Feeds:
Posts
Comments

Archive for the ‘Translational Science’ Category

Science Has A Systemic Problem, Not an Innovation Problem

Curator: Stephen J. Williams, Ph.D.

    A recent email, asking me to submit a survey, got me thinking about the malaise that scientists and industry professionals frequently bemoan: that innovation has been stymied for some reason and all sorts of convuluted processes must be altered to spur this mythical void of great new discoveries…..  and it got me thinking about our current state of science, and what is the perceived issue… and if this desert of innovation actually exists or is more a fundamental problem which we have created.

The email was from an NIH committee asking for opinions on recreating the grant review process …. now this on the same day someone complained to me about a shoddy and perplexing grant review they received.

The following email, which was sent out to multiple researchers, involved in either NIH grant review on both sides, as well as those who had been involved in previous questionnaires and studies on grant review and bias.  The email asked for researchers to fill out a survey on the grant review process, and how to best change it to increase innovation of ideas as well as inclusivity.  In recent years, there have been multiple survey requests on these matters, with multiple confusing procedural changes to grant format and content requirements, adding more administrative burden to scientists.

The email from Center for Scientific Review (one of the divisions a grant will go to before review {they set up review study sections and decide what section a grant should be  assigned to} was as follows:

Update on Simplifying Review Criteria: A Request for Information

https://www.csr.nih.gov/reviewmatters/2022/12/08/update-on-simplifying-review-criteria-a-request-for-information/

NIH has issued a request for information (RFI) seeking feedback on revising and simplifying the peer review framework for research project grant applications. The goal of this effort is to facilitate the mission of scientific peer review – identification of the strongest, highest-impact research. The proposed changes will allow peer reviewers to focus on scientific merit by evaluating 1) the scientific impact, research rigor, and feasibility of the proposed research without the distraction of administrative questions and 2) whether or not appropriate expertise and resources are available to conduct the research, thus mitigating the undue influence of the reputation of the institution or investigator.

Currently, applications for research project grants (RPGs, such as R01s, R03s, R15s, R21s, R34s) are evaluated based on five scored criteria: Significance, Investigators, Innovation, Approach, and Environment (derived from NIH peer review regulations 42 C.F.R. Part 52h.8; see Definitions of Criteria and Considerations for Research Project Grant Critiques for more detail) and a number of additional review criteria such as Human Subject Protections.

NIH gathered input from the community to identify potential revisions to the review framework. Given longstanding and often-heard concerns from diverse groups, CSR decided to form two working groups to the CSR Advisory Council—one on non-clinical trials and one on clinical trials. To inform these groups, CSR published a Review Matters blog, which was cross-posted on the Office of Extramural Research blog, Open Mike. The blog received more than 9,000 views by unique individuals and over 400 comments. Interim recommendations were presented to the CSR Advisory Council in a public forum (March 2020 videoslides; March 2021 videoslides). Final recommendations from the CSRAC (report) were considered by the major extramural committees of the NIH that included leadership from across NIH institutes and centers. Additional background information can be found here. This process produced many modifications and the final proposal presented below. Discussions are underway to incorporate consideration of a Plan for Enhancing Diverse Perspectives (PEDP) and rigorous review of clinical trials RPGs (~10% of RPGs are clinical trials) within the proposed framework.

Simplified Review Criteria

NIH proposes to reorganize the five review criteria into three factors, with Factors 1 and 2 receiving a numerical score. Reviewers will be instructed to consider all three factors (Factors 1, 2 and 3) in arriving at their Overall Impact Score (scored 1-9), reflecting the overall scientific and technical merit of the application.

  • Factor 1: Importance of the Research (Significance, Innovation), numerical score (1-9)
  • Factor 2: Rigor and Feasibility (Approach), numerical score (1-9)
  • Factor 3: Expertise and Resources (Investigator, Environment), assessed and considered in the Overall Impact Score, but not individually scored

Within Factor 3 (Expertise and Resources), Investigator and Environment will be assessed in the context of the research proposed. Investigator(s) will be rated as “fully capable” or “additional expertise/capability needed”. Environment will be rated as “appropriate” or “additional resources needed.” If a need for additional expertise or resources is identified, written justification must be provided. Detailed descriptions of the three factors can be found here.

Now looking at some of the Comments were very illuminating:

I strongly support streamlining the five current main review criteria into three, and the present five additional criteria into two. This will bring clarity to applicants and reduce the workload on both applicants and reviewers. Blinding reviewers to the applicants’ identities and institutions would be a helpful next step, and would do much to reduce the “rich-getting-richer” / “good ole girls and good ole boys” / “big science” elitism that plagues the present review system, wherein pedigree and connections often outweigh substance and creativity.

I support the proposed changes. The shift away from “innovation” will help reduce the tendency to create hype around a proposed research direction. The shift away from Investigator and Environment assessments will help reduce bias toward already funded investigators in large well-known institutions.

As a reviewer for 5 years, I believe that the proposed changes are a step in the right direction, refocusing the review on whether the science SHOULD be done and whether it CAN BE DONE WELL, while eliminating burdensome and unhelpful sections of review that are better handled administratively. I particularly believe that the de-emphasis of innovation (which typically focuses on technical innovation) will improve evaluation of the overall science, and de-emphasis of review of minor technical details will, if implemented correctly, reduce the “downward pull” on scores for approach. The above comments reference blinded reviews, but I did not see this in the proposed recommendations. I do not believe this is a good idea for several reasons: 1) Blinding of the applicant and institution is not likely feasible for many of the reasons others have described (e.g., self-referencing of prior work), 2) Blinding would eliminate the potential to review investigators’ biosketches and budget justifications, which are critically important in review, 3) Making review blinded would make determination of conflicts of interest harder to identify and avoid, 4) Evaluation of “Investigator and Environment” would be nearly impossible.

Most of the Comments were in favor of the proposed changes, however many admitted that it adds additional confusion on top of many administrative changes to formats and content of grant sections.

Being a Stephen Covey devotee, and just have listened to  The Four Principles of Execution, it became more apparent that issues that hinder many great ideas coming into fruition, especially in science, is a result of these systemic or problems in the process, not at the level of individual researchers or small companies trying to get their innovations funded or noticed.  In summary, Dr. Covey states most issues related to the success of any initiative is NOT in the strategic planning, but in the failure to adhere to a few EXECUTION principles.  Primary to these failures of strategic plans is lack of accounting of what Dr. Covey calls the ‘whirlwind’, or those important but recurring tasks that take us away from achieving the wildly important goals.  In addition, lack of  determining lead and lag measures of success hinder such plans.

In this case a lag measure in INNOVATION.  It appears we have created such a whirlwind and focus on lag measures that we are incapable of translating great discoveries into INNOVATION.

In the following post, I will focus on issues relating to Open Access, publishing and dissemination of scientific discovery may be costing us TIME to INNOVATION.  And it appears that there are systemic reasons why we appear stuck in a rut, so to speak.

The first indication is from a paper published by Johan Chu and James Evans in 2021 in PNAS:

 

Slowed canonical progress in large fields of science

Chu JSG, Evans JA. Slowed canonical progress in large fields of science. Proc Natl Acad Sci U S A. 2021 Oct 12;118(41):e2021636118. doi: 10.1073/pnas.2021636118. PMID: 34607941; PMCID: PMC8522281

 

Abstract

In many academic fields, the number of papers published each year has increased significantly over time. Policy measures aim to increase the quantity of scientists, research funding, and scientific output, which is measured by the number of papers produced. These quantitative metrics determine the career trajectories of scholars and evaluations of academic departments, institutions, and nations. Whether and how these increases in the numbers of scientists and papers translate into advances in knowledge is unclear, however. Here, we first lay out a theoretical argument for why too many papers published each year in a field can lead to stagnation rather than advance. The deluge of new papers may deprive reviewers and readers the cognitive slack required to fully recognize and understand novel ideas. Competition among many new ideas may prevent the gradual accumulation of focused attention on a promising new idea. Then, we show data supporting the predictions of this theory. When the number of papers published per year in a scientific field grows large, citations flow disproportionately to already well-cited papers; the list of most-cited papers ossifies; new papers are unlikely to ever become highly cited, and when they do, it is not through a gradual, cumulative process of attention gathering; and newly published papers become unlikely to disrupt existing work. These findings suggest that the progress of large scientific fields may be slowed, trapped in existing canon. Policy measures shifting how scientific work is produced, disseminated, consumed, and rewarded may be called for to push fields into new, more fertile areas of study.

So the Summary of this paper is

  • The authors examined 1.8 billion citations among 90 million papers over 241 subjects
  • found the corpus of papers do not lead to turnover of new ideas in a field, but rather the ossification or entrenchment of canonical (or older ideas)
  • this is mainly due to older paper cited more frequently than new papers with new ideas, potentially because authors are trying to get their own papers cited more frequently for funding and exposure purposes
  • The authors suggest that “fundamental progress may be stymied if quantitative growth of scientific endeavors is not balanced by structures fostering disruptive scholarship and focusing attention of novel ideas”

The authors note that, in most cases, science policy reinforces this “more is better” philosophy”,  where metrics of publication productivity are either number of publications or impact measured by citation rankings.  However, using an analysis of citation changes occurring in large versus smaller fields, it becomes apparent that this process is favoring the older, more established papers and a recirculating of older canonical ideas.

“Rather than resulting in faster turnover of field paradigms, the massive amounts of new publications entrenches the ideas of top-cited papers.”  New ideas are pushed down to the bottom of the citation list and potentially lost in the literature.  The authors suggest that this problem will intensify as the “annual mass” of new publications in each field grows, especially in large fields.  This issue is exacerbated by the deluge on new online ‘open access’ journals, in which authors would focus on citing the more highly cited literature. 

We maybe at a critical junction, where if many papers are published in a short time, new ideas will not be considered as carefully as the older ideas.  In addition,

with proliferation of journals and the blurring of journal hierarchies due to online articles-level access can exacerbate this problem

As a counterpoint, the authors do note that even though many molecular biology highly cited articles were done in 1976, there has been extremely much innovation since then however it may take a lot more in experiments and money to gain the level of citations that those papers produced, and hence a lower scientific productivity.

This issue is seen in the field of economics as well

Ellison, Glenn. “Is peer review in decline?” Economic Inquiry, vol. 49, no. 3, July 2011, pp. 635+. Gale Academic OneFile, link.gale.com/apps/doc/A261386330/AONE?u=temple_main&sid=bookmark-AONE&xid=f5891002. Accessed 12 Dec. 2022.

Abstract

Over the past decade, there has been a decline in the fraction of papers in top economics journals written by economists from the highest-ranked economics departments. This paper documents this fact and uses additional data on publications and citations to assess various potential explanations. Several observations are consistent with the hypothesis that the Internet improves the ability of high-profile authors to disseminate their research without going through the traditional peer-review process. (JEL A14, 030)

The facts part of this paper documents two main facts:

1. Economists in top-ranked departments now publish very few papers in top field journals. There is a marked decline in such publications between the early 1990s and early 2000s.

2. Comparing the early 2000s with the early 1990s, there is a decline in both the absolute number of papers and the share of papers in the top general interest journals written by Harvard economics department faculty.

Although the second fact just concerns one department, I see it as potentially important to understanding what is happening because it comes at a time when Harvard is widely regarded (I believe correctly) as having ascended to the top position in the profession.

The “decline-of-peer-review” theory I allude to in the title is that the necessity of going through the peer-review process has lessened for high-status authors: in the old days peer-reviewed journals were by far the most effective means of reaching readers, whereas with the growth of the Internet high-status authors can now post papers online and exploit their reputation to attract readers.

Many alternate explanations are possible. I focus on four theories: the decline-in-peer-review theory and three alternatives.

1. The trends could be a consequence of top-school authors’ being crowded out of the top journals by other researchers. Several such stories have an optimistic message, for example, there is more talent entering the profession, old pro-elite biases are being broken down, more schools are encouraging faculty to do cutting-edge research, and the Internet is enabling more cutting-edge research by breaking down informational barriers that had hampered researchers outside the top schools. (2)

2. The trends could be a consequence of the growth of revisions at economics journals discussed in Ellison (2002a, 2002b). In this more pessimistic theory, highly productive researchers must abandon some projects and/or seek out faster outlets to conserve the time now required to publish their most important works.

3. The trends could simply reflect that field journals have declined in quality in some relative sense and become a less attractive place to publish. This theory is meant to encompass also the rise of new journals, which is not obviously desirable or undesirable.

The majority of this paper is devoted to examining various data sources that provide additional details about how economics publishing has changed over the past decade. These are intended both to sharpen understanding of the facts to be explained and to provide tests of auxiliary predictions of the theories. Two main sources of information are used: data on publications and data on citations. The publication data include department-level counts of publications in various additional journals, an individual-level dataset containing records of publications in a subset of journals for thousands of economists, and a very small dataset containing complete data on a few authors’ publication records. The citation data include citations at the paper level for 9,000 published papers and less well-matched data that is used to construct measures of citations to authors’ unpublished works, to departments as a whole, and to various journals.

Inside Job or Deep Impact? Extramural Citations and the Influence of Economic Scholarship

Josh Angrist, Pierre Azoulay, Glenn Ellison, Ryan Hill, Susan Feng Lu. Inside Job or Deep Impact? Extramural Citations and the Influence of Economic Scholarship.

JOURNAL OF ECONOMIC LITERATURE

VOL. 58, NO. 1, MARCH 2020

(pp. 3-52)

So if innovation is there but it may be buried under the massive amount of heavily cited older literature, do we see evidence of this in other fields like medicine?

Why Isn’t Innovation Helping Reduce Health Care Costs?

 
 

National health care expenditures (NHEs) in the United States continue to grow at rates outpacing the broader economy: Inflation- and population-adjusted NHEs have increased 1.6 percent faster than the gross domestic product (GDP) between 1990 and 2018. US national health expenditure growth as a share of GDP far outpaces comparable nations in the Organization for Economic Cooperation and Development (17.2 versus 8.9 percent).

Multiple recent analyses have proposed that growth in the prices and intensity of US health care services—rather than in utilization rates or demographic characteristics—is responsible for the disproportionate increases in NHEs relative to global counterparts. The consequences of ever-rising costs amid ubiquitous underinsurance in the US include price-induced deferral of care leading to excess morbidity relative to comparable nations.

These patterns exist despite a robust innovation ecosystem in US health care—implying that novel technologies, in isolation, are insufficient to bend the health care cost curve. Indeed, studies have documented that novel technologies directly increase expenditure growth.

Why is our prolific innovation ecosystem not helping reduce costs? The core issue relates to its apparent failure to enhance net productivity—the relative output generated per unit resource required. In this post, we decompose the concept of innovation to highlight situations in which inventions may not increase net productivity. We begin by describing how this issue has taken on increased urgency amid resource constraints magnified by the COVID-19 pandemic. In turn, we describe incentives for the pervasiveness of productivity-diminishing innovations. Finally, we provide recommendations to promote opportunities for low-cost innovation.

 

 

Net Productivity During The COVID-19 Pandemic

The issue of productivity-enhancing innovation is timely, as health care systems have been overwhelmed by COVID-19. Hospitals in Italy, New York City, and elsewhere have lacked adequate capital resources to care for patients with the disease, sufficient liquidity to invest in sorely needed resources, and enough staff to perform all of the necessary tasks.

The critical constraint in these settings is not technology: In fact, the most advanced technology required to routinely treat COVID-19—the mechanical ventilator—was invented nearly 100 years ago in response to polio (the so-called iron lung). Rather, the bottleneck relates to the total financial and human resources required to use the technology—the denominator of net productivity. The clinical implementation of ventilators has been illustrative: Health care workers are still required to operate ventilators on a nearly one-to-one basis, just like in the mid-twentieth century. 

High levels of resources required for implementation of health care technologies constrain the scalability of patient care—such as during respiratory disease outbreaks such as COVID-19. Thus, research to reduce health care costs is the same kind of research we urgently require to promote health care access for patients with COVID-19.

Types Of Innovation And Their Relationship To Expenditure Growth

The widespread use of novel medical technologies has been highlighted as a central driver of NHE growth in the US. We believe that the continued expansion of health care costs is largely the result of innovation that tends to have low productivity (exhibit 1). We argue that these archetypes—novel widgets tacked on to existing workflows to reinforce traditional care models—are exactly the wrong properties to reduce NHEs at the systemic level.

Exhibit 1: Relative productivity of innovation subtypes

Source: Authors’ analysis.

Content Versus Process Innovation

Content (also called technical) innovation refers to the creation of new widgets, such as biochemical agents, diagnostic tools, or therapeutic interventions. Contemporary examples of content innovation include specialty pharmaceuticalsmolecular diagnostics, and advanced interventions and imaging.

These may be contrasted with process innovations, which address the organized sequences of activities that implement content. Classically, these include clinical pathways and protocols. They can address the delivery of care for acute conditions, such as central line infections, sepsis, or natural disasters. Alternatively, they can target chronic conditions through initiatives such as team-based management of hypertension and hospital-at-home models for geriatric care. Other processes include hiring staffdelegating labor, and supply chain management.

Performance-Enhancing Versus Cost-Reducing Innovation

Performance-enhancing innovations frequently create incremental outcome gains in diagnostic characteristics, such as sensitivity or specificity, or in therapeutic characteristics, such as biomarkers for disease status. Their performance gains often lead to higher prices compared to existing alternatives.  

Performance-enhancing innovations can be compared to “non-inferior” innovations capable of achieving outcomes approximating those of existing alternatives, but at reduced cost. Industries outside of medicine, such as the computing industry, have relied heavily on the ability to reduce costs while retaining performance.

In health care though, this pattern of innovation is rare. Since passage of the 2010 “Biosimilars” Act aimed at stimulating non-inferior innovation and competition in therapeutics markets, only 17 agents have been approved, and only seven have made it to market. More than three-quarters of all drugs receiving new patents between 2005 and 2015 were “reissues,” meaning they had already been approved, and the new patent reflected changes to the previously approved formula. Meanwhile, the costs of approved drugs have increased over time, at rates between 4 percent and 7 percent annually.

Moreover, the preponderance of performance-enhancing diagnostic and therapeutic innovations tend to address narrow patient cohorts (such as rare diseases or cancer subtypes), with limited clear clinical utility in broader populations. For example, the recently approved eculizimab is a monoclonal antibody approved for paroxysmal nocturnal hemoglobinuria—which effects 1 in 10 million individuals. At the time of its launch, eculizimab was priced at more than $400,000 per year, making it the most expensive drug in modern history. For clinical populations with no available alternatives, drugs such as eculizimab may be cost-effective, pending society’s willingness to pay, and morally desirable, given a society’s values. But such drugs are certainly not cost-reducing.

Additive Versus Substitutive Innovation

Additive innovations are those that append to preexisting workflows, while substitutive innovations reconfigure preexisting workflows. In this way, additive innovations increase the use of precedent services, whereas substitutive innovations decrease precedent service use.

For example, previous analyses have found that novel imaging modalities are additive innovations, as they tend not to diminish use of preexisting modalities. Similarly, novel procedures tend to incompletely replace traditional procedures. In the case of therapeutics and devices, off-label uses in disease groups outside of the approved indication(s) can prompt innovation that is additive. This is especially true, given that off-label prescriptions classically occur after approved methods are exhausted.

Eculizimab once again provides an illustrative example. As of February 2019, the drug had been used for 39 indications (it had been approved for three of those, by that time), 69 percent of which lacked any form of evidence of real-world effectiveness. Meanwhile, the drug generated nearly $4 billion in sales in 2019. Again, these expenditures may be something for which society chooses to pay—but they are nonetheless additive, rather than substitutive.

Sustaining Versus Disruptive Innovation

Competitive market theory suggests that incumbents and disruptors innovate differently. Incumbents seek sustaining innovations capable of perpetuating their dominance, whereas disruptors pursue innovations capable of redefining traditional business models.

In health care, while disruptive innovations hold the potential to reduce overall health expenditures, often they run counter to the capabilities of market incumbents. For example, telemedicine can deliver care asynchronously, remotely, and virtually, but large-scale brick-and-mortar medical facilities invest enormous capital in the delivery of synchronous, in-house, in-person care (incentivized by facility fees).

The connection between incumbent business models and the innovation pipeline is particularly relevant given that 58 percent of total funding for biomedical research in the US is now derived from private entities, compared with 46 percent a decade prior. It follows that the growing influence of eminent private organizations may favor innovations supporting their market dominance—rather than innovations that are societally optimal.

Incentives And Repercussions Of High-Cost Innovation

Taken together, these observations suggest that innovation in health care is preferentially designed for revenue expansion rather than for cost reduction. While offering incremental improvements in patient outcomes, therefore creating theoretical value for society, these innovations rarely deliver incremental reductions in short- or long-term costs at the health system level.

For example, content-based, performance-enhancing, additive, sustaining innovations tend to add layers of complexity to the health care system—which in turn require additional administration to manage. The net result is employment growth in excess of outcome improvement, leading to productivity losses. This gap leads to continuously increasing overall expenditures in turn passed along to payers and consumers.

Nonetheless, high-cost innovations are incentivized across health care stakeholders (exhibit 2). From the supply side of innovation, for academic researchers, “breakthrough” and “groundbreaking” innovations constitute the basis for career advancement via funding and tenure. This is despite stakeholders’ frequent inability to generalize early successes to become cost-effective in the clinical setting. As previously discussed, the increasing influence of private entities in setting the medical research agenda is also likely to stimulate innovation benefitting single stakeholders rather than the system.

Exhibit 2: Incentives promoting low-value innovation

Source: Authors’ analysis adapted from Hofmann BM. Too much technology. BMJ. 2015 Feb 16.

From the demand side of innovation (providers and health systems), a combined allure (to provide “cutting-edge” patient care), imperative (to leave “no stone unturned” in patient care), and profit-motive (to amplify fee-for-service reimbursements) spur participation in a “technological arms-race.” The status quo thus remains as Clay Christensen has written: “Our major health care institutions…together overshoot the level of care actually needed or used by the vast majority of patients.”

Christensen’s observations have been validated during the COVID-19 epidemic, as treatment of the disease requires predominantly century-old technology. By continually adopting innovation that routinely overshoots the needs of most patients, layer by layer, health care institutions are accruing costs that quickly become the burden of society writ large.

Recommendations To Reduce The Costs Of Health Care Innovation

Henry Aaron wrote in 2002 that “…the forces that have driven up costs are, if anything, intensifying. The staggering fecundity of biomedical research is increasing…[and] always raises expenditures.” With NHEs spiraling ever-higher, urgency to “bend the cost curve” is mounting. Yet, since much biomedical innovation targets the “flat of the [productivity] curve,” alternative forms of innovation are necessary.

The shortcomings in net productivity revealed by the COVID-19 pandemic highlight the urgent need for redesign of health care delivery in this country, and reevaluation of the innovation needed to support it. Specifically, efforts supporting process redesign are critical to promote cost-reducing, substitutive innovations that can inaugurate new and disruptive business models.

Process redesign rarely involves novel gizmos, so much as rejiggering the wiring of, and connections between, existing gadgets. It targets operational changes capable of streamlining workflows, rather than technical advancements that complicate them. As described above, precisely these sorts of “frugal innovations” have led to productivity improvements yielding lower costs in other high-technology industries, such as the computing industry.

Shrank and colleagues recently estimated that nearly one-third of NHEs—almost $1 trillion—were due to preventable waste. Four of the six categories of waste enumerated by the authors—failure in care delivery, failure in care coordination, low-value care, and administrative complexity—represent ripe targets for process innovation, accounting for $610 billion in waste annually, according to Shrank.

Health systems adopting process redesign methods such as continuous improvement and value-based management have exhibited outcome enhancement and expense reduction simultaneously. Internal processes addressed have included supply chain reconfiguration, operational redesign, outlier reconciliation, and resource standardization.

Despite the potential of process innovation, focus on this area (often bundled into “health services” or “quality improvement” research) occupies only a minute fraction of wallet- or mind-share in the biomedical research landscape, accounting for 0.3 percent of research dollars in medicine. This may be due to a variety of barriers beyond minimal funding. One set of barriers is academic, relating to negative perceptions around rigor and a lack of outlets in which to publish quality improvement research. To achieve health care cost containment over the long term, this dimension of innovation must be destigmatized relative to more traditional manners of innovation by the funders and institutions determining the conditions of the research ecosystem.

Another set of barriers is financial: Innovations yielding cost reduction are less “reimbursable” than are innovations fashioned for revenue expansion. This is especially the case in a fee-for-service system where reimbursement is tethered to cost, which creates perverse incentives for health care institutions to overlook cost increases. However, institutions investing in low-cost innovation will be well-positioned in a rapidly approaching future of value-based care—in which the solvency of health care institutions will rely upon their ability to provide economically efficient care.

Innovating For Cost Control Necessitates Frugality Over Novelty

Restraining US NHEs represents a critical step toward health promotion. Innovation for innovation’s sake—that is content-based, incrementally effective, additive, and sustaining—is unlikely to constrain continually expanding NHEs.

In contrast, process innovation offers opportunities to reduce costs while maintaining high standards of patient care. As COVID-19 stress-tests health care systems across the world, the importance of cost control and productivity amplification for patient care has become apparent.

As such, frugality, rather than novelty, may hold the key to health care cost containment. Redesigning the innovation agenda to stem the tide of ever-rising NHEs is an essential strategy to promote widespread access to care—as well as high-value preventive care—in this country. In the words of investors across Silicon Valley: Cost-reducing innovation is no longer a “nice-to-have,” but a “need-to-have” for the future of health and overall well-being this country.

So Do We Need A New Way of Disseminating Scientific Information?  Can Curation Help?

We had high hopes for Science 2.0, in particular the smashing of data and knowledge silos. However the digital age along with 2.0 platforms seemed to excaccerbate this somehow. We still are critically short on analysis!



Old Science 1.0 is still the backbone of all scientific discourse, built on the massive amount of experimental and review literature. However this literature was in analog format, and we moved to a more accesible digital open access format for both publications as well as raw data. However as there was a structure for 1.0, like the Dewey decimal system and indexing, 2.0 made science more accesible and easier to search due to the newer digital formats. Yet both needed an organizing structure; for 1.0 that was the scientific method of data and literature organization with libraries as the indexers. In 2.0 this relied on an army mostly of volunteers who did not have much in the way of incentivization to co-curate and organize the findings and massive literature.



The Intenet and the Web is rapidly adopting a new “Web 3.0” format, with decentralized networks, enhanced virtual experiences, and greater interconnection between people. Here we start the discussion what will the move from Science 2.0, where dissemination of scientific findings was revolutionized and piggybacking on Web 2.0 or social media, to a Science 3.0 format. And what will it involve or what paradigms will be turned upside down?

We have discussed this in other posts such as

Will Web 3.0 Do Away With Science 2.0? Is Science Falling Behind?

and

Curation Methodology – Digital Communication Technology to mitigate Published Information Explosion and Obsolescence in Medicine and Life Sciences

For years the pharmaceutical industry has toyed with the idea of making innovation networks and innovation hubs

It has been the main focus of whole conferences

Tales from the Translational Frontier – Four Unique Approaches to Turning Novel Biology into Investable Innovations @BIOConvention #BIO2018

However it still seems these strategies have not worked

Is it because we did not have an Execution plan? Or we did not understand the lead measures for success?

Other Related Articles on this Open Access Scientific Journal Include:

Old Industrial Revolution Paradigm of Education Needs to End: How Scientific Curation Can Transform Education

Analysis of Utilizing LPBI Group’s Scientific Curation Platform as an Educational Tool: New Paradigm for Student Engagement

Global Alliance for Genomics and Health Issues Guidelines for Data Siloing and Sharing

Multiple Major Scientific Journals Will Fully Adopt Open Access Under Plan S

eScientific Publishing a Case in Point: Evolution of Platform Architecture Methodologies and of Intellectual Property Development (Content Creation by Curation) Business Model 

Read Full Post »

Cancer Policy Related News from Washington DC and New NCI Appointments

Reportor: Stephen J. Williams, PhD.

Biden to announce appointees to Cancer Panel, part of initiative to cut death rate

The president first launched the initiative in 2016 as vice president.

By Mary Kekatos

July 13, 2022, 3:00 PM

Share

1:50

about:blank

America This Morning

America This Morning

President Joe Biden will announce Wednesday his appointees to the President’s Cancer Panel, ABC News can exclusively reveal.

The Cancer Panel is part of Biden’s Cancer Moonshot Initiative, which was relaunched in February, with a goal of slashing the national cancer death rate by 50% over the next 25 years.MORE: Biden relaunches cancer ‘moonshot’ initiative to help cut death rate

Biden will appoint Dr. Elizabeth Jaffee, Dr. Mitchel Berger and Dr. Carol Brown to the panel, which will advise him and the White House on how to use resources of the federal government to advance cancer research and reduce the burden of cancer in the United States.

Jaffee, who will serve as chair of the panel, is an expert in cancer immunology and pancreatic cancer, according to the White House. She is currently the deputy director of the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University and previously led the American Association for Cancer Research.

PHOTO: In this Sept. 8, 2016, file photo, Dr. Elizabeth M. Jaffee of the Pancreatic Dream Team attends Stand Up To Cancer (SU2C), a program of the Entertainment Industry Foundation (EIF), in Hollywood, Calif.
In this Sept. 8, 2016, file photo, Dr. Elizabeth M. Jaffee of the Pancreatic Dream Team attends Stand Up To Cancer (SU2C), a program of the Entertainment Industry Foundation (EIF), in Hollywood, Calif.ABC Handout via Getty Images, FILE

Berger, a neurological surgeon, directs the University of California, San Francisco Brain Tumor Center and previously spent 23 years at the school as a professor of neurological surgery.

Brown, a gynecologic oncologist, is the senior vice president and chief health equity officer at Memorial Sloan Kettering Cancer Center in New York City. According to the White House, much of her career has been focused on eliminating cancer care disparities due to racial, ethnic, cultural or socioeconomic factors.

Additionally, First Lady Jill Biden, members of the Cabinet and other administration officials are holding a meeting Wednesday of the Cancer Cabinet, made up of officials across several governmental departments and agencies, the White House said.

The Cabinet will introduce new members and discuss priorities in the battle against cancer including closing the screening gap, addressing potential environmental exposures, reducing the number of preventable cancer and expanding access to cancer research.MORE: Long Island school district found to have higher rates of cancer cases: Study

It is the second meeting of the cabinet since Biden relaunched the initiative in February, which he originally began in 2016 when he was vice president.

Both Jaffee and Berger were members of the Blue Ribbon Panel for the Cancer Moonshot Initiative led by Biden.

The initiative has personal meaning for Biden, whose son, Beau, died of glioblastoma — one of the most aggressive forms of brain cancer — in 2015.

“I committed to this fight when I was vice president,” Biden said at the time, during an event at the White House announcing the relaunch. “It’s one of the reasons why, quite frankly, I ran for president. Let there be no doubt, now that I am president, this is a presidential, White House priority. Period.”

The initiative has several priority actions including diagnosing cancer sooner; preventing cancer; addressing inequities; and supporting patients, caregivers and survivors.

PHOTO: In this June 14, 2016, file photo, Dr. Carol Brown, physician at Memorial Sloan Kettering Cancer Center, gives a presentation, at The White House Summit on The United State of Women, in Washington, D.C.
In this June 14, 2016, file photo, Dr. Carol Brown, physician at Memorial Sloan Kettering Cancer Center, gives a presentation, at The White House Summit on The United State of Women, in Washington, D.C.NurPhoto via Getty Images, FILE

The White House has also issued a call to action to get cancer screenings back to pre-pandemic levels.

More than 9.5 million cancer screenings that would have taken place in 2020 were missed due to the COVID-19 pandemic, according to the National Institutes of Health.MORE: Louisiana’s ‘Cancer Alley’ residents in clean air fight

“We have to get cancer screenings back on track and make sure they’re accessible to all Americans,” Biden said at the time.

Since the first meeting of the Cancer Cabinet, the Centers for Disease Control and Prevention has issued more than $200 million in grants to cancer prevention programs, the Centers for Medicaid & Medicare Services implemented a new model to reduce the cost of cancer care, and the U.S. Patent and Trademark Office said it will fast-track applications for cancer immunotherapies.

ABC News’ Sasha Pezenik contributed to this report.

Biden to tap prominent Harvard cancer surgeon to head National Cancer Institute

Monica Bertagnolli brings leadership experience in cancer clinical trials funded by the $7 billion research agency

headshot of Monica Bertagnolli
Monica BertagnolliASCO; GLENN DAVENPORT

SHARE:

President Joe Biden is expected to pick cancer surgeon Monica Bertagnolli as the next director of the National Cancer Institute (NCI). Bertagnolli, a physician-scientist at Brigham and Women’s Hospital, the Dana-Farber Cancer Center, and Harvard Medical School, specializes in gastrointestinal cancers and is well known for her expertise in clinical trials. She will replace Ned Sharpless, who stepped down as NCI director in April after nearly 5 years.

The White House has not yet announced the selection, first reported by STAT, but several cancer research organizations closely watching for the nomination have issued statements supporting Bertagnolli’s expected selection. She is “a national leader” in clinical cancer research and “a great person to take the job,” Sharpless told ScienceInsider.

With a budget of $7 billion, NCI is the largest component of the National Institutes of Health (NIH) and the world’s largest funder of cancer research. Its director is the only NIH institute director selected by the president. Bertagnolli’s expected appointment, which does not require Senate confirmation, drew applause from the cancer research community

Margaret Foti, CEO of the American Association for Cancer Research, praised Bertagnolli’s “appreciation for … basic research” and “commitment to ensuring that such treatment innovations reach patients … across the United States.” Ellen Sigal, chair and founder of Friends of Cancer Research, says Bertagnolli “brings expertise the agency needs at a true inflection point for cancer research.”

Bertagnolli, 63, will be the first woman to lead NCI. Her lab research on tumor immunology and the role of a gene called APC in colorectal cancer led to a landmark trial she headed showing that an anti-inflammatory drug can help prevent this cancer. In 2007, she became the chief of surgery at the Dana-Farber Brigham Cancer Center.

She served as president of the American Society of Clinical Oncology in 2018 and currently chairs the Alliance for Clinical Trials in Oncology, which is funded by NCI’s National Clinical Trials Network. The network is a “complicated” program, and “Monica will have a lot of good ideas on how to make it work better,” Sharpless says.

ADVERTISEMENT

One of Bertagnolli’s first tasks will be to shape NCI’s role in Biden’s reignited Cancer Moonshot, which aims to slash the U.S. cancer death rate in half within 25 years. NCI’s new leader also needs to sort out how the agency will mesh with a new NIH component that will fund high-risk, goal-driven research, the Advanced Research Projects Agency for Health (ARPA-H).

Bertagnolli will also head NCI efforts already underway to boost grant funding rates, diversify the cancer research workplace, and reduce higher death rates for Black people with cancer.

The White House recently nominated applied physicist Arati Prabhakar to fill another high-level science position, director of the White House Office of Science and Technology Policy (OSTP). But still vacant is the NIH director slot, which Francis Collins, acting science adviser to the president, left in December 2021. And the administration hasn’t yet selected the inaugural director of ARPA-H.

Correction, 22 July, 9 a.m.: This story has been updated to reflect that Francis Collins is acting science adviser to the president, not acting director of the White House Office of Science and Technology Policy.

Read Full Post »

Genomic data can predict miscarriage and IVF failure

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

Infertility is a major reproductive health issue that affects about 12% of women of reproductive age in the United States. Aneuploidy in eggs accounts for a significant proportion of early miscarriage and in vitro fertilization failure. Recent studies have shown that genetic variants in several genes affect chromosome segregation fidelity and predispose women to a higher incidence of egg aneuploidy. However, the exact genetic causes of aneuploid egg production remain unclear, making it difficult to diagnose infertility based on individual genetic variants in mother’s genome. Although, age is a predictive factor for aneuploidy, it is not a highly accurate gauge because aneuploidy rates within individuals of the same age can vary dramatically.

Researchers described a technique combining genomic sequencing with machine-learning methods to predict the possibility a woman will undergo a miscarriage because of egg aneuploidy—a term describing a human egg with an abnormal number of chromosomes. The scientists were able to examine genetic samples of patients using a technique called “whole exome sequencing,” which allowed researchers to home in on the protein coding sections of the vast human genome. Then they created software using machine learning, an aspect of artificial intelligence in which programs can learn and make predictions without following specific instructions. To do so, the researchers developed algorithms and statistical models that analyzed and drew inferences from patterns in the genetic data.

As a result, the scientists were able to create a specific risk score based on a woman’s genome. The scientists also identified three genes—MCM5, FGGY and DDX60L—that when mutated and are highly associated with a risk of producing eggs with aneuploidy. So, the report demonstrated that sequencing data can be mined to predict patients’ aneuploidy risk thus improving clinical diagnosis. The candidate genes and pathways that were identified in the present study are promising targets for future aneuploidy studies. Identifying genetic variations with more predictive power will serve women and their treating clinicians with better information.

References:

https://medicalxpress-com.cdn.ampproject.org/c/s/medicalxpress.com/news/2022-06-miscarriage-failure-vitro-fertilization-genomic.amp

https://pubmed.ncbi.nlm.nih.gov/35347416/

https://pubmed.ncbi.nlm.nih.gov/31552087/

https://pubmed.ncbi.nlm.nih.gov/33193747/

https://pubmed.ncbi.nlm.nih.gov/33197264/

Read Full Post »

Bipolar Disorder now understood by Markers Identified of the Gene Expression for this Diagnosis

Reporter: Aviva Lev-Ari, PhD, RN

Published: 

Amygdala and anterior cingulate transcriptomes from individuals with bipolar disorder reveal downregulated neuroimmune and synaptic pathways

Abstract

Recent genetic studies have identified variants associated with bipolar disorder (BD), but it remains unclear how brain gene expression is altered in BD and how genetic risk for BD may contribute to these alterations. Here, we obtained transcriptomes from subgenual anterior cingulate cortex and amygdala samples from post-mortem brains of individuals with BD and neurotypical controls, including 511 total samples from 295 unique donors. We examined differential gene expression between cases and controls and the transcriptional effects of BD-associated genetic variants. We found two coexpressed modules that were associated with transcriptional changes in BD: one enriched for immune and inflammatory genes and the other with genes related to the postsynaptic membrane. Over 50% of BD genome-wide significant loci contained significant expression quantitative trait loci (QTL) (eQTL), and these data converged on several individual genes, including SCN2A and GRIN2A. Thus, these data implicate specific genes and pathways that may contribute to the pathology of BP.

SOURCE

https://www.nature.com/articles/s41593-022-01024-6

Gene Expression Markers for Bipolar Disorder Pinpointed

The work was led by researchers at Johns Hopkins’ Lieber Institute for Brain Development. The findings, published this week in Nature Neuroscience, represent the first time that researchers have been able to apply large-scale genetic research to brain samples from hundreds of patients with bipolar disorder (BD). They used 511 total samples from 295 unique donors.

“This is the first deep dive into the molecular biology of the brain in people who died with bipolar disorder—studying actual genes, not urine, blood or skin samples,” said Thomas Hyde of the Lieber Institute and a lead author of the paper. “If we can figure out the mechanisms behind BD, if we can figure out what’s wrong in the brain, then we can begin to develop new targeted treatments of what has long been a mysterious condition.”

Bipolar disorder is characterized by extreme mood swings, with episodes of mania alternating with episodes of depression. It usually emerges in people in their 20s and 30s and remains with them for life. This condition affects approximately 2.8% of the adult American population, or about 7 million people. Patients face higher rates of suicide, poorer quality of life, and lower productivity than the general population. Some estimates put the annual cost of the condition in the U.S. alone at $219.1 billion.

While drugs can be useful in treating BD, many patients find they have bothersome side effects, and for some patients, current medications don’t work at all.

In this study, researchers measured levels of messenger RNA in the brain samples. They observed almost eight times more differentially expressed gene features in the sACC versus the amygdala, suggesting that the sACC may play an especially prominent role—both in mood regulation in general and BD specifically.

In patients who died with BD, the researchers found abnormalities in two families of genes: one containing genes related to the synapse and the second related to immune and inflammatory function.

“There finally is a study using modern technology and our current understanding of genetics to uncover how the brain is doing,” Hyde said. “We know that BD tends to run in families, and there is strong evidence that there are inherited genetic abnormalities that put an individual at risk for bipolar disorder. Unlike diseases such as sickle-cell anemia, bipolar disorder does not result from a single genetic abnormality. Rather, most patients have inherited a group of variants spread across a number of genes.”

“Bipolar disorder, also known as manic-depressive disorder, is a highly damaging and paradoxical condition,” said Daniel R. Weinberger, chief executive and director of the Lieber Institute and a co-author of the study. “It can make people very productive so they can lead countries and companies, but it can also hurl them into the meat grinder of dysfunction and depression. Patients with BD may live on two hours of sleep a night, saving the world with their abundance of energy, and then become so self-destructive that they spend their family’s fortune in a week and lose all friends as they spiral downward. Bipolar disorder also has some shared genetic links to other psychiatric disorders, such as schizophrenia, and is implicated in overuse of drugs and alcohol.”

Read Full Post »

2021 Virtual World Medical Innovation Forum, Mass General Brigham, Gene and Cell Therapy, VIRTUAL May 19–21, 2021

The 2021 Virtual World Medical Innovation Forum will focus on the growing impact of gene and cell therapy. Senior healthcare leaders from all over look to shape and debate the area of gene and cell therapy. Our shared belief: no matter the magnitude of change, responsible healthcare is centered on a shared commitment to collaborative innovation–industry, academia, and practitioners working together to improve patients’ lives.

About the World Medical Innovation Forum

Mass General Brigham is pleased to present the World Medical Innovation Forum (WMIF) virtual event Wednesday, May 19 – Friday, May 21. This interactive web event features expert discussions of gene and cell therapy (GCT) and its potential to change the future of medicine through its disease-treating and potentially curative properties. The agenda features 150+ executive speakers from the healthcare industry, venture, startups, life sciences manufacturing, consumer health and the front lines of care, including many Harvard Medical School-affiliated researchers and clinicians. The annual in-person Forum will resume live in Boston in 2022. The World Medical Innovation Forum is presented by Mass General Brigham Innovation, the global business development unit supporting the research requirements of 7,200 Harvard Medical School faculty and research hospitals including Massachusetts General, Brigham and Women’s, Massachusetts Eye and Ear, Spaulding Rehab and McLean Hospital. Follow us on Twitter: twitter.com/@MGBInnovation

Accelerating the Future of Medicine with Gene and Cell Therapy What Comes Next

https://worldmedicalinnovation.org/agenda/

Virtual | May 19–21, 2021

#WMIF2021

@MGBInnovation

Leaders in Pharmaceutical Business Intelligence (LPBI) Group

will cover the event in Real Time

Aviva Lev-Ari, PhD, RN

Founder LPBI 1.0 & LPBI 2.0

member_60221522 copy

will be in virtual attendance producing the e-Proceedings

and the Tweet Collection of this Global event expecting +15,000 attendees

@pharma_BI

@AVIVA1950

LPBI’s Eighteen Books in Medicine

https://lnkd.in/ekWGNqA

Among them, books on Gene and Cell Therapy include the following:

Topics for May 19 – 21 include:

Impact on Patient Care – Therapeutic and Potentially Curative GCT Developments

GCT Delivery, Manufacturing – What’s Next

GCT Platform Development

Oncolytic Viruses – Cancer applications, start-ups

Regenerative Medicine/Stem Cells

Future of CAR-T

M&A Shaping GCT’s Future

Market Priorities

Venture Investing in GCT

China’s GCT Juggernaut

Disease and Patient Focus: Benign blood disorders, diabetes, neurodegenerative diseases

Click here for the current WMIF agenda  

Plus:

Fireside Chats: 1:1 interviews with industry CEOs/C-Suite leaders including Novartis Gene Therapies, ThermoFisher, Bayer AG, FDA

First Look: 18 briefings on emerging GCT research from Mass General Brigham scientists

Virtual Poster Session: 40 research posters and presenters on potential GCT discoveries from Mass General Brigham

Announcement of the Disruptive Dozen, 12 GCT technologies likely to break through in the next few years

AGENDA

Wednesday, May 19, 2021

8:00 AM – 8:10 AM

Opening Remarks

Welcome and the vision for Gene and Cell Therapy and why it is a top Mass General Brigham priority. Introducer: Scott Sperling

  • Co-President, Thomas H. Lee Partners
  • Chairman of the Board of Directors, PHS

Presenter: Anne Klibanski, MD

  • CEO, Mass General Brigham

3,000 people joined 5/19 morning

30 sessions: Lab to Clinic,  academia, industry, investment community

May 22,23,24, 2022 – in Boston, in-person 2022 WMIF on CGT 8:10 AM – 8:30 AM

The Grand Challenge of Widespread GCT Patient Benefits

Co-Chairs identify the key themes of the Forum –  set the stage for top GCT opportunities, challenges, and where the field might take medicine in the future. Moderator: Susan Hockfield, PhD

  • President Emerita and Professor of Neuroscience, MIT

GCT – poised to deliver therapies

Inflection point as Panel will present

Doctors and Patients – Promise for some patients 

Barriers for Cell & Gene

Access for patients to therapies like CGT Speakers: Nino Chiocca, MD, PhD

  • Neurosurgeon-in-Chief and Chairman, Neurosurgery, BWH
  • Harvey W. Cushing Professor of Neurosurgery, HMS

Oncolytic virus triple threat: Toxic, immunological, combine with anti cancer therapies

Polygenic therapy – multiple genes involved, plug-play, Susan Slaugenhaupt, PhD

  • Scientific Director and Elizabeth G. Riley and Daniel E. Smith Jr., Endowed Chair, Mass General Research Institute
  • Professor, Neurology, HMS

Ravi Thadhani, MD

  • CAO, Mass General Brigham
  • Professor, Medicine and Faculty Dean, HMS

Role of academia special to spear head the Polygenic therapy – multiple genes involved, plug-play, 

Access critical, relations with IndustryLuk Vandenberghe, PhD

  • Grousbeck Family Chair, Gene Therapy, MEE
  • Associate Professor, Ophthalmology, HMS

Pharmacology Gene-Drug, Interface academic centers and industry

many CGT drugs emerged in Academic center 8:35 AM – 8:50 AM FIRESIDE

Gene and Cell Therapy 2.0 – What’s Next as We Realize their Potential for Patients

Dave Lennon, PhD

  • President, Novartis Gene Therapies

Hope that CGT emerging, how the therapies work, neuro, muscular, ocular, genetic diseases of liver and of heart revolution for the industry 900 IND application 25 approvals Economic driver Skilled works, VC disease. Modality one time intervention, long duration of impart, reimbursement, ecosystem to be built around CGT

FDA works by indications and risks involved, Standards and expectations for streamlining manufacturing, understanding of process and products 

payments over time payers and Innovators relations Moderator: Julian Harris, MD

  • Partner, Deerfield

Promise of CGT realized, what part?

FDA role and interaction in CGT

Manufacturing aspects which is critical Speaker: Dave Lennon, PhD

  • President, Novartis Gene Therapies

Hope that CGT emerging, how the therapies work, neuro, muscular, ocular, genetic diseases of liver and of heart revolution for the industry 900 IND application 25 approvals Economic driver Skilled works, VC disease. Modality one time intervention, long duration of impart, reimbursement, ecosystem to be built around CGT

FDA works by indications and risks involved, Standards and expectations for streamlining manufacturing, understanding of process and products 

payments over time payers and Innovators relations

  • Q&A 8:55 AM – 9:10 AM  

8:55 AM – 9:20 AM

The Patient and GCT

GCT development for rare diseases is driven by patient and patient-advocate communities. Understanding their needs and perspectives enables biomarker research, the development of value-driving clinical trial endpoints and successful clinical trials. Industry works with patient communities that help identify unmet needs and collaborate with researchers to conduct disease natural history studies that inform the development of biomarkers and trial endpoints. This panel includes patients who have received cutting-edge GCT therapy as well as caregivers and patient advocates. Moderator: Patricia Musolino, MD, PhD

  • Co-Director Pediatric Stroke and Cerebrovascular Program, MGH
  • Assistant Professor of Neurology, HMS

What is the Power of One – the impact that a patient can have on their own destiny by participating in Clinical Trials Contacting other participants in same trial can be beneficial Speakers: Jack Hogan

  • Patient, MEE

Jeanette Hogan

  • Parent of Patient, MEE

Jim Holland

  • CEO, Backcountry.com

Parkinson patient Constraints by regulatory on participation in clinical trial advance stage is approved participation Patients to determine the level of risk they wish to take Information dissemination is critical Barbara Lavery

  • Chief Program Officer, ACGT Foundation

Advocacy agency beginning of work Global Genes educational content and out reach to access the information 

Patient has the knowledge of the symptoms and recording all input needed for diagnosis by multiple clinicians Early application for CGTDan Tesler

  • Clinical Trial Patient, BWH/DFCC

Experimental Drug clinical trial patient participation in clinical trial is very important to advance the state of scienceSarah Beth Thomas, RN

  • Professional Development Manager, BWH

Outcome is unknown, hope for good, support with resources all advocacy groups, 

  • Q&A 9:25 AM – 9:40 AM  

9:25 AM – 9:45 AM FIRESIDE

GCT Regulatory Framework | Why Different?

  Moderator: Vicki Sato, PhD

  • Chairman of the Board, Vir Biotechnology

Diversity of approaches

Process at FDA generalize from 1st entry to rules more generalizable  Speaker: Peter Marks, MD, PhD

  • Director, Center for Biologics Evaluation and Research, FDA

Last Spring it became clear that something will work a vaccine by June 2020 belief that enough candidates the challenge manufacture enough and scaling up FDA did not predicted the efficacy of mRNA vaccine vs other approaches expected to work

Recover Work load for the pandemic will wean & clear, Gene Therapies IND application remained flat in the face of the pandemic Rare diseases urgency remains Consensus with industry advisory to get input gene therapy Guidance  T-Cell therapy vs Regulation best thinking CGT evolve speedily flexible gained by Guidance

Immune modulators, Immunotherapy Genome editing can make use of viral vectors future technologies nanoparticles and liposome encapsulation 

  • Q&A 9:50 AM – 10:05 AM  

9:50 AM – 10:15 AM

Building a GCT Platform for Mainstream Success

This panel of GCT executives, innovators and investors explore how to best shape a successful GCT strategy. Among the questions to be addressed:

  • How are GCT approaches set around defining and building a platform?
  • Is AAV the leading modality and what are the remaining challenges?
  • What are the alternatives?
  • Is it just a matter of matching modalities to the right indications?

Moderator: Jean-François Formela, MD

  • Partner, Atlas Venture

Established core components of the Platform Speakers: Katherine High, MD

  • President, Therapeutics, AskBio

Three drugs approved in Europe in the Gene therapy space

Regulatory Infrastructure exists for CGT drug approval – as new class of therapeutics

Participants investigators, regulators, patients i. e., MDM 

Hemophilia in male most challenging

Human are natural hosts for AV safety signals Dave Lennon, PhD

  • President, Novartis Gene Therapies

big pharma has portfolios of therapeutics not one drug across Tx areas: cell, gene iodine therapy 

collective learning infrastructure features manufacturing at scale early in development Acquisitions strategy for growth # applications for scaling Rick Modi

  • CEO, Affinia Therapeutics

Copy, paste EDIT from product A to B novel vectors leverage knowledge varient of vector, coder optimization choice of indication is critical exploration on larger populations Speed to R&D and Speed to better gene construct get to clinic with better design vs ASAP 

Data sharing clinical experience with vectors strategies patients selection, vector selection, mitigation, patient type specific Louise Rodino-Klapac, PhD

  • EVP, Chief Scientific Officer, Sarepta Therapeutics

AAV based platform 15 years in development same disease indication vs more than one indication stereotype, analytics as hurdle 1st was 10 years 2nd was 3 years

Safety to clinic vs speed to clinic, difference of vectors to trust

  • Q&A 10:20 AM – 10:35 AM  

10:20 AM – 10:45 AM

AAV Success Studies | Retinal Dystrophy | Spinal Muscular Atrophy

Recent AAV gene therapy product approvals have catalyzed the field. This new class of therapies has shown the potential to bring transformative benefit to patients. With dozens of AAV treatments in clinical studies, all eyes are on the field to gauge its disruptive impact.

The panel assesses the largest challenges of the first two products, the lessons learned for the broader CGT field, and the extent to which they serve as a precedent to broaden the AAV modality.

  • Is AAV gene therapy restricted to genetically defined disorders, or will it be able to address common diseases in the near term?
  • Lessons learned from these first-in-class approvals.
  • Challenges to broaden this modality to similar indications.
  • Reflections on safety signals in the clinical studies?

Moderator: Joan Miller, MD

  • Chief, Ophthalmology, MEE
  • Cogan Professor & Chair of Ophthalmology, HMS

Retina specialist, Luxturna success FMA condition cell therapy as solution

Lessons learned

Safety Speakers: Ken Mills

  • CEO, RegenXBio

Tissue types additional administrations, tech and science, address additional diseases, more science for photoreceptors a different tissue type underlying pathology novelties in last 10 years 

Cell therapy vs transplant therapy no immunosuppressionEric Pierce, MD, PhD

  • Director, Ocular Genomics Institute, MEE
  • Professor of Ophthalmology, HMS

Laxterna success to be replicated platform, paradigms measurement visual improved

More science is needed to continue develop vectors reduce toxicity,

AAV can deliver different cargos reduce adverse events improve vectorsRon Philip

  • Chief Operating Officer, Spark Therapeutics

The first retinal gene therapy, voretigene neparvovec-rzyl (Luxturna, Spark Therapeutics), was approved by the FDA in 2017.Meredith Schultz, MD

  • Executive Medical Director, Lead TME, Novartis Gene Therapies

Impact of cell therapy beyond muscular dystrophy, translational medicine, each indication, each disease, each group of patients build platform unlock the promise

Monitoring for Safety signals real world evidence remote markers, home visits, clinical trial made safer, better communication of information

  • Q&A 10:50 AM – 11:05 AM  

10:45 AM – 10:55 AM

Break

  10:55 AM – 11:05 AM FIRST LOOK

Control of AAV pharmacology by Rational Capsid Design

Luk Vandenberghe, PhD

  • Grousbeck Family Chair, Gene Therapy, MEE
  • Associate Professor, Ophthalmology, HMS

AAV a complex driver in Pharmacology durable, vector of choice, administer in vitro, gene editing tissue specificity, pharmacokinetics side effects and adverse events manufacturability site variation diversify portfolios,

Pathway for rational AAV rational design, curated smart variant libraries, AAV  sequence screen multiparametric , data enable liver (de-) targeting unlock therapeutics areas: cochlea 

  • Q&A 11:05 AM – 11:25 AM  

11:05 AM – 11:15 AM FIRST LOOK

Enhanced gene delivery and immunoevasion of AAV vectors without capsid modification

Casey Maguire, PhD

  • Associate Professor of Neurology, MGH & HMS

Virus Biology: Enveloped (e) or not 

enveloped for gene therapy eAAV platform technology: tissue targets and Indications commercialization of eAAV 

  • Q&A 11:15 AM – 11:35 AM  

11:20 AM – 11:45 AM HOT TOPICS

AAV Delivery

This panel will address the advances in the area of AAV gene therapy delivery looking out the next five years. Questions that loom large are: How can biodistribution of AAV be improved? What solutions are in the wings to address immunogenicity of AAV? Will patients be able to receive systemic redosing of AAV-based gene therapies in the future? What technical advances are there for payload size? Will the cost of manufacturing ever become affordable for ultra-rare conditions? Will non-viral delivery completely supplant viral delivery within the next five years?What are the safety concerns and how will they be addressed? Moderators: Xandra Breakefield, PhD

  • Geneticist, MGH, MGH
  • Professor, Neurology, HMS

Florian Eichler, MD

  • Director, Center for Rare Neurological Diseases, MGH
  • Associate Professor, Neurology, HMS

Speakers: Jennifer Farmer

  • CEO, Friedreich’s Ataxia Research Alliance

Ataxia requires therapy targeting multiple organ with one therapy, brain, spinal cord, heart several IND, clinical trials in 2022Mathew Pletcher, PhD

  • SVP, Head of Gene Therapy Research and Technical Operations, Astellas

Work with diseases poorly understood, collaborations needs example of existing: DMD is a great example explain dystrophin share placedo data 

Continue to explore large animal guinea pig not the mice, not primates (ethical issues) for understanding immunogenicity and immune response Manny Simons, PhD

  • CEO, Akouos

AAV Therapy for the fluid of the inner ear, CGT for the ear vector accessible to surgeons translational work on the inner ear for gene therapy right animal model 

Biology across species nerve ending in the cochlea

engineer out of the caspid, lowest dose possible, get desired effect by vector use, 2022 new milestones

  • Q&A 11:50 AM – 12:05 PM  

11:50 AM – 12:15 PM

M&A | Shaping GCT Innovation

The GCT M&A market is booming – many large pharmas have made at least one significant acquisition. How should we view the current GCT M&A market? What is its impact of the current M&A market on technology development? Are these M&A trends new are just another cycle? Has pharma strategy shifted and, if so, what does it mean for GCT companies? What does it mean for patients? What are the long-term prospects – can valuations hold up? Moderator: Adam Koppel, MD, PhD

  • Managing Director, Bain Capital Life Sciences

What acquirers are looking for??

What is the next generation vs what is real where is the industry going? Speakers:

Debby Baron,

  • Worldwide Business Development, Pfizer 

CGT is an important area Pfizer is active looking for innovators, advancing forward programs of innovation with the experience Pfizer has internally 

Scalability and manufacturing  regulatory conversations, clinical programs safety in parallel to planning getting drug to patients

Kenneth Custer, PhD

  • Vice President, Business Development and Lilly New Ventures, Eli Lilly and Company

Marianne De Backer, PhD

Head of Strategy, Business Development & Licensing, and Member of the Executive Committee, Bayer

Absolute Leadership in Gene editing, gene therapy, via acquisition and strategic alliance 

Operating model of the acquired company discussed , company continue independence

Sean Nolan

  • Board Chairman, Encoded Therapeutics & Affinia

Executive Chairman, Jaguar Gene Therapy & Istari Oncology

As acquiree multiple M&A: How the acquirer looks at integration and cultures of the two companies 

Traditional integration vs jump start by external acquisition 

AAV – epilepsy, next generation of vectors 

  • Q&A 12:20 PM – 12:35 PM  

12:15 PM – 12:25 PM FIRST LOOK

Gene Therapies for Neurological Disorders: Insights from Motor Neuron Disorders

Merit Cudkowicz, MD

  • Chief of Neurology, MGH

ALS – Man 1in 300, Women 1 in 400, next decade increase 7% 

10% ALS is heredity 160 pharma in ALS space, diagnosis is late 1/3 of people are not diagnosed, active community for clinical trials Challenges: disease heterogeneity cases of 10 years late in diagnosis. Clinical Trials for ALS in Gene Therapy targeting ASO1 protein therapies FUS gene struck youngsters 

Q&A

  • 12:25 PM – 12:45 PM  

12:25 PM – 12:35 PM FIRST LOOK

Gene Therapy for Neurologic Diseases

Patricia Musolino, MD, PhD

  • Co-Director Pediatric Stroke and Cerebrovascular Program, MGH
  • Assistant Professor of Neurology, HMS

Cerebral Vascular disease – ACTA2 179H gene smooth muscle cell proliferation disorder

no surgery or drug exist –

Cell therapy for ACTA2 Vasculopathy  in the brain and control the BP and stroke – smooth muscle intima proliferation. Viral vector deliver aiming to change platform to non-viral delivery rare disease , gene editing, other mutations of ACTA2 gene target other pathway for atherosclerosis 

  • Q&A 12:35 PM – 12:55 PM  

12:35 PM – 1:15 PM

Lunch

  1:15 PM – 1:40 PM

Oncolytic Viruses in Cancer | Curing Melanoma and Beyond

Oncolytic viruses represent a powerful new technology, but so far an FDA-approved oncolytic (Imlygic) has only occurred in one area – melanoma and that what is in 2015. This panel involves some of the protagonists of this early success story.  They will explore why and how Imlygic became approved and its path to commercialization.  Yet, no other cancer indications exist for Imlygic, unlike the expansion of FDA-approved indication for immune checkpoint inhibitors to multiple cancers.  Why? Is there a limitation to what and which cancers can target?  Is the mode of administration a problem?

No other oncolytic virus therapy has been approved since 2015. Where will the next success story come from and why?  Will these therapies only be beneficial for skin cancers or other easily accessible cancers based on intratumoral delivery?

The panel will examine whether the preclinical models that have been developed for other cancer treatment modalities will be useful for oncolytic viruses.  It will also assess the extent pre-clinical development challenges have slowed the development of OVs. Moderator: Nino Chiocca, MD, PhD

  • Neurosurgeon-in-Chief and Chairman, Neurosurgery, BWH
  • Harvey W. Cushing Professor of Neurosurgery, HMS

Challenges of manufacturing at Amgen what are they? Speakers: Robert Coffin, PhD

  • Chief Research & Development Officer, Replimune

2002 in UK promise in oncolytic therapy GNCSF

Phase III melanoma 2015 M&A with Amgen

oncolytic therapy remains non effecting on immune response 

data is key for commercialization 

do not belief in systemic therapy achieve maximum immune response possible from a tumor by localized injection Roger Perlmutter, MD, PhD

  • Chairman, Merck & Co.

response rates systemic therapy like PD1, Keytruda, OPTIVA well tolerated combination of Oncolytic with systemic 

GMP critical for manufacturing David Reese, MD

  • Executive Vice President, Research and Development, Amgen

Inter lesion injection of agent vs systemic therapeutics 

cold tumors immune resistant render them immune susceptible 

Oncolytic virus is a Mono therapy

addressing the unknown Ann Silk, MD

  • Physician, Dana Farber-Brigham and Women’s Cancer Center
  • Assistant Professor of Medicine, HMS

Which person gets oncolytics virus if patient has immune suppression due to other indications

Safety of oncolytic virus greater than Systemic treatment

series biopsies for injected and non injected tissue and compare Suspect of hot tumor and cold tumors likely to have sme response to agent unknown all potential 

  • Q&A 1:45 PM – 2:00 PM  

1:45 PM – 2:10 PM

Market Interest in Oncolytic Viruses | Calibrating

There are currently two oncolytic virus products on the market, one in the USA and one in China.  As of late 2020, there were 86 clinical trials 60 of which were in phase I with just 2 in Phase III the rest in Phase I/II or Phase II.   Although global sales of OVs are still in the ramp-up phase, some projections forecast OVs will be a $700 million market by 2026. This panel will address some of the major questions in this area:

What regulatory challenges will keep OVs from realizing their potential? Despite the promise of OVs for treating cancer only one has been approved in the US. Why has this been the case? Reasons such have viral tropism, viral species selection and delivery challenges have all been cited. However, these are also true of other modalities. Why then have oncolytic virus approaches not advanced faster and what are the primary challenges to be overcome?

  • Will these need to be combined with other agents to realize their full efficacy and how will that impact the market?
  • Why are these companies pursuing OVs while several others are taking a pass?

Moderators: Martine Lamfers, PhD

  • Visiting Scientist, BWH

Challenged in development of strategies 

Demonstrate efficacyRobert Martuza, MD

  • Consultant in Neurosurgery, MGH
  • William and Elizabeth Sweet Distinguished Professor of Neurosurgery, HMS

Modulation mechanism Speakers: Anlong Li, MD, PhD

  • Clinical Director, Oncology Clinical Development, Merck Research Laboratories

IV delivery preferred – delivery alternative are less aggereable Jeffrey Infante, MD

  • Early development Oncolytic viruses, Oncology, Janssen Research & Development

oncologic virus if it will generate systemic effects the adoption will accelerate

What areas are the best efficacious 

Direct effect with intra-tumor single injection with right payload 

Platform approach  Prime with 1 and Boost with 2 – not yet experimented with 

Do not have the data at trial design for stratification of patients 

Turn off strategy not existing yetLoic Vincent, PhD

  • Head of Oncology Drug Discovery Unit, Takeda

R&D in collaboration with Academic

Vaccine platform to explore different payload

IV administration may not bring sufficient concentration to the tumor is administer  in the blood stream

Classification of Patients by prospective response type id UNKNOWN yet, population of patients require stratification

  • Q&A 2:15 PM – 2:30 PM  

2:10 PM – 2:20 PM FIRST LOOK

Oncolytic viruses: turning pathogens into anticancer agents

Nino Chiocca, MD, PhD

  • Neurosurgeon-in-Chief and Chairman, Neurosurgery, BWH
  • Harvey W. Cushing Professor of Neurosurgery, HMS

Oncolytic therapy DID NOT WORK Pancreatic Cancer and Glioblastoma 

Intra- tumoral heterogeniety hinders success 

Solution: Oncolytic VIRUSES – Immunological “coldness”

GADD-34 20,000 GBM 40,000 pancreatic cancer

  • Q&A 2:25 PM – 2:40 PM  

2:20 PM – 2:45 PM

Entrepreneurial Growth | Oncolytic Virus

In 2020 there were a total of 60 phase I trials for Oncolytic Viruses. There are now dozens of companies pursuing some aspect of OV technology. This panel will address:

  •  How are small companies equipped to address the challenges of developing OV therapies better than large pharma or biotech?
  • Will the success of COVID vaccines based on Adenovirus help the regulatory environment for small companies developing OV products in Europe and the USA?
  • Is there a place for non-viral delivery and other immunotherapy companies to engage in the OV space?  Would they bring any real advantages?

Moderator: Reid Huber, PhD

  • Partner, Third Rock Ventures

Critical milestones to observe Speakers: Caroline Breitbach, PhD

  • VP, R&D Programs and Strategy, Turnstone Biologics

Trying Intra-tumor delivery and IV infusion delivery oncolytic vaccine pushing dose 

translation biomarkers program 

transformation tumor microenvironment Brett Ewald, PhD

  • SVP, Development & Corporate Strategy, DNAtrix

Studies gets larger, kicking off Phase III multiple tumors Paul Hallenbeck, PhD

  • President and Chief Scientific Officer, Seneca Therapeutics

Translation: Stephen Russell, MD, PhD

  • CEO, Vyriad

Systemic delivery Oncolytic Virus IV delivery woman in remission

Collaboration with Regeneron

Data collection: Imageable reporter secretable reporter, gene expression

Field is intense systemic oncolytic delivery is exciting in mice and in human, response rates are encouraging combination immune stimulant, check inhibitors 

  • Q&A 2:50 PM – 3:05 PM  

2:45 PM – 3:00 PM

Break

  3:00 PM – 3:25 PM

CAR-T | Lessons Learned | What’s Next

Few areas of potential cancer therapy have had the attention and excitement of CAR-T. This panel of leading executives, developers, and clinician-scientists will explore the current state of CAR-T and its future prospects. Among the questions to be addressed are:

  • Is CAR-T still an industry priority – i.e. are new investments being made by large companies? Are new companies being financed? What are the trends?
  • What have we learned from first-generation products, what can we expect from CAR-T going forward in novel targets, combinations, armored CAR’s and allogeneic treatment adoption?
  • Early trials showed remarkable overall survival and progression-free survival. What has been observed regarding how enduring these responses are?
  • Most of the approvals to date have targeted CD19, and most recently BCMA. What are the most common forms of relapses that have been observed?
  • Is there a consensus about what comes after these CD19 and BCMA trials as to additional targets in liquid tumors? How have dual-targeted approaches fared?
  • Moderator:
  • Marcela Maus, MD, PhD
    • Director, Cellular Immunotherapy Program, Cancer Center, MGH
    • Associate Professor, Medicine, HMSIs CAR-T Industry priority
  • Speakers:
  • Head of R&D, Atara BioTherapeutics
  • Phyno-type of the cells for hematologic cancers 
  • solid tumor 
  • inventory of Therapeutics for treating patients in the future 
  • Progressive MS program
  • EBBT platform B-Cells and T-Cells
    • Stefan Hendriks
      • Gobal Head, Cell & Gene, Novartis
      • yes, CGT is a strategy in the present and future
      • Journey started years ago 
      • Confirmation the effectiveness of CAR-T therapies, 1 year response prolonged to 5 years 26 months
      • Patient not responding – a lot to learn
      • Patient after 8 months of chemo can be helped by CAR-T
    • Christi Shaw
      • CEO, Kite
      • CAR-T is priority 120 companies in the space
      • Manufacturing consistency 
      • Patients respond with better quality of life
      • Blood cancer – more work to be done

Q&A

  • 3:30 PM – 3:45 PM  

3:30 PM – 3:55 PM HOT TOPICS

CAR-T | Solid Tumors Success | When?

The potential application of CAR-T in solid tumors will be a game-changer if it occurs. The panel explores the prospects of solid tumor success and what the barriers have been. Questions include:

  •  How would industry and investor strategy for CAR-T and solid tumors be characterized? Has it changed in the last couple of years?
  •  Does the lack of tumor antigen specificity in solid tumors mean that lessons from liquid tumor CAR-T constructs will not translate well and we have to start over?
  •  Whether due to antigen heterogeneity, a hostile tumor micro-environment, or other factors are some specific solid tumors more attractive opportunities than others for CAR-T therapy development?
  •  Given the many challenges that CAR-T faces in solid tumors, does the use of combination therapies from the start, for example, to mitigate TME effects, offer a more compelling opportunity.

Moderator: Oladapo Yeku, MD, PhD

  • Clinical Assistant in Medicine, MGH

window of opportunities studies  Speakers: Jennifer Brogdon

  • Executive Director, Head of Cell Therapy Research, Exploratory Immuno-Oncology, NIBR

2017 CAR-T first approval

M&A and research collaborations

TCR tumor specific antigens avoid tissue toxicity Knut Niss, PhD

  • CTO, Mustang Bio

tumor hot start in 12 month clinical trial solid tumors , theraties not ready yet. Combination therapy will be an experimental treatment long journey checkpoint inhibitors to be used in combination maintenance Lipid tumor Barbra Sasu, PhD

  • CSO, Allogene

T cell response at prostate cancer 

tumor specific 

cytokine tumor specific signals move from solid to metastatic cell type for easier infiltration

Where we might go: safety autologous and allogeneic Jay Short, PhD

  • Chairman, CEO, Cofounder, BioAlta, Inc.

Tumor type is not enough for development of therapeutics other organs are involved in the periphery

difficult to penetrate solid tumors biologics activated in the tumor only, positive changes surrounding all charges, water molecules inside the tissue acidic environment target the cells inside the tumor and not outside 

Combination staggered key is try combination

  • Q&A 4:00 PM – 4:15 PM  

4:00 PM – 4:25 PM

GCT Manufacturing | Vector Production | Autologous and Allogeneic | Stem Cells | Supply Chain | Scalability & Management

The modes of GCT manufacturing have the potential of fundamentally reordering long-established roles and pathways. While complexity goes up the distance from discovery to deployment shrinks. With the likelihood of a total market for cell therapies to be over $48 billion by 2027,  groups of products are emerging.  Stem cell therapies are projected to be $28 billion by 2027 and non-stem cell therapies such as CAR-T are projected be $20 billion by 2027. The manufacturing challenges for these two large buckets are very different. Within the CAR-T realm there are diverging trends of autologous and allogeneic therapies and the demands on manufacturing infrastructure are very different. Questions for the panelists are:

  • Help us all understand the different manufacturing challenges for cell therapies. What are the trade-offs among storage cost, batch size, line changes in terms of production cost and what is the current state of scaling naïve and stem cell therapy treatment vs engineered cell therapies?
  • For cell and gene therapy what is the cost of Quality Assurance/Quality Control vs. production and how do you think this will trend over time based on your perspective on learning curves today?
  • Will point of care production become a reality? How will that change product development strategy for pharma and venture investors? What would be the regulatory implications for such products?
  • How close are allogeneic CAR-T cell therapies? If successful what are the market implications of allogenic CAR-T? What are the cost implications and rewards for developing allogeneic cell therapy treatments?

Moderator: Michael Paglia

  • VP, ElevateBio

Speakers:

  • Dannielle Appelhans
    • SVP TechOps and Chief Technical Officer, Novartis Gene Therapies
  • Thomas Page, PhD
    • VP, Engineering and Asset Development, FUJIFILM Diosynth Biotechnologies
  • Rahul Singhvi, ScD
    • CEO and Co-Founder, National Resilience, Inc.
  • Thomas VanCott, PhD
    • Global Head of Product Development, Gene & Cell Therapy, Catalent
    • 2/3 autologous 1/3 allogeneic  CAR-T high doses and high populations scale up is not done today quality maintain required the timing logistics issues centralized vs decentralized  allogeneic are health donors innovations in cell types in use improvements in manufacturing

Ropa Pike, Director,  Enterprise Science & Partnerships, Thermo Fisher Scientific 

Centralized biopharma industry is moving  to decentralized models site specific license 

  • Q&A 4:30 PM – 4:45 PM  

4:30 PM – 4:40 PM FIRST LOOK

CAR-T

Marcela Maus, MD, PhD

  • Director, Cellular Immunotherapy Program, Cancer Center, MGH
  • Assistant Professor, Medicine, HMS 

Fit-to-purpose CAR-T cells: 3 lead programs

Tr-fill 

CAR-T induce response myeloma and multiple myeloma GBM

27 patents on CAR-T

+400 patients treaded 40 Clinical Trials 

  • Q&A 4:40 PM – 5:00 PM  

4:40 PM – 4:50 PM FIRST LOOK

Repurposed Tumor Cells as Killers and Immunomodulators for Cancer Therapy

Khalid Shah, PhD

  • Vice Chair, Neurosurgery Research, BWH
  • Director, Center for Stem Cell Therapeutics and Imaging, HMS

Solid tumors are the hardest to treat because: immunosuppressive, hypoxic, Acidic Use of autologous tumor cells self homing ThTC self targeting therapeutic cells Therapeutic tumor cells efficacy pre-clinical models GBM 95% metastesis ThTC translation to patient settings

  • Q&A 4:50 PM – 5:10 PM  

4:50 PM – 5:00 PM FIRST LOOK

Other Cell Therapies for Cancer

David Scadden, MD

  • Director, Center for Regenerative Medicine; Co-Director, Harvard Stem Cell Institute, Director, Hematologic Malignancies & Experimental Hematology, MGH
  • Jordan Professor of Medicine, HMS

T-cell are made in bone marrow create cryogel  can be an off-the-shelf product repertoire on T Receptor CCL19+ mesenchymal cells mimic Tymus cells –

inter-tymic injection. Non human primate validation

Q&A

 

5:00 PM – 5:20 PM   5:00 PM – 5:20 PM FIRESIDE

Fireside with Mikael Dolsten, MD, PhD

  Introducer: Jonathan Kraft Moderator: Daniel Haber, MD, PhD

  • Chair, Cancer Center, MGH
  • Isselbacher Professor of Oncology, HMS

Vaccine Status Mikael Dolsten, MD, PhD

  • Chief Scientific Officer and President, Worldwide Research, Development and Medical, Pfizer

Deliver vaccine around the Globe, Israel, US, Europe.

3BIL vaccine in 2022 for all Global vaccination 

Bio Ntech in Germany

Experience with Biologics immuneoncology & allogeneic antibody cells – new field for drug discovery 

mRNA curative effort and cancer vaccine 

Access to drugs developed by Pfizer to underdeveloped countries 

  • Q&A 5:25 PM – 5:40 AM  

5:20 PM – 5:30 PM

Closing Remarks

Thursday, May 20, 2021

8:00 AM – 8:25 AM

GCT | The China Juggernaut

China embraced gene and cell therapies early. The first China gene therapy clinical trial was in 1991. China approved the world’s first gene therapy product in 2003—Gendicine—an oncolytic adenovirus for the treatment of advanced head and neck cancer.  Driven by broad national strategy, China has become a hotbed of GCT development, ranking second in the world with more than 1,000 clinical trials either conducted or underway and thousands of related patents.  It has a booming GCT biotech sector, led by more than 45 local companies with growing IND pipelines.

In late 1990, a T cell-based immunotherapy, cytokine-induced killer (CIK) therapy became a popular modality in the clinic in China for tumor treatment.  In early 2010, Chinese researchers started to carry out domestic CAR T trials inspired by several important reports suggested the great antitumor function of CAR T cells. Now, China became the country with the most registered CAR T trials, CAR T therapy is flourishing in China.

The Chinese GCT ecosystem has increasingly rich local innovation and growing complement of development and investment partnerships – and also many subtleties.

This panel, consisting of leaders from the China GCT corporate, investor, research and entrepreneurial communities, will consider strategic questions on the growth of the gene and cell therapy industry in China, areas of greatest strength, evolving regulatory framework, early successes and products expected to reach the US and world market. Moderator: Min Wu, PhD

  • Managing Director, Fosun Health Fund

What are the area of CGT in China, regulatory similar to the US Speakers: Alvin Luk, PhD

  • CEO, Neuropath Therapeutics

Monogenic rare disease with clear genomic target

Increase of 30% in patient enrollment 

Regulatory reform approval is 60 days no delayPin Wang, PhD

  • CSO, Jiangsu Simcere Pharmaceutical Co., Ltd.

Similar starting point in CGT as the rest of the World unlike a later starting point in other biologicalRichard Wang, PhD

  • CEO, Fosun Kite Biotechnology Co., Ltd

Possibilities to be creative and capitalize the new technologies for innovating drug

Support of the ecosystem by funding new companie allowing the industry to be developed in China

Autologous in patients differences cost challengeTian Xu, PhD

  • Vice President, Westlake University

ICH committee and Chinese FDA -r regulation similar to the US

Difference is the population recruitment, in China patients are active participants in skin disease 

Active in development of transposome 

Development of non-viral methods, CRISPR still in D and transposome

In China price of drugs regulatory are sensitive Shunfei Yan, PhD

  • Investment Manager, InnoStar Capital

Indication driven: Hymophilia, 

Allogogenic efficiency therapies

Licensing opportunities 

  • Q&A 8:30 AM – 8:45 AM  

8:30 AM – 8:55 AM

Impact of mRNA Vaccines | Global Success Lessons

The COVID vaccine race has propelled mRNA to the forefront of biomedicine. Long considered as a compelling modality for therapeutic gene transfer, the technology may have found its most impactful application as a vaccine platform. Given the transformative industrialization, the massive human experience, and the fast development that has taken place in this industry, where is the horizon? Does the success of the vaccine application, benefit or limit its use as a therapeutic for CGT?

  • How will the COVID success impact the rest of the industry both in therapeutic and prophylactic vaccines and broader mRNA lessons?
  • How will the COVID success impact the rest of the industry both on therapeutic and prophylactic vaccines and broader mRNA lessons?
  • Beyond from speed of development, what aspects make mRNA so well suited as a vaccine platform?
  • Will cost-of-goods be reduced as the industry matures?
  • How does mRNA technology seek to compete with AAV and other gene therapy approaches?

Moderator: Lindsey Baden, MD

  • Director, Clinical Research, Division of Infectious Diseases, BWH
  • Associate Professor, HMS

In vivo delivery process regulatory cooperation new opportunities for same platform for new indication Speakers:

Many years of mRNA pivoting for new diseases, DARPA, nucleic Acids global deployment of a manufacturing unit on site where the need arise Elan Musk funds new directions at Moderna

How many mRNA can be put in one vaccine: Dose and tolerance to achieve efficacy 

45 days for Personalized cancer vaccine one per patient

1.6 Billion doses produced rare disease monogenic correct mRNA like CF multiple mutation infection disease and oncology applications

Platform allowing to swap cargo reusing same nanoparticles address disease beyond Big Pharma options for biotech

WHat strain of Flu vaccine will come back in the future when people do not use masks 

  • Kate Bingham, UK Vaccine Taskforce

July 2020, AAV vs mRNA delivery across UK local centers administered both types supply and delivery uplift 

  • Q&A 9:00 AM – 9:15 AM  

9:00 AM – 9:25 AM HOT TOPICS

Benign Blood Disorders

Hemophilia has been and remains a hallmark indication for the CGT. Given its well-defined biology, larger market, and limited need for gene transfer to provide therapeutic benefit, it has been at the forefront of clinical development for years, however, product approval remains elusive. What are the main hurdles to this success? Contrary to many indications that CGT pursues no therapeutic options are available to patients, hemophiliacs have an increasing number of highly efficacious treatment options. How does the competitive landscape impact this field differently than other CGT fields? With many different players pursuing a gene therapy option for hemophilia, what are the main differentiators? Gene therapy for hemophilia seems compelling for low and middle-income countries, given the cost of currently available treatments; does your company see opportunities in this market? Moderator: Nancy Berliner, MD

  • Chief, Division of Hematology, BWH
  • H. Franklin Bunn Professor of Medicine, HMS

Speakers: Theresa Heggie

  • CEO, Freeline Therapeutics

Safety concerns, high burden of treatment CGT has record of safety and risk/benefit adoption of Tx functional cure CGT is potent Tx relative small quantity of protein needs be delivered 

Potency and quality less quantity drug and greater potency

risk of delivery unwanted DNA, capsules are critical 

analytics is critical regulator involvement in potency definition

Close of collaboration is excitingGallia Levy, MD, PhD

  • Chief Medical Officer, Spark Therapeutics

Hemophilia CGT is the highest potential for Global access logistics in underdeveloped countries working with NGOs practicality of the Tx

Roche reached 120 Counties great to be part of the Roche GroupAmir Nashat, PhD

  • Managing Partner, Polaris Ventures

Suneet Varma

  • Global President of Rare Disease, Pfizer

Gene therapy at Pfizer small molecule, large molecule and CGT – spectrum of choice allowing Hemophilia patients to marry 

1/3 internal 1/3 partnership 1/3 acquisitions 

Learning from COVID-19 is applied for other vaccine development

review of protocols and CGT for Hemophelia

You can’t buy Time

With MIT Pfizer is developing a model for Hemopilia CGT treatment

  • Q&A 9:30 AM – 9:45 AM  

9:25 AM – 9:35 AM FIRST LOOK

Treating Rett Syndrome through X-reactivation

Jeannie Lee, MD, PhD

  • Molecular Biologist, MGH
  • Professor of Genetics, HMS

200 disease X chromosome unlock for neurological genetic diseases: Rett Syndromeand other autism spectrum disorders female model vs male mice model

deliver protein to the brain 

restore own missing or dysfunctional protein

Epigenetic not CGT – no exogent intervention Xist ASO drug

Female model

  • Q&A 9:35 AM – 9:55 AM  

9:35 AM – 9:45 AM FIRST LOOK

Rare but mighty: scaling up success in single gene disorders

Florian Eichler, MD

  • Director, Center for Rare Neurological Diseases, MGH
  • Associate Professor, Neurology, HMS

Single gene disorder NGS enable diagnosis, DIagnosis to Treatment How to know whar cell to target, make it available and scale up Address gap: missing components Biomarkers to cell types lipid chemistry cell animal biology 

crosswalk from bone marrow matter 

New gene discovered that causes neurodevelopment of stagnant genes Examining new Biology cell type specific biomarkers 

  • Q&A 9:45 AM – 10:05 AM  

9:50 AM – 10:15 AM HOT TOPICS

Diabetes | Grand Challenge

The American Diabetes Association estimates 30 million Americans have diabetes and 1.5 million are diagnosed annually. GCT offers the prospect of long-sought treatment for this enormous cohort and their chronic requirements. The complexity of the disease and its management constitute a grand challenge and highlight both the potential of GCT and its current limitations.

  •  Islet transplantation for type 1 diabetes has been attempted for decades. Problems like loss of transplanted islet cells due to autoimmunity and graft site factors have been difficult to address. Is there anything different on the horizon for gene and cell therapies to help this be successful?
  • How is the durability of response for gene or cell therapies for diabetes being addressed? For example, what would the profile of an acceptable (vs. optimal) cell therapy look like?

Moderator: Marie McDonnell, MD

  • Chief, Diabetes Section and Director, Diabetes Program, BWH
  • Lecturer on Medicine, HMS

Type 1 Diabetes cost of insulin for continuous delivery of drug

alternative treatments: 

The Future: neuropotent stem cells 

What keeps you up at night  Speakers: Tom Bollenbach, PhD

  • Chief Technology Officer, Advanced Regenerative Manufacturing Institute

Data managment sterility sensors, cell survival after implantation, stem cells manufacturing, process development in manufacturing of complex cells

Data and instrumentation the Process is the Product

Manufacturing tight schedules Manasi Jaiman, MD

  • Vice President, Clinical Development, ViaCyte
  • Pediatric Endocrinologist

continous glucose monitoring Bastiano Sanna, PhD

  • EVP, Chief of Cell & Gene Therapies and VCGT Site Head, Vertex Pharmaceuticals

100 years from discovering Insulin, Insulin is not a cure in 2021 – asking patients to partner more 

Produce large quantities of the Islet cells encapsulation technology been developed 

Scaling up is a challengeRogerio Vivaldi, MD

  • CEO, Sigilon Therapeutics

Advanced made, Patient of Type 1 Outer and Inner compartments of spheres (not capsule) no immune suppression continuous secretion of enzyme Insulin independence without immune suppression 

Volume to have of-the-shelf inventory oxegenation in location lymphatic and vascularization conrol the whole process modular platform learning from others

  • Q&A 10:20 AM – 10:35 AM  

10:20 AM – 10:40 AM FIRESIDE

Building A Unified GCT Strategy

  Introducer: John Fish

  • CEO, Suffolk
  • Chairman of Board Trustees, Brigham Health

Moderator: Meg Tirrell

  • Senior Health and Science Reporter, CNBC

Last year, what was it at Novartis Speaker: Jay Bradner, MD

  • President, NIBR

Keep eyes open, waiting the Pandemic to end and enable working back on all the indications 

Portfolio of MET, Mimi Emerging Therapies 

Learning from the Pandemic – operationalize the practice science, R&D leaders, new collaboratives at NIH, FDA, Novartis

Pursue programs that will yield growth, tropic diseases with Gates Foundation, Rising Tide pods for access CGT within Novartis Partnership with UPenn in Cell Therapy 

Cost to access to IP from Academia to a Biotech CRISPR accessing few translations to Clinic

Protein degradation organization constraint valuation by parties in a partnership 

Novartis: nuclear protein lipid nuclear particles, tamplate for Biotech to collaborate

Game changing: 10% of the Portfolio, New frontiers human genetics in Ophthalmology, CAR-T, CRISPR, Gene Therapy Neurological and payloads of different matter

  • Q&A 10:45 AM – 11:00 AM  

10:40 AM – 10:50 AM

Break

  10:50 AM – 11:00 AM FIRST LOOK

Getting to the Heart of the Matter: Curing Genetic Cardiomyopathy

Christine Seidman, MD

  • Director, Cardiovascular Genetics Center, BWH
  • Smith Professor of Medicine & Genetics, HMS

The Voice of Dr. Seidman – Her abstract is cited below

The ultimate opportunity presented by discovering the genetic basis of human disease is accurate prediction and disease prevention. To enable this achievement, genetic insights must enable the identification of at-risk

individuals prior to end-stage disease manifestations and strategies that delay or prevent clinical expression. Genetic cardiomyopathies provide a paradigm for fulfilling these opportunities. Hypertrophic cardiomyopathy (HCM) is characterized by left ventricular hypertrophy, diastolic dysfunction with normal or enhanced systolic performance and a unique histopathology: myocyte hypertrophy, disarray and fibrosis. Dilated cardiomyopathy (DCM) exhibits enlarged ventricular volumes with depressed systolic performance and nonspecific histopathology. Both HCM and DCM are prevalent clinical conditions that increase risk for arrhythmias, sudden death, and heart failure. Today treatments for HCM and DCM focus on symptoms, but none prevent disease progression. Human molecular genetic studies demonstrated that these pathologies often result from dominant mutations in genes that encode protein components of the sarcomere, the contractile unit in striated muscles. These data combined with the emergence of molecular strategies to specifically modulate gene expression provide unparalleled opportunities to silence or correct mutant genes and to boost healthy gene expression in patients with genetic HCM and DCM. Many challenges remain, but the active and vital efforts of physicians, researchers, and patients are poised to ensure success.

Hypertrophic and Dilated Cardiomyopaies ‘

10% receive heart transplant 12 years survival 

Mutation puterb function

TTN: contribute 20% of dilated cardiomyopaty

Silence gene 

pleuripotential cells deliver therapies 

  • Q&A 11:00 AM – 11:20 AM  

11:00 AM – 11:10 AM FIRST LOOK

Unlocking the secret lives of proteins in health and disease

Anna Greka, MD, PhD

  • Medicine, BWH
  • Associate Professor, Medicine, HMS

Cyprus Island, kidney disease by mutation causing MUC1 accumulation and death BRD4780 molecule that will clear the misfolding proteins from the kidney organoids: pleuripotent stem cells small molecule developed for applications in the other cell types in brain, eye, gene mutation build mechnism for therapy clinical models transition from Academia to biotech 

Q&A

  • 11:10 AM – 11:30 AM  

11:10 AM – 11:35 AM

Rare and Ultra Rare Diseases | GCT Breaks Through

One of the most innovative segments in all of healthcare is the development of GCT driven therapies for rare and ultra-rare diseases. Driven by a series of insights and tools and funded in part by disease focused foundations, philanthropists and abundant venture funding disease after disease is yielding to new GCT technology. These often become platforms to address more prevalent diseases. The goal of making these breakthroughs routine and affordable is challenged by a range of issues including clinical trial design and pricing.

  • What is driving the interest in rare diseases?
  • What are the biggest barriers to making breakthroughs ‘routine and affordable?’
  • What is the role of retrospective and prospective natural history studies in rare disease?  When does the expected value of retrospective disease history studies justify the cost?
  • Related to the first question, what is the FDA expecting as far as controls in clinical trials for rare diseases?  How does this impact the collection of natural history data?

Moderator: Susan Slaugenhaupt, PhD

  • Scientific Director and Elizabeth G. Riley and Daniel E. Smith Jr., Endowed Chair, Mass General Research Institute
  • Professor, Neurology, HMS

Speakers: Leah Bloom, PhD

  • SVP, External Innovation and Strategic Alliances, Novartis Gene Therapies

Ultra rare (less than 100) vs rare difficulty to recruit patients and to follow up after treatment Bobby Gaspar, MD, PhD

  • CEO, Orchard Therapeutics

Study of rare condition have transfer to other larger diseases – delivery of therapeutics genes, like immune disorders 

Patient testimonials just to hear what a treatment can make Emil Kakkis, MD, PhD

  • CEO, Ultragenyx

Do 100 patient study then have information on natural history to develop a clinical trial Stuart Peltz, PhD

  • CEO, PTC Therapeutics

Rare disease, challenge for FDA approval and after market commercialization follow ups

Justification of cost for Rare disease – demonstration of Change is IP in value patients advocacy is helpful

  • Q&A 11:40 AM – 11:55 AM  

11:40 AM – 12:00 PM FIRESIDE

Partnering Across the GCT Spectrum

  Moderator: Erin Harris

  • Chief Editor, Cell & Gene

Perspective & professional tenure

Partnership in manufacturing what are the recommendations?

Hospital systems: Partnership Challenges  Speaker: Marc Casper

  • CEO, ThermoFisher

25 years in Diagnostics last 20 years at ThermoFisher 

products used in the Lab for CAR-T research and manufacture 

CGT Innovations: FDA will have a high level of approval each year

How move from research to clinical trials to manufacturing Quicker process

Best practices in Partnerships: the root cause if acceleration to market service providers to deliver highest standards

Building capacity by acquisition to avoid the waiting time

Accelerate new products been manufactured 

Collaborations with Academic Medical center i.e., UCSF in CGT joint funding to accelerate CGT to clinics’

Customers are extremely knowledgable, scale the capital investment made investment

150MIL a year to improve the Workflow 

  • Q&A 12:05 PM – 12:20 PM  

12:05 PM – 12:30 PM

  • 12:05 PM – 12:20 PM  

12:05 PM – 12:30 PM

CEO Panel | Anticipating Disruption | Planning for Widespread GCT

The power of GCT to cure disease has the prospect of profoundly improving the lives of patients who respond. Planning for a disruption of this magnitude is complex and challenging as it will change care across the spectrum. Leading chief executives shares perspectives on how the industry will change and how this change should be anticipated. Moderator: Meg Tirrell

  • Senior Health and Science Reporter, CNBC

CGT becoming staple therapy what are the disruptors emerging Speakers: Lisa Dechamps

  • SVP & Chief Business Officer, Novartis Gene Therapies

Reimagine medicine with collaboration at MGH, MDM condition in children 

The Science is there, sustainable processes and systems impact is transformational

Value based pricing, risk sharing Payers and Pharma for one time therapy with life span effect

Collaboration with FDAKieran Murphy

  • CEO, GE Healthcare

Diagnosis of disease to be used in CGT

2021 investment in CAR-T platform 

Investment in several CGT frontier

Investment in AI, ML in system design new technologies 

GE: Scale and Global distributions, sponsor companies in software 

Waste in Industry – Healthcare % of GDP, work with MGH to smooth the workflow faster entry into hospital and out of Hospital

Telemedicine during is Pandemic: Radiologist needs to read remotely 

Supply chain disruptions slow down all ecosystem 

Production of ventilators by collaboration with GM – ingenuity 

Scan patients outside of hospital a scanner in a Box Christian Rommel, PhD

  • Head, Pharmaceuticals Research & Development, Bayer AG

CGT – 2016 and in 2020 new leadership and capability 

Disease Biology and therapeutics

Regenerative Medicine: CGT vs repair building pipeline in ophthalmology and cardiovascular 

During Pandemic: Deliver Medicines like Moderna, Pfizer – collaborations between competitors with Government Bayer entered into Vaccines in 5 days, all processes had to change access innovations developed over decades for medical solutions 

  • Q&A 12:35 PM – 12:50 PM  

12:35 PM – 12:55 PM FIRESIDE

Building a GCT Portfolio

GCT represents a large and growing market for novel therapeutics that has several segments. These include Cardiovascular Disease, Cancer, Neurological Diseases, Infectious Disease, Ophthalmology, Benign Blood Disorders, and many others; Manufacturing and Supply Chain including CDMO’s and CMO’s; Stem Cells and Regenerative Medicine; Tools and Platforms (viral vectors, nano delivery, gene editing, etc.). Bayer’s pharma business participates in virtually all of these segments. How does a Company like Bayer approach the development of a portfolio in a space as large and as diverse as this one? How does Bayer approach the support of the production infrastructure with unique demands and significant differences from its historical requirements? Moderator:

Shinichiro Fuse, PhD

  • Managing Partner, MPM Capital

Speaker: Wolfram Carius, PhD

  • EVP, Pharmaceuticals, Head of Cell & Gene Therapy, Bayer AG

CGT will bring treatment to cure, delivery of therapies 

Be a Leader repair, regenerate, cure

Technology and Science for CGT – building a portfolio vs single asset decision criteria development of IP market access patients access acceleration of new products

Bayer strategy: build platform for use by four domains  

Gener augmentation

Autologeneic therapy, analytics

Gene editing

Oncology Cell therapy tumor treatment: What kind of cells – the jury is out

Of 23 product launch at Bayer no prediction is possible some high some lows 

  • Q&A 1:00 PM – 1:15 PM  

12:55 PM – 1:35 PM

Lunch

  1:40 PM – 2:05 PM

GCT Delivery | Perfecting the Technology

Gene delivery uses physical, chemical, or viral means to introduce genetic material into cells. As more genetically modified therapies move closer to the market, challenges involving safety, efficacy, and manufacturing have emerged. Optimizing lipidic and polymer nanoparticles and exosomal delivery is a short-term priority. This panel will examine how the short-term and long-term challenges are being tackled particularly for non-viral delivery modalities. Moderator: Natalie Artzi, PhD

  • Assistant Professor, BWH

Speakers: Geoff McDonough, MD

  • CEO, Generation Bio

Sonya Montgomery

  • CMO, Evox Therapeutics

Laura Sepp-Lorenzino, PhD

  • Chief Scientific Officer, Executive Vice President, Intellia Therapeutics

Doug Williams, PhD

  • CEO, Codiak BioSciences
  • Q&A 2:10 PM – 2:25 PM  

2:05 PM – 2:10 PM

Invention Discovery Grant Announcement

  2:10 PM – 2:20 PM FIRST LOOK

Enhancing vesicles for therapeutic delivery of bioproducts

Xandra Breakefield, PhD

  • Geneticist, MGH, MGH
  • Professor, Neurology, HMS
  • Q&A 2:20 PM – 2:35 PM  

2:20 PM – 2:30 PM FIRST LOOK

Versatile polymer-based nanocarriers for targeted therapy and immunomodulation

Natalie Artzi, PhD

  • Assistant Professor, BWH
  • Q&A 2:30 PM – 2:45 PM  

2:55 PM – 3:20 PM HOT TOPICS

Gene Editing | Achieving Therapeutic Mainstream

Gene editing was recognized by the Nobel Committee as “one of gene technology’s sharpest tools, having a revolutionary impact on life sciences.” Introduced in 2011, gene editing is used to modify DNA. It has applications across almost all categories of disease and is also being used in agriculture and public health.

Today’s panel is made up of pioneers who represent foundational aspects of gene editing.  They will discuss the movement of the technology into the therapeutic mainstream.

  • Successes in gene editing – lessons learned from late-stage assets (sickle cell, ophthalmology)
  • When to use what editing tool – pros and cons of traditional gene-editing v. base editing.  Is prime editing the future? Specific use cases for epigenetic editing.
  • When we reach widespread clinical use – role of off-target editing – is the risk real?  How will we mitigate? How practical is patient-specific off-target evaluation?

Moderator: J. Keith Joung, MD, PhD

  • Robert B. Colvin, M.D. Endowed Chair in Pathology & Pathologist, MGH
  • Professor of Pathology, HMS

Speakers: John Evans

  • CEO, Beam Therapeutics

Lisa Michaels

  • EVP & CMO, Editas Medicine
  • Q&A 3:25 PM – 3:50 PM  

3:25 PM – 3:50 PM HOT TOPICS

Common Blood Disorders | Gene Therapy

There are several dozen companies working to develop gene or cell therapies for Sickle Cell Disease, Beta Thalassemia, and  Fanconi Anemia. In some cases, there are enzyme replacement therapies that are deemed effective and safe. In other cases, the disease is only managed at best. This panel will address a number of questions that are particular to this class of genetic diseases:

  • What are the pros and cons of various strategies for treatment? There are AAV-based editing, non-viral delivery even oligonucleotide recruitment of endogenous editing/repair mechanisms. Which approaches are most appropriate for which disease?
  • How can companies increase the speed of recruitment for clinical trials when other treatments are available? What is the best approach to educate patients on a novel therapeutic?
  • How do we best address ethnic and socio-economic diversity to be more representative of the target patient population?
  • How long do we have to follow up with the patients from the scientific, patient’s community, and payer points of view? What are the current FDA and EMA guidelines for long-term follow-up?
  • Where are we with regards to surrogate endpoints and their application to clinically meaningful endpoints?
  • What are the emerging ethical dilemmas in pediatric gene therapy research? Are there challenges with informed consent and pediatric assent for trial participation?
  • Are there differences in reimbursement policies for these different blood disorders? Clearly durability of response is a big factor. Are there other considerations?

Moderator: David Scadden, MD

  • Director, Center for Regenerative Medicine; Co-Director, Harvard Stem Cell Institute, Director, Hematologic Malignancies & Experimental Hematology, MGH
  • Jordan Professor of Medicine, HMS

Speakers: Samarth Kukarni, PhDNick Leschly

  • Chief Bluebird, Bluebird Bio

Mike McCune, MD, PhD

  • Head, HIV Frontiers, Global Health Innovative Technology Solutions, Bill & Melinda Gates Foundation
  • Q&A 3:55 PM – 4:15 PM  

3:50 PM – 4:00 PM FIRST LOOK

Gene Editing

J. Keith Joung, MD, PhD

  • Robert B. Colvin, M.D. Endowed Chair in Pathology & Pathologist, MGH
  • Professor of Pathology, HMS
  • Q&A 4:00 PM – 4:20 PM  

4:20 PM – 4:45 PM HOT TOPICS

Gene Expression | Modulating with Oligonucleotide-Based Therapies

Oligonucleotide drugs have recently come into their own with approvals from companies such as Biogen, Alnylam, Novartis and others. This panel will address several questions:

How important is the delivery challenge for oligonucleotides? Are technological advancements emerging that will improve the delivery of oligonucleotides to the CNS or skeletal muscle after systemic administration?

  • Will oligonucleotides improve as a class that will make them even more effective?   Are further advancements in backbone chemistry anticipated, for example.
  • Will oligonucleotide based therapies blaze trails for follow-on gene therapy products?
  • Are small molecules a threat to oligonucleotide-based therapies?
  • Beyond exon skipping and knock-down mechanisms, what other roles will oligonucleotide-based therapies take mechanistically — can genes be activating oligonucleotides?  Is there a place for multiple mechanism oligonucleotide medicines?
  • Are there any advantages of RNAi-based oligonucleotides over ASOs, and if so for what use?

Moderator: Jeannie Lee, MD, PhD

  • Molecular Biologist, MGH
  • Professor of Genetics, HMS

Speakers: Bob Brown, PhD

  • CSO, EVP of R&D, Dicerna

Brett Monia, PhD

  • CEO, Ionis

Alfred Sandrock, MD, PhD

  • EVP, R&D and CMO, Biogen
  • Q&A 4:50 PM – 5:05 PM  

4:45 PM – 4:55 PM FIRST LOOK

RNA therapy for brain cancer

Pierpaolo Peruzzi, MD, PhD

  • Nuerosurgery, BWH
  • Assistant Professor of Neurosurgery, HMS
  • Q&A 4:55 PM – 5:15 PM  

Friday, May 21, 2021

8:30 AM – 8:55 AM

Venture Investing | Shaping GCT Translation

What is occurring in the GCT venture capital segment? Which elements are seeing the most activity? Which areas have cooled? How is the investment market segmented between gene therapy, cell therapy and gene editing? What makes a hot GCT company? How long will the market stay frothy? Some review of demographics — # of investments, sizes, etc. Why is the market hot and how long do we expect it to stay that way? Rank the top 5 geographic markets for GCT company creation and investing? Are there academic centers that have been especially adept at accelerating GCT outcomes? Do the business models for the rapid development of coronavirus vaccine have any lessons for how GCT technology can be brought to market more quickly? Moderator: Meredith Fisher, PhD

  • Partner, Mass General Brigham Innovation Fund

Speakers: David Berry, MD, PhD

  • CEO, Valo Health
  • General Partner, Flagship Pioneering

Robert Nelsen

  • Managing Director, Co-founder, ARCH Venture Partners

Kush Parmar, MD, PhD

  • Managing Partner, 5AM Ventures
  • Q&A 9:00 AM – 9:15 AM  

9:00 AM – 9:25 AM

Regenerative Medicine | Stem Cells

The promise of stem cells has been a highlight in the realm of regenerative medicine. Unfortunately, that promise remains largely in the future. Recent breakthroughs have accelerated these potential interventions in particular for treating neurological disease. Among the topics the panel will consider are:

  • Stem cell sourcing
  • Therapeutic indication growth
  • Genetic and other modification in cell production
  • Cell production to final product optimization and challenges
  • How to optimize the final product

Moderator: Ole Isacson, MD, PhD

  • Director, Neuroregeneration Research Institute, McLean
  • Professor, Neurology and Neuroscience, HMS

Speakers: Kapil Bharti, PhD

  • Senior Investigator, Ocular and Stem Cell Translational Research Section, NIH

Joe Burns, PhD

  • VP, Head of Biology, Decibel Therapeutics

Erin Kimbrel, PhD

  • Executive Director, Regenerative Medicine, Astellas

Nabiha Saklayen, PhD

  • CEO and Co-Founder, Cellino
  • Q&A 9:30 AM – 9:45 AM  

9:25 AM – 9:35 AM FIRST LOOK

Stem Cells

Bob Carter, MD, PhD

  • Chairman, Department of Neurosurgery, MGH
  • William and Elizabeth Sweet, Professor of Neurosurgery, HMS
  • Q&A 9:35 AM – 9:55 AM  

9:35 AM – 10:00 AM

Capital Formation ’21-30 | Investing Modes Driving GCT Technology and Timing

The dynamics of venture/PE investing and IPOs are fast evolving. What are the drivers – will the number of investors grow will the size of early rounds continue to grow? How is this reflected in GCT target areas, company design, and biotech overall? Do patients benefit from these trends? Is crossover investing a distinct class or a little of both? Why did it emerge and what are the characteristics of the players?  Will SPACs play a role in the growth of the gene and cell therapy industry. What is the role of corporate investment arms eg NVS, Bayer, GV, etc. – has a category killer emerged?  Are we nearing the limit of what the GCT market can absorb or will investment capital continue to grow unabated? Moderator: Roger Kitterman

  • VP, Venture, Mass General Brigham

Speakers: Ellen Hukkelhoven, PhD

  • Managing Director, Perceptive Advisors

Peter Kolchinsky, PhD

  • Founder and Managing Partner, RA Capital Management

Deep Nishar

  • Senior Managing Partner, SoftBank Investment Advisors

Oleg Nodelman

  • Founder & Managing Partner, EcoR1 Capital
  • Q&A 10:05 AM – 10:20 AM  

10:00 AM – 10:10 AM FIRST LOOK

New scientific and clinical developments for autologous stem cell therapy for Parkinson’s disease patients

Penelope Hallett, PhD

  • NRL, McLean
  • Assistant Professor Psychiatry, HMS
  • Q&A 10:10 AM – 10:30 AM  

10:10 AM – 10:35 AM HOT TOPICS

Neurodegenerative Clinical Outcomes | Achieving GCT Success

Can stem cell-based platforms become successful treatments for neurodegenerative diseases?

  •  What are the commonalities driving GCT success in neurodegenerative disease and non-neurologic disease, what are the key differences?
  • Overcoming treatment administration challenges
  • GCT impact on degenerative stage of disease
  • How difficult will it be to titrate the size of the cell therapy effect in different neurological disorders and for different patients?
  • Demonstrating clinical value to patients and payers
  • Revised clinical trial models to address issues and concerns specific to GCT

Moderator: Bob Carter, MD, PhD

  • Chairman, Department of Neurosurgery, MGH
  • William and Elizabeth Sweet, Professor of Neurosurgery, HMS

Speakers: Erwan Bezard, PhD

  • INSERM Research Director, Institute of Neurodegenerative Diseases

Nikola Kojic, PhD

  • CEO and Co-Founder, Oryon Cell Therapies

Geoff MacKay

  • President & CEO, AVROBIO

Viviane Tabar, MD

  • Founding Investigator, BlueRock Therapeutics
  • Chair of Neurosurgery, Memorial Sloan Kettering
  • Q&A 10:40 AM – 10:55 AM  

10:35 AM – 11:35 AM

Disruptive Dozen: 12 Technologies that Will Reinvent GCT

Nearly one hundred senior Mass General Brigham Harvard faculty contributed to the creation of this group of twelve GCT technologies that they believe will breakthrough in the next two years. The Disruptive Dozen identifies and ranks the GCT technologies that will be available on at least an experimental basis to have the chance of significantly improving health care. 11:35 AM – 11:45 AM

Concluding Remarks

Friday, May 21, 2021

Computer connection to the iCloud of WordPress.com FROZE completely at 10:30AM EST and no file update was possible. COVERAGE OF MAY 21, 2021 IS RECORDED BELOW FOLLOWING THE AGENDA BY COPY AN DPASTE OF ALL THE TWEETS I PRODUCED ON MAY 21, 2021 8:30 AM – 8:55 AM

Venture Investing | Shaping GCT Translation

What is occurring in the GCT venture capital segment? Which elements are seeing the most activity? Which areas have cooled? How is the investment market segmented between gene therapy, cell therapy and gene editing? What makes a hot GCT company? How long will the market stay frothy? Some review of demographics — # of investments, sizes, etc. Why is the market hot and how long do we expect it to stay that way? Rank the top 5 geographic markets for GCT company creation and investing? Are there academic centers that have been especially adept at accelerating GCT outcomes? Do the business models for the rapid development of coronavirus vaccine have any lessons for how GCT technology can be brought to market more quickly? Moderator: Meredith Fisher, PhD

  • Partner, Mass General Brigham Innovation Fund

Speakers: David Berry, MD, PhD

  • CEO, Valo Health
  • General Partner, Flagship Pioneering

Robert Nelsen

  • Managing Director, Co-founder, ARCH Venture Partners

Kush Parmar, MD, PhD

  • Managing Partner, 5AM Ventures
  • Q&A 9:00 AM – 9:15 AM  

9:00 AM – 9:25 AM

Regenerative Medicine | Stem Cells

The promise of stem cells has been a highlight in the realm of regenerative medicine. Unfortunately, that promise remains largely in the future. Recent breakthroughs have accelerated these potential interventions in particular for treating neurological disease. Among the topics the panel will consider are:

  • Stem cell sourcing
  • Therapeutic indication growth
  • Genetic and other modification in cell production
  • Cell production to final product optimization and challenges
  • How to optimize the final product

Moderator: Ole Isacson, MD, PhD

  • Director, Neuroregeneration Research Institute, McLean
  • Professor, Neurology and Neuroscience, HMS

Speakers: Kapil Bharti, PhD

  • Senior Investigator, Ocular and Stem Cell Translational Research Section, NIH

Joe Burns, PhD

  • VP, Head of Biology, Decibel Therapeutics

Erin Kimbrel, PhD

  • Executive Director, Regenerative Medicine, Astellas

Nabiha Saklayen, PhD

  • CEO and Co-Founder, Cellino
  • Q&A 9:30 AM – 9:45 AM  

9:25 AM – 9:35 AM FIRST LOOK

Stem Cells

Bob Carter, MD, PhD

  • Chairman, Department of Neurosurgery, MGH
  • William and Elizabeth Sweet, Professor of Neurosurgery, HMS
  • Q&A 9:35 AM – 9:55 AM  

9:35 AM – 10:00 AM

Capital Formation ’21-30 | Investing Modes Driving GCT Technology and Timing

The dynamics of venture/PE investing and IPOs are fast evolving. What are the drivers – will the number of investors grow will the size of early rounds continue to grow? How is this reflected in GCT target areas, company design, and biotech overall? Do patients benefit from these trends? Is crossover investing a distinct class or a little of both? Why did it emerge and what are the characteristics of the players?  Will SPACs play a role in the growth of the gene and cell therapy industry. What is the role of corporate investment arms eg NVS, Bayer, GV, etc. – has a category killer emerged?  Are we nearing the limit of what the GCT market can absorb or will investment capital continue to grow unabated? Moderator: Roger Kitterman

  • VP, Venture, Mass General Brigham

Speakers: Ellen Hukkelhoven, PhD

  • Managing Director, Perceptive Advisors

Peter Kolchinsky, PhD

  • Founder and Managing Partner, RA Capital Management

Deep Nishar

  • Senior Managing Partner, SoftBank Investment Advisors

Oleg Nodelman

  • Founder & Managing Partner, EcoR1 Capital
  • Q&A 10:05 AM – 10:20 AM  

10:00 AM – 10:10 AM FIRST LOOK

New scientific and clinical developments for autologous stem cell therapy for Parkinson’s disease patients

Penelope Hallett, PhD

  • NRL, McLean
  • Assistant Professor Psychiatry, HMS
  • Q&A 10:10 AM – 10:30 AM  

10:10 AM – 10:35 AM HOT TOPICS

Neurodegenerative Clinical Outcomes | Achieving GCT Success

Can stem cell-based platforms become successful treatments for neurodegenerative diseases?

  •  What are the commonalities driving GCT success in neurodegenerative disease and non-neurologic disease, what are the key differences?
  • Overcoming treatment administration challenges
  • GCT impact on degenerative stage of disease
  • How difficult will it be to titrate the size of the cell therapy effect in different neurological disorders and for different patients?
  • Demonstrating clinical value to patients and payers
  • Revised clinical trial models to address issues and concerns specific to GCT

Moderator: Bob Carter, MD, PhD

  • Chairman, Department of Neurosurgery, MGH
  • William and Elizabeth Sweet, Professor of Neurosurgery, HMS

Speakers: Erwan Bezard, PhD

  • INSERM Research Director, Institute of Neurodegenerative Diseases

Nikola Kojic, PhD

  • CEO and Co-Founder, Oryon Cell Therapies

Geoff MacKay

  • President & CEO, AVROBIO

Viviane Tabar, MD

  • Founding Investigator, BlueRock Therapeutics
  • Chair of Neurosurgery, Memorial Sloan Kettering
  • Q&A 10:40 AM – 10:55 AM  

10:35 AM – 11:35 AM

Disruptive Dozen: 12 Technologies that Will Reinvent GCT

Nearly one hundred senior Mass General Brigham Harvard faculty contributed to the creation of this group of twelve GCT technologies that they believe will breakthrough in the next two years. The Disruptive Dozen identifies and ranks the GCT technologies that will be available on at least an experimental basis to have the chance of significantly improving health care. 11:35 AM – 11:45 AM

Concluding Remarks

The co-chairs convene to reflect on the insights shared over the three days. They will discuss what to expect at the in-person GCT focused May 2-4, 2022 World Medical Innovation Forum.

 

The co-chairs convene to reflect on the insights shared over the three days. They will discuss what to expect at the in-person GCT focused May 2-4, 2022 World Medical Innovation Forum.Christine Seidman, MD

Hypertrophic and Dilated Cardiomyopaies ‘

10% receive heart transplant 12 years survival 

Mutation puterb function

TTN: contribute 20% of dilated cardiomyopaty

Silence gene 

pleuripotential cells deliver therapies 

  • Q&A 11:00 AM – 11:20 AM  

11:00 AM – 11:10 AM FIRST LOOK

Unlocking the secret lives of proteins in health and disease

Anna Greka, MD, PhD

  • Medicine, BWH
  • Associate Professor, Medicine, HMS

Cyprus Island, kidney disease by mutation causing MUC1 accumulation and death BRD4780 molecule that will clear the misfolding proteins from the kidney organoids: pleuripotent stem cells small molecule developed for applications in the other cell types in brain, eye, gene mutation build mechnism for therapy clinical models transition from Academia to biotech 

Q&A

  • 11:10 AM – 11:30 AM  

11:10 AM – 11:35 AM

Rare and Ultra Rare Diseases | GCT Breaks Through

One of the most innovative segments in all of healthcare is the development of GCT driven therapies for rare and ultra-rare diseases. Driven by a series of insights and tools and funded in part by disease focused foundations, philanthropists and abundant venture funding disease after disease is yielding to new GCT technology. These often become platforms to address more prevalent diseases. The goal of making these breakthroughs routine and affordable is challenged by a range of issues including clinical trial design and pricing.

  • What is driving the interest in rare diseases?
  • What are the biggest barriers to making breakthroughs ‘routine and affordable?’
  • What is the role of retrospective and prospective natural history studies in rare disease?  When does the expected value of retrospective disease history studies justify the cost?
  • Related to the first question, what is the FDA expecting as far as controls in clinical trials for rare diseases?  How does this impact the collection of natural history data?

Moderator: Susan Slaugenhaupt, PhD

  • Scientific Director and Elizabeth G. Riley and Daniel E. Smith Jr., Endowed Chair, Mass General Research Institute
  • Professor, Neurology, HMS

Speakers: Leah Bloom, PhD

  • SVP, External Innovation and Strategic Alliances, Novartis Gene Therapies

Ultra rare (less than 100) vs rare difficulty to recruit patients and to follow up after treatment Bobby Gaspar, MD, PhD

  • CEO, Orchard Therapeutics

Study of rare condition have transfer to other larger diseases – delivery of therapeutics genes, like immune disorders 

Patient testimonials just to hear what a treatment can make Emil Kakkis, MD, PhD

  • CEO, Ultragenyx

Do 100 patient study then have information on natural history to develop a clinical trial Stuart Peltz, PhD

  • CEO, PTC Therapeutics

Rare disease, challenge for FDA approval and after market commercialization follow ups

Justification of cost for Rare disease – demonstration of Change is IP in value patients advocacy is helpful

  • Q&A 11:40 AM – 11:55 AM  

11:40 AM – 12:00 PM FIRESIDE

Partnering Across the GCT Spectrum

  Moderator: Erin Harris

  • Chief Editor, Cell & Gene

Perspective & professional tenure

Partnership in manufacturing what are the recommendations?

Hospital systems: Partnership Challenges  Speaker: Marc Casper

  • CEO, ThermoFisher

25 years in Diagnostics last 20 years at ThermoFisher 

products used in the Lab for CAR-T research and manufacture 

CGT Innovations: FDA will have a high level of approval each year

How move from research to clinical trials to manufacturing Quicker process

Best practices in Partnerships: the root cause if acceleration to market service providers to deliver highest standards

Building capacity by acquisition to avoid the waiting time

Accelerate new products been manufactured 

Collaborations with Academic Medical center i.e., UCSF in CGT joint funding to accelerate CGT to clinics’

Customers are extremely knowledgable, scale the capital investment made investment

150MIL a year to improve the Workflow 

  • Q&A 12:05 PM – 12:20 PM  

12:05 PM – 12:30 PM

CEO Panel | Anticipating Disruption | Planning for Widespread GCT

The power of GCT to cure disease has the prospect of profoundly improving the lives of patients who respond. Planning for a disruption of this magnitude is complex and challenging as it will change care across the spectrum. Leading chief executives shares perspectives on how the industry will change and how this change should be anticipated. Moderator: Meg Tirrell

  • Senior Health and Science Reporter, CNBC

CGT becoming staple therapy what are the disruptors emerging Speakers: Lisa Dechamps

  • SVP & Chief Business Officer, Novartis Gene Therapies

Reimagine medicine with collaboration at MGH, MDM condition in children 

The Science is there, sustainable processes and systems impact is transformational

Value based pricing, risk sharing Payers and Pharma for one time therapy with life span effect

Collaboration with FDAKieran Murphy

  • CEO, GE Healthcare

Diagnosis of disease to be used in CGT

2021 investment in CAR-T platform 

Investment in several CGT frontier

Investment in AI, ML in system design new technologies 

GE: Scale and Global distributions, sponsor companies in software 

Waste in Industry – Healthcare % of GDP, work with MGH to smooth the workflow faster entry into hospital and out of Hospital

Telemedicine during is Pandemic: Radiologist needs to read remotely 

Supply chain disruptions slow down all ecosystem 

Production of ventilators by collaboration with GM – ingenuity 

Scan patients outside of hospital a scanner in a Box Christian Rommel, PhD

  • Head, Pharmaceuticals Research & Development, Bayer AG

CGT – 2016 and in 2020 new leadership and capability 

Disease Biology and therapeutics

Regenerative Medicine: CGT vs repair building pipeline in ophthalmology and cardiovascular 

During Pandemic: Deliver Medicines like Moderna, Pfizer – collaborations between competitors with Government Bayer entered into Vaccines in 5 days, all processes had to change access innovations developed over decades for medical solutions 

  • Q&A 12:35 PM – 12:50 PM  

12:35 PM – 12:55 PM FIRESIDE

Building a GCT Portfolio

GCT represents a large and growing market for novel therapeutics that has several segments. These include Cardiovascular Disease, Cancer, Neurological Diseases, Infectious Disease, Ophthalmology, Benign Blood Disorders, and many others; Manufacturing and Supply Chain including CDMO’s and CMO’s; Stem Cells and Regenerative Medicine; Tools and Platforms (viral vectors, nano delivery, gene editing, etc.). Bayer’s pharma business participates in virtually all of these segments. How does a Company like Bayer approach the development of a portfolio in a space as large and as diverse as this one? How does Bayer approach the support of the production infrastructure with unique demands and significant differences from its historical requirements? Moderator:

Shinichiro Fuse, PhD

  • Managing Partner, MPM Capital

Speaker: Wolfram Carius, PhD

  • EVP, Pharmaceuticals, Head of Cell & Gene Therapy, Bayer AG

CGT will bring treatment to cure, delivery of therapies 

Be a Leader repair, regenerate, cure

Technology and Science for CGT – building a portfolio vs single asset decision criteria development of IP market access patients access acceleration of new products

Bayer strategy: build platform for use by four domains  

Gener augmentation

Autologeneic therapy, analytics

Gene editing

Oncology Cell therapy tumor treatment: What kind of cells – the jury is out

Of 23 product launch at Bayer no prediction is possible some high some lows 

  • Q&A 1:00 PM – 1:15 PM  

12:55 PM – 1:35 PM

Lunch

  1:40 PM – 2:05 PM

GCT Delivery | Perfecting the Technology

Gene delivery uses physical, chemical, or viral means to introduce genetic material into cells. As more genetically modified therapies move closer to the market, challenges involving safety, efficacy, and manufacturing have emerged. Optimizing lipidic and polymer nanoparticles and exosomal delivery is a short-term priority. This panel will examine how the short-term and long-term challenges are being tackled particularly for non-viral delivery modalities. Moderator: Natalie Artzi, PhD

  • Assistant Professor, BWH

Speakers: Geoff McDonough, MD

  • CEO, Generation Bio

Sonya Montgomery

  • CMO, Evox Therapeutics

Laura Sepp-Lorenzino, PhD

  • Chief Scientific Officer, Executive Vice President, Intellia Therapeutics

Doug Williams, PhD

  • CEO, Codiak BioSciences
  • Q&A 2:10 PM – 2:25 PM  

2:05 PM – 2:10 PM

Invention Discovery Grant Announcement

  2:10 PM – 2:20 PM FIRST LOOK

Enhancing vesicles for therapeutic delivery of bioproducts

Xandra Breakefield, PhD

  • Geneticist, MGH, MGH
  • Professor, Neurology, HMS
  • Q&A 2:20 PM – 2:35 PM  

2:20 PM – 2:30 PM FIRST LOOK

Versatile polymer-based nanocarriers for targeted therapy and immunomodulation

Natalie Artzi, PhD

  • Assistant Professor, BWH
  • Q&A 2:30 PM – 2:45 PM  

2:55 PM – 3:20 PM HOT TOPICS

Gene Editing | Achieving Therapeutic Mainstream

Gene editing was recognized by the Nobel Committee as “one of gene technology’s sharpest tools, having a revolutionary impact on life sciences.” Introduced in 2011, gene editing is used to modify DNA. It has applications across almost all categories of disease and is also being used in agriculture and public health.

Today’s panel is made up of pioneers who represent foundational aspects of gene editing.  They will discuss the movement of the technology into the therapeutic mainstream.

  • Successes in gene editing – lessons learned from late-stage assets (sickle cell, ophthalmology)
  • When to use what editing tool – pros and cons of traditional gene-editing v. base editing.  Is prime editing the future? Specific use cases for epigenetic editing.
  • When we reach widespread clinical use – role of off-target editing – is the risk real?  How will we mitigate? How practical is patient-specific off-target evaluation?

Moderator: J. Keith Joung, MD, PhD

  • Robert B. Colvin, M.D. Endowed Chair in Pathology & Pathologist, MGH
  • Professor of Pathology, HMS

Speakers: John Evans

  • CEO, Beam Therapeutics

Lisa Michaels

  • EVP & CMO, Editas Medicine
  • Q&A 3:25 PM – 3:50 PM  

3:25 PM – 3:50 PM HOT TOPICS

Common Blood Disorders | Gene Therapy

There are several dozen companies working to develop gene or cell therapies for Sickle Cell Disease, Beta Thalassemia, and  Fanconi Anemia. In some cases, there are enzyme replacement therapies that are deemed effective and safe. In other cases, the disease is only managed at best. This panel will address a number of questions that are particular to this class of genetic diseases:

  • What are the pros and cons of various strategies for treatment? There are AAV-based editing, non-viral delivery even oligonucleotide recruitment of endogenous editing/repair mechanisms. Which approaches are most appropriate for which disease?
  • How can companies increase the speed of recruitment for clinical trials when other treatments are available? What is the best approach to educate patients on a novel therapeutic?
  • How do we best address ethnic and socio-economic diversity to be more representative of the target patient population?
  • How long do we have to follow up with the patients from the scientific, patient’s community, and payer points of view? What are the current FDA and EMA guidelines for long-term follow-up?
  • Where are we with regards to surrogate endpoints and their application to clinically meaningful endpoints?
  • What are the emerging ethical dilemmas in pediatric gene therapy research? Are there challenges with informed consent and pediatric assent for trial participation?
  • Are there differences in reimbursement policies for these different blood disorders? Clearly durability of response is a big factor. Are there other considerations?

Moderator: David Scadden, MD

  • Director, Center for Regenerative Medicine; Co-Director, Harvard Stem Cell Institute, Director, Hematologic Malignancies & Experimental Hematology, MGH
  • Jordan Professor of Medicine, HMS

Speakers: Samarth Kukarni, PhDNick Leschly

  • Chief Bluebird, Bluebird Bio

Mike McCune, MD, PhD

  • Head, HIV Frontiers, Global Health Innovative Technology Solutions, Bill & Melinda Gates Foundation
  • Q&A 3:55 PM – 4:15 PM  

3:50 PM – 4:00 PM FIRST LOOK

Gene Editing

J. Keith Joung, MD, PhD

  • Robert B. Colvin, M.D. Endowed Chair in Pathology & Pathologist, MGH
  • Professor of Pathology, HMS
  • Q&A 4:00 PM – 4:20 PM  

4:20 PM – 4:45 PM HOT TOPICS

Gene Expression | Modulating with Oligonucleotide-Based Therapies

Oligonucleotide drugs have recently come into their own with approvals from companies such as Biogen, Alnylam, Novartis and others. This panel will address several questions:

How important is the delivery challenge for oligonucleotides? Are technological advancements emerging that will improve the delivery of oligonucleotides to the CNS or skeletal muscle after systemic administration?

  • Will oligonucleotides improve as a class that will make them even more effective?   Are further advancements in backbone chemistry anticipated, for example.
  • Will oligonucleotide based therapies blaze trails for follow-on gene therapy products?
  • Are small molecules a threat to oligonucleotide-based therapies?
  • Beyond exon skipping and knock-down mechanisms, what other roles will oligonucleotide-based therapies take mechanistically — can genes be activating oligonucleotides?  Is there a place for multiple mechanism oligonucleotide medicines?
  • Are there any advantages of RNAi-based oligonucleotides over ASOs, and if so for what use?

Moderator: Jeannie Lee, MD, PhD

  • Molecular Biologist, MGH
  • Professor of Genetics, HMS

Speakers: Bob Brown, PhD

  • CSO, EVP of R&D, Dicerna

Brett Monia, PhD

  • CEO, Ionis

Alfred Sandrock, MD, PhD

  • EVP, R&D and CMO, Biogen
  • Q&A 4:50 PM – 5:05 PM  

4:45 PM – 4:55 PM FIRST LOOK

RNA therapy for brain cancer

Pierpaolo Peruzzi, MD, PhD

  • Nuerosurgery, BWH
  • Assistant Professor of Neurosurgery, HMS
  • Q&A 4:55 PM – 5:15 PM  

Friday, May 21, 2021

Computer connection to the iCloud of WordPress.com FROZE completely at 10:30AM EST and no file update was possible. COVERAGE OF MAY 21, 2021 IS RECORDED BELOW FOLLOWING THE AGENDA BY COPY AN DPASTE OF ALL THE TWEETS I PRODUCED ON MAY 21, 2021

8:30 AM – 8:55 AM

Venture Investing | Shaping GCT Translation

What is occurring in the GCT venture capital segment? Which elements are seeing the most activity? Which areas have cooled? How is the investment market segmented between gene therapy, cell therapy and gene editing? What makes a hot GCT company? How long will the market stay frothy? Some review of demographics — # of investments, sizes, etc. Why is the market hot and how long do we expect it to stay that way? Rank the top 5 geographic markets for GCT company creation and investing? Are there academic centers that have been especially adept at accelerating GCT outcomes? Do the business models for the rapid development of coronavirus vaccine have any lessons for how GCT technology can be brought to market more quickly? Moderator:   Meredith Fisher, PhD

  • Partner, Mass General Brigham Innovation Fund

Strategies, success what changes are needed in the drug discovery process   Speakers:  

Bring disruptive frontier as a platform with reliable delivery CGT double knock out disease cure all change efficiency and scope human centric vs mice centered right scale of data converted into therapeutics acceleratetion 

Innovation in drugs 60% fails in trial because of Toxicology system of the future deal with big diseases

Moderna is an example in unlocking what is inside us Microbiome and beyond discover new drugs epigenetics  

  • Robert Nelsen
    • Managing Director, Co-founder, ARCH Venture Partners

Manufacturing change is not a new clinical trial FDA need to be presented with new rethinking for big innovations Drug pricing cheaper requires systematization How to systematically scaling up systematize the discovery and the production regulatory innovations

Responsibility mismatch should be and what is “are”

Long term diseases Stack holders and modalities risk benefir for populations 

  • Q&A 9:00 AM – 9:15 AM  

9:00 AM – 9:25 AM

Regenerative Medicine | Stem Cells

The promise of stem cells has been a highlight in the realm of regenerative medicine. Unfortunately, that promise remains largely in the future. Recent breakthroughs have accelerated these potential interventions in particular for treating neurological disease. Among the topics the panel will consider are:

  • Stem cell sourcing
  • Therapeutic indication growth
  • Genetic and other modification in cell production
  • Cell production to final product optimization and challenges
  • How to optimize the final product
  • Moderator:
    • Ole Isacson, MD, PhD
      • Director, Neuroregeneration Research Institute, McLean
      • Professor, Neurology and Neuroscience, MGH, HMS

Opportunities in the next generation of the tactical level Welcome the oprimism and energy level of all Translational medicine funding stem cells enormous opportunities 

  • Speakers:
  • Kapil Bharti, PhD
    • Senior Investigator, Ocular and Stem Cell Translational Research Section, NIH
    • first drug required to establish the process for that innovations design of animal studies not done before
    • Off-th-shelf one time treatment becoming cure 
    •  Intact tissue in a dish is fragile to maintain metabolism
    Joe Burns, PhD
    • VP, Head of Biology, Decibel Therapeutics
    • Ear inside the scall compartments and receptors responsible for hearing highly differentiated tall ask to identify cell for anticipated differentiation
    • multiple cell types and tissue to follow
    Erin Kimbrel, PhD
    • Executive Director, Regenerative Medicine, Astellas
    • In the ocular space immunogenecity
    • regulatory communication
    • use gene editing for immunogenecity Cas1 and Cas2 autologous cells
    • gene editing and programming big opportunities 
    Nabiha Saklayen, PhD
    • CEO and Co-Founder, Cellino
    • scale production of autologous cells foundry using semiconductor process in building cassettes
    • solution for autologous cells
  • Q&A 9:30 AM – 9:45 AM  

9:25 AM – 9:35 AM FIRST LOOK

Stem Cells

Bob Carter, MD, PhD

  • Chairman, Department of Neurosurgery, MGH
  • William and Elizabeth Sweet, Professor of Neurosurgery, HMS
  • Cell therapy for Parkinson to replace dopamine producing cells lost ability to produce dopamin
  • skin cell to become autologous cells reprograms to become cells producing dopamine
  • transplantation fibroblast cells metabolic driven process lower mutation burden 
  • Quercetin inhibition elimination undifferentiated cells graft survival oxygenation increased 
  • Q&A 9:35 AM – 9:55 AM  

9:35 AM – 10:00 AM

Capital Formation ’21-30 | Investing Modes Driving GCT Technology and Timing

The dynamics of venture/PE investing and IPOs are fast evolving. What are the drivers – will the number of investors grow will the size of early rounds continue to grow? How is this reflected in GCT target areas, company design, and biotech overall? Do patients benefit from these trends? Is crossover investing a distinct class or a little of both? Why did it emerge and what are the characteristics of the players?  Will SPACs play a role in the growth of the gene and cell therapy industry. What is the role of corporate investment arms eg NVS, Bayer, GV, etc. – has a category killer emerged?  Are we nearing the limit of what the GCT market can absorb or will investment capital continue to grow unabated? Moderator: Roger Kitterman

  • VP, Venture, Mass General Brigham
  • Saturation reached or more investment is coming in CGT 

Speakers: Ellen Hukkelhoven, PhD

  • Managing Director, Perceptive Advisors
  • Cardiac area transduct cells
  • matching tools
  • 10% success of phase 1 in drug development next phase matters more 

Peter Kolchinsky, PhD

  • Founder and Managing Partner, RA Capital Management
  • Future proof for new comers disruptors 
  • Ex Vivo gene therapy to improve funding products what tool kit belongs to 
  • company insulation from next instability vs comapny stabilizing themselves along few years
  • Company interested in SPAC 
  • cross over investment vs SPAC
  • Multi Omics in cancer early screening metastatic diseas will be wiped out 

Deep Nishar

  • Senior Managing Partner, SoftBank Investment Advisors
  • Young field vs CGT started in the 80s 
  • high payloads is a challenge
  • cost effective fast delivery to large populations
  • Mission oriented by the team and management  
  • Multi Omics disease modality 

Oleg Nodelman

  • Founder & Managing Partner, EcoR1 Capital
  • Invest in company next round of investment will be IPO
  • Help company raise money cross over investment vs SPAC
  • Innovating ideas from academia in need for funding 
  • Q&A 10:05 AM – 10:20 AM  

10:00 AM – 10:10 AM FIRST LOOK

New scientific and clinical developments for autologous stem cell therapy for Parkinson’s disease patients

Penelope Hallett, PhD

  • NRL, McLean
  • Assistant Professor Psychiatry, HMS
  • Pharmacologic agent in existing cause another disorders locomo-movement related 
  • efficacy Autologous cell therapy transplantation approach program T cells into dopamine generating neurons greater than Allogeneic cell transplantation 
  • Q&A 10:10 AM – 10:30 AM  

10:10 AM – 10:35 AM HOT TOPICS

Neurodegenerative Clinical Outcomes | Achieving GCT Success

Can stem cell-based platforms become successful treatments for neurodegenerative diseases?

  •  What are the commonalities driving GCT success in neurodegenerative disease and non-neurologic disease, what are the key differences?
  • Overcoming treatment administration challenges
  • GCT impact on degenerative stage of disease
  • How difficult will it be to titrate the size of the cell therapy effect in different neurological disorders and for different patients?
  • Demonstrating clinical value to patients and payers
  • Revised clinical trial models to address issues and concerns specific to GCT

Moderator: Bob Carter, MD, PhD

  • Chairman, Department of Neurosurgery, MGH
  • William and Elizabeth Sweet, Professor of Neurosurgery, HMS
  • Neurogeneration REVERSAL or slowing down 

Speakers: Erwan Bezard, PhD

  • INSERM Research Director, Institute of Neurodegenerative Diseases
  • Cautious on reversal 
  • Early intervantion versus late

Nikola Kojic, PhD

  • CEO and Co-Founder, Oryon Cell Therapies
  • Autologus cell therapy placed focal replacing missing synapses reestablishment of neural circuitary

Geoff MacKay

  • President & CEO, AVROBIO
  • Prevent condition to be manifested in the first place 
  • clinical effect durable single infusion preventions of symptoms to manifest 
  • Cerebral edema – stabilization
  • Gene therapy know which is the abnormal gene grafting the corrected one 
  • More than biomarker as end point functional benefit not yet established  

Viviane Tabar, MD

  • Founding Investigator, BlueRock Therapeutics
  • Chair of Neurosurgery, Memorial Sloan Kettering
  • Current market does not have delivery mechanism that a drug-delivery is the solution Trials would fail on DELIVERY
  • Immune suppressed patients during one year to avoid graft rejection Autologous approach of Parkinson patient genetically mutated reprogramed as dopamine generating neuron – unknowns are present
  • Circuitry restoration
  • Microenvironment disease ameliorate symptoms – education of patients on the treatment 
  • Q&A 10:40 AM – 10:55 AM  

10:35 AM – 11:35 AM

Disruptive Dozen: 12 Technologies that Will Reinvent GCT

Nearly one hundred senior Mass General Brigham Harvard faculty contributed to the creation of this group of twelve GCT technologies that they believe will breakthrough in the next two years. The Disruptive Dozen identifies and ranks the GCT technologies that will be available on at least an experimental basis to have the chance of significantly improving health care. 11:35 AM – 11:45 AM

Concluding Remarks

The co-chairs convene to reflect on the insights shared over the three days. They will discuss what to expect at the in-person GCT focused May 2-4, 2022 World Medical Innovation Forum.

ALL THE TWEETS PRODUCED ON MAY 21, 2021 INCLUDE THE FOLLOWING:

Aviva Lev-Ari

@AVIVA1950

  • @AVIVA1950_PIcs

4h

#WMIF2021

@MGBInnovation

Erwan Bezard, PhD INSERM Research Director, Institute of Neurodegenerative Diseases Cautious on reversal

@pharma_BI

@AVIVA1950

Aviva Lev-Ari

@AVIVA1950

  • @AVIVA1950_PIcs

4h

#WMIF2021

@MGBInnovation

Nikola Kojic, PhD CEO and Co-Founder, Oryon Cell Therapies Autologus cell therapy placed focal replacing missing synapses reestablishment of neural circutary

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

4h

#WMIF2021

@MGBInnovation

Bob Carter, MD, PhD Chairman, Department of Neurosurgery, MGH William and Elizabeth Sweet, Professor of Neurosurgery, HMS Neurogeneration REVERSAL or slowing down? 

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

4h

#WMIF2021

@MGBInnovation

Penelope Hallett, PhD NRL, McLean Assistant Professor Psychiatry, HMS efficacy Autologous cell therapy transplantation approach program T cells into dopamine genetating cells greater than Allogeneic cell transplantation 

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

4h

#WMIF2021

@MGBInnovation

Penelope Hallett, PhD NRL, McLean Assistant Professor Psychiatry, HMS Pharmacologic agent in existing cause another disorders locomo-movement related 

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

@AVIVA1950_PIcs

4h

#WMIF2021

@MGBInnovation

Roger Kitterman VP, Venture, Mass General Brigham Saturation reached or more investment is coming in CGT Multi OMICS and academia originated innovations are the most attractive areas

@pharma_BI

@AVIVA1950

1

3

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

@AVIVA1950_PIcs

4h

#WMIF2021

@MGBInnovation

Roger Kitterman VP, Venture, Mass General Brigham Saturation reached or more investment is coming in CGT 

@pharma_BI

@AVIVA1950

1

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

4h

#WMIF2021

@MGBInnovation

Oleg Nodelman Founder & Managing Partner, EcoR1 Capital Invest in company next round of investment will be IPO 20% discount

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

@AVIVA1950_PIcs

4h

#WMIF2021

@MGBInnovation

Peter Kolchinsky, PhD Founder and Managing Partner, RA Capital Management Future proof for new comers disruptors  Ex Vivo gene therapy to improve funding products what tool kit belongs to 

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

4h

#WMIF2021

@MGBInnovation

Deep Nishar Senior Managing Partner, SoftBank Investment Advisors Young field vs CGT started in the 80s  high payloads is a challenge 

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

5h

#WMIF2021

@MGBInnovation

Bob Carter, MD, PhD MGH, HMS cells producing dopamine transplantation fibroblast cells metabolic driven process lower mutation burden  Quercetin inhibition elimination undifferentiated cells graft survival oxygenation increased 

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

5h

#WMIF2021

@MGBInnovation

Chairman, Department of Neurosurgery, MGH, Professor of Neurosurgery, HMS Cell therapy for Parkinson to replace dopamine producing cells lost ability to produce dopamine skin cell to become autologous cells reprogramed  

@pharma_BI

@AVIVA1950

#WMIF2021

@MGBInnovation

Kapil Bharti, PhD Senior Investigator, Ocular and Stem Cell Translational Research Section, NIH Off-th-shelf one time treatment becoming cure  Intact tissue in a dish is fragile to maintain metabolism to become like semiconductors

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

@AVIVA1950_PIcs

5h

#WMIF2021

@MGBInnovation

Ole Isacson, MD, PhD Director, Neuroregeneration Research Institute, McLean Professor, Neurology and Neuroscience, MGH, HMS Opportunities in the next generation of the tactical level Welcome the oprimism and energy level of all

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

5h

#WMIF2021

@MGBInnovation

Erin Kimbrel, PhD Executive Director, Regenerative Medicine, Astellas In the ocular space immunogenecity regulatory communication use gene editing for immunogenecity Cas1 and Cas2 autologous cells

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

5h

#WMIF2021

@MGBInnovation

Nabiha Saklayen, PhD CEO and Co-Founder, Cellino scale production of autologous cells foundry using semiconductor process in building cassettes by optic physicists

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

5h

#WMIF2021

@MGBInnovation

Joe Burns, PhD VP, Head of Biology, Decibel Therapeutics Ear inside the scall compartments and receptors responsible for hearing highly differentiated tall ask to identify cell for anticipated differentiation control by genomics

@pharma_BI

@AVIVA1950

Aviva Lev-Ari

@AVIVA1950

5h

#WMIF2021

@MGBInnovation

Kapil Bharti, PhD Senior Investigator, Ocular and Stem Cell Translational Research Section, NIH first drug required to establish the process for that innovations design of animal studies not done before 

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

5h

#WMIF2021

@MGBInnovation

Meredith Fisher, PhD Partner, Mass General Brigham Innovation Fund Strategies, success what changes are needed in the drug discovery process@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

5h

#WMIF2021

@MGBInnovation

Robert Nelsen Managing Director, Co-founder, ARCH Venture Partners Manufacturing change is not a new clinical trial FDA need to be presented with new rethinking for big innovations Drug pricing cheaper requires systematization

@pharma_BI

@AVIVA1950

1

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

5h

#WMIF2021

@MGBInnovation

Kush Parmar, MD, PhD Managing Partner, 5AM Ventures Responsibility mismatch should be and what is “are”

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

5h

#WMIF2021

@MGBInnovation

David Berry, MD, PhD CEO, Valo Health GP, Flagship Pioneering Bring disruptive frontier platform reliable delivery CGT double knockout disease cure all change efficiency scope human centric vs mice centered right scale acceleration

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

6h

#WMIF2021

@MGBInnovation

Kush Parmar, MD, PhD Managing Partner, 5AM Ventures build it yourself, benefit for patients FIrst Look at MGB shows MEE innovation on inner ear worthy investment  

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

6h

#WMIF2021

@MGBInnovation

Robert Nelsen Managing Director, Co-founder, ARCH Venture Partners Frustration with supply chain during the Pandemic, GMC anticipation in advance CGT rapidly prototype rethink and invest proactive investor .edu and Pharma

@pharma_BI

@AVIVA1950

Read Full Post »

Thriving Vaccines and Research: Weizmann Institute Coronavirus Research Development

Reporter: Amandeep Kaur, B.Sc., M.Sc.

In early February, Prof. Eran Segal updated in one of his tweets and mentioned that “We say with caution, the magic has started.”

The article reported that this statement by Prof. Segal was due to decreasing cases of COVID-19, severe infection cases and hospitalization of patients by rapid vaccination process throughout Israel. Prof. Segal emphasizes in another tweet to remain cautious over the country and informed that there is a long way to cover and searching for scientific solutions.

A daylong webinar entitled “COVID-19: The epidemic that rattles the world” was a great initiative by Weizmann Institute to share their scientific knowledge about the infection among the Israeli institutions and scientists. Prof. Gideon Schreiber and Dr. Ron Diskin organized the event with the support of the Weizmann Coronavirus Response Fund and Israel Society for Biochemistry and Molecular Biology. The speakers were invited from the Hebrew University of Jerusalem, Tel-Aviv University, the Israel Institute for Biological Research (IIBR), and Kaplan Medical Center who addressed the molecular structure and infection biology of the virus, treatments and medications for COVID-19, and the positive and negative effect of the pandemic.

The article reported that with the emergence of pandemic, the scientists at Weizmann started more than 60 projects to explore the virus from different range of perspectives. With the help of funds raised by communities worldwide for the Weizmann Coronavirus Response Fund supported scientists and investigators to elucidate the chemistry, physics and biology behind SARS-CoV-2 infection.

Prof. Avi Levy, the coordinator of the Weizmann Institute’s coronavirus research efforts, mentioned “The vaccines are here, and they will drastically reduce infection rates. But the coronavirus can mutate, and there are many similar infectious diseases out there to be dealt with. All of this research is critical to understanding all sorts of viruses and to preempting any future pandemics.”

The following are few important projects with recent updates reported in the article.

Mapping a hijacker’s methods

Dr. Noam Stern-Ginossar studied the virus invading strategies into the healthy cells and hijack the cell’s systems to divide and reproduce. The article reported that viruses take over the genetic translation system and mainly the ribosomes to produce viral proteins. Dr. Noam used a novel approach known as ‘ribosome profiling’ as her research objective and create a map to locate the translational events taking place inside the viral genome, which further maps the full repertoire of viral proteins produced inside the host.

She and her team members grouped together with the Weizmann’s de Botton Institute and researchers at IIBR for Protein Profiling and understanding the hijacking instructions of coronavirus and developing tools for treatment and therapies. Scientists generated a high-resolution map of the coding regions in the SARS-CoV-2 genome using ribosome-profiling techniques, which allowed researchers to quantify the expression of vital zones along the virus genome that regulates the translation of viral proteins. The study published in Nature in January, explains the hijacking process and reported that virus produces more instruction in the form of viral mRNA than the host and thus dominates the translation process of the host cell. Researchers also clarified that it is the misconception that virus forced the host cell to translate its viral mRNA more efficiently than the host’s own translation, rather high level of viral translation instructions causes hijacking. This study provides valuable insights for the development of effective vaccines and drugs against the COVID-19 infection.

Like chutzpah, some things don’t translate

Prof. Igor Ulitsky and his team worked on untranslated region of viral genome. The article reported that “Not all the parts of viral transcript is translated into protein- rather play some important role in protein production and infection which is unknown.” This region may affect the molecular environment of the translated zones. The Ulitsky group researched to characterize that how the genetic sequence of regions that do not translate into proteins directly or indirectly affect the stability and efficiency of the translating sequences.

Initially, scientists created the library of about 6,000 regions of untranslated sequences to further study their functions. In collaboration with Dr. Noam Stern-Ginossar’s lab, the researchers of Ulitsky’s team worked on Nsp1 protein and focused on the mechanism that how such regions affect the Nsp1 protein production which in turn enhances the virulence. The researchers generated a new alternative and more authentic protocol after solving some technical difficulties which included infecting cells with variants from initial library. Within few months, the researchers are expecting to obtain a more detailed map of how the stability of Nsp1 protein production is getting affected by specific sequences of the untranslated regions.

The landscape of elimination

The article reported that the body’s immune system consists of two main factors- HLA (Human Leukocyte antigen) molecules and T cells for identifying and fighting infections. HLA molecules are protein molecules present on the cell surface and bring fragments of peptide to the surface from inside the infected cell. These peptide fragments are recognized and destroyed by the T cells of the immune system. Samuels’ group tried to find out the answer to the question that how does the body’s surveillance system recognizes the appropriate peptide derived from virus and destroy it. They isolated and analyzed the ‘HLA peptidome’- the complete set of peptides bound to the HLA proteins from inside the SARS-CoV-2 infected cells.

After the analysis of infected cells, they found 26 class-I and 36 class-II HLA peptides, which are present in 99% of the population around the world. Two peptides from HLA class-I were commonly present on the cell surface and two other peptides were derived from coronavirus rare proteins- which mean that these specific coronavirus peptides were marked for easy detection. Among the identified peptides, two peptides were novel discoveries and seven others were shown to induce an immune response earlier. These results from the study will help to develop new vaccines against new coronavirus mutation variants.

Gearing up ‘chain terminators’ to battle the coronavirus

Prof. Rotem Sorek and his lab discovered a family of enzymes within bacteria that produce novel antiviral molecules. These small molecules manufactured by bacteria act as ‘chain terminators’ to fight against the virus invading the bacteria. The study published in Nature in January which reported that these molecules cause a chemical reaction that halts the virus’s replication ability. These new molecules are modified derivates of nucleotide which integrates at the molecular level in the virus and obstruct the works.

Prof. Sorek and his group hypothesize that these new particles could serve as a potential antiviral drug based on the mechanism of chain termination utilized in antiviral drugs used recently in the clinical treatments. Yeda Research and Development has certified these small novel molecules to a company for testing its antiviral mechanism against SARS-CoV-2 infection. Such novel discoveries provide evidences that bacterial immune system is a potential repository of many natural antiviral particles.

Resolving borderline diagnoses

Currently, Real-time Polymerase chain reaction (RT-PCR) is the only choice and extensively used for diagnosis of COVID-19 patients around the globe. Beside its benefits, there are problems associated with RT-PCR, false negative and false positive results and its limitation in detecting new mutations in the virus and emerging variants in the population worldwide. Prof. Eran Elinavs’ lab and Prof. Ido Amits’ lab are working collaboratively to develop a massively parallel, next-generation sequencing technique that tests more effectively and precisely as compared to RT-PCR. This technique can characterize the emerging mutations in SARS-CoV-2, co-occurring viral, bacterial and fungal infections and response patterns in human.

The scientists identified viral variants and distinctive host signatures that help to differentiate infected individuals from non-infected individuals and patients with mild symptoms and severe symptoms.

In Hadassah-Hebrew University Medical Center, Profs. Elinav and Amit are performing trails of the pipeline to test the accuracy in borderline cases, where RT-PCR shows ambiguous or incorrect results. For proper diagnosis and patient stratification, researchers calibrated their severity-prediction matrix. Collectively, scientists are putting efforts to develop a reliable system that resolves borderline cases of RT-PCR and identify new virus variants with known and new mutations, and uses data from human host to classify patients who are needed of close observation and extensive treatment from those who have mild complications and can be managed conservatively.

Moon shot consortium refining drug options

The ‘Moon shot’ consortium was launched almost a year ago with an initiative to develop a novel antiviral drug against SARS-CoV-2 and was led by Dr. Nir London of the Department of Chemical and Structural Biology at Weizmann, Prof. Frank von Delft of Oxford University and the UK’s Diamond Light Source synchroton facility.

To advance the series of novel molecules from conception to evidence of antiviral activity, the scientists have gathered support, guidance, expertise and resources from researchers around the world within a year. The article reported that researchers have built an alternative template for drug-discovery, full transparency process, which avoids the hindrance of intellectual property and red tape.

The new molecules discovered by scientists inhibit a protease, a SARS-CoV-2 protein playing important role in virus replication. The team collaborated with the Israel Institute of Biological Research and other several labs across the globe to demonstrate the efficacy of molecules not only in-vitro as well as in analysis against live virus.

Further research is performed including assaying of safety and efficacy of these potential drugs in living models. The first trial on mice has been started in March. Beside this, additional drugs are optimized and nominated for preclinical testing as candidate drug.

Source: https://www.weizmann.ac.il/WeizmannCompass/sections/features/the-vaccines-are-here-and-research-abounds

Other related articles were published in this Open Access Online Scientific Journal, including the following:

Identification of Novel genes in human that fight COVID-19 infection

Reporter: Amandeep Kaur, B.Sc., M.Sc. (ept. 5/2021)

https://pharmaceuticalintelligence.com/2021/04/19/identification-of-novel-genes-in-human-that-fight-covid-19-infection/

Fighting Chaos with Care, community trust, engagement must be cornerstones of pandemic response

Reporter: Amandeep Kaur, B.Sc., M.Sc. (ept. 5/2021)

https://pharmaceuticalintelligence.com/2021/04/13/fighting-chaos-with-care/

T cells recognize recent SARS-CoV-2 variants

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2021/03/30/t-cells-recognize-recent-sars-cov-2-variants/

Need for Global Response to SARS-CoV-2 Viral Variants

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2021/02/12/need-for-global-response-to-sars-cov-2-viral-variants/

Mechanistic link between SARS-CoV-2 infection and increased risk of stroke using 3D printed models and human endothelial cells

Reporter: Adina Hazan, PhD

https://pharmaceuticalintelligence.com/2020/12/28/mechanistic-link-between-sars-cov-2-infection-and-increased-risk-of-stroke-using-3d-printed-models-and-human-endothelial-cells/

Read Full Post »

Reporter: Stephen J. Williams, PhD

In an announcement televised on C-Span, President Elect Joseph Biden announced his new Science Team to advise on science policy matters, as part of the White House Advisory Committee on Science and Technology. Below is a video clip and the transcript, also available at

https://www.c-span.org/video/?508044-1/president-elect-biden-introduces-white-house-science-team

 

 

COMING UP TONIGHT ON C-SPAN, NEXT, PRESIDENT-ELECT JOE BIDEN AND VICE PRESIDENT-ELECT KAMALA HARRIS ANNOUNCE SEVERAL MEMBERS OF THEIR WHITE HOUSE SCIENCE TEAM. AND THEN SENATE MINORITY LEADER CHUCK SCHUMER TALKS ABOUT THE IMPEACHMENT OF PRESIDENT TRUMP IN THE WEEKLY DEMOCRATIC ADDRESS. AND AFTER THAT, TODAY’S SPEECH BY VICE PRESIDENT MIKE PENCE TO SAILORS AT NAVAL AIR STATION LAMORE IN CALIFORNIA. NEXT, PRESIDENT-ELECT JOE BIDEN AND VICE PRESIDENT-ELECT KAMALA HARRIS ANNOUNCE SEVERAL MEMBERS OF THEIR WHITE HOUSE SCIENCE TEAM. FROM WILMINGTON, DELAWARE, THIS IS ABOUT 40 MINUTES. PRESIDENT-ELECT BIDEN: GOOD AFTERNOON, FOLKS. I WAS TELLING THESE FOUR BRILLIANT SCIENTISTS AS I STOOD IN THE BACK, IN A WAY, THEY — THIS IS THE MOST EXCITING ANNOUNCEMENT THAT I’VE GOTTEN TO MAKE IN THE ENTIRE CABINET RAISED TO A CABINET LEVEL POSITION IN ONE CASE. THESE ARE AMONG THE BRIGHTEST MOST DEDICATED PEOPLE NOT ONLY IN THE COUNTRY BUT THE WORLD. THEY’RE COMPOSED OF SOME OF THE MOST SCIENTIFIC BRILLIANT MINDS IN THE WORLD. WHEN I WAS VICE PRESIDENT AS — I I HAD INTENSE INTEREST IN EVERYTHING THEY WERE DOING AND I PAID ENORMOUS ATTENTION. AND I WOULD — LIKE A KID GOING BACK TO SCHOOL. SIT DOWN AND CAN YOU EXPLAIN TO ME AND THEY WERE — VERY PATIENT WITH ME. AND — BUT AS PRESIDENT, I WANTED YOU TO KNOW I’M GOING TO PAY A GREAT DEAL OF ATTENTION. WHEN I TRAVEL THE WORLD AS VICE PRESIDENT, I WAS OFTEN ASKED TO EXPLAIN TO WORLD LEADERS, THEY ASKED ME THINGS LIKE DEFINE AMERICA. TELL ME HOW CAN YOU DEFINE AMERICA? WHAT’S AMERICA? AND I WAS ON A TIBETAN PLATEAU WITH AT THE TIME WITH XI ZIN PING AND WE HAD AN INTERPRETER CAN I DEFINE AMERICA FOR HIM? I SAID YES, I CAN. IN ONE WORD. POSSIBILITIES. POSSIBILITIES. I THINK IT’S ONE OF THE REASONS WHY WE’VE OCCASIONALLY BEEN REFERRED TO AS UGLY AMERICANS. WE THINK ANYTHING’S POSSIBLE GIVEN THE CHANCE, WE CAN DO ANYTHING. AND THAT’S PART OF I THINK THE AMERICAN SPIRIT. AND WHAT THE PEOPLE ON THIS STAGE AND THE DEPARTMENTS THEY WILL LEAD REPRESENT ENORMOUS POSSIBILITIES. THEY’RE THE ONES ASKING THE MOST AMERICAN OF QUESTIONS, WHAT NEXT? WHAT NEXT? NEVER SATISFIED, WHAT’S NEXT? AND WHAT’S NEXT IS BIG AND BREATHTAKING. HOW CAN — HOW CAN WE MAKE THE IMPOSSIBLE POSSIBLE? AND THEY WERE JUST ASKING QUESTIONS FOR THE SAKE OF QUESTIONS, THEY’RE ASKING THESE QUESTIONS AS CALL TO ACTION. , TO INSPIRE, TO HELP US IMAGINE THE FUTURE AND FIGURE OUT HOW TO MAKE IT REAL AND IMPROVE THE LIVES OF THE AMERICAN PEOPLE AND PEOPLE AROUND THE WORLD. THIS IS A TEAM THAT ASKED US TO IMAGINE EVERY HOME IN AMERICA BEING POWERED BY RENEWABLE ENERGY WITHIN THE NEXT 10 YEARS. OR 3-D IMAGE PRINTERS RESTORING TISSUE AFTER TRAUMATIC INJURIES AND HOSPITALS PRINTING ORGANS FOR ORGAN TRANSPLANTS. IMAGINE, IMAGINE. AND THEY REALLY — AND, YOU KNOW, THEN RALLY, THE SCIENTIFIC COMMUNITY TO GO ABOUT DOING WHAT WE’RE IMAGINING. YOU NEED SCIENCE, DATA AND DISCOVERY WAS A GOVERNING PHILOSOPHY IN THE OBAMA-BIDEN ADMINISTRATION. AND EVERYTHING FROM THE ECONOMY TO THE ENVIRONMENT TO CRIMINAL JUSTICE REFORM AND TO NATIONAL SECURITY. AND ON HEALTH CARE. FOR EXAMPLE, A BELIEF IN SCIENCE LED OUR EFFORTS TO MAP THE HUMAN BRAIN AND TO DEVELOP MORE PRECISE INDIVIDUALIZED MEDICINES. IT LED TO OUR ONGOING MISSION TO END CANCER AS WE KNOW IT, SOMETHING THAT IS DEEPLY PERSONAL TO BOTH MY FAMILY AND KAMALA’S FAMILY AND COUNTLESS FAMILIES IN AMERICA. WHEN PRESIDENT OBAMA ASKED ME TO LEAD THE CANCER MOON SHOT, I KNEW WE HAD TO INJECT A SENSE OF URGENCY INTO THE FIGHT. WE BELIEVED WE COULD DOUBLE THE RATE OF PROGRESS AND DO IN FIVE YEARS WHAT OTHERWISE WOULD TAKE 10. MY WIFE, JILL, AND I TRAVELED AROUND THE COUNTRY AND THE WORLD MEETING WITH THOUSANDS OF CANCER PATIENTS AND THEIR FAMILIES, PHYSICIANS, RESEARCHERS, PHILANTHROPISTS, TECHNOLOGY LEADERS AND HEADS OF STATE. WE SOUGHT TO BETTER UNDERSTAND AND BREAK DOWN THE SILOS AND STOVE PIPES THAT PREVENT THE SHARING OF INFORMATION AND IMPEDE ADVANCES IN CANCER RESEARCH AND TREATMENT WHILE BUILDING A FOCUSED AND COORDINATED EFFORT HERE AT HOME AND ABROAD. WE MADE PROGRESS. BUT THERE’S SO MUCH MORE THAT WE CAN DO. WHEN I ANNOUNCED THAT I WOULD NOT RUN IN 2015 AT THE TIME, I SAID I ONLY HAD ONE REGRET IN THE ROSE GARDEN AND IF I HAD ANY REGRETS THAT I HAD WON, THAT I WOULDN’T GET TO BE THE PRESIDENT TO PRESIDE OVER CANCER AS WE KNOW IT. WELL, AS GOD WILLING, AND ON THE 20TH OF THIS MONTH IN A COUPLE OF DAYS AS PRESIDENT I’M GOING TO DO EVERYTHING I CAN TO GET THAT DONE. I’M GOING TO — GOING TO BE A PRIORITY FOR ME AND FOR KAMALA AND IT’S A SIGNATURE ISSUE FOR JILL AS FIRST LADY. WE KNOW THE SCIENCE IS DISCOVERY AND NOT FICTION. AND IT’S ALSO ABOUT HOPE. AND THAT’S AMERICA. IT’S IN THE D.N.A. OF THIS COUNTRY, HOPE. WE’RE ON THE CUSP OF SOME OF THE MOST REMARKABLE BREAKTHROUGHS THAT WILL FUNDAMENTALLY CHANGE THE WAY OF LIFE FOR ALL LIFE ON THIS PLANET. WE CAN MAKE MORE PROGRESS IN THE NEXT 10 YEARS, I PREDICT, THAN WE’VE MADE IN THE LAST 50 YEARS. AND EXPONENTIAL MOVEMENT. WE CAN ALSO FACE SOME OF THE MOST DIRE CRISES IN A GENERATION WHERE SCIENCE IS CRITICAL TO WHETHER OR NOT WE MEET THE MOMENT OF PERIL AND PROMISE THAT WE KNOW IS WITHIN OUR REACH. IN 1944, FRANKLIN ROOSEVELT ASKED HIS SCIENCE ADVISOR HOW COULD THE UNITED STATES FURTHER ADVANCE SCIENTIFIC RESEARCH IN THE CRITICAL YEARS FOLLOWING THE SECOND WORLD WAR? THE RESPONSE LED TO SOME OF THE MOST GROUND BREAKING DISCOVERIES IN THE LAST 75 YEARS. AND WE CAN DO THAT AGAIN. AND WE CAN DO MORE. SO TODAY, I’M PROUD TO ANNOUNCE A TEAM OF SOME OF THE COUNTRY’S MOST BRILLIANT AND ACCOMPLISHED SCIENTISTS TO LEAD THE WAY. AND I’M ASKING THEM TO FOCUS ON FIVE KEY AREAS. FIRST THE PANDEMIC AND WHAT WE CAN LEARN ABOUT WHAT IS POSSIBLE OR WHAT SHOULD BE POSSIBLE TO ADDRESS THE WIDEST RANGE OF PUBLIC HEALTH NEEDS. SECONDLY, THE ECONOMY, HOW CAN WE BUILD BACK BETTER TO ENSURE PROSPERITY IS FULLY SHARED ALL ACROSS AMERICA? AMONG ALL AMERICANS? AND THIRDLY, HOW SCIENCE HELPS US CONFRONT THIS CLIMATE CRISIS WE FACE IN AMERICA AND THE WORLD BUT IN AMERICA HOW IT HELPS US CONFRONT THE CLIMATE CRISIS WITH AMERICAN JOBS AND INGENUITY. AND FOURTH, HOW CAN WE ENSURE THE UNITED STATES LEADS THE WORLD IN TECHNOLOGIES AND THE INDUSTRIES THAT THE FUTURE THAT WILL BE CRITICAL FOR OUR ECONOMIC PROSPERITY AND NATIONAL SECURITY? ESPECIALLY WITH THE INTENSE INCREASED COMPETITION AROUND THE WORLD FROM CHINA ON? AND FIFTH, HOW CAN WE ASSURE THE LONG-TERM HEALTH AND TRUST IN SCIENCE AND TECHNOLOGY IN OUR NATION? YOU KNOW, THESE ARE EACH QUESTIONS THAT CALL FOR ACTION. AND I’M HONORED TO ANNOUNCE A TEAM THAT IS ANSWERING THE CALL TO SERVE. AS THE PRESIDENTIAL SCIENCE ADVISOR AND DIRECTOR OF THE OFFICE OF SCIENCE AND TECHNOLOGY POLICY, I NOMINATE ONE OF THE MOST BRILLIANT GUYS I KNOW, PERSONS I KNOW, DR. ERIC LANDER. AND THANK YOU, DOC, FOR COMING BACK. THE PIONEER — HE’S A PIONEER IN THE STIFFING COMMUNITY. PRINCIPAL LEADER IN THE HUMAN GENOME PROJECT. AND NOT HYPERBOLE TO SUGGEST THAT DR. LANDER’S WORK HAS CHANGED THE COURSE OF HUMAN HISTORY. HIS ROLE IN HELPING US MAP THE GENOME PULLED BACK THE CURTAIN ON HUMAN DISEASE, ALLOWING SCIENTISTS, EVER SINCE, AND FOR GENERATIONS TO COME TO EXPLORE THE MOLECULAR BASIS FOR SOME OF THE MOST DEVASTATING ILLNESSES AFFECTING OUR WORLD. AND THE APPLICATION OF HIS PIONEERING WORK AS — ARE POISED TO LEAD TO INCREDIBLE CURES AND BREAKTHROUGHS IN THE YEARS TO COME. DR. LANDER NOW SERVES AS THE PRESIDENT AND FOUNDING DIRECTOR OF THE BRODE INSTITUTE AT M.I.T. AND HARVARD, THE WORLD’S FOREMOST NONPROFIT GENETIC RESEARCH ORGANIZATION. AND I CAME TO APPRECIATE DR. LANDER’S EXTRAORDINARY MIND WHEN HE SERVED AS THE CO-CHAIR OF THE PRESIDENT’S COUNCIL ON ADVISORS AND SCIENCE AND TECHNOLOGY DURING THE OBAMA-BIDEN ADMINISTRATION. AND I’M GRATEFUL, I’M GRATEFUL THAT WE CAN WORK TOGETHER AGAIN. I’VE ALWAYS SAID THAT BIDEN-HARRIS ADMINISTRATION WILL ALSO LEAD AND WE’RE GOING TO LEAD WITH SCIENCE AND TRUTH. WE BELIEVE IN BOTH. [LAUGHTER] GOD WILLING OVERCOME THE PANDEMIC AND BUILD OUR COUNTRY BETTER THAN IT WAS BEFORE. AND THAT’S WHY FOR THE FIRST TIME IN HISTORY, I’M GOING TO BE ELEVATING THE PRESIDENTIAL SCIENCE ADVISOR TO A CABINET RANK BECAUSE WE THINK IT’S THAT IMPORTANT. AS DEPUTY DIRECTOR OF THE OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND SCIENCE AND — SCIENCE AND SOCIETY, I APPOINT DR. NELSON. SHE’S A PROFESSOR AT THE INSTITUTE OF ADVANCED STUDIES AT PRINCETON UNIVERSITY. THE PRESIDENT OF THE SOCIAL SCIENCE RESEARCH COUNCIL. AND ONE OF AMERICA’S LEADING SCHOLARS IN THE — AN AWARD-WINNING AUTHOR AND RESEARCHER AND EXPLORING THE CONNECTIONS BETWEEN SCIENCE AND OUR SOCIETY. THE DAUGHTER OF A MILITARY FAMILY, HER DAD SERVED IN THE UNITED STATES NAVY AND HER MOM WAS AN ARMY CRIPPING TO RAFFER. DR. NELSON DEVELOPED A LOVE OF TECHNOLOGY AT A VERY YOUNG AGE PARTICULARLY WITH THE EARLY COMPUTER PRODUCTS. COMPUTING PRODUCTS AND CODE-BREAKING EQUIPMENT THAT EVERY KID HAS AROUND THEIR HOUSE. AND SHE GREW UP WITHIN HER HOME. WHEN I WROTE THAT DOWN, I THOUGHT TO MYSELF, I MEAN, HOW MANY KIDS — ANY WAY, THAT PASSION WAS A PASSION FORGED A LIFELONG CURIOSITY ABOUT THE INEQUITIES AND THE POWER DIAMONDICS THAT SIT BENEATH THE SURFACE OF SCIENTIFIC RESEARCH AND THE TECHNOLOGY WE BUILD. DR. NELSON IS FOCUSED ON THOSE INSIGHTS. AND THE SCIENCE, TECHNOLOGY AND SOCIETY, LIKE FEW BEFORE HER EVER HAVE IN AMERICAN HISTORY. BREAKING NEW GROUND ON OUR UNDERSTANDING OF THE ROLE SCIENCE PLAYS IN AMERICAN LIFE AND OPENING THE DOOR TO — TO A FUTURE WHICH SCIENCE BETTER SERVES ALL PEOPLE. AS CO-CHAIR OF THE PRESIDENT’S COUNCIL ON ADVISORS OF SCIENCE AND TECHNOLOGY,APPOINT DR. FRANCIS ARNOLD, DIRECTOR OF THE ROSE BIOENGINEERING CENTER AT CALTECH AND ONE OF THE WORLD’S LEADING EXPERTS IN PROTEIN ENGINEERING, A LIFE-LONG CHAMPION OF RENEWABLE ENERGY SOLUTIONS WHO HAS BEEN INDUCTED INTO THE NATIONAL INVENTORS’ HALL OF FAME. THAT AIN’T A BAD PLACE TO BE. NOT ONLY IS SHE THE FIRST WOMAN TO BE ELECTED TO ALL THREE NATIONAL ACADEMIES OF SCIENCE, MEDICINE AND ENGINEERING AND ALSO THE FIRST WOMAN, AMERICAN WOMAN, TO WIN A NOBEL PRIZE IN CHEMISTRY. A VERY SLOW LEARNER, SLOW STARTER, THE DAUGHTER OF PITTSBURGH, SHE WORKED AS A CAB DRIVER, A JAZZ CLUB SERVER, BEFORE MAKING HER WAY TO BERKELEY AND A CAREER ON THE LEADING EDGE OF HUMAN DISCOVERY. AND I WANT TO MAKE THAT POINT AGAIN. I WANT — IF ANY OF YOUR CHILDREN ARE WATCHING, LET THEM KNOW YOU CAN DO ANYTHING. THIS COUNTRY CAN DO ANYTHING. ANYTHING AT ALL. AND SO SHE SURVIVED BREAST CANCER, OVERCAME A TRAGIC LOSS IN HER FAMILY WHILE RISING TO THE TOP OF HER FIELD, STILL OVERWHELMINGLY DOMINATED BY MEN. HER PASSION HAS BEEN A STEADFAST COMMITMENT TO RENEWABLE ENERGY FOR THE BETTERMENT OF OUR PLANET AND HUMANKIND. SHE IS AN INSPIRING FIGURE TO SCIENTISTS ACROSS THE FIELD AND ACROSS NATIONS. AND I WANT TO THANK DR. ARNOLD FOR AGREEING TO CO-CHAIR A FIRST ALL WOMAN TEAM TO LEAD THE PRESIDENT’S COUNCIL OF ADVISORS ON SCIENCE AND TECHNOLOGY WHICH LEADS ME TO THE NEXT MEMBER OF THE TEAM. AS CO-CHAIR, THE PRESIDENT’S COUNCIL OF ADVISORS ON SCIENCE AND TECHNOLOGY, I APPOINT DR. MARIE ZUBER. A TRAIL BLAZER BRAISING GEO PHYSICIST AND PLANETARY SCIENTIST A. FORMER CHAIR OF THE NATIONAL SCIENCE BOARD. FIRST WOMAN TO LEAD THE SCIENCE DEPARTMENT AT M.I.T. AND THE FIRST WOMAN TO LEAD NASA’S ROBOTIC PLANETARY MISSION. GROWING UP IN COLE COUNTRY NOT FAR FROM HEAVEN, SCRANTON, PENNSYLVANIA, IN CARBON COUNTY, PENNSYLVANIA, ABOUT 50 MILES SOUTH OF WHERE I WAS A KID, SHE DREAMED OF EXPLORING OUTER SPACE. COULD HAVE TOLD HER SHE WOULD JUST GO TO GREEN REACH IN SCRANTON AND FIND WHERE IT WAS. AND I SHOULDN’T BE SO FLIPPANT. BUT I’M SO EXCITED ABOUT THESE FOLKS. YOU KNOW, READING EVERY BOOK SHE COULD FIND AND LISTENING TO HER MOM’S STORIES ABOUT WATCHING THE EARLIEST ROCKET LAUNCH ON TELEVISION, MARIE BECAME THE FIRST PERSON IN HER FAMILY TO GO TO COLLEGE AND NEVER LET GO OF HER DREAM. TODAY SHE OVERSEES THE LINCOLN LABORATORY AT M.I.T. AND LEADS THE INSTITUTION’S CLIMATE ACTION PLAN. GROWING UP IN COLD COUNTRY, NOT AND FINALLY, COULD NOT BE HERE TODAY, BUT I’M PLEASED TO ANNOUNCE THAT I’VE HAD A LONG CONVERSATION WITH DR. FRANCIS COLLINS AND COULD NOT BE HERE TODAY. AND I’VE ASKED THEM TO STAY ON AS DIRECTOR OF THE INSTITUTE OF HEALTH AND — AT THIS CRITICAL MOMENT. I’VE KNOWN DR. COLLINS FOR MANY YEARS. I WORKED WITH HIM CLOSELY. HE’S BRILLIANT. A PIONEER. A TRUE LEADER. AND ABOVE ALL, HE’S A MODEL OF PUBLIC SERVICE AND I’M HONORED TO BE WORKING WITH HIM AGAIN. AND IT IS — IN HIS ABSENCE I WANT TO THANK HIM AGAIN FOR BEING WILLING TO STAY ON. I KNOW THAT WASN’T HIS ORIGINAL PLAN. BUT WE WORKED AN AWFUL LOT ON THE MOON SHOT AND DEALING WITH CANCER AND I JUST WANT TO THANK HIM AGAIN. AND TO EACH OF YOU AND YOUR FAMILIES, AND I SAY YOUR FAMILIES, THANK YOU FOR THE WILLINGNESS TO SERVE. AND NOT THAT YOU HAVEN’T BEEN SERVING ALREADY BUT TO SERVE IN THE ADMINISTRATION. AND THE AMERICAN PEOPLE, TO ALL THE AMERICAN PEOPLE, THIS IS A TEAM THAT’S GOING TO HELP RESTORE YOUR FAITH IN AMERICA’S PLACE IN THE FRONTIER OF SCIENCE AND DISCOVER AND HOPE. I’M NOW GOING TO TURN THIS OVER STARTING WITH DR. LANDER, TO EACH OF OUR NOMINEES AND THEN WITH — HEAR FROM THE VICE PRESIDENT. BUT AGAIN, JUST CAN’T THANK YOU ENOUGH AND I REALLY MEAN IT. THANK YOU, THANK YOU, THANK YOU FOR WILLING TO DO THIS. DOCTOR, IT’S ALL YOURS. I BETTER PUT MY MASK ON OR I’M GOING TO GET IN TROUBLE.

 

Director’s Page

Read Full Post »

Crowdsourcing Difficult-to-Collect Epidemiological Data in Pandemics: Lessons from Ebola to the current COVID-19 Pandemic

 

Curator: Stephen J. Williams, Ph.D.

 

At the onset of the COVID-19 pandemic, epidemiological data from the origin of the Sars-Cov2 outbreak, notably from the Wuhan region in China, was sparse.  In fact, official individual patient data rarely become available early on in an outbreak, when that data is needed most. Epidemiological data was just emerging from China as countries like Italy, Spain, and the United States started to experience a rapid emergence of the outbreak in their respective countries.  China, made of 31 geographical provinces, is a vast and complex country, with both large urban and rural areas.

 

 

 

As a result of this geographical diversity and differences in healthcare coverage across the country, epidemiological data can be challenging.  For instance, cancer incidence data for regions and whole country is difficult to calculate as there are not many regional cancer data collection efforts, contrasted with the cancer statistics collected in the United States, which is meticulously collected by cancer registries in each region, state and municipality.  Therefore, countries like China must depend on hospital record data and autopsy reports in order to back-extrapolate cancer incidence data.  This is the case in some developed countries like Italy where cancer registry is administered by a local government and may not be as extensive (for example in the Napoli region of Italy).

 

 

 

 

 

 

Population density China by province. Source https://www.unicef.cn/en/figure-13-population-density-province-2017

 

 

 

Epidemiologists, in areas in which data collection may be challenging, are relying on alternate means of data collection such as using devices connected to the internet-of-things such as mobile devices, or in some cases, social media is becoming useful to obtain health related data.  Such as effort to acquire pharmacovigilance data, patient engagement, and oral chemotherapeutic adherence using the social media site Twitter has been discussed in earlier posts: (see below)

Twitter is Becoming a Powerful Tool in Science and Medicine at https://pharmaceuticalintelligence.com/2014/11/06/twitter-is-becoming-a-powerful-tool-in-science-and-medicine/

 

 

 

 

 

Now epidemiologists are finding crowd-sourced data from social media and social networks becoming useful in collecting COVID-19 related data in those countries where health data collection efforts may be sub-optimal.  In a recent paper in The Lancet Digital Health [1], authors Kaiyuan Sun, Jenny Chen, and Cecile Viboud present data from the COVID-19 outbreak in China using information collected over social network sites as well as public news outlets and find strong correlations with later-released government statistics, showing the usefulness in such social and crowd-sourcing strategies to collect pertinent time-sensitive data.  In particular, the authors aim was to investigate this strategy of data collection to reduce the time delays between infection and detection, isolation and reporting of cases.

The paper is summarized below:

Kaiyuan Sun, PhD Jenny Chen, BScn Cécile Viboud, PhD . (2020).  Early epidemiological analysis of the coronavirus disease 2019 outbreak based on crowdsourced data: a population-level observational study.  The Lancet: Digital Health; Volume 2, Issue 4, E201-E208.

Summary

Background

As the outbreak of coronavirus disease 2019 (COVID-19) progresses, epidemiological data are needed to guide situational awareness and intervention strategies. Here we describe efforts to compile and disseminate epidemiological information on COVID-19 from news media and social networks.

Methods

In this population-level observational study, we searched DXY.cn, a health-care-oriented social network that is currently streaming news reports on COVID-19 from local and national Chinese health agencies. We compiled a list of individual patients with COVID-19 and daily province-level case counts between Jan 13 and Jan 31, 2020, in China. We also compiled a list of internationally exported cases of COVID-19 from global news media sources (Kyodo News, The Straits Times, and CNN), national governments, and health authorities. We assessed trends in the epidemiology of COVID-19 and studied the outbreak progression across China, assessing delays between symptom onset, seeking care at a hospital or clinic, and reporting, before and after Jan 18, 2020, as awareness of the outbreak increased. All data were made publicly available in real time.

Findings

We collected data for 507 patients with COVID-19 reported between Jan 13 and Jan 31, 2020, including 364 from mainland China and 143 from outside of China. 281 (55%) patients were male and the median age was 46 years (IQR 35–60). Few patients (13 [3%]) were younger than 15 years and the age profile of Chinese patients adjusted for baseline demographics confirmed a deficit of infections among children. Across the analysed period, delays between symptom onset and seeking care at a hospital or clinic were longer in Hubei province than in other provinces in mainland China and internationally. In mainland China, these delays decreased from 5 days before Jan 18, 2020, to 2 days thereafter until Jan 31, 2020 (p=0·0009). Although our sample captures only 507 (5·2%) of 9826 patients with COVID-19 reported by official sources during the analysed period, our data align with an official report published by Chinese authorities on Jan 28, 2020.

Interpretation

News reports and social media can help reconstruct the progression of an outbreak and provide detailed patient-level data in the context of a health emergency. The availability of a central physician-oriented social network facilitated the compilation of publicly available COVID-19 data in China. As the outbreak progresses, social media and news reports will probably capture a diminishing fraction of COVID-19 cases globally due to reporting fatigue and overwhelmed health-care systems. In the early stages of an outbreak, availability of public datasets is important to encourage analytical efforts by independent teams and provide robust evidence to guide interventions.

A Few notes on Methodology:

  • The authors used crowd-sourced reports from DXY.cn, a social network for Chinese physicians, health-care professionals, pharmacies and health-care facilities. This online platform provides real time coverage of the COVID-19 outbreak in China
  • More data was curated from news media, television and includes time-stamped information on COVID-19 cases
  • These reports are publicly available, de-identified patient data
  • No patient consent was needed and no ethics approval was required
  • Data was collected between January 20, 2020 and January 31,2020
  • Sex, age, province of identification, travel history, dates of symptom development was collected
  • Additional data was collected for other international sites of the pandemic including Cambodia, Canada, France, Germany, Hong Kong, India, Italy, Japan, Malaysia, Nepal, Russia, Singapore, UK, and USA
  • All patients in database had laboratory confirmation of infection

 

Results

  • 507 patient data was collected with 153 visited and 152 resident of Wuhan
  • Reported cases were skewed toward males however the overall population curve is skewed toward males in China
  • Most cases (26%) were from Beijing (urban area) while an equal amount were from rural areas combined (Shaanzi and Yunnan)
  • Age distribution of COVID cases were skewed toward older age groups with median age of 45 HOWEVER there were surprisingly a statistically high amount of cases less than 5 years of age
  • Outbreak progression based on the crowd-sourced patient line was consistent with the data published by the China Center for Disease Control
  • Median reporting delay in the authors crowd-sourcing data was 5 days
  • Crowd-sourced data was able to detect apparent rapid growth of newly reported cases during the collection period in several provinces outside of Hubei province, which is consistent with local government data

The following graphs show age distribution for China in 2017 and predicted for 2050.

projected age distribution China 2050. Source https://chinapower.csis.org/aging-problem/

 

 

 

 

 

 

 

 

 

 

 

 

The authors have previously used this curation of news methodology to analyze the Ebola outbreak[2].

A further use of the crowd-sourced database was availability of travel histories for patients returning from Wuhan and onset of symptoms, allowing for estimation of incubation periods.

The following published literature has also used these datasets:

Backer JA, Klinkenberg D, Wallinga J: Incubation period of 2019 novel coronavirus (2019-nCoV) infections among travellers from Wuhan, China, 20-28 January 2020. Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin 2020, 25(5).

Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, Azman AS, Reich NG, Lessler J: The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Annals of internal medicine 2020, 172(9):577-582.

Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KSM, Lau EHY, Wong JY et al: Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. The New England journal of medicine 2020, 382(13):1199-1207.

Dataset is available on the Laboratory for the Modeling of Biological and Socio-technical systems website of Northeastern University at https://www.mobs-lab.org/.

References

  1. Sun K, Chen J, Viboud C: Early epidemiological analysis of the coronavirus disease 2019 outbreak based on crowdsourced data: a population-level observational study. The Lancet Digital health 2020, 2(4):e201-e208.
  2. Cleaton JM, Viboud C, Simonsen L, Hurtado AM, Chowell G: Characterizing Ebola Transmission Patterns Based on Internet News Reports. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 2016, 62(1):24-31.

Read Full Post »

DISCOVER BRIGHAM | NOVEMBER 7, 2019, 10AM – 6PM

Reporter: Aviva Lev-Ari, PhD, RN

 

#DISCOVERBRIGHAM

@pharma_BI

@AVIVA1950

 Aviva Lev-Ari, PhD, RN will be attending and will cover presentations in real time

ABOUT BRIGHAM RESEARCH

Discover Brigham is hosted by the Brigham Research Institute (BRI), under the umbrella of Brigham Health. Launched in 2005, the BRI’s mission is to accelerate discoveries that improve human health by bridging the gaps between science, communication and funding. The BRI’s resources help to foster groundbreaking interdepartmental and interdisciplinary research. They provide a voice for the research community and raise the profile of Brigham Research.

Speakers

http://www.discoverbrigham.org/speakers/

 

AGENDA

http://www.discoverbrigham.org/agenda/

ASK A QUESTION WITH SLI.DO!

DO YOU WANT TO SUBMIT A QUESTION TO A SPEAKER OF A SESSION? YOU CAN DO IT THROUGH SLI.DO!

2. ENTER THE EVENT CODE: DB19. THEN HIT JOIN!
3. PICK THE SESSION YOU WANT TO ASK A QUESTION. THEN ASK YOUR QUESTION!
4. YOUR QUESTION WILL BE REVIEWED AND MAY BE FORWARDED TO THE CHAIR TO ASK THE SPEAKER(S).

IT WORKS ON ANY DEVICE, YOU DO NOT NEED TO INSTALL ANYTHING!

 

Registration will open at 9:00 AM and will be located throughout the hospital including

  • Schlager Atrium (formerly known as Cabot Atrium, 45 Francis Street Lobby),
  • Schuster Lobby (75 Francis Street Entrance),
  • Shapiro Cardiovascular Center (70 Francis Street Entrance), and the
  • Hale Building for Transformative Medicine (HBTM) 1st Floor (60 Fenwood Road).

 

Click here for directions to these locations.  

NAVIGATING THE BRIGHAM IS EASIER THAN EVER

Need directions to a clinic, conference room, public space, or help assisting someone who looks lost?

Try our browser-based wayfinding tool and mobile app, BWH Maps,
which provides real-time location tracking and directions in the hospital.

Look for BWH Maps on the Apple App Store and Google Play Store,
or visit maps.brighamandwomens.org.

REGISTRATION LOCATIONS

Please visit one of the registration desks listed below to check-in, receive your badge, and collect any necessary materials. Registration will begin starting at 9:00 AM at each of the locations below.

 

Click on each location below for directions. 

  • SCHLAGER ATRIUM, FORMERLY KNOWN AS CABOT ATRIUM (45 FRANCIS ST. LOBBY)
  • SCHUSTER LOBBY (75 FRANCIS ST. LOBBY)
  • CARL J. AND RUTH SHAPIRO
    CARDIOVASCULAR CENTER
  • HALE BUILDING FOR
    TRANSFORMATIVE MEDICINE

SESSION LOCATIONS

Below you will find directions to each of the session locations.

MARSHALL A. WOLF CONFERENCE ROOM

HALE BUILDING FOR TRANSFORMATIVE MEDICINE

SESSION ROOM

FROM 60 FENWOOD ROAD:
Enter at 60 Fenwood Rd lobby entrance.

STAIRS:
Take the lobby staircase to the 2nd floor. Walk past the balcony overlooking the atrium and take the stairs on the left (Stair 2) to the 3rd floor. Once on the 3rd floor, exit the stairwell and take a right. The room is to your right through the double glass door, straight ahead.

ELEVATOR:
Take S Elevator to 3rd floor. Take a right out of the elevator. The room is past the stairwell, on your right through the double glass doors.

HALE VTC 02006B CONFERENCE ROOM

HALE BUILDING FOR TRANSFORMATIVE MEDICINE

OVERFLOW ROOM FOR MARSHALL A. WOLF CONFERENCE ROOM

FROM 60 FENWOOD ROAD:
Enter at 60 Fenwood Rd lobby entrance.

STAIRS:
Take the lobby staircase to the 2nd floor. The conference room will be on your right near the display monitor.

ELEVATOR:
Enter at 60 Fenwood Rd main entrance and take the S Elevator to the 2nd floor. Once you exit the elevator, take a right and walk past the balcony overlooking the atrium and the conference room will be straight ahead near the display monitor.

ZINNER BREAKOUT ROOM

CARL J. AND RUTH SHAPIRO CARDIOVASCULAR CENTER

SESSION ROOM

FROM 70 FRANCIS STREET:
The Zinner Breakout Room is located in the Carl J. and Ruth Shapiro Cardiovascular Center at 70 Francis Street, Boston, MA. Upon entering the building at the street level, walk straight towards the escalators in the rear of the building. The Zinner Conference Center is located on your right; the Breakout room is through the large doors on the left.

ZINNER BOARDROOM

CARL J. AND RUTH SHAPIRO CARDIOVASCULAR CENTER

OVERFLOW ROOM FOR ZINNER BREAKOUT ROOM

FROM 70 FRANCIS STREET:
The Zinner Boardroom is located in the Carl J. and Ruth Shapiro Cardiovascular Center at 70 Francis Street, Boston, MA. Upon entering the building at the street level, walk straight towards the escalator, keeping to the left side of the building. The Conference Center is located on your right; the Boardroom is through the large doors on the back wall.

BORNSTEIN FAMILY AMPHITHEATER

MAIN PIKE, 45 FRANCIS STREET LOBBY

SESSION ROOM

FROM 45 FRANCIS STREET:
Coming from 45 Francis Street lobby, walk towards the Main Pike (2nd floor hallway). Then take left on the Main Pike, 2nd door on right.

AGENDA

10:00 AM – 11:00 AM

Opening remarks

Elizabeth G. Nabel, MD, President Brigham Health, Prof. Medicine @HarvardMed

  • 8th event since 2012
  • show casing amazing research
  • Open to the Public: Patients, Families to educate
  • 90 Posters
  • Health equity perspective as DNA of the Brigham
  • Learn a new idea, meet someone new, create a new idea

Keynote Introduction

David Bates, MD @DBatesSafety

KEYNOTE

KYU RHEE, MD, MPP, VICE PRESIDENT & CHIEF HEALTH OFFICER, IBM CORPORATION & IBM WATSON HEALTH

MAIN PIKE, 45 FRANCIS STREET LOBBY
  • Partnership BWH & IBM WATSON
  • Big data of claims from providers to payers
  • Waiting rookms in Healthcare delivery
  • Government: ACA
  • AI Spring is here, no more Winter for AI
  • Health disparities, salaries, sexual orientation – improving health of populations
  • Science & Security
  • Red Hat – data security – big data statoscope
  • Healthcare Culture & Technology Culture: IBM & Amazon hire healthcare professionals
  • Cost: Burnout, managing population health,
  • Reduce physicians burnout
  • Culture Tech – Competition by IBM’s Project Debater

11:15 AM – 12:50 PM

1:00 – 1:50 PM

FROM 70 FRANCIS STREET:
The Zinner Breakout Room is located in the Carl J. and Ruth Shapiro Cardiovascular Center at 70 Francis Street, Boston, MA. Upon entering the building at the street level, walk straight towards the escalators in the rear of the building. The Zinner Conference Center is located on your right; the Breakout room is through the large doors on the left.

Aaron Goldman
HaeLin Jang
Greog K. Gerber
  • Microbiome – Bacteria and Fungus therapies – computational tools for applications on microbiome
  • Diagnostics
  • Microbiome in early childhood
  • temporal variability during adulthood
  • host disease bacteriptherapeutics: C-Diff
  • Bugs as drugs
  • Gnotobiotic mice model for c-Diff in mice
  • MDSINE – Microbial dynamin model interaction model
  • cancer microbiome: Bacteria causing cancer, cancer changing the bacteria environment

 

Jeff Karp BENG PhD @MrJeffKarp

  • tissue based patch to seal open foramane ovale. Project remained in Academic settings however
  • GLUE component was commercialized
  • bioinspiration from living organs in Nature, slugs
  1. Viscose secretions
  2. Hydrophobic secretions and snails and sand castle worms

1:00 – 1:50 PM

Lina Matta, PharmD
Joji Suzuki, MD
Lisa WIchmann
Kevin Elias, MD
Daiva Braunfelds,MBA HPH
Elizabeth Cullen, MS

2:00 – 2:50 PM

3:00 – 3:50 PM

David Levin
Christopher baugh
Kathryn Britton
Joanne Feinberg Goldstein
Amrita Shahani
If patient meets criteria for Home Hospital : all services are sent home.
2016 – Pilot randomized controlled trial
2017-2018 – Repeat of Pilot on larger population
2018 – High-volume single arm innovation services
2019 – studies within home hospital wtth sensors at home
2020 – continue
Operation and Research lead to innovations

Anna Krichevsky, PhD HMS Initiative for RNA Medicine

  • paradox of organismal complexity and # protein encoding genes
  • Human genome, 70% Transcriptome Non-coding RNA only 2% encode proteins
  • Non-coding RNA small, long, multifunctional
  • biogenesis of offending RNAs can be drugged
  • RNA novel therapies: RNA as a Drug,
  • Indications: Brain Tumors and AD: MicroRNA (miRNA)the smallest Glioblastoma – only 4 drugs FDA approved in 25 years miRNA – 10b inhibition kills gliomacells miR-132 most neuroprotective RNA
  • Cardiovascular

Paul Anderson, MD, PhD

  • ALS and FTD – Fronto Temporal Dimensia
  • Riluzone 1970 – anti Anti-glutamateric
  • Edarabone 2017 drugs approved – anti-oxidative
  • Andogenesis role in Motor protection from Stress Cytoplasmatic tRNA – ANdiogenin (ANG) production
  • 20 amino acids
  • 5″-tiRNAs assemble G-quadruples – G4
  • point mutationin ANG (mANG) reduce its RNanase
  • G4-containing DNA analogs of 5″-tiRNA (Ala)

Marc Feinberg, MD

  • Cardiovascular: CAD, Insulin resistence – Vascular inflammation
  • Impaired angiogenesis: post MI repair CHF
  • MiRNA therapeutics for Atherosclerosis – miR-181b: Aortic ECs Athero (mice) CAD (Human)
  • miRNA _ Liposomes injected in the vessel wall – reduction of inflammation in vessel – microRNA Group
  • monocyte – How can we increase or amintain mir-181b expression in endothelial cells?
  • LncRNA Therapeutics for vascular Senescence and Atherosclerosis – no effect on leucocyte accumulation no difference in inflammation
  • DNA-dependent protein kinase (DNA-PK)
  • Does Loss SNHG12 triggers vascular senescence in the vessel wall

 

Clemens Scherzer, MD

  • The Protein RNA Brain
  • Dopamin p
  • BRAINCODE: 64% RNA: mRNA, ncRNA,
  • cell-type-spacific putative enhancer RNAs (eRNAs)
  • eRNAs indicate active genetic switches
  • central dogma in Biology: DNA, non-coding RNA, Protein
  • Top 10 Markers
  • Neuropsychiatric Disease: Parkinson: How do genetic variants function in specific brain cells: neurons, microglia, astrocytes
  • genetic variants of neuropsychiatric diseases over-localize to active eRNA sites in dopamine neurons
  • enhancers RNA – ADHD,
  • enhacers RNA – schizoprania, bipolar, addiction – antopsychotic Vlporic acid
  • BRAINCODE Project: BWH MGH HMS

5:00 – 6:00 PM

AWARDS & RECEPTION

SPECIAL PHOTO-OP TO CELEBRATE YOU!
WE WILL TAKE A GROUP PHOTO DURING THE RECEPTION AND AWARDS CEREMONY TO CELEBRATE YOU, OUR INNOVATORS!
THE PHOTO WILL BE DISPLAYED AT THE BRIGHAM IN THE HALE BUILDING. WE HOPE YOU CAN JOIN US IN CELEBRATING YOUR ACHIEVEMENTS.

SOURCE

http://www.discoverbrigham.org/agenda/

Read Full Post »

Use of 3D Bioprinting for Development of Toxicity Prediction Models

Curator: Stephen J. Williams, PhD

SOT FDA Colloquium on 3D Bioprinted Tissue Models: Tuesday, April 9, 2019

The Society of Toxicology (SOT) and the U.S. Food and Drug Administration (FDA) will hold a workshop on “Alternative Methods for Predictive Safety Testing: 3D Bioprinted Tissue Models” on Tuesday, April 9, at the FDA Center for Food Safety and Applied Nutrition in College Park, Maryland. This workshop is the latest in the series, “SOT FDA Colloquia on Emerging Toxicological Science: Challenges in Food and Ingredient Safety.”

Human 3D bioprinted tissues represent a valuable in vitro approach for chemical, personal care product, cosmetic, and preclinical toxicity/safety testing. Bioprinting of skin, liver, and kidney is already appearing in toxicity testing applications for chemical exposures and disease modeling. The use of 3D bioprinted tissues and organs may provide future alternative approaches for testing that may more closely resemble and simulate intact human tissues to more accurately predict human responses to chemical and drug exposures.

A synopsis of the schedule and related works from the speakers is given below:

 

8:40 AM–9:20 AM Overview and Challenges of Bioprinting
Sharon Presnell, Amnion Foundation, Winston-Salem, NC
9:20 AM–10:00 AM Putting 3D Bioprinting to the Use of Tissue Model Fabrication
Y. Shrike Zhang, Brigham and Women’s Hospital, Harvard Medical School and Harvard-MIT Division of Health Sciences and Technology, Boston, MA
10:00 AM–10:20 AM Break
10:20 AM–11:00 AM Uses of Bioprinted Liver Tissue in Drug Development
Jean-Louis Klein, GlaxoSmithKline, Collegeville, PA
11:00 AM–11:40 AM Biofabrication of 3D Tissue Models for Disease Modeling and Chemical Screening
Marc Ferrer, National Center for Advancing Translational Sciences, NIH, Rockville, MD

Sharon Presnell, Ph.D. President, Amnion Foundation

Dr. Sharon Presnell was most recently the Chief Scientific Officer at Organovo, Inc., and the President of their wholly-owned subsidiary, Samsara Sciences. She received a Ph.D. in Cell & Molecular Pathology from the Medical College of Virginia and completed her undergraduate degree in biology at NC State. In addition to her most recent roles, Presnell has served as the director of cell biology R&D at Becton Dickinson’s corporate research center in RTP, and as the SVP of R&D at Tengion. Her roles have always involved the commercial and clinical translation of basic research and early development in the cell biology space. She serves on the board of the Coulter Foundation at the University of Virginia and is a member of the College of Life Sciences Foundation Board at NC State. In January 2019, Dr. Presnell will begin a new role as President of the Amnion Foundation, a non-profit organization in Winston-Salem.

A few of her relevant publications:

Bioprinted liver provides early insight into the role of Kupffer cells in TGF-β1 and methotrexate-induced fibrogenesis

Integrating Kupffer cells into a 3D bioprinted model of human liver recapitulates fibrotic responses of certain toxicants in a time and context dependent manner.  This work establishes that the presence of Kupffer cells or macrophages are important mediators in fibrotic responses to certain hepatotoxins and both should be incorporated into bioprinted human liver models for toxicology testing.

Bioprinted 3D Primary Liver Tissues Allow Assessment of Organ-Level Response to Clinical Drug Induced Toxicity In Vitro

Abstract: Modeling clinically relevant tissue responses using cell models poses a significant challenge for drug development, in particular for drug induced liver injury (DILI). This is mainly because existing liver models lack longevity and tissue-level complexity which limits their utility in predictive toxicology. In this study, we established and characterized novel bioprinted human liver tissue mimetics comprised of patient-derived hepatocytes and non-parenchymal cells in a defined architecture. Scaffold-free assembly of different cell types in an in vivo-relevant architecture allowed for histologic analysis that revealed distinct intercellular hepatocyte junctions, CD31+ endothelial networks, and desmin positive, smooth muscle actin negative quiescent stellates. Unlike what was seen in 2D hepatocyte cultures, the tissues maintained levels of ATP, Albumin as well as expression and drug-induced enzyme activity of Cytochrome P450s over 4 weeks in culture. To assess the ability of the 3D liver cultures to model tissue-level DILI, dose responses of Trovafloxacin, a drug whose hepatotoxic potential could not be assessed by standard pre-clinical models, were compared to the structurally related non-toxic drug Levofloxacin. Trovafloxacin induced significant, dose-dependent toxicity at clinically relevant doses (≤ 4uM). Interestingly, Trovafloxacin toxicity was observed without lipopolysaccharide stimulation and in the absence of resident macrophages in contrast to earlier reports. Together, these results demonstrate that 3D bioprinted liver tissues can both effectively model DILI and distinguish between highly related compounds with differential profile. Thus, the combination of patient-derived primary cells with bioprinting technology here for the first time demonstrates superior performance in terms of mimicking human drug response in a known target organ at the tissue level.

A great interview with Dr. Presnell and the 3D Models 2017 Symposium is located here:

Please click here for Web based and PDF version of interview

Some highlights of the interview include

  • Exciting advances in field showing we can model complex tissue-level disease-state phenotypes that develop in response to chronic long term injury or exposure
  • Sees the field developing a means to converge both the biology and physiology of tissues, namely modeling the connectivity between tissues such as fluid flow
  • Future work will need to be dedicated to develop comprehensive analytics for 3D tissue analysis. As she states “we are very conditioned to get information in a simple way from biochemical readouts in two dimension, monocellular systems”  however how we address the complexity of various cellular responses in a 3D multicellular environment will be pertinent.
  • Additional challenges include the scalability of such systems and making such system accessible in a larger way
  1. Shrike Zhang, Brigham and Women’s Hospital, Harvard Medical School and Harvard-MIT Division of Health Sciences and Technology

Dr. Zhang currently holds an Assistant Professor position at Harvard Medical School and is an Associate Bioengineer at Brigham and Women’s Hospital. His research interests include organ-on-a-chip, 3D bioprinting, biomaterials, regenerative engineering, biomedical imaging, biosensing, nanomedicine, and developmental biology. His scientific contributions have been recognized by >40 international, national, and regional awards. He has been invited to deliver >70 lectures worldwide, and has served as reviewer for >400 manuscripts for >30 journals. He is serving as Editor-in-Chief for Microphysiological Systems, and Associate Editor for Bio-Design and Manufacturing. He is also on Editorial Board of BioprintingHeliyonBMC Materials, and Essays in Biochemistry, and on Advisory Panel of Nanotechnology.

Some relevant references from Dr. Zhang

Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform.

Skardal A, Murphy SV, Devarasetty M, Mead I, Kang HW, Seol YJ, Shrike Zhang Y, Shin SR, Zhao L, Aleman J, Hall AR, Shupe TD, Kleensang A, Dokmeci MR, Jin Lee S, Jackson JD, Yoo JJ, Hartung T, Khademhosseini A, Soker S, Bishop CE, Atala A.

Sci Rep. 2017 Aug 18;7(1):8837. doi: 10.1038/s41598-017-08879-x.

 

Reconstruction of Large-scale Defects with a Novel Hybrid Scaffold Made from Poly(L-lactic acid)/Nanohydroxyapatite/Alendronate-loaded Chitosan Microsphere: in vitro and in vivo Studies.

Wu H, Lei P, Liu G, Shrike Zhang Y, Yang J, Zhang L, Xie J, Niu W, Liu H, Ruan J, Hu Y, Zhang C.

Sci Rep. 2017 Mar 23;7(1):359. doi: 10.1038/s41598-017-00506-z.

 

 

A liver-on-a-chip platform with bioprinted hepatic spheroids.

Bhise NS, Manoharan V, Massa S, Tamayol A, Ghaderi M, Miscuglio M, Lang Q, Shrike Zhang Y, Shin SR, Calzone G, Annabi N, Shupe TD, Bishop CE, Atala A, Dokmeci MR, Khademhosseini A.

Biofabrication. 2016 Jan 12;8(1):014101. doi: 10.1088/1758-5090/8/1/014101.

 

Marc Ferrer, National Center for Advancing Translational Sciences, NIH

Marc Ferrer is a team leader in the NCATS Chemical Genomics Center, which was part of the National Human Genome Research Institute when Ferrer began working there in 2010. He has extensive experience in drug discovery, both in the pharmaceutical industry and academic research. Before joining NIH, he was director of assay development and screening at Merck Research Laboratories. For 10 years at Merck, Ferrer led the development of assays for high-throughput screening of small molecules and small interfering RNA (siRNA) to support programs for lead and target identification across all disease areas.

At NCATS, Ferrer leads the implementation of probe development programs, discovery of drug combinations and development of innovative assay paradigms for more effective drug discovery. He advises collaborators on strategies for discovering small molecule therapeutics, including assays for screening and lead identification and optimization. Ferrer has experience implementing high-throughput screens for a broad range of disease areas with a wide array of assay technologies. He has led and managed highly productive teams by setting clear research strategies and goals and by establishing effective collaborations between scientists from diverse disciplines within industry, academia and technology providers.

Ferrer has a Ph.D. in biological chemistry from the University of Minnesota, Twin Cities, and completed postdoctoral training at Harvard University’s Department of Molecular and Cellular Biology. He received a B.Sc. degree in organic chemistry from the University of Barcelona in Spain.

 

Some relevant references for Dr. Ferrer

Fully 3D Bioprinted Skin Equivalent Constructs with Validated Morphology and Barrier Function.

Derr K, Zou J, Luo K, Song MJ, Sittampalam GS, Zhou C, Michael S, Ferrer M, Derr P.

Tissue Eng Part C Methods. 2019 Apr 22. doi: 10.1089/ten.TEC.2018.0318. [Epub ahead of print]

 

Determination of the Elasticity Modulus of 3D-Printed Octet-Truss Structures for Use in Porous Prosthesis Implants.

Bagheri A, Buj-Corral I, Ferrer M, Pastor MM, Roure F.

Materials (Basel). 2018 Nov 29;11(12). pii: E2420. doi: 10.3390/ma11122420.

 

Mutation Profiles in Glioblastoma 3D Oncospheres Modulate Drug Efficacy.

Wilson KM, Mathews-Griner LA, Williamson T, Guha R, Chen L, Shinn P, McKnight C, Michael S, Klumpp-Thomas C, Binder ZA, Ferrer M, Gallia GL, Thomas CJ, Riggins GJ.

SLAS Technol. 2019 Feb;24(1):28-40. doi: 10.1177/2472630318803749. Epub 2018 Oct 5.

 

A high-throughput imaging and nuclear segmentation analysis protocol for cleared 3D culture models.

Boutin ME, Voss TC, Titus SA, Cruz-Gutierrez K, Michael S, Ferrer M.

Sci Rep. 2018 Jul 24;8(1):11135. doi: 10.1038/s41598-018-29169-0.

A High-Throughput Screening Model of the Tumor Microenvironment for Ovarian Cancer Cell Growth.

Lal-Nag M, McGee L, Guha R, Lengyel E, Kenny HA, Ferrer M.

SLAS Discov. 2017 Jun;22(5):494-506. doi: 10.1177/2472555216687082. Epub 2017 Jan 31.

 

Exploring Drug Dosing Regimens In Vitro Using Real-Time 3D Spheroid Tumor Growth Assays.

Lal-Nag M, McGee L, Titus SA, Brimacombe K, Michael S, Sittampalam G, Ferrer M.

SLAS Discov. 2017 Jun;22(5):537-546. doi: 10.1177/2472555217698818. Epub 2017 Mar 15.

 

RNAi High-Throughput Screening of Single- and Multi-Cell-Type Tumor Spheroids: A Comprehensive Analysis in Two and Three Dimensions.

Fu J, Fernandez D, Ferrer M, Titus SA, Buehler E, Lal-Nag MA.

SLAS Discov. 2017 Jun;22(5):525-536. doi: 10.1177/2472555217696796. Epub 2017 Mar 9.

 

Other Articles on 3D Bioprinting on this Open Access Journal include:

Global Technology Conferences on 3D BioPrinting 2015 – 2016

3D Medical BioPrinting Technology Reporting by Irina Robu, PhD – a forthcoming Article in “Medical 3D BioPrinting – The Revolution in Medicine, Technologies for Patient-centered Medicine: From R&D in Biologics to New Medical Devices”

Bio-Inks and 3D BioPrinting

New Scaffold-Free 3D Bioprinting Method Available to Researchers

Gene Editing for Gene Therapies with 3D BioPrinting

 

Read Full Post »

Older Posts »

%d bloggers like this: