterans Affairs facility. … (TAVR) program.

Echocardiographic determinants of LV functional …

Echocardiographic determinants of LV functional improvement after transcatheter aortic valve replacement. … Transcatheter aortic valve replacement ( …

CT in transcatheter aortic valve replacement.

CT in transcatheter aortic valve replacement. … the rapidly emerging role of CT in the context of transcatheter aortic valve replacement will be …

Transcatheter Aortic Valve Replacement for the Treatment …

Transcatheter Aortic Valve Replacement for the … This study sought to summarize available evidence on transcatheter aortic valve replacement (TAVR) …

Valvular performance and aortic regurgitation following …

End points were post-TAVR moderate to severe AR and paravalvular AR, effective orifice area (EOA), mean trans-aortic pressure gradient (MPG), …

Annual Outcomes With Transcatheter Valve Therapy: From the …

Annual Outcomes With Transcatheter Valve Therapy: From the STS/ACC TVT Registry. Holmes DR Jr, Nishimura RA, Grover FL, Brindis RG, Carroll JD …

The impact of live case transmission on patient outcomes …

The impact of live case transmission on patient outcomes during transcatheter aortic valve replacement: … Data support the notion that live …

Review of Major Registries and Clinical Trials of Late …

Review of Major Registries and Clinical Trials of Late Outcomes After Transcatheter … Final studies were selected irrespective of the type of TAVR …

Trans-subclavian aortic valve replacement with various …

Trans-subclavian aortic valve replacement with various bioprosthetic valves: Single-center experience. Kasapkara HA(1), Aslan AN(2), Ayhan H(1), …

Vascular complications post-transcatheter aortic valve …

Vascular complications post-transcatheter aortic valve procedures. Mangla A(1), Gupta S(2). Author information: (1)Division of Cardiology, Department …

[Monitoring of haemodynamics and function of the aortic …

[Monitoring of haemodynamics and function of the aortic prosthesis during transcatheter aortic valve replacement]. [Article in Russian]

Midregional Proadrenomedullin Improves Risk Stratification …

Midregional Proadrenomedullin Improves Risk Stratification beyond Surgical Risk Scores in Patients Undergoing Transcatheter Aortic Valve … (TAVR …

Midregional Proadrenomedullin Improves Risk Stratification …

Midregional Proadrenomedullin Improves Risk Stratification beyond Surgical Risk Scores in Patients Undergoing Transcatheter Aortic Valve … (TAVR …

Dual Versus Single Antiplatelet Regimen With or Without …

Dual Versus Single Antiplatelet Regimen With or Without Anticoagulation in Transcatheter Aortic Valve … (TAVR), with dual antiplatelet therapy …

Impact of baseline mitral regurgitation on short- and long …

Impact of baseline mitral regurgitation on short- and long-term outcomes following transcatheter aortic … before the index TAVR procedure was …

TAVRassociated prosthetic valve infective endocarditis …

TAVRassociated prosthetic valve infective endocarditis: results of a large, multicenter registry. Latib A, Naim C, De Bonis M, Sinning JM, …

Mechanisms of Heart Block after Transcatheter Aortic Valve …

Consequently, patients undergoing TAVR are prone to peri-procedural complications including cardiac conduction disturbances, which is the focus of …

JACC. Cardiovascular Imaging – Journals – NCBI

JACC. Cardiovascular Imaging journal page at PubMed Journals. Published by Elsevier

Short-Term Outcomes with Direct Aortic Access for …

Short-Term Outcomes with Direct Aortic Access for Transcatheter Aortic Valve Replacement. Ramlawi B, Abu Saleh WK, Jabbari OA, Barker C, Lin C, … (T …

Impact of patient-prosthesis mismatch after transcatheter …

Impact of patient-prosthesis mismatch after transcatheter aortic valve-in-valve implantation in degenerated bioprostheses. Seiffert M(1), Conradi L …

Extent and distribution of calcification of both the …

AR grade 2 to 4 assessed by the method of Sellers immediately after TAVR device implantation was observed in 55 patients (31%). Multivariate …

Safety, Feasibility, and Hemodynamic Effects of Mild …

Safety, Feasibility, and Hemodynamic Effects of Mild Hypothermia in Transcatheter Aortic Valve Replacement: The TAVR … feasibility, and hemodynamic …

Transcatheter aortic valve implantation: anesthetic …

Transcatheter aortic valve implantation: anesthetic considerations. Billings FT 4th(1), Kodali SK, Shanewise JS. Author information: (1)Departments of …

RFA-HL-19-009: Cardiothoracic Surgical Trials Network …

grants.nih.gov/grants/guide/rfa-files/RFA-HL-19-009.html

Bicuspid aortic valve disease has been excluded from TAVR pivotal trials, but TAVR is increasingly used in this population, despite …

www.ncbi.nlm.nih.gov

Moved Permanently. The document has moved here.

Outcome comparison of African-American and Caucasian …

METHODS: Consecutive patients who underwent TAVR were included in this analysis. Patients’ baseline characteristics, procedural data, …

Incidence and predictors of permanent pacemaker …

Incidence and predictors of permanent pacemaker implantation following treatment with the repositionable Lotus™ transcatheter aortic valve.

Effect of Hospital Volume on Outcomes of Transcatheter …

Effect of Hospital Volume on Outcomes of Transcatheter Aortic Valve Implantation. Badheka AO(1), Patel NJ(2), Panaich SS(3), Patel SV(4), …

Aortic valve sizer for TAVR | NIH 3D Print Exchange

3dprint.nih.gov/discover/3dpx-007958

This sizer is designed to simulate the insertion of heart valve prosthetics into 3d printed patient phantoms. It is loosely based on the size …

Health Topics | National Heart, Lung, and Blood Institute …

Materials for patients and health professionals on health topics related to overweight and obesity, heart, lung, blood, and sleep disorders.

DailyMed – ASPIRIN 81MG ADULT LOW DOSE- aspirin tablet …

dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=14d010fb-c4a1-4c3d-942f-58719727bfc0

ASPIRIN 81MG ADULT LOW DOSE- aspirin tablet, delayed release . To receive this label RSS feed. Copy the URL below and paste it into your RSS Reader …

Incidence and predictors of permanent pacemaker …

Incidence and predictors of permanent pacemaker implantation following treatment with the repositionable Lotus™ transcatheter aortic valve.

Aortic valve sizer for TAVR | NIH 3D Print Exchange

3dprint.nih.gov/discover/3dpx-007958

This sizer is designed to simulate the insertion of heart valve prosthetics into 3d printed patient phantoms. It is loosely based on the size …

Transcatheter Aortic Valve Replacement in Severe Aortic …

1. Transcatheter Aortic Valve Replacement in Severe Aortic Stenosis: A Review of Comparative Durability and Clinical Effectiveness Beyond 12 Months …

Sigmoid Septum and Balloon-Expandable Transcatheter Aortic …

de Biasi AR, Worku B, Skubas NJ, Salemi A. Transcatheter aortic valve replacement (TAVR) continues to garner considerable attention, especially as the …

Intra- and Inter-Observer Reproducibility of Transcatheter …

Intra- and Inter-Observer Reproducibility of Transcatheter Aortic Valve Replacement Planning Measurements by Multidetector … of the pre-TAVR …

www.ncbi.nlm.nih.gov

Moved Permanently. The document has moved here.

Transthoracic Echocardiography to Assess Aortic …

Transthoracic Echocardiography to Assess Aortic Regurgitation after TAVRA Comparison with Periprocedural Transesophageal Echocardiography.

Procedural Experience for Transcatheter Aortic Valve …

Procedural Experience for Transcatheter Aortic Valve Replacement and Relation to Outcomes: The STS/ACC TVT Registry. Carroll JD(1), Vemulapalli S(2) …

A comprehensive review of the PARTNER trial.

Svensson LG(1), Tuzcu M, Kapadia S, Blackstone EH, Roselli EE, Gillinov AM, Sabik JF 3rd, Lytle BW. Author information: (1)Department of Thoracic and …

TCT-697 Comparison of Outcomes of Transcatheter Aortic …

TCT-697 Comparison of Outcomes of Transcatheter Aortic Valve Replacement plus Percutaneous Coronary Intervention versus Transcatheter Aortic Valve …

Combined rotational atherectomy and aortic balloon …

Combined rotational atherectomy and aortic balloon valvuloplasty as a bridge to transcatheter aortic valve replacement. Ali O(1), Marmagkiolis K(2) …

Updated standardized endpoint definitions for …

1. Eur J Cardiothorac Surg. 2012 Nov;42(5):S45-60. doi: 10.1093/ejcts/ezs533. Epub 2012 Oct 1. Updated standardized endpoint definitions for …

Clinical outcomes after transcatheter aortic valve …

CONCLUSIONS: VARC definitions have already been used by the TAVR clinical research community, establishing a new standard for reporting clinical …

2012 ACCF/AATS/SCAI/STS expert consensus document on …

2012 ACCF/AATS/SCAI/STS expert consensus document on transcatheter aortic valve replacement. Holmes DR Jr, Mack MJ, Kaul S, Agnihotri A, Alexander KP …

Combined rotational atherectomy and aortic balloon …

Combined rotational atherectomy and aortic balloon valvuloplasty as a bridge to transcatheter aortic valve replacement. Ali O(1), Marmagkiolis K(2) …

Clinical outcomes after transcatheter aortic valve …

CONCLUSIONS: VARC definitions have already been used by the TAVR clinical research community, establishing a new standard for reporting clinical …

TAVR MVR – PubMed Result – ncbi.nlm.nih.gov

1: Grover FL, Vemulapalli S, Carroll JD, Edwards FH, Mack MJ, Thourani VH, Brindis RG, Shahian DM, Ruiz CE, Jacobs JP, Hanzel G, Bavaria JE, Tuzcu EM …

Aortic valve calcium scoring is a predictor of …

Aortic valve calcium scoring is a predictor of paravalvular aortic regurgitation after transcatheter aortic valve implantation

Transcatheter Aortic Valve-in-Valve Replacement Instead of …

Díez JG, Schechter M, Dougherty KG, Preventza O, Coselli JS. Transcatheter aortic valve replacement (TAVR) is a well-established method for replacing …

Coronary Calcium Scan | National Heart, Lung, and Blood …

Buildup of calcium, or calcifications, are a sign of atherosclerosis, coronary heart disease, or coronary microvascular disease. A coronary calcium …

An update on transcatheter aortic valve replacement.

An update on transcatheter aortic valve replacement. … Before the development of transcatheter aortic valve replacement (TAVR … and noninferiority …

The Iowa Model of Evidence-Based Practice to Promote …

The Iowa Model of Evidence-Based Practice to Promote Quality Care: an illustrated example in oncology nursing. Brown CG(1). Author information: …

Two-Year Outcomes in Patients With Severe Aortic Valve …

There was no difference in all-cause mortality at 2 years between TAVR and SAVR (8.0% versus 9.8%, respectively; P=0.54) or cardiovascular mortality …

Home – PubMed – NCBI

PubMed comprises more than 28 million citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include …

Integrated 3D Echo-X-Ray navigation to predict optimal …

Integrated 3D Echo-X-Ray navigation to predict optimal angiographic deployment projections for TAVR. Kim MS, Bracken J, Nijhof N, Salcedo EE, Quaife …

Cardiac rehabilitation after transcatheter aortic valve …

Cardiac rehabilitation after transcatheter aortic valve implantation compared to patients after valve replacement. Tarro Genta F(1), Tidu M, Bouslenko …

TAVR | NIH 3D Print Exchange

3dprint.nih.gov/discover/tavr

TAVR. Discover > TAVR. 3DPX-007958 Aortic valve sizer for TAVR ahmedhosny. TAVR, aortic valve, sapienXT, heart valve, sizer, Prosthetic. Discover 3D …

www.ncbi.nlm.nih.gov

Moved Permanently. The document has moved here.

Imaging Pandora’s Box: incidental findings in elderly …

Imaging Pandora’s Box: incidental findings in elderly patients evaluated for transcatheter aortic valve replacement. Orme NM(1), Wright TC(2), Harmon …

fascia iliaca compartment block – PubMed – NCBI

TCT-753 Fascia Iliaca Compartment Block (FICB) and None to Light Sedation as an Alternative Minimalist Approach to Sedation for Patients Undergoing …

Stents | National Heart, Lung, and Blood Institute (NHLBI)

For the Coronary Arteries. Doctors may use stents to treat coronary heart disease (CHD). CHD is a disease in which a waxy substance called plaque …

TAVR | NIH 3D Print Exchange

3dprint.nih.gov/discover/tavr

TAVR. Discover > TAVR. 3DPX-007958 Aortic valve sizer for TAVR ahmedhosny. TAVR, aortic valve, sapienXT, heart valve, sizer, Prosthetic. Discover 3D …

Imaging Pandora’s Box: incidental findings in elderly …

Imaging Pandora’s Box: incidental findings in elderly patients evaluated for transcatheter aortic valve replacement. Orme NM(1), Wright TC(2), Harmon …

Transcatheter Aortic Valve Implantation Within Degenerated …

Transcatheter Aortic Valve Implantation Within Degenerated Aortic Surgical Bioprostheses: PARTNER 2 Valve-in-Valve Registry. Webb JG(1), Mack MJ(2) …

[PDF] Transmural” catheter interventions for congenital and …

demystifyingmedicine.od.nih.gov/dm16/m03d22/DM-LedermanRJ.pdf

Transmural” catheter interventions for congenital and structural heart disease … For TAVR, TEVAR, pVAD, etc, when 6-9 mm femoral artery sheaths …

Leaflet Thrombosis in Surgically Explanted or Post-Mortem …

1. JACC Cardiovasc Imaging. 2017 Jan;10(1):82-85. doi: 10.1016/j.jcmg.2016.11.009. Leaflet Thrombosis in Surgically Explanted or Post-Mortem TAVR Valv …

Diagnostic accuracy of multidetector computed tomography …

Diagnostic accuracy of multidetector computed tomography coronary angiography in 325 consecutive patients referred for transcatheter aortic valve …

Transcatheter aortic valve implantation in bicuspid anatomy.

Zhao ZG(1), Jilaihawi H(2), Feng Y(1), Chen M(1). Author information: (1)Department of Cardiology, West China Hospital, Sichuan University, 37 Guoxue …

www.ncbi.nlm.nih.gov

Moved Permanently. The document has moved here.

Platelet activation is less enhanced in the new balloon …

Stroke and thromboembolic events after transfemoral aortic valve replacement (TAVR) continue to be a problem. The aim of our study was to compare …

Discover 3D Models | NIH 3D Print Exchange

3dprint.nih.gov/discover?terms=&field_model_category_tag_tid%5B0%5D=93&field_model_license_nid=All&sort_by=created&sort_order=DESC&items_per_page=24&page=2

Discover 3D Models . Back To Top. Search . Enter terms, … 3DPX-007958 Aortic valve sizer for TAVR. ahmedhosny. 3DPX-007884 Fly Pad. Joyner Cruz …

Beyond PARTNER: appraising the evolving trends and …

Beyond PARTNER: appraising the evolving trends and outcomes in transcatheter aortic valve replacement. … TAVR may become an alternative to surgical …

1-Year Outcomes With the Fully Repositionable and …

1. JACC Cardiovasc Interv. 2016 Feb 22;9(4):376-384. doi: 10.1016/j.jcin.2015.10.024. 1-Year Outcomes With the Fully Repositionable and Retrievable …

www.ncbi.nlm.nih.gov

Moved Permanently. The document has moved here.

Beyond PARTNER: appraising the evolving trends and …

Beyond PARTNER: appraising the evolving trends and outcomes in transcatheter aortic valve replacement. … TAVR may become an alternative to surgical …

Echocardiographic imaging of procedural complications …

Echocardiographic imaging of procedural complications during self-expandable transcatheter aortic valve replacement. Hahn RT(1), Gillam LD(2), Little …

Digest – The NIH Record – November 18, 2016

nihrecord.nih.gov/newsletters/2016/11_18_2016/digest.htm

For about 85 percent of patients with this condition, doctors typically perform TAVR through the femoral artery in the leg. But for the other 15 …

Electrocardiographic changes and clinical outcomes after …

Gutiérrez M(1), Rodés-Cabau J, Bagur R, Doyle D, DeLarochellière R, Bergeron S, Lemieux J, Villeneuve J, Côté M, Bertrand OF, Poirier P, Clavel MA …

Coronary Artery Bypass Grafting | National Heart, Lung …

Coronary artery bypass grafting (CABG) is a type of surgery that improves blood flow to the heart. Surgeons use CABG to treat people who have severe …

Heart Surgery | National Heart, Lung, and Blood Institute …

Heart surgery is done to correct problems with the heart. Many heart surgeries are done each year in the United States for various heart problems. The …

Aspirin-clopidogrel no better than aspirin alone for …

NIH study also shows that overall stroke risk is down from 10 years ago. Aspirin combined with the antiplatelet drug clopidogrel is no better than asp …

Heart Valve Disease | National Heart, Lung, and Blood …

Heart valve disease occurs if one or more of your heart valves don’t work well. The heart has four valves: the tricuspid, … (TAVR). For this …

The Odyssey of TAVR from concept to clinical reality.

1. Tex Heart Inst J. 2014 Apr 1;41(2):125-30. doi: 10.14503/THIJ-14-4137. eCollection 2014. The Odyssey of TAVR from concept to clinical reality.

Echo Doppler Estimation of Pulmonary Capillary Wedge …

Echo Doppler Estimation of Pulmonary Capillary Wedge Pressure in Patients with … (TAVR) has become a … Noninvasive quantification of pulmonary …

Aspirin-clopidogrel no better than aspirin alone for …

NIH study also shows that overall stroke risk is down from 10 years ago. Aspirin combined with the antiplatelet drug clopidogrel is no better than asp …

Could late enhancement and need for permanent pacemaker …

Could late enhancement and need for permanent pacemaker implantation in patients undergoing TAVR be explained by undiagnosed transthyretin cardiac …

Diabetes mellitus is associated with increased acute …

However, there are conflicting data on the impact of DM on outcomes of transcatheter aortic valve replacement (TAVR). HYPOTHESIS: …

Cardiac Catheterization | National Heart, Lung, and Blood …

Cardiac catheterization (KATH-eh-ter-ih-ZA-shun) is a medical procedure used to diagnose and treat some heart conditions. A long, thin, flexible tube …

The National Institutes of Health (NIH) Consensus …

consensus.nih.gov/1984/1984FrozenPlasma045html.htm

Fresh Frozen Plasma: Indications and Risks. National Institutes of Health Consensus Development Conference Statement September 24-26, 1984

Successful repair of aortic annulus rupture during …

Successful repair of aortic annulus rupture during transcatheter aortic valve replacement using extracorporeal membrane oxygenation support. Negi …

Pathology of balloon-expandable and self-expanding stents …

1. J Heart Valve Dis. 2015 Mar;24(2):139-47. Pathology of balloon-expandable and self-expandingstents following MRI-guided transapical aortic valve …

Fluoroscopy-guided aortic root imaging for TAVR: “follow …

Fluoroscopy-guided aortic root imaging for TAVR: “follow the right cusp” rule. Kasel AM, Cassese S, Leber AW, von Scheidt W, Kastrati A.

Reply: Aortic Stiffness: Complex Evaluation But Major …

Reply: Aortic Stiffness: Complex Evaluation But Major Prognostic Significance Before TAVR. Yotti R, Bermejo J, Gutiérrez-Ibañes E, …

Ventricular Assist Device | National Heart, Lung, and …

ventricular assist device (VAD) is a mechanical pump that supports heart function and blood flow in people who have weakened hearts.

Severe Symptomatic Aortic Stenosis in Older Adults …

Severe Symptomatic Aortic Stenosis in Older Adults: Pathophysiology, Clinical Manifestations, Treatment Guidelines, and Transcatheter Aortic Valve …

Aortic Stiffness: Complex Evaluation But Major Prognostic …

Aortic Stiffness: Complex Evaluation But Major Prognostic Significance Before TAVR. Harbaoui B, Courand PY, Girerd N, Lantelme P.

www.ncbi.nlm.nih.gov

Moved Permanently. The document has moved here.

Home – MeSH – NCBI

MeSH (Medical Subject Headings) is the NLM controlled vocabulary thesaurus used for indexing articles for PubMed.

Cohen M[author] – PubMed – NCBI

TCT-712 “Cusp Overlap” View Facilitates Accurate Fluoro-Guided Implantation of Self-Expanding Valve in TAVR. Zaid S, Raza A, Michev I, Ahmad H, Kaple …

Incidence and risk factors of hemolysis after …

1. Am J Cardiol. 2015 Jun 1;115(11):1574-9. doi: 10.1016/j.amjcard.2015.02.059. Epub 2015 Mar 12. Incidence and risk factors of hemolysis after …

Insurance Coverage and Clinical Trials – National Cancer …

Insurance Coverage and Clinical Trials. Federal law requires most health insurance plans to cover routine patient care costs in clinical … National …

www.ncbi.nlm.nih.gov

Moved Permanently. The document has moved here.

PARTNER trial data showing superior outcomes from TAVI …

openi.nlm.nih.gov/detailedresult.php?img=PMC3431975_cmc-6-2012-125f4&req=4

PARTNER trial data showing superior outcomes from TAVI vs. standard therapy for death at 1 and 2 years for: (A) death from any cause, and (B) death …

Transthoracic echocardiography guidance for TAVR under …

Transthoracic echocardiography guidance for TAVR under monitored anesthesia care. Sengupta PP, Wiley BM, Basnet S, Rajamanickman A, Kovacic JC …

Incidence and risk factors of hemolysis after …

1. Am J Cardiol. 2015 Jun 1;115(11):1574-9. doi: 10.1016/j.amjcard.2015.02.059. Epub 2015 Mar 12. Incidence and risk factors of hemolysis after …

A year in the life of a cardiologist: an interview with Dr …

Dr Manoharan is the clinical lead for the TAVR programme in Northern Ireland and functions as a Clinical Proctor for the Medtronic CoreValve and the …

Insurance Coverage and Clinical Trials – National Cancer …

Insurance Coverage and Clinical Trials. Federal law requires most health insurance plans to cover routine patient care costs in clinical … National …

Transcatheter aortic valve replacement (TAVR) in patients …

Transcatheter aortic valve replacement (TAVR) in patients with systemic autoimmune diseases. Fuentes-Alexandro S(1), Escarcega R, Garcia-Carrasco M …

Transcatheter versus surgical aortic-valve replacement in …

Transcatheter versus surgical aortic-valve replacement in high-risk patients. Smith CR(1), Leon MB, Mack MJ, Miller DC, Moses JW, Svensson LG, …

Transapical Transcatheter Valve-in-Valve Implantation for …

Transapical Transcatheter Valve-in-Valve Implantation for Failed Mitral Valve Bioprosthesis. … Transcatheter valve-in- valve implantation has been …

Echocardiography – Journals – NCBI

Echocardiography journal page at PubMed Journals. Published by Wiley-Blackwell

Transapical Transcatheter Valve-in-Valve Implantation for …

Transapical Transcatheter Valve-in-Valve Implantation for Failed Mitral Valve Bioprosthesis. … Transcatheter valve-in- valve implantation has been …

Impact of Interaction of Diabetes Mellitus and Impaired …

Impact of Interaction of Diabetes Mellitus and Impaired Renal Function on Prognosis and the Incidence of Acute Kidney Injury in Patients Undergoing …

Frequency of and Prognostic Significance of Atrial …

Frequency of and Prognostic Significance of Atrial Fibrillation in Patients Undergoing Transcatheter Aortic Valve Implantation. Sannino A(1), …

Timing, predictive factors, and prognostic value of …

1. Circulation. 2012 Dec 18;126(25):3041-53. doi: 10.1161/CIRCULATIONAHA.112.110981. Epub 2012 Nov 13. Timing, predictive factors, and prognostic …

www.ncbi.nlm.nih.gov

Moved Permanently. The document has moved here.

AccessGUDID – DEVICE: NA (00643169368873)

accessgudid.nlm.nih.gov/devices/00643169368873

accessgudid – na (00643169368873)- custom pack cb8a42r 2pk tavr pack

Balloon expandable sheath for transfemoral aortic valve …

Balloon expandable sheath for transfemoral aortic valve implantation: a viable option for patients with challenging access. Dimitriadis Z(1), Scholtz …

Staged High-Risk Percutaneous Coronary Intervention with …

The management of concomitant obstructive coronary artery disease and severe aortic stenosis in poor surgical candidates is an evolving topic …

TAVR BMI – PubMed Result

1: Arsalan M, Filardo G, Kim WK, Squiers JJ, Pollock B, Liebetrau C, Blumenstein J, Kempfert J, Van Linden A, Arsalan-Werner A, Hamm C, Mack MJ …

Aortic valve replacement: is porcine or bovine valve better?

Comment in Interact Cardiovasc Thorac Surg. 2013 Mar;16(3):373-4. Interact Cardiovasc Thorac Surg. 2013 Mar;16(3):374. A best evidence topic in …

Can TAVR Make Me Smarter?

Author information: (1)Hôpital du Sacré-Coeur de Montréal, Montréal, Québec, Canada; Morristown Medical Center, Morristown, New Jersey; Cardiovascular …

www.ncbi.nlm.nih.gov

Moved Permanently. The document has moved here.

Transthoracic echocardiography guidance for TAVR under …

Transthoracic echocardiography guidance for TAVR under monitored anesthesia care. Sengupta PP, Wiley BM, Basnet S, Rajamanickman A, Kovacic JC …

Intravenous Adenosine-Based Fractional Flow Reserve in Pre …

1. J Invasive Cardiol. 2016 Sep;28(9):362-3. Intravenous Adenosine-Based Fractional Flow Reserve in Pre-TAVR Assessment of Severe AS: Finally Some …

Intraprocedural TAVR Annulus Sizing Using 3D TEE and the …

Intraprocedural TAVR Annulus Sizing Using 3D TEE and the “Turnaround Rule”. Wiley BM, Kovacic JC, Basnet S, Makoto A, Chaudhry FA, Kini AS, Sharma SK …

Transcatheter versus surgical aortic-valve replacement in …

Transcatheter versus surgical aortic-valve replacement in high-risk patients. Smith CR(1), Leon MB, Mack MJ, Miller DC, Moses JW, Svensson LG, …

Timing, predictive factors, and prognostic value of …

1. Circulation. 2012 Dec 18;126(25):3041-53. doi: 10.1161/CIRCULATIONAHA.112.110981. Epub 2012 Nov 13. Timing, predictive factors, and prognostic …

Reply: Antithrombotic Regimen in Post-TAVR Atrial …

Reply: Antithrombotic Regimen in Post-TAVR Atrial Fibrillation: Not an Easy Decision. Abdul-Jawad Altisent O, Durand E, Muñoz-García AJ, …

A meta-analysis of transfemoral versus transapical …

Zhao A(1), Minhui H(2), Li X(1), Zhiyun X(1). Author information: (1)Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical …

Initial Single-Center Experience With the Fully …

Initial Single-Center Experience With the Fully Repositionable Transfemoral Lotus Aortic Valve System. Jarr KU, Leuschner F, Meder B, Katus HA, …

Predictors for Paravalvular Regurgitation After TAVR With …

Predictors for Paravalvular Regurgitation After TAVR With the Self-Expanding Prosthesis: Quantitative Measurement of MDCT Analysis. Yoon SH, Ahn JM …

Native valve endocarditis due to Streptococcus …

Native valve endocarditis due to Streptococcus vestibularis and Streptococcus oralis. Doyuk E(1), Ormerod OJ, Bowler IC.

Dobutamine stress echocardiography for risk stratification …

Dobutamine stress echocardiography for risk stratification of patients with low-gradient severe aortic stenosis undergoing TAVR. Hayek S, Pibarot P …

www.ncbi.nlm.nih.gov

Moved Permanently. The document has moved here.

Intravenous Adenosine-Based Fractional Flow Reserve in Pre …

1. J Invasive Cardiol. 2016 Sep;28(9):362-3. Intravenous Adenosine-Based Fractional Flow Reserve in Pre-TAVR Assessment of Severe AS: Finally Some …

Postprocedural management of patients after transcatheter …

Postprocedural management of patients after transcatheter aortic valve implantation procedure with self-expanding bioprosthesis. Ussia GP(1), …

diastolic dysfunction – PubMed – NCBI

PubMed comprises more than 26 million citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include …

SOURCE

Read Full Post »


Comparison of four methods in diagnosing acute myocarditis: The diagnostic performance of native T1, T2, ECV to LLC

 

Reporter: Aviva Lev-Ari, PhD, RN

 

Abstract

Background:

The Lake Louise Criteria (LLC) were established in 2009 and are the recommended cardiac magnetic resonance imaging criterion for diagnosing patients with suspected myocarditis. Subsequently, newer parametric imaging techniques which can quantify T1, T2, and the extracellular volume (ECV) have been developed and may provide additional utility in the diagnosis of myocarditis. However, whether their diagnostic accuracy is superior to LLC remains unclear. In this meta-analysis, we compared the diagnostic performance of native T1, T2, ECV to LLC in diagnosing acute myocarditis.

Methods and Results:

We searched PubMed for published studies of LLC, native T1, ECV, and T2 diagnostic criteria used to diagnose acute myocarditis. Seventeen studies were included, with a total of 867 myocarditis patients and 441 control subjects. Pooled sensitivity, specificity, and diagnostic odds ratio of all diagnostic tests were assessed by bivariate analysis. LLC had a pooled sensitivity of 74%, specificity of 86%, and diagnostic odds ratio of 17.7. Native T1 had a significantly higher sensitivity than LLC (85% versus 74%, P=0.025). Otherwise, there was no significant difference in sensitivity, specificity, and diagnostic odds ratio when comparing LLC to native T1, T2, or ECV.

Conclusions:

Native T1, T2, and ECV mapping provide comparable diagnostic performance to LLC. Although only native T1 had significantly better sensitivity than LLC, each technique offers distinct advantages for evaluating and characterizing myocarditis when compared with the LLC.

SOURCE

https://www.ahajournals.org/doi/10.1161/CIRCIMAGING.118.007598

Read Full Post »


CABG: a Superior Revascularization Modality to PCI in Patients with poor LVF, Multivessel disease and Diabetes, Similar Risk of Stroke between 31 days and 5 years, post intervention

Reporter: Aviva Lev-Ari, PhD, RN

 

Lancet Study, 2/2018

Interpretation

CABG had a mortality benefit over PCI in patients with multivessel disease, particularly those with diabetes and higher coronary complexity. No benefit for CABG over PCI was seen in patients with left main disease. Longer follow-up is needed to better define mortality differences between the revascularisation strategies.

JACC Study, 7/2018

CONCLUSIONS

This individual patient-data pooled analysis demonstrates that 5-year stroke rates are significantly lower after PCI compared with CABG, driven by a reduced risk of stroke in the 30-day post-procedural period but a similar risk of stroke between 31 days and 5 years. The greater risk of stroke after CABG compared with PCI was confined to patients with multivessel disease and diabetes. Five-year mortality was markedly higher for patients experiencing a stroke within 30 days after revascularization.

European Journal of Cardiothoracic Surgery Study, 6/2018

CONCLUSIONS

Despite a longer length of hospital stay, patients with impaired LVF requiring intervention for coronary artery disease experienced a greater post-procedural survival benefit if they received CABG compared to PCI. We have demonstrated this at 30 days, 90 days, 1 year, 3 years, 5 years and 8 years following revascularization. At present, CABG remains a superior revascularization modality to PCI in patients with poor LVF.

 

New Studies on Clinical Outcomes from two Revascularization Strategies: CABG and PCI

 

J Am Coll Cardiol. 2018 Jul 24;72(4):386-398. doi: 10.1016/j.jacc.2018.04.071.

Stroke Rates Following Surgical Versus Percutaneous Coronary Revascularization.

Abstract

BACKGROUND:

Coronary artery bypass grafting (CABG) and percutaneous coronary intervention (PCI) are used for coronary revascularization in patients with multivessel and left main coronary artery disease. Stroke is among the most feared complications of revascularization. Due to its infrequency, studies with large numbers of patients are required to detect differences in stroke rates between CABG and PCI.

OBJECTIVES:

This study sought to compare rates of stroke after CABG and PCI and the impact of procedural stroke on long-term mortality.

METHODS:

We performed a collaborative individual patient-data pooled analysis of 11 randomized clinical trials comparing CABG with PCI using stents; ERACI II (Argentine Randomized Study: Coronary Angioplasty With Stenting Versus Coronary Bypass Surgery in Patients With Multiple Vessel Disease) (n = 450), ARTS (Arterial Revascularization Therapy Study) (n = 1,205), MASS II (Medicine, Angioplasty, or Surgery Study) (n = 408), SoS (Stent or Surgery) trial (n = 988), SYNTAX (Synergy Between Percutaneous Coronary Intervention With Taxus and Cardiac Surgery) trial (n = 1,800), PRECOMBAT (Bypass Surgery Versus Angioplasty Using Sirolimus-Eluting Stent in Patients With Left Main Coronary Artery Disease) trial (n = 600), FREEDOM (Comparison of Two Treatments for Multivessel Coronary Artery Disease in Individuals With Diabetes) trial (n = 1,900), VA CARDS (Coronary Artery Revascularization in Diabetes) (n = 198), BEST (Bypass Surgery Versus Everolimus-Eluting Stent Implantation for Multivessel Coronary Artery Disease) (n = 880), NOBLE (Percutaneous Coronary Angioplasty Versus Coronary Artery Bypass Grafting in Treatment of Unprotected Left Main Stenosis) trial (n = 1,184), and EXCEL (Evaluation of Xience Versus Coronary Artery Bypass Surgery for Effectiveness of Left Main Revascularization) trial (n = 1,905). The 30-day and 5-year stroke rates were compared between CABG and PCI using a random effects Cox proportional hazards model, stratified by trial. The impact of stroke on 5-year mortality was explored.

RESULTS:

The analysis included 11,518 patients randomly assigned to PCI (n = 5,753) or CABG (n = 5,765) with a mean follow-up of 3.8 ± 1.4 years during which a total of 293 strokes occurred. At 30 days, the rate of stroke was 0.4% after PCI and 1.1% after CABG (hazard ratio [HR]: 0.33; 95% confidence interval [CI]: 0.20 to 0.53; p < 0.001). At 5-year follow-up, stroke remained significantly lower after PCI than after CABG (2.6% vs. 3.2%; HR: 0.77; 95% CI: 0.61 to 0.97; p = 0.027). Rates of stroke between 31 days and 5 years were comparable: 2.2% after PCI versus 2.1% after CABG (HR: 1.05; 95% CI: 0.80 to 1.38; p = 0.72). No significant interactions between treatment and baseline clinical or angiographic variables for the 5-year rate of stroke were present, except for diabetic patients (PCI: 2.6% vs. CABG: 4.9%) and nondiabetic patients (PCI: 2.6% vs. CABG: 2.4%) (p for interaction = 0.004). Patients who experienced a stroke within 30 days of the procedure had significantly higher 5-year mortality versus those without a stroke, both after PCI (45.7% vs. 11.1%, p < 0.001) and CABG (41.5% vs. 8.9%, p < 0.001).

CONCLUSIONS:

This individual patient-data pooled analysis demonstrates that 5-year stroke rates are significantly lower after PCI compared with CABG, driven by a reduced risk of stroke in the 30-day post-procedural period but a similar risk of stroke between 31 days and 5 years. The greater risk of stroke after CABG compared with PCI was confined to patients with multivessel disease and diabetes. Five-year mortality was markedly higher for patients experiencing a stroke within 30 days after revascularization.

KEYWORDS:

coronary artery bypass graft; left main; mortality; multivessel; percutaneous coronary intervention; stenting; stroke

PMID:
30025574
DOI:
10.1016/j.jacc.2018.04.071

 

Lancet Study

Head SJ, Milojevic M, Daemen J, Ahn JM, Boersma E, Christiansen EH, Domanski MJ, Farkouh ME, Flather M, Fuster V, Hlatky MA, Holm NR, Hueb WA, Kamalesh M, Kim YH, Mäkikallio T, Mohr FW, Papageorgiou G, Park SJ, Rodriguez AE, Sabik JF, Stables RH, Stone GW, Serruys PW, Kappetein AP. Mortality after coronary artery bypass grafting versus percutaneous coronary intervention with stenting for coronary artery disease: a pooled analysis of individual patient data. Lancet. 2018 Feb 22 [Epub ahead of print]. doi: 10.1016/S0140-6736(18)30423-9. PMID: 29478841

Summary

Background

Numerous randomised trials have compared coronary artery bypass grafting (CABG) with percutaneous coronary intervention (PCI) for patients with coronary artery disease. However, no studies have been powered to detect a difference in mortality between the revascularisation strategies.

Methods

We did a systematic review up to July 19, 2017, to identify randomised clinical trials comparing CABG with PCI using stents. Eligible studies included patients with multivessel or left main coronary artery disease who did not present with acute myocardial infarction, did PCI with stents (bare-metal or drug-eluting), and had more than 1 year of follow-up for all-cause mortality. In a collaborative, pooled analysis of individual patient data from the identified trials, we estimated all-cause mortality up to 5 years using Kaplan-Meier analyses and compared PCI with CABG using a random-effects Cox proportional-hazards model stratified by trial. Consistency of treatment effect was explored in subgroup analyses, with subgroups defined according to baseline clinical and anatomical characteristics.

Findings

We included 11 randomised trials involving 11 518 patients selected by heart teams who were assigned to PCI (n=5753) or to CABG (n=5765). 976 patients died over a mean follow-up of 3·8 years (SD 1·4). Mean Synergy between PCI with Taxus and Cardiac Surgery (SYNTAX) score was 26·0 (SD 9·5), with 1798 (22·1%) of 8138 patients having a SYNTAX score of 33 or higher. 5 year all-cause mortality was 11·2% after PCI and 9·2% after CABG (hazard ratio [HR] 1·20, 95% CI 1·06–1·37; p=0·0038). 5 year all-cause mortality was significantly different between the interventions in patients with multivessel disease (11·5% after PCI vs 8·9% after CABG; HR 1·28, 95% CI 1·09–1·49; p=0·0019), including in those with diabetes (15·5% vs 10·0%; 1·48, 1·19–1·84; p=0·0004), but not in those without diabetes (8·7% vs 8·0%; 1·08, 0·86–1·36; p=0·49). SYNTAX score had a significant effect on the difference between the interventions in multivessel disease. 5 year all-cause mortality was similar between the interventions in patients with left main disease (10·7% after PCI vs 10·5% after CABG; 1·07, 0·87–1·33; p=0·52), regardless of diabetes status and SYNTAX score.

Interpretation

CABG had a mortality benefit over PCI in patients with multivessel disease, particularly those with diabetes and higher coronary complexity. No benefit for CABG over PCI was seen in patients with left main disease. Longer follow-up is needed to better define mortality differences between the revascularisation strategies.

SOURCE

European Journal of Cardiothoracic Surgery Study, 6/2018

 

Eur J Cardiothorac Surg. 2018 Jun 22. doi: 10.1093/ejcts/ezy236. [Epub ahead of print]

Comparison of the survival between coronary artery bypass graft surgery versus percutaneous coronary intervention in patients with poor left ventricular function (ejection fraction <30%): a propensity-matched analysis.

Abstract

OBJECTIVES:

Existing evidence comparing the outcomes of coronary artery bypass graft (CABG) surgery versus percutaneous coronary intervention (PCI) in patients with poor left ventricular function (LVF) is sparse and flawed. This is largely due to patients with poor LVF being underrepresented in major research trials and the outdated nature of some studies that do not consider drug-eluting stent PCI.

METHODS:

Following strict inclusion criteria, 717 patients who underwent revascularization by CABG or PCI between 2002 and 2015 were enrolled. All patients had poor LVF (defined by ejection fraction <30%). By employing a propensity score analysis, 134 suitable matches (67 CABG and 67 PCI) were identified. Several outcomes were evaluated, in the matched population, using data extracted from national registry databases.

RESULTS:

CABG patients required a longer length of hospital stay post-revascularization compared to PCI in the propensity-matched population, 7 days (lower-upper quartile; 6-12) and 2 days (lower-upper quartile; 1-6), respectively (Mood’s median test, P = 0.001). Stratified Cox-regression proportional-hazards analysis of the propensity-matched population found that PCI patients experienced a higher adjusted 8-year mortality rate (hazard ratio 3.291, 95% confidence interval 1.776-6.101; P < 0.001). This trend was consistent amongst urgent cases of revascularization: patients with 3 or more vessels with coronary artery disease and patients where complete revascularization was achieved. Although sub-analyses found no difference between survival distributions of on-pump versus off-pump CABG (log-rank P = 0.726), both modes of CABG were superior to PCI (stratified log-rank P = 0.002).

CONCLUSIONS:

Despite a longer length of hospital stay, patients with impaired LVF requiring intervention for coronary artery disease experienced a greater post-procedural survival benefit if they received CABG compared to PCI. We have demonstrated this at 30 days, 90 days, 1 year, 3 years, 5 years and 8 years following revascularization. At present, CABG remains a superior revascularization modality to PCI in patients with poor LVF.

Read Full Post »


Omega-3 fats Supplements Effect on Cardiovascular Health: EPA and DHA has little or no effect on Mortality or Cardiovascular Health

Reporter: Aviva Lev-Ari, PhD, RN

 

Cochrane Database Syst Rev. 2018 Jul 18;7:CD003177. doi: 10.1002/14651858.CD003177.pub3. [Epub ahead of print]

Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease.

Abstract

BACKGROUND:

Researchers have suggested that omega-3 polyunsaturated fatty acids from oily fish (long-chain omega-3 (LCn3), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)), as well as from plants (alpha-linolenic acid (ALA)) benefit cardiovascular health. Guidelines recommend increasing omega-3-rich foods, and sometimes supplementation, but recent trials have not confirmed this.

OBJECTIVES:

To assess effects of increased intake of fish- and plant-based omega-3 for all-cause mortality, cardiovascular (CVD) events, adiposity and lipids.

SEARCH METHODS:

We searched CENTRAL, MEDLINE and Embase to April 2017, plus ClinicalTrials.gov and World Health Organization International Clinical Trials Registry to September 2016, with no language restrictions. We handsearched systematic review references and bibliographies and contacted authors.

SELECTION CRITERIA:

We included randomised controlled trials (RCTs) that lasted at least 12 months and compared supplementation and/or advice to increase LCn3 or ALA intake versus usual or lower intake.

DATA COLLECTION AND ANALYSIS:

Two review authors independently assessed studies for inclusion, extracted data and assessed validity. We performed separate random-effects meta-analysis for ALA and LCn3 interventions, and assessed dose-response relationships through meta-regression.

MAIN RESULTS:

We included 79 RCTs (112,059 participants) in this review update and found that 25 were at low summary risk of bias. Trials were of 12 to 72 months’ duration and included adults at varying cardiovascular risk, mainly in high-income countries. Most studies assessed LCn3 supplementation with capsules, but some used LCn3- or ALA-rich or enriched foods or dietary advice compared to placebo or usual diet.Meta-analysis and sensitivity analyses suggested little or no effect of increasing LCn3 on all-cause mortality (RR 0.98, 95% CI 0.90 to 1.03, 92,653 participants; 8189 deaths in 39 trials, high-quality evidence), cardiovascular mortality (RR 0.95, 95% CI 0.87 to 1.03, 67,772 participants; 4544 CVD deaths in 25 RCTs), cardiovascular events (RR 0.99, 95% CI 0.94 to 1.04, 90,378 participants; 14,737 people experienced events in 38 trials, high-quality evidence), coronary heart disease (CHD) mortality (RR 0.93, 95% CI 0.79 to 1.09, 73,491 participants; 1596 CHD deaths in 21 RCTs), stroke (RR 1.06, 95% CI 0.96 to 1.16, 89,358 participants; 1822 strokes in 28 trials) or arrhythmia (RR 0.97, 95% CI 0.90 to 1.05, 53,796 participants; 3788 people experienced arrhythmia in 28 RCTs). There was a suggestion that LCn3 reduced CHD events (RR 0.93, 95% CI 0.88 to 0.97, 84,301 participants; 5469 people experienced CHD events in 28 RCTs); however, this was not maintained in sensitivity analyses – LCn3 probably makes little or no difference to CHD event risk. All evidence was of moderate GRADE quality, except as noted.Increasing ALA intake probably makes little or no difference to all-cause mortality (RR 1.01, 95% CI 0.84 to 1.20, 19,327 participants; 459 deaths, 5 RCTs),cardiovascular mortality (RR 0.96, 95% CI 0.74 to 1.25, 18,619 participants; 219 cardiovascular deaths, 4 RCTs), and it may make little or no difference to CHD events (RR 1.00, 95% CI 0.80 to 1.22, 19,061 participants, 397 CHD events, 4 RCTs, low-quality evidence). However, increased ALA may slightly reduce risk of cardiovascular events (from 4.8% to 4.7%, RR 0.95, 95% CI 0.83 to 1.07, 19,327 participants; 884 CVD events, 5 RCTs, low-quality evidence), and probably reduces risk of CHD mortality (1.1% to 1.0%, RR 0.95, 95% CI 0.72 to 1.26, 18,353 participants; 193 CHD deaths, 3 RCTs), and arrhythmia (3.3% to 2.6%, RR 0.79, 95% CI 0.57 to 1.10, 4,837 participants; 141 events, 1 RCT). Effects on stroke are unclear.Sensitivity analysis retaining only trials at low summary risk of bias moved effect sizes towards the null (RR 1.0) for all LCn3 primary outcomes except arrhythmias, but for most ALA outcomes, effect sizes moved to suggest protection. LCn3 funnel plots suggested that adding in missing studies/results would move effect sizes towards null for most primary outcomes. There were no dose or duration effects in subgrouping or meta-regression.There was no evidence that increasing LCn3 or ALA altered serious adverse events, adiposity or lipids, although LCn3 slightly reduced triglycerides and increased HDL. ALA probably reduces HDL (high- or moderate-quality evidence).

AUTHORS’ CONCLUSIONS:

This is the most extensive systematic assessment of effects of omega-3 fats on cardiovascular health to date. Moderate- and high-quality evidence suggests that increasing EPA and DHA has little or no effect on mortality or cardiovascular health (evidence mainly from supplement trials). Previous suggestions of benefits from EPA and DHA supplements appear to spring from trials with higher risk of bias. Low-quality evidence suggests ALA may slightly reduce CVD event risk, CHD mortality and arrhythmia.

PMID:
30019766
DOI:
10.1002/14651858.CD003177.pub3

SOURCE

Read Full Post »


Stanford University researchers have developed a scanner that unites optical, radioluminescence, and photoacoustic imaging to evaluate for Thin-Cap Fibro Atheroma (TCFA)

Reporter: Aviva Lev-Ari, RN

 

Early diagnosis and treatment could save lives by preventing the progression, and subsequent rupture, of these plaques. That is precisely why researchers designed the Circumferential-Intravascular-Radioluminescence-Photoacoustic-Imaging (CIRPI) system, which allows not just high-acuity optical imaging via beta-sensitive probe, but also radioluminescent marking inside the artery to determine the extent of inflammation. Photoacoustic imaging also provides information about the often-complex biological makeup of the plaques (how much is calcified or comprised of cholesterol or triglycerides).

SOURCE

https://www.mdtmag.com/news/2017/06/pet-imaging-atherosclerosis-reveals-risk-plaque-rupture?cmpid=horizontalcontent

RELATED READS

Read Full Post »


Two Classes of Antithrombotic Drugs: Anticoagulants and Antiplatelet drugs

Reporter: Aviva Lev-Ari, PhD, RN
These drugs are used to treat
  • strokes,
  • myocardial infarctions,
  • pulmonary embolisms,
  • disseminated intravascular coagulation (DIC) and
  • deep vein thrombosis (DVT)
— all potentially life-threatening conditions.
THERAPEUTIC STRATEGIES
• Degrade fibrinogen/fibrin (fibrinolytic agents)
GOAL: eliminate formed clots
• Inhibit clotting mechanism (anticoagulants)
GOAL: prevent progression of thrombosis
• Interfere either with platelet adhesion and/or aggregation (antiplatelet drugs)
GOAL: prevent initial clot formation
Antithrombotic therapy has had an enormous impact in several significant ways.
  • Heparin has made bypass surgery and dialysis possible by blocking clotting in external tubing.
  • Antithrombotic therapy has reduced the risk of blood clots in leg veins (also known as deep-vein thrombosis or DVT), a condition that can lead to death from pulmonary embolism (a clot that blocks an artery to the lungs) by more than 70 percent. And most importantly,
  • it has markedly reduced death from heart attacks, the risk of stroke in people with heart irregularities (atrial fibrillation), and the risk of major stroke in patients with mini-strokes.

Antithrombotic Therapy

This article was published in December 2008 as part of the special ASH anniversary brochure, 50 Years in Hematology: Research That Revolutionized Patient Care.

Normally, blood flows through our arteries and veins smoothly and efficiently, but if a clot, or thrombus, blocks the smooth flow of blood, the result – called thrombosis – can be serious and even cause death. Diseases arising from clots in blood vessels include heart attack and stroke, among others. These disorders collectively are the most common cause of death and disability in the developed world. We now have an array of drugs that can be used to prevent and treat thrombosis – and there are more on the way – but this was not always the case.

Classes of Antithrombotic Drugs

Image Source: http://www.hematology.org/About/History/50-Years/1523.aspx

The most important components of a thrombus are fibrin and platelets. Fibrin is a protein that forms a mesh that traps red blood cells, while platelets, a type of blood cell, form clumps that add to the mass of the thrombus. Both fibrin and platelets stabilize the thrombus and prevent it from falling apart. Fibrin is the more important component of clots that form in veins, and platelets are the more important component of clots that form in arteries where they can cause heart attacks and strokes by blocking the flow of blood in the heart and brain, respectively, although fibrin plays an important role in arterial thrombosis as well.

There are two classes of antithrombotic drugs: anticoagulants and antiplatelet drugs. Anticoagulants slow down clotting, thereby reducing fibrin formation and preventing clots from forming and growing. Antiplatelet agents prevent platelets from clumping and also prevent clots from forming and growing.

Anticoagulant Drugs

The anticoagulants heparin and dicumarol were discovered by chance, long before we understood how they worked. Heparin was first discovered in 1916 by a medical student at The Johns Hopkins University who was investigating a clotting product from extracts of dog liver and heart. In 1939, dicumarol (the precursor to warfarin) was extracted by a biochemist at the University of Wisconsin from moldy clover brought to him by a farmer whose prize bull had bled to death after eating the clover.

Both of these anticoagulants have been used effectively to prevent clots since 1940. These drugs produce a highly variable anticoagulant effect in patients, requiring their effect to be measured by special blood tests and their dose adjusted according to the results. Heparin acts immediately and is given intravenously (through the veins). Warfarin is swallowed in tablet form, but its anticoagulant effect is delayed for days. Therefore, until recently, patients requiring anticoagulants who were admitted to a hospital were started on a heparin infusion and were then discharged from the hospital after five to seven days on warfarin.

In the 1970s, three different groups of researchers in Stockholm, London, and Hamilton, Ontario, began work on low-molecular-weight heparin (LMWH). LMWH is produced by chemically splitting heparin into one-third of its original size. It has fewer side effects than heparin and produces a more predictable anticoagulant response. By the mid 1980s, LMWH preparations were being tested in clinical trials, and they have now replaced heparin for most indications. Because LMWH is injected subcutaneously (under the skin) in a fixed dose without the need for anticoagulant monitoring, patients can now be treated at home instead of at the hospital.

With the biotechnology revolution has come genetically engineered “designer” anticoagulant molecules that target specific clotting enzymes. Anti-clotting substances and their DNA were also extracted from an array of exotic creatures (ticks, leeches, snakes, and vampire bats) and converted into drugs by chemical synthesis or genetic engineering. Structural chemists next began to fabricate small molecules designed to fit into the active component of clotting enzymes, like a key into a lock.

The first successful synthetic anticoagulants were fondaparinux and bivalirudin. Bivalirudin, a synthetic molecule based on the structure of hirudin (the anti-clotting substance found in leeches), is an effective treatment for patients with heart attacks. Fondaparinux is a small molecule whose structure is based on the active component of the much larger LMWH and heparin molecules. It has advantages over LMWH and heparin and has recently been approved by the FDA. Newer designer drugs that target single clotting factors and that can be taken by mouth are undergoing clinical testing. If successful, we will have safer and more convenient replacements for warfarin, the only oral anticoagulant available for more than 60 years.

Antiplatelet Drugs

Blood platelets are inactive until damage to blood vessels or blood coagulation causes them to explode into sticky irregular cells that clump together and form a thrombus. The first antiplatelet drug was aspirin, which has been used to relieve pain for more than 100 years. In the mid-1960s, scientists showed that aspirin prevented platelets from clumping, and subsequent clinical trials showed that it reduces the risk of stroke and heart attack. In 1980, researchers showed that aspirin in very low doses (much lower than that required to relieve a headache) blocked the production of a chemical in platelets that is required for platelet clumping. During that time, better understanding of the process of platelet clumping allowed the development of designer antiplatelet drugs directed at specific targets. We now have more potent drugs, such as clopidogrel, dipyridamole, and abciximab. These drugs are used with aspirin and effectively prevent heart attack and stroke; they also prolong the lives of patients who have already had a heart attack.

SOURCE 
Anticoagulation Drugs:
  • heparin (FONDAPARINUX HEPARIN (Calciparine, Hepathrom, Lipo-Hepin, Liquaemin, Panheprin)
  • warfarin – 4-HYDROXYCOUMARIN (Coumadin) WARFARIN (Athrombin-K, Panwarfin)
  • rivaroxaban (Xarelto)
  • dabigatran (Pradaxa)
  • apixaban (Eliquis)
  • edoxaban (Savaysa)
  • enoxaparin (Lovenox)
  • fondaparinux (Arixtra)
  • ARGATROBAN BIVALIRUDIN (Angiomax)
  • DALTEPARIN (Fragmin)
  • DROTRECOGIN ALFA (ACTIVATED PROTEIN C) (Xigris)
  • HIRUDIN (Desirudin)
  • LEPIRUDIN (Refludan)
  • XIMELAGATRAN (Exanta)

ANTIDOTES

  • PHYTONADIONE (Vitamin K1)
  • PROTAMINE SULFATE AMINOCAPROIC ACID (EACA) (generic, Amicar) (in bleeding disorders)
Antiplatelet Drugs
  • ACETYL SALICYLIC ACID (aspirin) 
  • clopidogrel (Plavix)
  • dipyridamole (Persantine)
  • abciximab (Centocor)
  • EPTIFIBATIDE (Integrilin)
  • TICLOPIDINE (Ticlid)
  • TIROFIBAN (Aggrastat)

THROMBOLYTICS

  1. ANISTREPLASE (APSAC; Eminase)
  2. STREPTOKINASE (Streptase, Kabikinase)
  3. TISSUE PLASMINOGEN ACTIVATORS (tPAs):
  • ALTEPLASE (Activase),
  • RETEPLASE (Retavase),
  • TENECTEPLASE (TNKase)
  • UROKINASE (Abbokinase)

Fibrinolytic Drugs

Fibrinolytic therapy is used in selected patients with venous thromboembolism. For example, patients with massive or submassive PE can benefit from systemic or catheter-directed fibrinolytic therapy. The latter can also be used as an adjunct to anticoagulants for treatment of patients with extensive iliofemoral-vein thrombosis.

Arterial and venous thrombi are composed of platelets and fibrin, but the proportions differ.

  • Arterial thrombi are rich in platelets because of the high shear in the injured arteries. In contrast,
  • venous thrombi, which form under low shear conditions, contain relatively few platelets and are predominantly composed of fibrin and trapped red cells.
  • Because of the predominance of platelets, arterial thrombi appear white, whereas venous thrombi are red in color, reflecting the trapped red cells.

SOURCE

Read Full Post »

Older Posts »